
1

Ensuring the Inspectability, Repeatability and
Maintainability of the Safety Verification of a Critical

System
Ken Wong

Department of Computer Science
University of British Columbia

Vancouver, BC, Canada V6T 1Z4
kwong@cs.ubc.ca

 Jeff Joyce, Jim Ronback
Raytheon Systems Canada Ltd.

13951 Bridgeport Road
Richmond, BC, Canada V6V 1J6
{jjoyce, jronback}@mail.hac.com

Abstract
This paper proposes an approach to the safety verification of the source code of a software-intensive system.
This approach centers upon the production of a document intended to ensure the inspectability, maintainability
and repeatability of the source code safety verification. This document, called a “safety verification case”, is
intended to be a part of the overall system safety case. Although the approach was designed for large software-
intensive real-time information systems, it may also be useful for other kinds of large software systems with
safety-related functionality. The approach involves the construction of a rigorous argument that the source code
is safe. The steps of the argument include simplifying the safety verification case structure by isolating the
relevant details of the source code, and reducing the "semantic gap" between the source code and the system
level hazards through a series of hierarchical refinement steps. Some of the steps in a process based on this
approach may be partially automated with tool-based support. Current research and industry practices are
reviewed in this paper for supporting tools and techniques.

Keywords: system safety engineering, software safety, software verification.

1. Introduction
A number of safety-related standards and guidelines mandate, recommend or suggest the production of a
detailed report on the safety of a software system with safety-related functionality. This report is often called a
“safety case”. The safety case is likely to span the entire safety engineering process including a summary of the
results of various process steps. In this paper, we focus on one specific step of the overall safety engineering
process, namely, “safety verification”. While methods for performing “front-end” steps such as “hazard
analysis” are relatively well understood and widely used, methods for performing safety verification are less
well established. Several methods have been proposed as a means of verifying source code with respect to
identified hazards, but there are few published discussions of how these techniques could be applied to anything
other than relatively small, isolated subsystems.

This paper outlines an approach which is intended to strengthen the “back-end” of the overall safety engineering
process for large software-intensive information systems. This approach centers upon the production of a
document that records the safety verification of the source code. We have introduced the term “safety
verification case” to refer to this document. Our use of this term is intended to emphasis the contributory
relationship of this document to the overall system safety case. The safety verification case is intended to ensure
the inspectability, maintainability and repeatability of the source code safety verification. The organization of
the safety verification case provides a basis for the definition of a software verification process. In turn, this

2

process could employ an appropriate combination of the methods, techniques and tools surveyed in this paper.
The organization of the “safety verification case” is strongly influenced by our experience with large software-
intensive systems. This organization provides a foundation for performing safety verification even when the
code implicated by a particular hazard may not be conveniently contained in a relatively small, isolated
subsystem.

Ideally, the safety verification case will provide a rigorous argument in support of system certification. The
argument will almost certainly depend upon assumptions made about the non-software components of the
overall system, including adherence to manual procedures. These assumptions should be presented explicitly in
the safety verification case. Although it may be a less desirable outcome, it is possible that the safety verification
case will provide evidence which supports an argument against system certification given certain assumptions
about the non-software components.

The safety verification case should also be sufficiently detailed to support post-development safety reviews
conducted during the operational use of the system. These safety reviews will be necessary, for example, if there
are any modifications of the system or changes in the environment. If the system is the first in a family of
systems, the safety verification case should be documented in such a way that the development team can re-
generate the document for the next generation of the system. In particular, the argument should be “repeatable”,
so that system maintainers and developers different from the original development team can use the process and
the document as the basis of their safety assessments.

There are a number of challenges to developing a safety verification case for large software-intensive systems.
Software-implemented functionality has increased dramatically in almost all safety-critical sectors [STO96].
This is particularly true for information systems that receive, process and display critical data. Air Traffic
Management (ATM) systems, for example, are being built with about a million lines of production source code.
Modern information systems often involve sophisticated, object-oriented software architectures. The
architecture might support real-time, distributed and concurrent processing, as well as a complex graphical user
interface. Parts of the architecture could be implemented with Commercial-Off-The-Shelf (COTS) products. All
these factors must be accounted for in the development of the safety verification case.

The structure for the source-code safety verification case proposed in this paper is most appropriate for hazards
which are caused by the "normal" execution of the software, as opposed to hazards which may arise in the wake
of a general, systematic failure of the system. The occurrence of a hazard caused by the normal execution of the
software may be the result of a number of factors. One possibility is that the hazard may be the direct result of a
behaviour required by an "unsafe" combination of functional requirements. Ideally, the existence of an unsafe
combination of functional requirements should be discovered long before source-code safety verification is
performed. A second possibility is that the occurrence of a hazard may be caused by an incorrect
implementation of the functional requirements, i.e., the functional requirements were "safe", but a defect was
introduced at either the design or coding level. A third possibility is that the occurrence of the hazard is the
direct result of design or coding decisions made by the developers which were "not inconsistent" with the
functional requirements, i.e., while not a direct result of behaviour required by the functional requirements, the
hazard was the result of behaviour which was not explicitly excluded by the functional requirements. This third
possibility may be the result of the software developer working from functional specifications which are
incomplete or ambiguous.

The safety verification case development process accepts as inputs:

• a large amount of source code (e.g., several hundred thousand SLOCs) which serves as a concrete
representation of the implementation of the system;

• a set of identified hazards expressed at a relatively high level of abstraction.

The output of the process is:

3

• a safety verification case with detailed evidence that provides a rigorous argument that the hazard
cannot occur given specific, explicitly stated assumptions about the hardware and software.

This process is based on the strategy of systematically refining the safety verification process into a series of
simpler steps. These steps isolate the relevant details of the source code, and bridge the "semantic gap" between
the source code and the abstract system level concepts used to define hazards. It may be possible to partially
automate the process steps with tool-based support.

The safety verification case structure proposed in this paper is motivated by the authors’ experiences with the
development of a large real-time information system with safety-related functionality. The system consists of
approximately 700K lines of production source code with the equivalent to millions more in over a dozen
different COTS components. The system possesses an object-oriented, distributed software architecture. The
concept of a safety verification case, as described in this paper, is designed for safety-critical information
systems of this size and complexity.

