
1/19

Stimulus Response Requirements Specification Technique

Kendra M.L. Cooper*, Jeffrey J. Joyce+, Mabo R. Ito*

+Hughes Aircraft of Canada Limited
*The University of British Columbia

kendrac@ee.ubc.ca, jjoyce@ccgate.hac.com, mito@ee.ubc.ca

Abstract
A new requirements specification technique, Structured Stimulus Response, is presented

in this paper. This technique is suitable for the specification of large, software intensive systems
with complex data requirements. The Structured Stimulus Response technique may be seen as a
synthesis of Structured Analysis and Use Case techniques. From Structured Analysis, this new
technique inherits the concept of using a data dictionary to describe the vocabulary for the
requirements specification as well as using various structural and notational constraints that may
be checked automatically by a software tool. From the Use Case technique, this work inherits the
concept of partitioning the specification from the user’s perspective. The Structured Stimulus
Response technique is presented in this work as a semi-formal requirement specification tech-
nique that may potentially serve as a framework to support the selective application of more for-
mal techniques.

1. Introduction

There is a great deal of innovative, interesting and potentially useful research being
applied to the development of formal specification techniques based on mathematical notations
[Bar97, Hal97, Rus97, Sai96]. Such techniques may be applicable for the description of selected
aspects of a large specification, for example, to accurately specify some particularly complex
decision logic. However, it is doubtful that a technique based on a notation such as Z [Spi88]
could be practically applied comprehensively and uniformly in the specification of the require-
ments for a large system. Instead of trying to replace natural language with mathematical sym-
bols, the technique described in this paper is the result of imposing a set of constraints on the use
of natural language to specify requirements.

The new technique, Structured Stimulus Response (SSR), is intended primarily for the
specification of the software requirements for large, software intensive systems that have complex
data requirements. This technique shares common elements with both the Structured Analysis
(SA) and the Use Case techniques. However, the SSR technique contrasts significantly from these
other two techniques in its use of mechanisms to support a “blackbox” description of the require-
ments, such as a declarative style of requirements specification rather than indirectly specifying
requirements by means of building a model.

SSR originates from a technique developed by Hughes Aircraft of Canada Limited
(HACL) to specify the software requirements for the Canadian Automated Air Traffic System
(CAATS) [Pai93]. As presented here, the SSR technique is a generalization and refinement of the
one developed specifically for the CAATS project at HACL. SSR is generalized by eliminating

2/19

the domain specific details of an air traffic control system, which makes the new technique suit-
able for a variety of applications. The refinements of the HACL technique are influenced by expe-
rience in two areas. The first is the lessons learned from applying the technique on the CAATS
and the Canadian Military Automated Air Traffic System (MAATS) projects at HACL. The sec-
ond area of influence is the familiarity and experience with formal specification techniques.

Although not a formal specification technique, the work presented in this paper is influ-
enced by experience with formal methods. The influence, however, does not extend to the incor-
poration of mathematical symbols in the technique. The result is that the new technique is not
limited for use only by formal methods experts. In its current form, the new technique may serve
as a framework for the selective use of formal specification techniques. The use of a formal speci-
fication technique may be warranted for the description of safety or security critical functionality
in a system, for example. Extensions to the work, which formalize the technique, are also pre-
sented in this paper.

The organization of this paper is as follows. The motivation for developing a new require-
ment specification technique is discussed in Section 2. The distinguishing characteristics and
structure of the SSR specification technique are presented in Sections 3 and 4. Sections 5 and 6
compare and contrast the SSR technique with the well established SA and Jacobson’s Use Case
techniques [Dem78, Jac92]. Section 7 presents the potential for automated checking of and the
generation of test cases from a specification written in the SSR technique. Extensions which for-
malize the SSR technique are discussed in Section 8. The conclusions and future work are pre-
sented in Sections 9 and 10.

2. Motivation

Developing a requirement specification for large, software intensive systems with complex
data requirements is challenging with the techniques that are currently available. For the purposes
of this work, a system is considered large when it has at least several thousand distinct require-
ments and is documented by a team of 20 or more authors over the course of a year or more. The
data complexity may be characterized by a large number of distinct data definitions which may be
related by both composition and association relationships, and a large number of stimuli and
responses from/to external sources/sinks.

