
Refinement of Safety-Related Hazards into Verifiable
Code Assertions

Ken Wong1 and Jeff Joyce2

1Department of Computer Science, University of British Columbia
Vancouver, BC, Canada V6T 1Z4

tel (604) 822-4912 fax (604) 822-5485
kwong@cs.ubc.ca

2Raytheon Systems Canada, Ltd.
13951 Bridgeport Road, Richmond, BC, Canada V6V 1J6

tel (604)279-5721 fax (604)279-5982
jjoyce@mail.hac.com

Abstract: This paper presents a process for the stepwise refinement of safety
code assertions from identified system hazards. The code assertions are
intended for use in system safety verification. The development of the safety
code assertions increases the feasibility of using code verification tools such as
SPARK Examiner in the safety verification of large software-intensive systems.
The process is demonstrated for a hypothetical chemical factory information
system.

1. Introduction

An important step in an overall process for the safety engineering of a software-
intensive system with safety critical functionality is the verification of the source code
with respect to the identified hazards. One difficulty with performing the verification
is the large "semantic gap" between the source code and the abstract "system level"
concepts/language used to define hazards. To address this problem, this paper
outlines a process whereby a safety-related hazard may be systematically refined into
verifiable code assertions.

The approach to generating safety code assertions outlined in this paper was
originally motivated by our interest in the possibility of using code verification tools
such as SPARK Examiner [1] as part of the safety verification of a large software
system. Chapter 18 of Leveson's seminal textbook on software safety [3] hints at the
possibility of using such tools, but expresses concern about their practical feasibility.
Clearly, it would be naive to expect that the safety verification task could be
automated by simply feeding the source code for an entire system into a verification
tool along with a representation of a safety-related hazard. If code verification tools
are to be used in the safety verification of the system, it will be necessary to process
the hazard and the source code into a form that the tools can accept as input.

One problem is that the safety-related hazard is likely to be expressed at a much
higher level of abstraction, and in a different form, than the assertions expected as
input by the code verification tool. The process outlined in this paper addresses this
particular problem. There are other problems with using code verification tools for
the safety verification of a large software system. The discussion of these problems
lies outside the scope of this paper, but in a presentation of our overall approach to
safety verification [7] we suggest how many of these other problems may be
addressed. This has lead us to conclude that code verifications tools such as SPARK
Examiner may indeed be useful in the safety verification of a large software system.
Even if such tools are not used, the refinement of a safety-related hazard into a set of
verifiable assertions would support other methods of static analysis such as manual
inspection.

System Hazard Source Code

Verification
Conditions

Generate
Code SVCs

Extract
Code Slice

Annotate
Code Slice

Apply
Spark Examiner

Figure 1: Overall safety verification process.

Our overall approach to the safety verification of large software-intensive systems
is shown in Figure 1. This paper focuses on the “Generate Code SVCs” process
which appears in the process bubble in the top left side of the figure.

The process for generating source code level “safety verification conditions”
(SVCs) bridges the semantic gap between the hazard and source code though a series
of refinement steps. This includes the development of SVCs at the system, design and

source code level. It is assumed that the safety-critical code is either written in the
SPARK Ada subset, or has been translated into SPARK through a process such as
that described in [8]. The process for deriving the safety code assertions was
developed during research conducted as part of the university-industrial collaborative
project, formalWARE [6]. The process is illustrated in this paper with a hypothetical
chemical factory information system.

Section 2 outlines some of the difficulties in bridging the semantic gap between
the hazards and safety code assertions. The process for developing safety code
assertions is presented in Section 3. The chemical factory information system is
introduced in Section 4. Each step of the process is then applied to the chemical
factory. Section 5 discusses the generation of system level SVCs for the chemical
factory information system. The refinement of system level SVCs into design level
SVCs is presented in Section 6. This is followed by a discussion of the refinement of
design level SVCs into source code level SVCs in Section 7. Section 8 outlines the
creation of the safety code assertions from the source code level SVCs. A summary
and some conclusions are found in Section 9.

2. Development of Safety Code Assertions

The goal of this paper is to translate system hazards into a set of safety code
assertions. A number of difficulties arise when attempting to express the system
hazards in terms of code assertions.