This paper investigates the development of a safety verification case for software-intensive systems with modern
software architectures. Safety verification is discussed in Section 2. The need for a safety verification case is
presented in Section 3. The challenges of building a safety verification case for large software-intensive systems
with modern software architectures are noted in Section 4. The structure of the safety verification case is
outlined in Section 5. Some techniques for implementing the safety verification case are given in Section 6, as
well as aspects of the process which may be automatable. Section 7 provides a summary of the paper.

2. Safety Verification of the Source Code
An important step in the overall safety engineering process is the verification of the source code with respect to
identified hazards. As discussed in Chapter 18 of Nancy Levenson’s seminal textbook on software safety
[LEV95], this step is necessary even after system hazards have been identified and controlled through design.
The safety verification process must determine if any mistakes were made in the safety engineering process. The
safety verification case documents the efforts made to carry out this step of the process.

Safety verification is mandated in several software safety standards, such as the international standard, IEC 1508
[IEC95], and the US military standard, MIL-STD-882C [DOD93]. For example, the IEC 1508 defines a
software safety validation phase which is designed to ensure that the safety-related software is compliant with
the software safety requirements specification.

The discussion of safety verification within this paper is limited to the analysis of the functionality of the system
with respect to specific hazards. A thorough approach to safety verification at this level would also require two
additional kinds of verification efforts:

• procedural checks, e.g., checking that hazard mitigations identified at earlier stages of
development have been implemented;

• code quality checks, e.g., checking that variables are set before they are used.

Both of the above additional kinds of verification efforts are necessary to ensure thoroughness. However, these
two additional kinds of verification efforts should not be considered as alternatives to the kind of verification
discussed in this paper.

2.1 Safety as a Distinct Quality
Safety is a matter of ensuring that “bad” things do not happen, i.e., accidents which are unplanned events
resulting in damage to property, death or injury. The safety engineering process is defined in terms of system
hazards which are conditions of the system, along with certain environmental conditions, that will cause an
accident [LEV95]. System hazards are characterized by their external effects, and are expressed at a relatively
high level of abstraction. For example, a typical ATM system hazard is to display the “Present Position Symbol”

4

(PPS), the icon representing the aircraft, in an incorrect position [ELL96]. Figure 1 shows the possible
appearance of a PPS on a display. The display of a PPS is one means of displaying the position of an aircraft to
an air traffic controller. An incorrectly displayed PPS could lead an air traffic controller to give instructions to
pilots that may contribute to a loss of separation.

Figure 1: Part of an air traffic controller’s “situation display” showing the “Present Position Symbol” (PPS) for an
aircraft, i.e., the aircraft silhouette which indicates present position and heading.

Although it may be very clear to an experienced air traffic controller how the display of an aircraft position may
be "incorrect", this abstract term needs to be given a more precise, concrete interpretation. It may not be enough
to simply rely upon the functional requirements of the system for a clarification of the term “incorrect” since the
meaning of this term with respect to the hazard may not be exactly the same as its meaning with respect to the
functional requirements. For instance, there is a variety of ways in which the display of an aircraft position may
fail to satisfy the functional requirements. But only some of these potential failures may constitute a hazard.
Moreover, there may be sequences of events involving the display of an aircraft position which have been found
to be hazardous, but are not explicitly excluded by the functional requirements.

Though properties such as reliability and correctness are important aspects of building a critical system, and may
provide circumstantial evidence of system safety, they alone will not ensure safety. As Leveson observes1:

Arguments have been advanced that safety is a subset of reliability or a subset of security or a part of
human engineering - usually by people in these fields . Although there are some commonalties and
interactions, safety is a distinct quality and should be treated separately from other qualities, or the
tradeoffs, which are often required, will be hidden from view.

A simple example of such a tradeoff is the realization that the safest aircraft are those that never leave the
ground. This would certainly avoid the incorrect display of aircraft position. A less extreme, more realistic
example, is the use of run-time method binding and polymorphism to support software reuse and maintainability.
The benefits of run-time method binding must be balanced against the difficulties it creates for a safety analysis
of the source code.

1 Page 182 of [LEV95].

5

In general, a system may satisfy the contractual requirements, be reliable, and yet be unsafe. There may be
unintended functionality in the system, not specified by the requirements, that could be hazardous. The
requirements themselves may not rule out or may even specify hazardous software behavior. As a result, safety
verification must focus on analyzing the system with respect to system hazards.

2.2 Safety Analysis of the Source Code
Common-sense would lead us to expect that "safety verification" is an integral part of the safety engineering
process in other engineering domains such as chemical, mechanical, nuclear, electrical and transportation
systems.

For instance, we would expect that the safety engineering process for the construction of nuclear generating
station involves more than the analysis of the "blueprints". We would expect that a qualified team of safety
specialists would directly inspect the "implementation" of the blueprints by walking through the power station to
physically examine all of the mechanical and electrical systems which are directly related to an identified
hazard.

Similarly, it is reasonable to expect that the safety engineering process for a software-intensive system would
include close scrutiny of source code specifically with respect to identified hazards. It is not enough to be ensure
that the functional requirements and design level documentation have undergone safety analysis. As remarked in
an U.S. Air Force system safety handbook,

Unlike the fairy tale Rumplestiltskin, do not think that by having named the devil that you have
destroyed him. Positive verification of his demise is required.2

With appropriate assumptions about the compiler and the underlying computing platform, the source code is the
most concrete, tangible representation of the behaviour of a software system. The safety analysis of the source
code provides direct evidence from the implementation that the hazards have been adequately mitigated.

3. Safety Verification Case
The safety verification case is part of the overall system safety case which provides input into the decision to
certify a system as "fit for use" before it is put into operational use. For example, many safety standards require
a final detailed report on the safety of the system [STO96].

The safety verification case can play an important role in the life-cycle support process for the system. For
example, the system will require periodic safety audits to ensure that the operational level of safety is maintained
[LEV95]. In particular, it will be necessary to evaluate the impact on safety of any minor changes that may have
occurred in the system, operations or the environment.