Large, data complex systems may have several hundred distinct data definitions which are
related in a data dictionary. The data definitions may be related by composition or association
relationships. The composition relationship may be described in Backus-Naur Form (BNF) and is
used in the SA technique to achieve a higher level of abstraction in the data definitions. The asso-
ciation relationship is more general than a composition relationship. For example, in a library sys-
tem, there may be an inherent relationship between a borrower and a book they have signed out.
BNF is not well suited for describing this type of relationship.

The large number and variety of stimuli and responses for a system may have require-
ments that are triggered by a group of stimuli or generate a group of responses. This may occur
when the groups consist of both local and external stimuli or responses. Since the stimuli and
responses are arriving from or being sent to external interfaces, the format of the message types

3/19

may be different for each member. The requirement, however, for processing the stimuli or gener-
ating the responses may be exactly the same. In systems with a large number of these stimuli and
responses, it would be convenient to group them, such that the requirement is only described once.
Introducing these groups, however, also needs a supporting mechanism to relate which stimulus
belongs with which response. Although the SA technique may use the BNF descriptions to group
stimuli and responses, for example, there is no mechanism available to match up the individual
stimulus response pairs that need to be specified.

For such large systems, the usefulness as a communication tool, maintainability, consis-
tency and conciseness are important characteristics of a requirement specification to consider. The
partitioning of the requirement specification should provide the customer with an overview of the
capabilities of the system, as seen from the end users point of view. A maintainable specification
is described using techniques that support a “blackbox” description of the system. This helps to
avoid describing internal processing which may constrain the design or create additional work to
interpret the requirements for the system. Writing conventions in a specification technique pro-
mote writing the requirements in a consistent style. This is of particular interest when a large
number of authors are developing the specification over a lengthy period of time. The writing con-
straints also promote describing a common idea with the same phrasing and vocabulary in differ-
ent parts of the specification. To encourage a concise description of the requirements, a
mechanism to group inputs and outputs that trigger the same requirements and are generated by
the same requirements is useful for systems with a large number of unique input and outputs. This
grouping allows the requirements to be written once, rather than for each member in the group,
making the requirements concise.

Currently available techniques, such as SA and Use Case techniques, do not support all of
the desired characteristics for describing the large systems with data complexity. SA supports
writing constraints through the use of a data dictionary, however it does not promote a “blackbox”
view of the system. Use Cases support partitioning the specification from the user’s point of view,
but does not provide writing constraints to promote consistency across the requirement specifica-
tion document. A new technique which draws from both the SA and Use Case techniques may be
useful for the description of the large systems under consideration.

3. Distinguishing Characteristics of the SSR Technique

Distinguishing characteristics in the SSR requirements technique include having an “out-
side-in” partitioning of the requirements, externally visible stimuli and responses, a declarative
notational style, a mechanism to group I/O, and employing writing constraints in the technique.
These characteristics are discussed below and summarized in Table 3.

3.1. Partitioning of Requirements
Two broad categories for partitioning the software requirements for a system are “top-

down” and “outside-in”. The “top-down” decomposition is implementation dependent, as an arbi-
trary choice of possible decompositions is made [War85].The “outside-in” approach uses the
stimuli and responses to and from the system to partition the software requirements. The sources
and sinks may be either human or other systems. An advantage of employing the “outside-in” par-
titioning is that the resulting specification is well suited to use as a communication tool with the

4/19

end user of the system. The specification is organized around the input and outputs of the system,
which corresponds to a user’s point of view.

The SSR technique applies the “outside-in” partitioning to structure the software require-
ment specification document. As a result, the documentation is straightforward to review, espe-
cially with respect to the scope of the system’s capabilities.

3.2. Visibility of Stimuli and Responses
A “blackbox” description of software requirements describes the behaviour of the system

in terms of its external stimuli (inputs) and external responses (outputs). In general, every require-
ment is specified in terms of a relationship between an externally generated stimulus and an exter-
nally visible response. The advantages of using a “blackbox” approach for describing
requirements include minimizing the potential for including internal design details in the specifi-
cation and maximizing the suitability of the specification in testing the system’s software. Dis-
couraging the inclusion of design details in the specification decreases the likelihood of overly
constraining the design and makes the specification simpler to maintain as the design details may
change as the project develops. Minimizing the software’s internal processing descriptions simpli-
fies the development of “blackbox” test cases as the test engineers do not have to derive the
requirements based test cases from descriptions of internal processing.