2.1 Semantic Gap

System hazards are typically defined at a relatively high level of abstraction. For
good reason, the definition of a hazard will be based upon the terminology of the end-
user rather than the terminology of the software developer implementing application-
level functionality on top of lower layers of software infrastructure and primitives. To
perform safety verification of the source code, the definition of the hazard must be
mapped to a relationship between elements of the software implementation. This
mapping must bridge the "semantic gap" between the terminology used to define the
hazard and the terminology of the software developer.

For instance, Section 4.2 of this paper uses the term "invalid temperature" in the
definition of a sample hazard for a hypothetical chemical factory information system
used as an example in this paper. Ultimately, the hazard must be understood in terms
of global variables, sub-program parameters, constants, local variables and other
elements of the source code. As revealed later in Section 7.2, the term "invalid
temperature" corresponds to a relationship between specific data fields of the various
messages passed between components of the software system which implements the
chemical factory information system.

Sometimes there may be a high degree of “lexical similarity” between the
terminology used to the define the system hazard and the identifiers used as names of

elements of the source code implementation. For example, the source code may use a
word such as “temperature” as the name of a data field in a message. But in other
circumstances, there may not be much lexical similarity between the definition of a
hazard and the source code implementation of functionality directly related to this
hazard. This may be prevalent in the case of a system which has been developed with
an emphasis on abstraction and re-use.

In addition to the challenge of mapping the definition of a hazard to data elements
of the source code such as global variables, sub-program parameters, constants, local
variables and other elements of the source code, it is also necessary to refine abstract
properties such as "invalid" into concrete relationships. Ultimately, these concrete
relationships will be defined in terms of combinations of simple arithmetic and
logical comparisons between data elements, e.g., "is equal to", "is less than".

2.2 Time and Events

A system hazard often involves a relationship between events over a period of time.
This temporal relationship may be apparent in the definition of the hazard or, as
demonstrated in Section 5, may be revealed in the derivation of system level SVCs
from the hazard definition. The temporality of a relationship is made explicitly by the
use of phrases such as "...if the displayed temperature of vessel v is set to d at time t,
then at some time no earlier than MAX_SYSTEM_PROPAGATION_TIME
milliseconds before t ...".

To make use of tools such as SPARK Examiner, it is necessary to refine these
temporal relationships into "non-temporal" assertions which are true or false at
specific instants of time in the execution of the software system.

The refinement of temporal relationships into non-temporal assertions depends, in
part, on the identification of causal relationships. For instance, it requires analysis of
the software implementation to determine that an event such as "the displayed
temperature of vessel v is set to d at time t" must have been caused by the occurrence
of one or more internal events (either as combinations or as alternatives). By means
of a search process, these events are chained backwards (in time) to other events.
These causal relationships provide a basis for the refinement of the temporal
relationships into "non-temporal" assertions.

2.3 “Backward” Expression

Pre- and post-conditions are such that, given the pre-conditions on the input
parameters, then the execution of the program should result in the output variables
satisfying the post-conditions:

If pre-conditions on input
then post-conditions on output

The hazards, however, are often expressed in a “backward” fashion, beginning
with the output, and then specifying the necessary conditions on the input:

If conditions on output
then conditions on inputs

The safety verification condition given as an example in Section 5 is an illustrative
example of this "backwards" orientation.

It will be necessary to write the SVCs in a “forward” fashion, in order to arrive at a
pre- and post-condition style specification. Often it is possible to obtain a “forward”
version of the SVCs from its backward formulation by taking its contrapositive:

If NOT(conditions on input)
then NOT(conditions on output)

This should place conditions on the input into the antecedent of the condition.

3. Process for the Construction of Safety Code Assertions

The safety code assertions are derived from a stepwise process that involves the
development of system level, design level and source code level SVCs. If the
refinement of the hazard into source code level SVCs is valid, then verification of the
source code SVCs is sufficient for the safety verification of the hazard.

The inputs of the process are:

• System hazards.
• Software architecture.
• Hazard-related source code.

The safety code assertions are created for the hazard-related source code. In this
paper it is assumed that a representation for the hazard-related source code has been
created in the SPARK Ada subset [8].