As well, the safety verification case can form the basis of the evaluation of safety when parts of the system are
reused. For example, the implementation of the system may be adapted to produce a "next generation" of the
system or to develop a family of systems as a generalization of the first existing member of the family.

In general, the people using the safety verification case will be different than the original developers. These
people include the representatives of the authority that authorizes use of the system, system maintainers and
system developers intending to reuse the software in new systems.

3.1 Repeatable Details
It will be necessary to regenerate the safety verification case after system modification or adaptation for a new
use. The safety verification case should be captured with sufficient detail and precision to avoid having to repeat

2 As quoted on page 489 of [LEV95].

6

as much as possible the efforts that went into constructing the original document. This will minimize the
schedule, efforts and cost of developing the new safety verification case.

There is also a danger that budget or time constraints will not allow this process to be carried out to the same
degree of thoroughness as the original effort. In particular, the process may overlook implicit or buried
assumptions made during the original analysis. The ARIANE 5 failure [ARI96] is an example of software reuse
where the original environmental assumptions were not specified for the new system. The catastrophic failure of
this satellite resulted in direct costs of approximately $370 million. The Therac-25 accidents [LEV95] is an
example of a system which reused software from an earlier system and replaced hardware interlocks with new
software functions, without careful consideration of the impact on safety. These factors contributed to lethal
overdoses of six people.

This danger of overlooking critical assumptions can be largely avoided if the thought process underlying the
original safety analysis is well documented. The details should be sufficient for a new team of safety analysts to
systematically regenerate the safety verification case. If a change has been made to the system which has an
impact on safety, or if an assumption about the operating environment has changed, then this should be revealed
to the team regenerating the safety verification case.

3.2 Rigorous Argument
The safety verification of a system will almost certainly require the use of "rigorous argument" where the term
"argument" is used here in the dictionary sense of "a coherent series of statements leading from a premise to a
conclusion".

The ability to construct a rigorous argument is a fundamental skill of many other professions where a high
degree of certainty is required. For instance, a lawyer must build a case using rigorous argument to convince the
jury that a particular outcome of a trial is "safe". The rigor of the argument laid out by the lawyer is ensured, in
part, by judicial rules and by scrutiny of the opposing lawyer. Furthermore, the argument is recorded in the form
of court transcripts to allow for its review at some future date.

Similarly, the use of rigorous argument to verify the safety of a software system can be compared to the way that
mathematicians may convince themselves (and one another) of the validity of mathematical conjecture. As
suggested in a recently published textbook on safety-critical computer systems:

A safety case must include a rigorous argument for the safety of the system, and must demonstrate that
it satisfies all its safety requirements. This will involve numerous steps that in some ways resemble the
components of a mathematical proof. Each stage of this ‘proof’ must be carefully justified and any
assumptions made explicitly. Any unjustified assumptions represents flaws in the safety argument, and
hence the safety case. 3

Both of these kinds of rigorous argument have the important property that they can be recorded in a form that
can be understood, reviewed, repeated (or re-constructed) by others who were not originally present in the
courtroom listening to the courtroom lawyer, or who were not peering over the shoulders of the mathematician
as a proof of the mathematical conjecture is worked out.

For a safety verification case, elements of the rigorous argument include (see Figure 2):

• The basic claim is an adequately mitigated hazard.

• The claim will be supported by statement of facts taken from the system requirements, architecture and the
source code, as well as the system development and safety engineering processes.

3 Page 365 of [STO96].

7

• The argument may be based on certain assumptions about the external environment, the compilation of the
source code, the underlying operating system and hardware, and the COTS products.

• The assumptions and facts are linked to the claim through a series of inference steps.

The potential complexity of the rigorous argument means it may be necessary to hierarchically organize the
argument in terms of a set of sub-claims. Each sub-claim and supporting argument can be documented
separately. The sub-claims together support the basic claim.

Claim

Sub-claim AssumptionFact

Inference
Step

Inference
Step

Figure 2: Rigorous Argument

The record of the argument must also be organized in a systematic fashion. For instance, each sub-claim,
assumption and fact can be given a unique identification (e.g., “Assumption 2.4.2”). This is analogous to the
way that physical evidence is itemized during a trial, as well as the way that a mathematician will usually employ
a numbering scheme for assumptions, lemmas and other intermediate products in the process of writing out a
proof.

Different types of inference rules can be used to carry out the argument. At one extreme the argument could
consist of a rigorous, machine-checked mathematical proof using arithmetic and logical inferences. However,
less formal, but rigorous forms of reasoning are also effective. The types of arguments can be classified as
deterministic, probabilistic and qualitative [BIS98]. These arguments include, for example, testing, causal
inferences, code inspection and demonstration of system compliance with recognized software standards. In
general, the verification argument can consist of a mixture of formal/informal, manual/tool-assisted and
forward/backward forms of rigorous reasoning.

4. Challenges to Developing a Safety Verification Case
There are a number of challenges to constructing a safety verification case for large software-intensive systems.
One challenge is relating the hazard to the source code, as the hazard will usually be expressed in much different
terms than the source code. Another challenge is that the hazard-related code will typically be found in a number
of different software components.

4.1 The “Semantic Gap”
System hazards are typically defined at a relatively high level of abstraction. For good reason, the definition of a
hazard will be based upon the terminology of the end-user rather than the terminology of the software developer

8

implementing application-level functionality on top of lower layers of software infrastructure and primitives. To
perform safety verification of the source code, the definition of the hazard must be mapped to a relationship
between elements of the software implementation. This mapping must bridge the "semantic gap" between the
terminology used to define the hazard and the terminology of the software developer.

Sometimes there may be a high degree of “lexical similarity” between the terminology used to define the system
hazard and the identifiers used as names of elements of the source code implementation. For example, an ATM
term such as “PPS” may also appear in the source code as part of the name of an identifier. But in other
circumstances, there may not be much lexical similarity between the definition of a hazard and the source code
implementation of functionality directly related to this hazard. This may be prevalent in the case of a system
which has been developed with an emphasis on abstraction and reuse. For example, it is possible that many of
the source lines of code that are directly involved in generation of a PPS on the situation display are contained in
parametrized class templates and do not contain any lexical "clues" (e.g., use of "PPS" as part of an identifier) of
their relevance to the hazard. Obviously, this minimizes the usefulness of basic text searching tools since the use
of a tool such as Unix "grep" to search for lines of source code that contain "PPS" may find very little of the
source code which has a direct relevance to a hazard that concerns the PPS. But beyond the use of simple tool-
based search strategies, the lack of lexical clues compounds with other sources of complexity when using
manual methods to search for hazard related code.