The SSR technique is based on describing externally visible stimuli and responses. The
requirements are typically described in terms of a direct relationship between a group of exter-
nally generated stimuli and a group of externally visible responses. Because of the “blackbox”
approach, a specification written in the SSR technique is well suited for use as a working docu-
ment by the system integration test group.

3.3. Notational Style
Two basic categories of notations include model based and declarative approaches. Model

based approaches describe the requirements indirectly, through the development of a representa-
tion, or model, of the requirements. The declarative style, on the other hand, does not involve
developing a model, and states the requirements directly. A declarative style discourages the
inclusion of internal design details in the specification.

The SSR technique uses a declarative style to minimize the inclusion of internal process-
ing (design details) in the specification. In addition to simplifying the interpretation of the require-
ments, the discouragement of including design details also simplifies the maintenance of the
specification.

3.4. Grouping I/O
In terms of maintainability and conciseness, it is convenient to group inputs (stimuli) and

outputs (responses) and to be able to refer to these groups by name for systems with a large num-
ber of stimuli and responses. For example, if six different stimuli are described that trigger a sin-
gle requirement, then its group name is used in the SSR technique to refer to the list in a single
description of the requirement. The alternative is to repeat the requirement for each of the six dif-
ferent stimuli that triggers the processing requirement.

5/19

The SSR technique provides local stimulus names and local response names to represent a
list of stimuli (source name, message type pairs) and responses (destination name, message type
pairs) respectively. The use of group names supports the development of a specification which is
concise and simple to maintain. The specification is concise because a requirement which
responds to a list of stimuli and generates a list of responses is only described as a single require-
ment, rather than describing one requirement for each of the individual stimulus, response events.
In terms of maintainability, the specification is simpler to maintain, because the details of the
stimuli and the responses are documented in a single place in the specification. For large systems
with complex data requirements, the abstraction of the I/O has the advantages of supporting a
concise and maintainable specification.

When groupings of I/O are used in a technique, there needs to be a mechanism to pair the
appropriate stimulus and response. SSR supports this pairing using writing conventions for the
stimulus and response message type names.

3.5. Writing Constraints
Writing constraints in a specification technique, including template phrasing and a

reduced vocabulary, are mechanisms to improve the consistency of specifications written by dif-
ferent authors.

Template Phrasing.Template phrasing is one mechanism used to improve the consistency of the
requirement specification document. It provides a standard way of describing a problem that is
encountered repeatedly. A template based technique is described in [Hen80]. An advantage of
using a template based technique is that the authors do not need to reinvent the phrasing to use on
descriptions that are re-used, for example the receipt of a stimulus (input). When all of the authors
are using the template phrasing, the specification is consistent and, as a result, straightforward to
review.

The SSR technique uses template phrasing within each of the sections to improve the consistency
of the specification, written by a large group of authors, as a whole. For example, one of the stan-
dard template phrases for a requirement statement is:

Upon receipt of a [local stimulus name], (if condition, then) the system shall
respond_with a [local response name] .

The bolded words or characters represent the standard part of the phrase. The plain type words are
the parts of the sentence that are filled in by the author. The parts that are filled in by the author are
also subject to the reduced vocabulary constraints described below.

Reduced Vocabulary.Reducing the vocabulary is another mechanism to improve the consistency
of the requirement specification document. A reduced vocabulary means that authors specifying
the requirements are restricted in their choice of words to describe the behaviour of the system. A
well maintained data model, for example, is one mechanism to reduce the variety of terms used in
a project. The data model should only describe unique data items that are used in the requirement
specification. Ideally, items are re-used by different authors, rather than each author creating

6/19

duplicate entries in the data model. This improves the consistency of the specification because all
authors use the same terminology to describe the data in the requirements.

The SSR technique uses a local data dictionary concept, in which only the data that is used
by a specification unit, or task as viewed by an end user, is described. From these local dictionar-
ies, the project dictionary may be extracted. For large projects, a centrally maintained data dictio-
nary is difficult to maintain, such that the entries are necessary and complete. Contributing factors
to this problem include the large number of authors requesting updates to the data dictionary and
the large size of the repository.