The output of the process is a combination of SVCs including:

• constraints on variable system parameters or constants - typically expressed as
mathematical inequalities, e.g., "X must be refreshed at a greater rate than Y";

• functional correctness conditions on relatively small blocks of source code which
lie directly in the critical code path - typically, a pre- and post-condition
combination of assertions;

• partial specifications of "peripheral" aspects of the source limited to the minimal

assumptions required to carry out safety verification - for example, a limit on the

range of the value of the output of a subsystem which does not lie directly in the
critical code path.

The refinement process involves the stepwise derivation of system level, design
level and source code level SVCs from the hazard definition [5]. The source code
level SVCs are translated into SPARK annotations. The steps of the refinement
process are:

1. Generate system level SVCs. The system is analyzed with respect to the hazard
to produce the system level SVCs. They are a set of system constraints that are
sufficient to ensure that the identified hazards do not occur. The system level
SVCs are generated from the use of a style of reasoning known as “proof by
contradiction” to construct a rigorous safety argument [9].

2. Generate design level SVCs. The system level SVCs are refined into design

level SVCs through analysis of the software architecture. The hazard-related
software is partitioned into “functional blocks” of code, and the system level
SVCs are mapped into conditions on the functional block’s input and output
parameters.

3. Generate source code level SVCs. The design level SVCs are refined into

source code level SVCs through analysis of the source code. The functional
block parameters are identified in the source code, and the functional block
SVCs are re-written in terms of the source code parameters. The resulting source
code level SVCs may also be formalized [5].

4. Generate safety code assertions. The source code level SVCs are reformulated

in a “forward” fashion and translated into SPARK annotations.

4. Example - Chemical Factory Information System

For illustrative purposes, we consider a hypothetical real-time safety-critical
information system for a chemical factory. This is similar to other safety-critical
information systems, such as air traffic management [2], in that environmental data is
received, processed and displayed to human operators who make critical decisions.

4.1 System Description

The physical layout of the factory consists of a set of reactor vessels each with
sensors that record vessel data such as the temperature. The sensors are connected
over a LAN to a central server and a set of workstations. The chemical factory
distributed information system runs on the central server and the workstations. The

information system maintains and processes the vessel information it receives over
the LAN, which it then displays on the workstation monitors.

4.2 Safety-Related Hazard

Following a process such as the system safety engineering process outlined in [3], we
assume that the display of an "invalid" value as the temperature of a vessel is
identified as a system hazard for the chemical factory control and monitoring system.

Hazard: An invalid temperature, D, is displayed for vessel V at time T.

It may be assumed that the identification of this hazard resulted from some earlier
analysis which shows that the display of an invalid value as the temperature of a
vessel, in combination with other conditions, could lead to a mishap such as a fire or
explosion.

Sensor
Interface

ReadLAN

Sensor Server

Process
Sensors

Monitor Sensor
Staleness

UIManager

Read
Broadcast

Display
Block

Update
Temperature

1. Call

3b. Broadcast

2. Schedule

5. Call

6. Call:
COTS Product

Procedure

Module

3a. Broadcast

Figure 2: Temperature data flow highlighting the key modules and procedures.

4.3 Hazard-Related Source Code

The safety analysis will focus on a representation of the critical code, which is the
output of a process that identifies the hazard-related code, and then translates it into
the SPARK Ada subset [8]. The hazard-related source code modules and
subprograms are shown in Figure 2. This includes code involved in the processing of
sensor updates and the monitoring of stale sensor values.

5. System Level Safety Verification Conditions

The system level SVCs are a set of constraints on the system that are designed to
ensure that the system hazards do not occur. The system level SVCs are generated in
support of a rigorous argument about the system safety [9]. The approach is similar to
the concept of fault tree analysis (FTA) in the sense that that it begins with an
assumption that the hazardous condition has occurred and then work "backwards" to
systematically cover all of the possible ways in which this condition might have
arisen. Like software fault tree analysis (SFTA) [4], a style of reasoning known as
“proof by contradiction” is used to show that each disjunctive branch of the argument
leads to a logical contradiction.