In addition to the challenge of mapping the definition of a hazard to data elements of the source code such as
global variables, sub-program parameters, constants, local variables and other elements of the source code, it is
also necessary to refine abstract properties such as "incorrect position" into concrete relationships. Ultimately,
these concrete relationships will be defined in terms of combinations of simple arithmetic and logical
comparisons between data elements, e.g., "is equal to", "is less than".

4.2 The “Long Thin Slice”
Safety verification of the source code requires the identification of the critical code paths that lead to a
hazardous software output. The code path can be viewed as a sequence of steps where each step corresponds to
an executable line of source code. For software-intensive information systems, a typical execution sequence
includes modules from a number of different components involving the user interface, application domain and
hardware interfaces. However, the sequence may involve only a small amount of code from each component,
forming a “long thin slice” of software.

For systems with object-oriented architectures, each software component in the long thin slice typically includes
a large number of non-executable code statements. A significant portion of the non-executable code is necessary
to support the class hierarchies. This non-executable code includes statements that specify the class
dependencies and that re-export types from other components. To locate a given step in the critical code path
involves searching for the corresponding executable code statement among all the non-executable code
statements.

To understand a given step in the critical code path requires locating the relevant details in a number of different
files and places in the source code. These details include type, variable and subprogram declarations. This
search may involve a large number of files. For example, a type declared in one of the upper layers of the
software architecture could be derived from a base type in a lower layer which has been re-exported and
subtyped many times over. It is easy to imagine that the analysis of a given hazard, could involve more than a
hundred different locations in the source code, to document a sequence of actions involving less than ten distinct
steps.

A developer who has been immersed for many months or years in the development of the software may be
capable of tracing a sequence of actions across a "long thin slice" of code without looking up every bit of detail
from various source files. But others, besides the original developers, must also be able to follow the same
sequence of actions in order to conduct their own safety assessment of the system.

9

5. Structure of the Safety Verification Case
A structure for the safety verification case for the system source is proposed. The structure is based on a process
which bridges the semantic gap between the system level hazards and the source code in a series of refinement
steps, and which isolates the relevant code details.

As shown in Figure 3, the main parts of the safety verification case are:

1. step-wise refinement of the hazard into one or more source code level “safety verification conditions”
(SVCs);

2. step-wise extraction of models of one or more critical code paths;

3. step-wise verification that each of the source code level SVCs (obtained from refinement documented in
Part 1) is satisfied by the model of the source code implementation (obtained as a result of the extraction
documented in Part 2).

Table of Contents

Introduction

Document History

Part 1: Hazard Refinement
A step-by-step record of the refinement of the hazard into source
code level SVCs.

Part 2: Model Extraction
A step-by-step record of the extraction of a model of the system
from its source code implementation.

Part 3: Verification
A step-by-step argument that the source code level SVCs (from
Part 1) are satisfied by the extracted model (from Part 2) using
static and/or dynamic methods.

References

Index

Appendices

Figure 3: Structure of the Safety Verification Case

The structure of the safety verification case is described in greater detail in the rest of Section 5. Techniques for
implementing the safety verification case are presented in Section 6.

5.1 Part 1: Hazard Refinement
The "Hazard Refinement" part of the safety verification case contains a set of source code level "Safety
Verification Conditions" (SVC) along with a record of the execution of the process used to obtain these SVCs as

10

a refinement of the hazard definition. As explained later in Section 6.1, this refinement may be performed in an
ad hoc manner or it may involve a more rigorous approach such as an approach based on Fault Tree Analysis
(FTA) or a related technique. In either case, both the execution of the process and its results must be recorded in
a form which would allow the process to be repeated.

Each of the source code level SVCs derived from the definition of the hazard will be recorded in this part of the
safety verification case and given a unique identification which may be used elsewhere in the safety verification
case to reference the SVC.

An example developed by Wong [WON98a] shows how a system level hazard may be refined into a set of
source code level SVCs. As illustrated by Wong’s example, the refinement of a hazard into a set of SVCs will
yield a combination of SVCs which may be:

• constraints on variable system parameters or constants - typically expressed as mathematical
inequalities, e.g., "X must be refreshed at a greater rate than Y";

• functional correctness conditions on relatively small blocks of source code which lie directly in the

critical code path - typically, a pre- and post-condition combination of assertions;

• partial specifications of "peripheral" aspects of the source limited to the minimal assumptions required

to carry out safety verification - for example, a limit on the range of the value of the output of a
subsystem which does not lie directly in the critical code path.

The source code level SVCs may be expressed as informal English statements. Alternatively, some of the SVCs
may be expressed in a “codified form” using a notation that can be parsed by a software tool. As demonstrated
in [WON98a], the use of a codified form may be effective as a means of ensuring the precision of the SVCs as
well as avoiding ambiguity and other specification related problems associated with the exclusive use of
informal English. The specification of SVCs in codified form such as the SPARK annotation notation [BAR97]
may also allow the use of verification tools such as SPARK Examiner [BAR97].

In addition to the specification of the results of the hazard refinement process, i.e., the source code level SVCs,
this part of the safety verification case must also contain a record of the refinement. If the refinement was
performed in an ad hoc manner, this record may only be a narrative account of the engineering judgment used to
obtain the SVCs. On the other hand, the use of FTA or a related technique as a means of deriving the SVCs can
be recorded by a graphical representation of the fault tree supplemented by textual annotation.

5.2 Part 2: Model Extraction
The "Model Extraction" part of the safety verification case contains a conservative, complete and tractable
model of a critical code path for the hazard along with a record of the process used to extract this model from
the source level implementation of the system.