In addition to the local data dictionary, the SSR technique also restricts the verbs that are
used in the responses to a set of five action verbs. Again, the purpose of the reduced vocabulary is
to ensure consistency among the requirements written by different authors. A second benefit of
this writing constraint is that it discourages the inclusion of computer human interface (CHI)
details. The verbs do not include CHI related terminology such as “display” or “enter”. The result
is that the system is described in terms of a virtual environment, which isolates the requirements
from the CHI design and the interface technology used to implement the CHI design. As CHI
requirements may change frequently, the removal of the CHI details from the specification makes
the document simpler to maintain.

3.6. Other Useful Characteristics of SSR

Tabular Descriptions.Tabular formats for describing complex, logical conditions are described
in the literature [Par92, Lev94, Day97]. The advantages of providing a tabular format for describ-
ing logic include conciseness and readability.

The format of the tables supported in the SSR technique are a variation of an AND/OR table
[Day97]. Predicate tables have the following format:

The label of each row in the predicate table is an expression. The cells of each row are
predicates that are applied to the row’s label. Each column represents a single case, where the
conjunction of the cells in the column is true. Any other cases not described in the table explicitly
are assumed to be false. The table represents an “if, else if” structure. The predicate table’s name
is documented in the last row of the table.

Label Case 1 Case 2 ... Case n

Label 1 predicate predicate ... predicate

Label 2 predicate predicate ... predicate

... predicate

Label m predicate predicate predicate predicate

Title

7/19

The inclusion of a table format for describing complex conditions makes the SSR tech-
nique flexible. The specification for requirements such as aircraft separation rules in air traffic
control systems have been concisely described using this tabular format [Day97].

4. Structure of Stimulus Response Requirements Specification Unit

The specification unit is highly structured into the following sections: title, overview, stim-
uli, responses, requirements, declarations, and performance (refer to Figure 1). The purpose of

each section is described below and illustrated using a library system example.

Having a highly structured specification unit provides a common framework for the speci-
fiers, reviewers, and users of the specification unit to follow. This increases the consistency of the
specification units in a SRS and makes the specification units simpler to write and review.

4.1. Title Section.
The title section uniquely identifies the specification unit with a meaningful name. It pro-

vides a quick overview of what the specification unit does. For example, a library system has

Figure 1: Stimulus Response Specification Unit Structure

Performance:

Title:

Overview:

Requirements:

Stimuli:

Responses:

Declarations:

8/19

requirements that users can search the catalogue for an item. The title of the specification unit
describing these requirements is:

Title:
\ Search Catalogue \

The customer may use the list of titles in a requirement specification as summary of the
capabilities the specification describes.

4.2. Overview Section.
The overview section provides a high level description of the processing the specification

unit provides. The section summarizes the acceptance and rejection processing for the specifica-
tion unit. For example, the overview section for the \ Search Catalogue \ specification unit is:

Overview:
The Search Catalogue specification unit describes the processing performed when
an operator or external library requests to search for an item. The request may
search for an item using the author name, title, call number, or subject.

4.3. Stimuli Section.
The stimuli section describes all of the events that trigger processing in the specification

unit. Each stimulus is composed of a source name and a message type. The stimuli are grouped
under local names such that each group of stimuli is processed in the same way in the require-
ments section of the specification unit. The local stimulus name provides a convenient shorthand
notation for use in the requirements section to refer to the stimuli in the group.The advantage of
these group names in large systems is that the processing for multiple stimuli may be exactly the
same and only need to be described once. For example, the stimuli section for the \ Search Cata-
logue \ specification unit contains:

Stimuli:

1) The library system shall satisfy the requirements described below upon receipt of a
[search request] from:

a) Operator <search request>;

b) Remote Operator <search request>;

c) VPL <search request>;

d) SFU <search request>;

e) UVIC <search request>;

f) EPL <search request>.

9/19

4.4. Responses Section.
The responses section describes all of the outputs that are the result of processing done in

the specification unit. Each response is composed of a destination name and a message type. The
events are grouped under local names, such that each group of responses is generated in the same
way in the requirements section of the specification unit. The local response name provides a con-
venient shorthand notation for use in the requirements section to refer to the responses in the
group. In large systems, the responses that are generated in response to a stimulus may be exactly
the same, and only need to be described once using a group name. For example, the responses sec-
tion for the \ Search Catalogue \ specification unit contains:

Responses:

1) As specified by the requirements described below, the library system shall
return a [search response] to:

a) Operator <search response>;

b) Remote Operator <search response>;

c) VPL <search response>;

d) SFU <search response>;

e) UVIC <search response>;

f) EPL <search response>.