The argument involves first assuming that the hazardous condition exists. The
analysis then proceeds in a stepwise manner by attempting to show that this
assumption leads to a logical contradiction. The analysis of the hazard then branches
as a result of reasoning by cases. When the analysis branches into one or more cases,
each branch is "closed" by showing that each branch leads to a logical contradiction.
In the course of generating contradictions, SVCs are introduced. Each SVC is
intended to be the minimum condition required to close a particular branch of the
analysis. Intuitively, the conditions are constraints on the system that are necessary to
avoid the hazard.

The result of such an analysis for chemical factory hazard are five distinct system
level SVCs. Full details can be found in reference [9]. The following is an example of
one of the five system level SVCs:

MAX_SYSTEM_PROPAGATION_TIME is a constant that specifies the
maximum time the system should take to display a vessel temperature on the screen
after receiving a sensor update for that vessel.

Safety Verification Condition:
For all vessels, v, displayed temperatures, d, and times, t, if the displayed temperature of
vessel v is set to d at time t, then at some time no earlier than
MAX_SYSTEM_PROPAGATION_TIME milliseconds before t the system received a
report from the external sensor monitoring system that the temperature of vessel v is d.

6. Design Level SVCs

The system level SVCs are refined into design level SVCs through analysis of the
software architecture.

6.1 Hazard-Related Functional Blocks

Part of the process of producing a representation of the hazard-related code involves
partitioning the relevant software into blocks which are invoked asynchronously. For
example, this could be the result of code running in a process on a different computer,
or which executes in a different “thread” on the same processor. The resulting
“functional blocks” of code may be viewed as procedures with input and output
parameters.

The hazard-related functionality for the chemical factory information system
partitions into three such functional blocks. The monitoring of sensor staleness is one
functional block, and the processing of sensor updates partitions into two functional
blocks, LANToBroadcast and BroadcastToDisplay. For example, the
LANToBroadcast block involves the reception and processing of LAN messages
received from the external sensor monitoring system. LAN messages are read by the
procedure ReadLAN and then processed by the procedure ProcessSensors ,
before being broadcast.

6.2 Functional Block SVCs

The system level SVCs are refined into SVCs for the functional blocks. An important
aspect of the refinement is the separation of system functionality and timing issues,
into separate functional block SVCs. This allows for the derivation of functional
block pre- and post-conditions from the time-independent functional block SVCs.

The system level SVC introduced in Section 5 applies to the propagation of the
temperature through the system, which is carried out by the LANToBroadcast and
BroadcastToDisplay blocks, with a Broadcast mechanism providing the block
communication. As a result, the system level SVC can be refined into design level
SVCs involving these relevant functional blocks and the Broadcast mechanism, by
extending the rigorous argument.

When performing the refinement, the functional blocks can be viewed
conceptually as a procedure with input and output parameters. The system level SVCs
are then refined into separate functional and timing conditions, with the system events
mapped onto the functional block invocations and output. Furthermore, the functional
block becomes the causal agent, i.e., it takes the input and creates the output, which
replaces the timing sequence.

An example of a design level SVC for the LANToBroadcast functional block is:

7. Source Code Level SVCs

The design level SVCs are refined into source code level SVCs, by identifying the
functional block input and output parameters, along with any other relevant source
code element. In this section we provide a sense of the need for a safety engineer to
"dig into" the source code in order to close the semantic gap between the definition of
the hazard and the corresponding representation of the SVC in terms of the source
code.

7.1 Functional Block Parameters

The input and output parameters of the functional block are determined from
examination of the subprograms that make up the block. For example, the main
thread of functionality for the LANToBroadcast block is contained in the ReadLAN
and ProcessSensor procedures shown in Figure 2. Invocation of the ReadLAN
procedure provides entry into the block with a LANMessage Object as input. The
ReadLAN procedure then invokes the ProcessSensor procedure, which
broadcasts a SensorServer BroadcastMessage as output.

In addition to the input and output parameters for the ReadLAN and
ProcessSensor , these procedures have access to package level variables which
maintain state information for that package. For example, the SensorServer makes use
of the SensorStore Object to maintain a set of sensor readings which are
accessed by the ProcessSensor procedure. These are considered “global variables” of
the functional block.

7.2 The Source Code Elements

The design level SVC refers to input LAN messages and output broadcast messages,
which contains the vessel’s temperature obtained by the external sensor monitoring
system.