5.2.1 Hazard Scenarios
A hazard may occur in a variety of different ways. The various ways in which a hazard may occur is revealed by
the results of the hazard refinement contained in Part 1 of the safety verification case. Each occurrence involves
a sequence of events within the software system called a "scenario". These events occur within or between a set
of software subsystems which we refer to as the “critical code path” for the scenario.

It is quite possible that the critical code path for one scenario is not exactly the same as the critical code path for
another scenario for the same hazard. The two critical code paths may even be significantly different with a
minimum of overlap between the two sets of subsystems that constitute the critical code paths of the two
different scenarios. If the difference is significant, then it may be advantageous to extract more than one model
of the source code level implementation of the system.

11

5.2.2 Representation of the Model
A variety of different formats may be used to represent the model of a critical code path extracted from the
source code. One possibility is a textual description of the model annotated by an object scenario diagram
[BOO94] and fragments of actual source code. Another possibility is the representation of the model in an
executable format, i.e., in the same programming language used for the actual implementation or possibly in a
closely related programming language. For example, the model of a critical code path for a system implemented
in Ada might be represented in the SPARK programming language [BAR97]. SPARK is a subset of Ada which
is amenable to verification with tools such as SPARK Examiner [BAR97]. While the production of the textual
description may require less initial effort, the production of an executable model is more effective over the long
term. An executable model would allow the use of software tools to partially automate the verification task by
means of dynamic methods (testing) or static methods (e.g., code verification).

5.2.3 Model Properties
The model should be conservative in the sense that every property of the model is also a property of the actual
system, as long as any assumptions made during the extraction are true.

The model should be complete in the sense that the model contains enough information to unambiguously
interpret every executable statement in the model.

To the extent that the model is represented by fragments of source code, the model should be tractable in the
sense that the ratio of executable lines of code to non-executable lines should be “reasonable”. Furthermore, the
number of different places in the source code required to understand a single line of executable code should also
be reasonable. This is especially important if the verification depends on human comprehension of the model. If
human understanding is required, “reasonable” might mean that there is no more than “7±2” lines of non-
executable code, and no more than “7±2” places to look, for each executable line of code.

5.2.4 Recording the Execution of the Extraction Process
The extraction of this model can proceed in either a bottom-up or top-down fashion. In either case, the execution
of the process must be recorded in a form which would allow the process to be repeated. Either approach
involves processes which can be recorded.

5.2.4.1 Bottom-Up Extraction
The model can be extracted in a bottom-up fashion through either a backward or forward search of the source
code. In the case of a backward search, a critical code path is discovered by tracing backwards through the code
by incrementally searching for the cause of an effect. Forward searching involves tracing a cause forward to its
possible effects. For a large complex system, it is likely to be necessary to "prune" some branches of the search
by introducing assumptions about the functionality of peripheral aspects of the system.

The simplest method of recording the extraction of a model by means of either forward or backward searching
would be a textual description of the model. The description could be supplemented with observations such as:
"Inspection of the source code revealed that line 872 of the file ‘mloop.ada’ contains the only executable
statement which could cause variable M to be changed from its initial value."

A more rigorous representation of the extraction could be recorded in the form of an acyclic graph. In this form,
each node in the web corresponds to a line of source code. Each arc between a pair of nodes in the web
corresponds to a relationship between the two lines of source code. A variety of different kinds of relationships
are likely to be recorded as arcs between nodes. Some of the arcs will represent cause-effect relationships while
other arcs will represent "definitional" relationships. For instance, there would be arcs from a line of source code
that contains a reference to a global variable “X” to all of the lines of source code which may directly change the
value of “X”. Additionally, there would be an arc to the line of source code which contains the declaration of
this global variable.

12

It may be impractical to produce a readable representation of a large acyclic graph on a traditional medium, i.e.,
paper. There exist, however, computer-based, interactive visualization tools which could support the creation,
maintenance and use of a graphical representation of the graph. It may be possible to create a hypertext link
from nodes within the representation to corresponding locations in the source code. Depending on the
completeness of this graphical representation and the kinds of relationships represented by the arcs, it may even
be possible to automatically generate source code for the model that could be compiled and executed.

The representation of the search of the source code in the form of a acyclic graph allows the validity of the
extracted model to be systematically checked. The model must be re-checked if the source code implementation
of the system is changed. The validity of the extracted model can be systematically (perhaps even automatically)
checked by verifying the relationships represented by each of the arcs in the model.

5.2.4.2 Top-Down Extraction
The top-down approach to the model extraction may be viewed conceptually as a sequence of transformations
applied to a copy of the source code implementation. The transformations systematically reduces the source
code to a subset of the implementation that represents a critical code path. The result of each transformation is
intended to be a conservative model of the implementation of the system.

The transformations may be performed at a variety of different levels of granularity and rigor. Section 6.2
describes five basic kinds of transformations. But in all cases, each transformation would be recorded as a
distinct step. It is possible that an ad hoc set of transformations may be used to extract a model of the critical
code path. In this case, the record of each step should include a careful explanation of the justification for the
transformation. On the other hand, a previously established set of named transformations may be used to
perform the extraction. In this case, the execution of the transformation process could be recorded in a more
concise format by simply recording the name of the transformation used in each step. Many of the named
transformation rules would likely be associated with "rules of use" which must be checked whenever a rule is
used.

One possibility is to record the transformations in the form of an executable script. The execution of this script
would replicate the actions of the software developer in using the tools of the development environment to edit a
copy of the source code implementation of the system. In addition to performing actions such as deleting
"irrelevant" portions of the code, the execution of the script must automatically check that each transformation
step is applied in a manner consistent with the "rules of use" for each kind of transformation. This would allow a
"fresh" version of the model to be automatically extracted from the source code implementation. If a change has
been made to the implementation, and the change has an impact on the validity of the model, then either the
freshly generated model will reflect the impact of this change or the execution of the script will fail because the
"rules of use" will fail.

5.3 Part 3: Verification
This part of the safety verification case documents the rigorous argument that demonstrates that each SVC
generated by the refinement documented in Part 1 is satisfied by the representation of the code developed in Part
2. As shown earlier in Figure 2, the basic elements of the rigorous argument are the claims, assumptions, facts
and inference steps.