4.5. Requirements Section.
The requirements section describes what processing the specification is responsible for

when it is triggered by different groups of stimuli. For each stimulus, the minimum requirements
include a response of some type. A requirement refers to its stimuli by the local stimulus name.
Each requirement generates one or more responses, which are referred to by the local response
names. For example, the requirements section for the \ Search Catalogue \ specification unit con-
tains:

Requirements:
1) Upon receipt of a [search request], if the [search request] is not rejected, then
the library system shall return an [acceptance].

4.6. Declaration Section.
The declaration section provides the underlying foundation for the specification unit in

terms of the data it requires and the relationships among the data. The data declarations are the
“glue” that tie together the requirement specification processing requirements, and are a critical
component of the specification.

10/19

To provide structure to the declaration section, seven sub-sections are defined. These are
summarized in Table 2.

For example, type names used in the \ Search Catalogue \ include:

Declarations:

Type Names:
1) :<search key>.

Constants used include:

Constants:
1) <author name>:<search key>.
2) <title>:<search key>.
3) <call number>:<search key>.
4) <subject>:<search key>.

4.7. Performance Section.
The performance section describes the response time categories for each stimulus-

response pair in the specification unit. For example, the performance section of the \Search Cata-
logue\ contains:

Declaration Sub-section Purpose

Type Names Declare the data types needed

Type Aliases Declare alternate names for the data types

Static Associations Declare relationships among the data types

Constants Declare named objects of a specific data type

Adaptation Data Declare named objects of a particular type
that may be modified on a per installation
basis

Stimulus and Response Components Declare the source names, destination names,
and message types for the stimuli and
responses

Other Specification Units Used Declare the other specification name titles
referred to for re-using requirement descrip-
tions

Table 2: The Purpose of the Declaration Sub-sections

11/19

The mean amount of time to process searching for an item is 3.5 seconds.
The maximum amount of time to process searching for an item is 6.5 seconds.

5. Comparison and Contrast with Structured Analysis

SA is a well established technique used to describe a functional model of a system
[Dem78]. It is a model based technique that uses a “top-down”, functional decomposition. The
SA technique combines both graphic diagrams and textual descriptions to model the require-
ments.

The characteristics described in section 3 are used as a basis to compare and contrast SA
with SSR in this section. The results are summarized in Table 3.

5.1. Partitioning of Requirements
The SA technique partitions requirements using a functional, “top-down” technique. The

basic partitioning tool in SA is the data flow diagram. The partitioning is achieved by decompos-
ing functional transformation centers on a diagram until the processing for a single center can be
described in one page or less of text. The lowest level of partitioning may not provide a good
overview of the capabilities of the system, from a customer’s point of view. In contrast, the SSR
technique uses an “outside-in” partitioning which partitions the specification from an external
view, and is useful as a communication tool to use with the customer.

5.2. Visibility of Stimuli and Responses
The mapping between the external sources and sinks of stimuli and responses is summa-

rized on the context diagram of the SA model [Dem78]. At the context level, the stimuli and
responses are all externally visible. As the model is decomposed, however, and more details are
added to describe the system, internally visible flows are added to the model. At the primitive,
process specification level, the model of the requirements may not be partitioned such that every
process specification is responding to externally visible stimuli and generating externally visible
responses. Stimuli and responses described at this level which are not externally visible represent

Goal for the Specification Characteristic to Support the Goal SSR SA
Use
Case

Communication Tool
with Customer’s End User

“Outside-in” partitioning yes no yes

Maintainable Specification Externally visible stimuli, responses yes mixed mixed

Maintainable Specification Declarative notational style yes no no

Concise Specification Grouping I/O yes no no

Consistent Specification Template phrasing yes no no

Consistent Specification Reduced vocabulary yes yes no

Table 3: Characteristics of SSR, SA, and Use Case Techniques

12/19

internal processing, or design details. The SSR technique, however, partitions a specification such
that every specification unit is responding to and generating externally visible events.

5.3. Grouping I/O
The SA technique supports the description of data flows in the data dictionary using the

BNF notation. Stimuli and responses may be grouped together using the selection notation in
BNF, however, there are no mechanisms in the SA technique to pair up appropriate stimulus
response pairs. In the process specification, the stimulus response pairs are described separately in
the requirements. In contrast, the SSR technique supports grouping I/O in the stimuli and
responses sections and pairing the events.