Examination of the LANMessage Object , reveals that updates from the
different sensors are maintained in arrays of Sensor Update data records:

LANToBroadcast design level SVC:
For all vessels, v, and broadcast temperatures, d,
if there exists the information that vessel v is d in the output broadcast message, M,
then there exists the information that the temperature of vessel v is d, in the input
LANMessage, L.

The TemperatureEstab field maintains the sensor temperature reading, and
SensorCodeEstab field maintains the raw sensor code.

Examination of the Broadcast Objec t, reveals that the updates are maintained
in an array of Sensor Objects :

The raw sensor code has been converted and stored as a SensorID . The raw
temperature reading has been converted and stored as the Sensor Temperature .

The design level SVC can now be re-written in terms of these source code
elements:

8. Source Code Assertions

The source code level SVCs include functional correctness conditions which can be
expressed as functional block pre- and post-conditions. These pre- and post-
conditions can be translated into SPARK annotations.

8.1 Pre- and Post-Condition Style

The functional block SVC is re-written in a “forward” manner by taking the
contrapositive form of the condition:

type LANMessage_SensorUpdate is
record

 InterpolatedState : LANMessage_InterpolationRange;
 TemperatureEstab : LANMessage_Temperature_T;
 SensorCodeEstab : LANMessage_SensorCode;

end record;

type Sensor_Object is
record

 SID : Sensor_SensorID;
 SensorOperation : Sensor_Operation;
 SensorQuality : Sensor_Quality;
 SensorTemperature : Sensor_Temperature;

end record;

LANToBroadcast Source Code Level SVC:
For all Sensor Objects, s, in output BroadcastMessage, M,
if Sensor Object, s, contains the information SensorID, C, and PresentTemperature, D,
then there exists a SensorUpdate, U, in input LANMessage, L, with the information
SensorCodeEstab, C1, which is converted from SensorID, C, and TemperatureEstab,
D1, which is converted from D.

The contrapositive form of the functional block SVC can be further refined by
using “logical equivalencies”. For example, it is possible to move the “NOT”
inwards, by using the appropriate logical equivalencies such as:

 “NOT (there exists ...)” ≡ “for all (NOT ...)”

The refined contrapositive form of the source code level SVC is then:

The contrapositive can be determined more precisely by first formalizing the
source code level SVC [5]. For this source code level SVC, the entire SVC is a post-
condition on the output. In other words, taking the contrapositive form of the source
code level SVC did not uncover any pre-conditions.

8.2 SPARK Annotations

At this point, the source code SVCs can be used an input to a code verification
process. One possibility is conventional software testing. However, in this paper, we
consider the possibility of using a tool-based method based on static verification, in
particular, use of SPARK Examiner.

SPARK Examiner may be used to reduce the problem of verifying a "slice" of the
code with respect to a source code SVC into a purely mathematical task of verifying a
logical expression called a "verification condition". A code verification tool such as
SPARK Examiner relieves the human analyst of the task of tracing through the code
slice statement-by-statement.

To complete the overall process, the verification conditions must then be verified
either by manual efforts or by use of tools such as the SPARK Simplifier and Proof
Checker [1].

SPARK annotations make use of the SPARK Ada subset and appears in the code
as Ada comments. However, they do not support quantification, so it is not possible

LANToBroadcast Source Code Level SVC (Contrapositive):
For all Sensor Objects, s, in output BroadcastMessage, M,
if NOT(there exists a SensorUpdate, U, in input LANMessage, L, with the information
SensorCodeEstab, C1, which is converted from SensorID, C, and TemperatureEstab,
D1, which is converted from D)
then NOT(Sensor Object, s, contains the information SensorID, C, and
PresentTemperature, D)

LANToBroadcast Source Code Level SVC (Refined Contrapositive):
For all Sensor Objects, s, in output BroadcastMessage, M,
if for all SensorUpdates, u, in input LANMessage, L, with the information
SensorCodeEstab, C1, which is not converted from SensorID, C, or TemperatureEstab,
D1, which is not converted from D
then Sensor Object, s, does not contain the information SensorID, C, and
PresentTemperature, D.

to directly express the source code level SVC in the SPARK annotation language.
Instead, a “proof function” is defined, ConvertAll , which has the same syntax as
an Ada function, and the post-condition is expressed in terms of this proof function:

The proof function can defined as a proof rule:

The proof rule is expressed in the FDL language, which is the required input for
the SPARK Proof Checker. For illustrative purposes, the proof rule has been written
in a form that closely mirrors the source code level SVC. If a proof of the conditions
were to be attempted, it would be possible to re-write the rule in a form more
conducive to the proof effort.