The basic claim is the adequate mitigation of the hazard. The argument can be organized in a hierarchical
fashion, involving sub-claims at the system and design level. These sub-claims will include the SVCs at those
levels. Each SVC will be given a unique identification in Part 1.

Both Parts 1 and 2 will contain assumptions and statements of fact about the environment, system, design and
source code. Each statement will also be given a unique identification in Parts 1 and 2.

The argument will consist of a series of steps linking the statement of facts and assumptions to the claims or sub-
claims. The sub-claims, statements of facts and assumptions will be referenced by their unique identification

13

assigned in Parts 1 and 2. The details of these steps will depend on the type of argument that has been employed.
For example, if the inference step involves testing, the test plans, procedures and results will all be documented.

6. Processes, Techniques and Tools
Based on the description given in Section 5 of the structure of the safety verification case as a deliverable
document, this section outlines a process for the development of this document. This section also describes a
variety of techniques and tools which may be used as part of this process.

Figure 4 shows a process flow diagram that represents the development of the safety verification case. The left-
hand side of this diagram represents the derivation of source code level SVCs from the definition of a hazard.
The right-hand side represents the extraction of a model for one or more critical code paths for the hazard. At
the bottom of the process flow diagram, the outputs of the hazard refinement and of the model extraction are
used as inputs to the verification process. The output of the process is the safety verification case.

System Hazard Source Code

Safety Verification
Case

Refine
Hazard

Extract
Model

Verify
Code SVCs

Figure 4: Safety verification process.

6.1 Techniques and Tools for Hazard Refinement
The derivation of the source code level SVCs may be performed in an ad hoc manner relying on engineering
judgment to determine what should be verified in the source code. However, undue confidence should not be
placed in the effectiveness of engineering judgment for discovering all the SVCs necessary for the mitigation of
a hazard. Wong [WON98a] describes an example where some of the SVCs derived from the definition of a
system hazard were unlikely to have been discovered if only ad hoc methods had been used.

Aside from following a purely ad hoc approach, the refinement of a hazard definition into a set of SVCs is likely
to involve a form of Fault Tree Analysis (FTA) or a related technique. FTA is often used during hazard analysis
to reveal some possible hazard causes. There are other related techniques which can be used to identify
combinations of assumptions, causes and other conditions that can provide a starting point of a rigorous
argument that the hazard has been mitigated.

FTA begins with the identified hazard and then works backward to uncover all possible causes. The analysis
begins with the hazard as the “top event” and then determines the intermediate events that cause the hazard

14

which are combined using logical operations such as “AND” and “OR”. The analysis can be performed in a top-
down fashion beginning at events at the system level, to events at the software component level, down to events
at the source code. SVCs can be constructed to mitigate the hazard causes at each level. The analysis continues
until the “root” hazard causes are uncovered or until adequate mitigation has been established for an
intermediate cause.

Software safety requirements, for example, were derived from a FTA of a Magnetic Stereotaxis System
[KNI93]. First, the system causes of the hazard were identified. Next, the software functions intended to reduce
the likelihood of the hazard occurring were examined. Finally, the consequences of the failure of these software
functions were determined, leading to a set of constraints on the functions.

Another method for generating SVCs has been suggested which is based on FTA analysis and guided by
rigorous logical reasoning [WON98a]. The method is similar to FTA in the sense that that it begins with an
assumption that the hazardous condition has occurred and then work "backwards" to systematically cover all the
possible ways in which this condition might have arisen. Like Software Fault tree Analysis (SFTA) [LEV91], a
style of reasoning known as “proof by contradiction” is used to show that each disjunctive branch of the tree
leads to a logical contradiction. However, Wong’s method is not tied to the semantics of a particular
programming language and moreover, it is intended to serve as a method for the generation of SVCs in
preparation for the actual verification -- unlike SFTA which is generally tied to the semantics of a particular
programming language and is meant to be used directly to perform the verification task.

6.2 Techniques and Tools for Model Extraction
Section 5.2 briefly described two different approaches to the extraction of a model of a critical code path from
the source code implementation. A bottom-up approach involves either a forward or backwards search of the
source code. A top-down approach involves the sequential transformation of a copy of the source code
implementation into the desired model.

6.2.1 Bottom-Up Extraction
There is a variety of tool support which may be used to expedite the process of searching source in either a
forward or backwards direction.

Software development environments typically support various forms of code cross-referencing. The Rational
APEX Ada editor, for example, offers interactive hypertext Ada browsing [RAT98a]. This includes links to type
declarations and to places where a given type is used. Cross-referencing capabilities will be useful when tracing
the critical execution sequences and uncovering its dependencies on other lines of source code. The Ada
Analyzer [RAT98b], for example, traverses compiled Ada units, locates constructs according to some specific
selection criteria, and places the relevant information in a hypertext table [RAT98b]. Data flow analyzers
[DAI94] could be used to directly trace the critical data flows. The source code associated with a data flow can
be extracted with a program slicer. Most program slicers, however, are research tools designed for “toy”
languages [HOF95]. There are some commercial tools, such as the McCabe Slice Tool, which provides some
support for program slicing [STS97]. Program slicing for object-oriented programs is particularly difficult due
to the run-time binding of methods and complex object-interaction graphs. Program Explorer performs dynamic
object slicing for software written in C++ [LAN97].

Another approach would involve the use of a tool that queries the semantic and syntactic information available
in a compiler environment [COO97]. In the case of Ada environments, the Ada Semantic Interface Specification
(ASIS) [ASI97] provides access to compiler-generated information through an interface that is at the same
semantic level as the Ada language [EHR94]. This simplifies the construction of tools for specialized purposes.
Tools can be developed, for example, to analyze the differences between subsequent system builds such as any
changes in the system parameters [CEL97].

Software visualization tools [BAL96] for creating representations of source code structure and runtime behavior
may also be useful in searching code.

15

6.2.2 Top-Down Extraction
The top-down extraction of the model will involve a series of transformation steps isolating the relevant details
of the critical code paths, while eliminating the irrelevant code.

Wong [WON98b] describes five basic kinds of transformation steps:

1. Flatten. Each executable statement in the critical execution sequences will depend on other lines of source
code, which may be located in a number of different components which are organized into class hierarchies.
These hierarchies should be “collapsed” to bring together the relevant lines of code and to reduce the
amount of “non-executable” code.