5.4. Writing Constraints
Writing constraints supported in the SA technique include enforcing a restricted vocabu-

lary and a restricted syntax.The structured English consists only of imperative verbs, terms
defined in the data dictionary, and reserved words for logic formulation. The data dictionary pro-
motes the re-use of data elements in the specification, as does the SSR technique. The significant
difference of the SA technique with respect to the reduced vocabulary used in SSR is that the SA
technique does not restrict which verbs may be used. The syntax of the sentences permitted in the
SA structured English include simple declarative sentences, decision constructs, and repetition
constructs. This syntax is much more flexible than a template phrasing approach. The flexibility
may lead to more differences among the authors writing the specifications and reduce the consis-
tency of the document.

5.5. Notational Style
The SA technique is a modelling technique. The model is based on transforming data in

the system and is described using a set of data flow diagrams and a data dictionary. The model is
built as a decomposition of the context diagram, which describes the boundary of the system and
the external sources and sinks of data, into a set of data flow diagrams. The data flow diagrams are
composed of transformation centers, data flows, and data stores. As the model is decomposed,
additional details are added to describe the system, by describing transformation centers and addi-
tional internal flows and stores. In contrast with the declarative style of the SSR technique, the SA
technique does not discourage the description of internal processing details. Subsequently, the SA
model of the requirements may take additional time to interpret by its users and inadvertently con-
strain the design.

6. Comparison and Contrast with Use Cases

Use Cases are a newer, popular technique for describing requirements that uses natural
language to describe a model of the user requirements. Each Use Case describes a way to use the
system. The set of Use Cases for a system represents everything users can do with the system
[Jac94]. Use Cases are compared and contrasted with the SSR technique in this section. The
results are summarized in Table 3.

6.1. Partitioning of Requirements
The Use Case technique partitions the software requirements from the user’s perspective.

Each task the actor needs to do becomes a Use Case in the software requirement specification.

13/19

The requirements specification is straightforward to review by the customer, as the partitioning
clearly describes the scope of the system. This is the same partitioning mechanism used in the
SSR technique.

6.2. Visibility of Stimuli and Responses
The Use Case technique combines two views of the system into the Use Case descriptions:

the user’s point of view and the developer’s point of view. The result is a mixed “blackbox” and
“whitebox” description of software requirements. The “blackbox” component of the Use Case
describes the dialogue between the user and the system. The “whitebox” components describe
internal processing which may constrain the design and/or implementation.

6.3. Grouping I/O
The Use Case technique does not provide a mechanism to group I/O, as the SSR technique

does. In the Use Case technique, each stimulus is described separately in the Use Case descrip-
tion. The SSR technique has an advantage for describing systems with a large number and variety
of stimuli and responses, in comparison to the Use Case technique.

6.4. Writing Constraints
The Use Case technique does not provide writing constraints for template phrasing or for

using a reduced vocabulary as the SSR technique does. The Use Case technique is extremely flex-
ible, however, it may be difficult to use on projects with a large number of authors. Ensuring a
consistent style across the document without writing constraints may be difficult, as each author
would have their own style and that style is likely to evolve over the duration of writing the speci-
fications.

6.5. Notational Style
A Use Case is not described using a declarative style. Instead, a Use Case can be modelled

as a state machine [Jac94]. An instance of a Use Case traverses states of this machine during its
lifetime. A stimulus that is received from an actor causes the Use Case to leave its current state
and perform a transaction. The transaction performed depends on the state-stimulus combination.
The transaction includes the manipulation of internal attributes of the Use Case and externally vis-
ible outputs to actors. The transaction is finished when the Use Case has entered a state (possibly
the same one) and is awaiting another stimulus from an actor.

In contrast to the SSR technique, which has a declarative style, the Use Case technique has
the authors building a model of the requirements. This modelling technique does not discourage
the description of internal processing.

7. Potential for Automated Checking and Generation of Test Cases

The SSR technique uses writing constraints that support scanning and parsing the natural
language text for data dictionary elements (enclosed within ‘<‘ and ‘>’) and local stimulus and
response names (enclosed within ‘[‘ and ‘]’). With scanning and parsing support, simple checks
may be automated including:

• is a local stimulus name declared in the stimuli section before being used in the requirements

14/19

section?
• is each local stimulus name used one or more times in the requirements section?
• is each stimulus message used in the stimuli section declared in the declaration section?
• is a local response name declared in the responses section before being used in the require-

ments section?
• is each local response name used one or more times in requirements section?
• is each response message used in the responses section declared in the declaration section?
• is each data element used in the requirements section declared in the declaration section?