9. Summary and Conclusions

A method was presented in this paper for the informal systematic refinement of safety
code assertions from system hazards. The assertions are the key program safety
invariants, which can then be verified by means such as inspection, testing or code
verification. Such a refinement of the hazard allows a tool intended mainly for
"correctness verification", such as SPARK Examiner, to be used for "safety
verification".

The source code level SVCs (and corresponding SPARK annotations) are not
merely superficial re-formulations of the hazards. If the source level SVCs were used
for a manual verification process, then we expect the analyst would be at a much
greater advantage than if he/she attempted to perform the safety verification by
inspecting the code directly in terms of the system level definition of the hazard.

--# function ConvertSensorCode(SC : LANMessage_SensorCode) return
Sensor_SensorID;
--# function ConvertTemperature(T : LANMessage_Temperature_T) return
Sensor_Temperature;
--# function ConvertAll(M:LANMessage_Object;

B:SensorServer_BroadcastMessage;
L,U:LANMessage_SensorUpdateRange) return Boolean;

procedure SensorInterface_ReadLAN(Message : in LANMessage_Object);
--# global in out BroadcastMessage, CurrentSensors;
--# post ConvertAll(Message, BroadcastMessage,

LANMessage_SensorUpdateRange'First,
LANMessage_SensorUpdateRange'Last);

ConvertAll(BM, LM, I, F) may_be_replaced_by
 for_all (u:integer, (I <= u and u <= F) ->

not (for_all (s:integer, (I<=s and s <=F) ->
(not(fld_SensorTemperature(element(BM, [u])) =

 ConvertTemperature(fld_TemperatureEstab(element(LM,[s])))
or not(fld_SensorID(element(BM, [u])) =

ConvertSensorCode(fld_SensorCodeEstab(element(LM,[s])))))

Though the formulation of each step of the refinement involves informal
arguments and statements of the resulting conditions, there may be value in partially
formalizing some of the steps. For example, formalization of the source code level
SVCs would contribute to the care and precision in which the source code elements
are identified [5], and help ensure that the contrapositive form of the condition is
correctly obtained.

10. Acknowledgments

This work was partially supported by B.C. Advanced Systems Institute, Raytheon
Systems Canada, Ltd., and MacDonald Dettwiler. This work is a component of the
university-industrial collaborative project, formalWARE.

11. References

1. John Barnes, “High Integrity Ada The SPARK Examiner Approach”, Addison Wesley
Longman Ltd, 1997.

2. Bruce Elliott and Jim Ronback, “A System Engineering Process For Software-Intensive
Real-Time Information Systems”, in Proceedings of the 14th International System Safety
Conference, Albuquerque, New Mexico, August 1996.

3. Nancy G. Leveson, “Safeware: System Safety and Computers”, Addison-Wesley, 1995.
4. Nancy G. Leveson, Steven S. Cha, and Timothy J. Shimall, “Safety Verification of Ada

Programs using software fault trees”, IEEE Software, vol. 8, no. 7, pp. 48-59, July 1991.
5. Ken Wong, M.Sc. Thesis, Department of Computer Science, University of British

Columbia, 1998.
6. http://www.cs.ubc.ca/formalWARE
7. Ken Wong, Jeff Joyce and Jim Ronback, “Ensuring the Inspectability, Repeatability and

Maintainability of the Safety Verification of a Critical System”, Department of Computer
Science, University of British Columbia, TR-98-06, 1998.

8. Ken Wong, “Looking at Code With Your Safety Goggles On”, in Reliable Software
Technologies - Ada-Europe’98, Lecture Notes in Computer Science, Vol. 1411, Springer,
1998.

9. Jeffrey Joyce and Ken Wong, “Generating Safety Verification Conditions Through Fault
Tree Analysis and Rigorous Reasoning”, in Proceedings of the 16th International System
Safety Conference, Seattle, Washington, September 1998.