2. Fillet. The critical code path, along with any supporting source code, is isolated.

3. Filter. The lower-level services (e.g., which belong to the lower layers of the architecture) are replaced with
some simplifying assumptions. These services may then be analyzed separately.

4. Partition. The basic software components of the model are identified. For example, the model can be
partitioned into “functional blocks” [WON98b] that execute in different processes or threads (light-weight
processes).

5. Translate. The source code is represented in a simpler form involving, for example, a textual description of
the model. Alternatively, the model could be represented in executable form expressed in the same
programming language as the original source code or in a closely-related programming language.

These basic transformation steps can be carried out by a number of smaller sub-steps. The nature of these
supporting sub-steps will partly depend on the programming language used to implement the software.

Some of the tools described in the bottom-up extraction of the model can be used to support the top-down
extraction. Searching tools can be used to help carry out the filleting and to help identify the “functional blocks”.
Tools could be custom-built to automatically carry out the flattening and translation steps.

6.3 Approaches to Verifying the SVCs
The inference steps will include a combination of:

• Dynamic analysis involves execution of the code. This includes testing and simulation.

• Static analysis involves examination of the software without executing it. This includes informal
techniques, such as code inspections, and formal techniques, such as analysis with code verification tools
(e.g., SPARK Examiner [BAR97]).

System, integration or unit testing can be performed to verify the source code level SVCs. The type of testing
needed will depend on the type of software component constructed during the refinement of the source code.
The component may, for example, involve a number of software subsystems.

In addition to standard testing techniques, violations of the system level SVCs can be examined through
software fault-injection [VOA97]. In particular, fault injection is useful for investigating the effects of
anomalous events caused by human factor errors or external failures. These events are simulated by either
modifying the code or forcing the state of the code to be modified when the code executes.

It may be possible to exhaustively test certain source code level SVCs. For example, a safety property involving
an object location algorithm used in the imaging subsystem of a Magnet Stereotaxis System (MSS) was verified
by exhaustive testing [KNI96].

16

In general, it will not be possible to completely verify SVCs through testing. The large number of possible
software inputs and paths means it is not feasible to exhaustively test them all [PAR90]. As a result, testing can
only provide a limited degree of assurance that the system level SVCs are satisfied.

The limitations of testing mean that, when feasible, a static analysis of the source code should also be
performed. The chief limitation of static analysis methods are that they tend to be labor-intensive and expensive.

The simplest form of static analysis is an inspection of the hazard-related code. There are many forms the
inspection may take, though existing methods tend to focus on the correctness of the code [SCO94], or are
hazard-analysis techniques that were not designed for software [IPP95]. It is important that the focus of the
adopted inspection method should be the verification of the source code level SVCs.

Software Fault Tree Analysis (SFTA) [LEV91] directly provides evidence of the absence of the hazard. FTA is
performed at the source code level and begins by assuming a hazardous output from a line of source code. The
hazard causes are then traced backwards through the code with the help of language templates. The templates
are based on the semantics of the programming language and determine the various ways a code statement can
contribute to the hazard or to an intermediate event. The analysis continues until a contradiction is reached
which implies that the source code cannot give rise to the hazard. The application of SFTA have typically been
applied to relatively small systems, and it is not clear how well the technique will scale. It may be feasible to use
SFTA to help verify the representation of the hazard-related code with respect to source code level SVCs.

There are mathematically-based program verification techniques that exist which enable the proof that a
program meets a formal, i.e., mathematical, specification [BOW93]. For example, the Darlington Nuclear
Generating Station (DNGS) used the Software Cost Reduction (SCR) tabular-style specification, to ensure that
two different software safety shutdown systems worked on demand and had no hidden functionality [GER94].
However, the verification efforts were extremely labor intensive for relatively small programs.

It has been suggested that formal verification of select safety properties is a more reasonable application of
formal verification [RUS95]. For example, there exist code verification tools such as SPARK Examiner
[BAR97] which verifies a program with respect to a set of code assertions (i.e., pre- and post-conditions). One
possible approach to verifying the source code level SVCs is to first refine them into a set of verifiable code
assertions. If the source code is then refined into a set of software components expressed in the SPARK Ada
subset, it may then be possible to verify the components with respect to the code assertions using the SPARK
tool set.

7. Summary
In this paper, we introduce the term “safety verification case” to refer to a deliverable document that, as part of
the overall safety case, records the safety verification of the source code. The safety verification case is
documented in sufficient detail so that people other than the original developers can inspect, maintain or repeat
the verification. These people include certification authorities, system maintainers and system developers
intending to reuse the software in the next generation of the system.

Large software-intensive information systems with modern architectures present a number of challenges to the
development of the safety verification case. One challenge is bridging the “semantic gap” between the source
code and the high-level language used to express the system hazards. Another challenge is the capture and
documentation of the “long thin slice” of source code associated with each hazard.

This paper has proposed a structure for the safety verification case which addresses these challenges. The
structure is particularly appropriate for hazards involving the display of critical data. These type of hazards are
typically found in real-time information systems. The structure has three main parts which record the refinement
of the identified system hazards into source code level “safety verification conditions” (SVCs), the extraction of
models of the critical code paths and the verification of the code models with respect to the source-code level
SVCs.

17

The paper has described how methods ranging from ad hoc engineering judgment to rigorous “proof by
contradiction” techniques may be used to refine identified system hazards into source code level SVCs. The
paper has also described both a “bottom-up” and a “top-down” approach to the extraction of a model of a
critical code path. Both dynamic and static approaches to the verification step of the process were also
described. In support of these approaches, the paper has identified a variety of specialized techniques and tools
that may reduce the amount of effort required to develop the safety verification case as well as increase the
accuracy, rigor and thoroughness of its content.

8. Acknowledgments
This work was partially supported by B.C. Advanced Systems Institute, Raytheon Systems Canada Ltd, and
MacDonald Dettwiler. This work is a component of the formalWARE university-industrial collaborative project
[FOR98].