8. Formalization

A reduced vocabulary and decentralized data dictionary provide the infrastructure to sup-
port formalization of the SSR technique. There are two possible directions to take when formaliz-
ing the requirements (refer to Figure 3). The first option involves interleaving a formal notation
and natural language descriptions of the requirements. The second option involves formalizing the
template phrases.

The first option structures the requirements such that a Z like modelling technique is sup-
ported. The formalized version interleaves the Z schema with informal natural language. An
advantage of this option is that a reader may choose which sections to read (either the formal or
the informal). Significant drawbacks to this option include the difficulty in maintaining consis-
tency between the informal and formal components. The maintenance is required on two specifi-
cations, rather than just one. Secondly, if or when the two documents are out of synchronization,
the question which must be answered is which of the two specifications is thereal specification of
the requirements.

The second option extends the template phrasing concept such that the entire specification
is written using a notation that reads like English, has a defined syntax and semantics, and is com-
pletely machine scannable and parseable. This makes the specification amenable to automated
scanning, parsing, typechecking, analysis, and transformation. Automated checking and analysis
may be used to reduce the cost of reviewing specification documents. The potential to automate
the generation of test cases by transforming requirements specifications is described in [Don97].

9. Conclusions

The new SSR requirements specification technique is designed for describing the require-
ments of large, software intensive systems with complex data requirements. The SSR technique is
intended to describe requirements specification documents which are useful as a communication
tool with the customer, concise, and maintainable.

To support the specification of the large systems, the SSR technique draws ideas from the
well established SA and Use Case techniques and contributes new ideas as well. SSR borrows the
“outside in” partitioning of the requirement specification document from the Use Case technique
and the use of a data dictionary from the SA technique. To these ideas, grouping the I/O, an
optional table format, and multiple levels of writing constraints are added.

Multiple levels of constraints are used in the SSR technique to improve the consistency of

15/19

the specifications written by multiple authors. Improving the consistency of the specification units
reduces writing, reviewing, and maintenance time for the specification.

Because of the declarative style used in the SSR technique, it is not suitable for describing
requirements with state based behaviour. For example, process control systems are well suited for
the SA or Use Case techniques, but not the SSR technique.

The automated scanning, parsing, and analysis checks are limited in the SSR technique. A
formalized version of the SSR technique would allow typechecking and more sophisticated analy-
sis checks to be run on the specification. This may improve the consistency of the requirements
while reducing the cost of reviewing the document. The cost of using a formalized technique may
include additional training time in the specification technique and the tools that support it.

Figure 3: SSR Formalization Options

Formalization
Option 1

Formalization
Option 2

Legend

Semi- formal Technique

Formal Technique

16/19

10. Future Work

Future work in this research is focused on formalizing the SSR technique. The formaliza-
tion work is proposed to use the second option described in Section 8. The template phrasing con-
cept is to have a defined syntax and semantics, yet still read like English. After defining the
language, tool support to scan, parse, typecheck, analyze, and transform a specification in the
notation are to be built. The transformation is intended to be a suitable input for the automatic test
case generation work under investigation by [Don97].

In order to evaluate the usefulness of formalizing the SSR technique, an experiment is pro-
posed to objectively evaluate the semi-formal SSR technique to the formalized version. Measure-
ments are to include defect detection rates and the effort involved in generating, reviewing,
correcting, and translating the specification to test cases.

11. References

Bar97 Luciano Baresi, Alessandro Orso, and Mauro Pezze, “Introducing Formal Specifi-
cation Method in Industrial Practice”,Proceedings of the 19th International Con-
ference on Software Engineering, May 17-23, 1997, Boston, Massachusetts, USA,
1997, pp. 56-66.

Day97 Nancy A. Day, Jeffrey J. Joyce, and Gerry Pelletier, “Formalization and Analysis
of the Separation Minima for Aircraft in the North Atlantic Region”,4th NASA
LaRC Formal Methods Workshop, Hampton Virginia, USA, September 10-12 1997
(to appear).

Dem78 Tom Demarco,Structured Analysis and System Specification, Prentice-Hall, Inc.,
USA, 1978.

Don97 Michael R. Donat, “Automating formal specification-based testing”, In Michel
Bidoit and Max Dauchet, editors,TAPSOFT ‘97: Theory and Practice of Software
Development, 7th International Joint Conference CAAP/FASE, volume 1214 of
Lecture Notes in Computer Science, Springer-Verlag, April 1997.

Hal97 Anthony Hall, “What’s the Use of Requirements Engineering?”,ISRE ‘97, Third
IEEE International Symposium on Requirements Engineering, Jan. 6-10 1997,
Annapolis, Maryland, USA, 1997, pp. 2-3.

Hen80 K. Heninger, “Specifying Software Requirements for Complex Systems: New
Techniques and Their Application”,IEEE Transactions on Software Engineering,
Vol. SE-6, No. 1, January 1980, pp. 2-13.

Jac92 Ivar Jacobson,Object-Oriented Software Engineering a Use Case driven approach,
Addison Wesley Longman Ltd., England, 1992.

17/19

Jac94 Ivar Jacobson, “Basic Use Case Modeling”,Report on object analysis and design,
July-August, 1994.

Lev94 Nancy Leveson, Mats Heimdahl, Holly Hildreth, and Jon Reese, “Requirements
Specification for Process-Control Systems”, IEEE Transactions on Software Engi-
neering, Vol. 20, no. 9, September, 1994, pp. 684-707.

Pai93 T. Paine, P. Krutchen, and K. Toth, “Modernizing ATC Through Modern Software
Methods”, 38th Annual Air Traffic Control Association Convention, Nashville,
Tennessee, October, 1993.

Rus97 John Rushby, “Calculating with Requirements”,ISRE ‘97, Third IEEE Interna-
tional Symposium on Requirements Engineering, Jan. 6-10 1997, Annapolis,
Maryland, USA, 1997, pp. 144-146.

Sai96 Hossein Saidian, “An Invitation to Formal Methods”,IEEE Computer, April 1996,
pp. 16-30.

Spi88 J.M. Spivey,Understanding Z, Cambridge University Press, Great Britain, 1988.

War85 Paul Ward and Stephen Mellor,Structured Development for Real-Time Systems,
Volumes 1,2,3, Yourdon Press, USA, 1985.

12. Appendix A. Library Specification Unit Example

Title :
\ Search Catalogue \

Overview:
The Search Catalogue specification unit describes the processing performed when an operator or
external library requests to search for an item. The request may search for an item using the author
name, title, call number, or subject. The response is sorted according to the search key used in the
search request.

Stimuli :
1) The library system shall satisfy the requirements described below upon receipt of a [search
request] from:

a) Operator <search request>;

b) Remote Operator <search request>;

c) VPL <search request>;

d) SFU <search request>;

18/19

e) UVIC <search request>;

f) EPL <search request>.

Responses:

1) As specified by the requirements described below, the library system shall return an [accep-
tance] to:

a) Operator <acceptance>.

2) As specified by the requirements described below, the library system shall send a [search
response] to:

a) Operator <search response>;

b) Remote Operator <search response>;

c) VPL <search response>;

d) SFU <search response>;

e) UVIC <search response>;

f) EPL <search response>.

Requirements:
1) Upon receipt of a [search request], if the [search request] is not rejected, then the library system
shall return an [acceptance].

2) Upon receipt of a [search request], if the [search request] is not rejected, then the library system
shall send a [search response].

a) If the <search key> in the input is by <author name>, then the sent [search response]
shall be sorted by <author name>.

b) If the <search key> in the input is by <title>, then the sent [search response] shall be
sorted by <title>.

c) If the <search key> in the input is by <call number>, then the sent [search response]
shall be sorted by <call number>.

d) If the <search key> in the input is by <subject>, then the sent [search response] shall be
sorted by <subject>.

19/19

Declarations:
Type Names:
1) :<search key>.

2) :<boolean operator>.

Type Aliases:

Static Associations:
1) A <search request> is associated with:

a) one or more <search key>s;

b) zero or more <boolean operator>s.

Constants:
1) <author name>:<search key>.

2) <title>:<search key>.

3) <call number>:<search key>.

3) <subject>:<search key>.

Adaptation Data:

Stimulus and Response Components
1) <search request>:<request message>.

2) <search response>:<response message>.

Other Specification Units Used:

Performance:
The mean amount of time to process searching for an item is 3.5 seconds.
The maximum amount of time to process searching for an item is 6.5 seconds.