9. References
ARI96 ARIANE 5 Inquiry Board, “ARIANE 5 Flight 501 Failure Report by the Inquiry Board”, Paris, July
1996.

ASI97 Association for Computing Machinery (ACM) Special Interest Group in Ada (SIGAda)
ASISWG/ISO/IEC JTC 1 SC 22/WG 9 ASISRG, ASIS Working Draft, Version 2.0.p, 25 August 1997.

BAL96 Thomas Ball and Stephen G. Eick, “Software Visualization in the Large”, IEEE Computer, April 1996.

BAR97 John Barnes, “High Integrity Ada The SPARK Examiner Approach”, Addison Wesley Longman Ltd,
1997.

BIS98 Peter G. Bishop and Robin E. Bloomfield, “A Methodology for Safety Case Development”, in Safety-
critical Systems Symposium, Birmingham, UK, February 1998.

BOO94 Grady Booch, “Object-Oriented Analysis and Design with Applications (Second Edition)”,
Benjamin/Cummings Pub. Co., Redwood City, California (1994).

CHA90 Stephen S. Cha, “Safety Verification on Software Design”, Ph.D. Dissertation, ICS, Department of
California, Irvine, June 1990.

BOW93 Jonathan Bowen and Victoria Stavridou, “Safety-Critical Systems, Formal Methods and Standards”,
IEE/BCS Software Engineering Journal, 8(4):189-209, July 1993.

CEL97 Celier, Vincent M., Drasko Sotirovski, Christopher J. Thompson, "Code-Data Consistency in Ada"; in
1997 Ada-Europe International Conference on Reliable Software Technologies, London, U.K. Proceedings,
Springer Lecture Notes in Computer Science #1251, pp. 209-216, June 1997.

COO97 C. Daniel Cooper, "ASIS-Based Code Analysis Automation", Ada Letters, Volume XVII, No. 6,
November/December 1997.

DAI94 Gregory T. Daich, Gordon Price, Bryce Raglund, Mark Dawood, “Software Test Technologies Report”,
Test and Reengineering Tool Evaluation Project, Software Technology Support Center, August 1994.

DOD93 Department of Defence, “Military Standard 882C: System Safety Program Requirements”, 1993.

ELL96 Bruce Elliott and Jim Ronback, “A System Engineering Process For Software-Intensive Real-Time
Information Systems, in Proceedings of the 14th International System Safety Conference, Albuquerque, New
Mexico, August 1996.

EHR94 Daniel H. Ehrenfried, "Static Analysis of Ada Programs", Ada Letters, Volume XIV, No. 4, July/August
1994.

FOR98 http://www.cs.ubc.ca/formalWARE/

GER94 Susan Gerhart, Dan Craigen and Ted Ralston, “Experience with Formal Methods in Critical Systems”,
IEEE Software, January 1994.

18

HAN96 Kirsten Mark Hansen, “Linking Safety Analysis to Safety Requirements - Exemplified by Railway
Interlocking Systems”, Ph.D. Thesis, Technical Universi ty of Denmark, Department of Information
Technology, August 1996.

HOF95 Tommy Hoffner, “Evaluation and comparison of program slicing tools. Technical Report”, LiTH-IDA-
R-95-01, Department of Computer and Information Science, Linkping University, Sweden, 1995.

IEC95 International Electrotechnical Commission , “Draft International Standard IEC 1508: Functional Safety:
Safety Related Systems”, Geneva, 1995.

IPP95 Laura M. Ippolito and Dolores Wallace, “A Study on Hazard Analysis in High Integrity Software
Standards and Guidelines”, NISTIR 5589, National Institute of Standards and Technology, January 1995.

KNI93 John C. Knight, Darrell M. Kienzle, “Preliminary Experience Using Z to Specify a Safety-Critical
System”, in Proceedings of the Z User Workshop, Edited by J.P. Bowen and J.E. Nicholls. Published by
Springer Verlag, 1993.

KNI96 John C. Knight, Kevin G. Wika, and Shannon Wrege , “Exhaustive Testing As A Verification
Technique”, Submitted to the International Symposium on Software Testing and Analysis , January 8-10, 1996
(ISSTA 1996).

LAN97 Danny B. Lange and Yuichi Nakamura, “Object-Oriented Program Tracing and Visualization”, IEEE
Computer, pp 63 -70, May 1997.

LEV95 Nancy G. Leveson, “Safeware: System Safety and Computers”, Addison-Wesley, 1995.

LEV91a Nancy G. Leveson, “Software Safety in Embedded Systems”, Communications of the ACM, 34(2), pp
34-46, February 1991.

LEV91b Nancy G. Leveson, Steven S. Cha, and Timothy J. Shimall, “Safety Verification of Ada Programs
using software fault trees”, IEEE Software, 8(7), pp 48-59, July 1991.

PAR90 David L. Parnas, A. John van Schouwen and Shu Po, "Evaluation of Safety-Critical Software",
Communications of the ACM, 33(6), pp 636-648, June 1990.

RAT98a Rational Software Corporation, Rational Apex Ada Datasheet.

RAT98b Rational Software Corporation, “Ada Analyzer: A Technical Overview”, Technical Paper.

RUS95 John Rushby, “Formal Method and Their Role in the Certification of Critical Systems”, SRI
International, Technical Report CSL-95-1, SRI 1995.

SCO94 John A. Scott and J. Dennis Lawrence, “Testing Existing Software For Safety-Related Applications”,
Fission Energy and Systems Safety Program, Lawrence Livermore National Laboratory, UCLR-ID-117224,
Revision 7.1, December 1994.

STO96 Neil Storey, “Safety-Critical Computer Systems”, Addison-Wesley, 1996.

STS97 “Slicer Tools List”, Software Technology Support Center, October 1997.

VOA97 Jeffery Voas, Frank Charron, Gary McGraw, Keith Miller and Michael Friedman, “Predicting How
Badly `Good’ Software can Behave”, IEEE Software, 1997.

WON98a Ken Wong, M.Sc. Thesis, Department of Computer Science, University of British Columbia, 1998.

WON98b Ken Wong, “Looking at Code With Your Safety Goggles On”, to appear in Proceedings of the 1998
Ada-Europe International Conference on Reliable Software Technologies, Uppsala, Sweden, June 1998.

