
Programmatic Testing of the Standard Template Library

Containers

Jason McDonald� Daniel Ho�many Paul Strooperz

May 11, 1998

Abstract

In 1968, McIlroy proposed a software industry based on reusable components, serv-
ing roughly the same role that chips do in the hardware industry. After 30 years,
McIlroy's vision is becoming a reality. In particular, the C++ Standard Template
Library (STL) is an ANSI standard and is being shipped with C++ compilers. While
considerable attention has been given to techniques for developing components, little
is known about testing these components.

This paper describes an STL conformance test suite currently under development.
Test suites for all of the STL containers have been written, demonstrating the feasi-
bility of thorough and highly automated testing of industrial component libraries. We
describe a�ordable test suites that provide good code and boundary value coverage,
including the thousands of cases that naturally occur from combinations of boundary
values. We show how two simple oracles can provide fully automated output checking
for all the containers. We re�ne the traditional categories of black-box and white-box
testing to speci�cation-based, implementation-based and implementation-dependent
testing, and show how these three categories highlight the key cost/thoroughness trade-
o�s.

1 Introduction

Our testing focuses on container classes|those providing sets, queues, trees, etc.|rather
than on graphical user interface classes. Our approach is based on programmatic testing

where the number of inputs is typically very large and both the input generation and
output checking are under program control. We do not rely on keyboard and mouse
capture and playback, or on �le and screen capture and comparison. We have found these
techniques unsuitable for automated testing of container classes, where the interface is
through function calls rather than keyboard, mouse, screen, and �le.

�Software Veri�cation Research Centre, School of Information Technology. The University of Queens-

land, 4072, Australia, jasonm@csee.uq.edu.au
yDept. of Computer Science, Univ. of Victoria, P.O. Box 3055 MS7209, Victoria, B.C., V8W 3P6

Canada, dho�man@csr.uvic.ca
zSoftware Veri�cation Research Centre, School of Information Technology, The University of Queens-

land, 4072, Australia, pstroop@csee.uq.edu.au

1

With programmatic testing, the economics of testing are fundamentally changed. Tra-
ditionally, testing approaches have sought to minimize the number of test cases, with
reduction of test suite development cost a secondary goal. This approach makes sense
when humans are involved in some aspect of each test case, making test cost roughly
proportional to the number of test cases run. With programmatic testing the priorities
are reversed. The primary goal is to minimize test suite development cost; signi�cant
automation makes test execution nearly free, even for thousands of cases.

Traditionally, test cases are divided into two categories. Black-box (or speci�cation-
based) test cases are based solely on the speci�cation. White-box (or structural) test
cases are driven by the implementation, especially the control structure of the code. Over
time, the black-box/white-box distinction has proven useful. In developing test suites for
STL, however, �ner distinctions are needed to explain the key trade-o�s between cost and
thoroughness:

� Speci�cation-based : all test cases are chosen on the basis of the speci�cation, inputs
are supplied and outputs observed using only public member functions, and output
correctness is based solely on the speci�cation.

� Implementation-based : some test cases are chosen based on the implementation, but
all inputs are supplied and outputs observed using only public member functions,
and output correctness is based solely on the speci�cation. For example, suppose
we have a vector class providing dynamic resizing on insert and delete, and a par-
ticular implementation that allocates memory in blocks of 10 elements. Then an
implementation-based test suite might focus on vectors of size 9, 10, 11, 19, 20, 21,
etc. This test suite could still be used, though less e�ectively, on an implementation
that reallocates all of its dynamic memory on insertion and deletion.

� Implementation-dependent : some test cases depend on aspects of the implementation
not mentioned in the speci�cation. Implementation-dependent test cases arise from
two main sources: code modi�cation and speci�cation nondeterminism. For example,
many test suites use embedded assertions to dynamically evaluate the correctness
of internal data structures. Nondeterminism is common where order is important.
Suppose that we are given a function speci�ed to sort a list of keyed records, and
an implementation that does stable sorting. A test suite that relied on stability in
output checking would be implementation-dependent: it would fail when applied to
an unstable sort implementation.

These categories are important because of the impact they have on test development and
maintenance. Speci�cation-based tests are the most desirable because they are the simplest
and are portable across multiple implementations of a given speci�cation. Implementation-
dependent test suites are the least desirable because they are the most complex and
the least portable. Still, an implementation-dependent test suite is the best choice in
some cases. Implementation-based test suites are a compromise: more complex than
speci�cation-based suites, but still portable across implementations.

Section 2 of this paper outlines the literature on class testing and Section 3 brie
y
describes the ClassBench framework which is used as the testing platform for the STL test

2

suite. Section 4 presents the STL in more detail. Section 5 outlines the key testing issues
and describes test suites that illustrate the use of the three testing categories in detail.
Section 6 summarises our experience testing the STL containers and Section 7 presents
our concluding remarks.

2 Related Work

Testing classes is similar to testing software modules, and early work by Panzl [17] on the
regression testing of Fortran subroutines addresses some of the issues. The DAISTS [7],
PGMGEN [10], and Protest [11] systems all automate the testing of modules using test
cases based on sequences of calls.

In the literature on object-oriented testing [2], considerable attention has been paid
to class testing. Frankl [6] has developed a scheme for class testing using algebraic spec-
i�cations. Fiedler [5] describes a small case study on testing C++ objects. The ACE
tool, developed by Murphy, et al., [15] supports the testing of Ei�el and C++ classes, and
provides strong evidence for the bene�ts of testing classes before testing the system using
the classes. Arnold and Fuson [1] discuss class testing issues and techniques. The text by
Marick [14] devotes two chapters to class testing, focusing primarily on test plans. The
FOOT framework, developed by Smith and Robson [19], allows a class to be tested either
manually or automatically, using either a built-in testing strategy or a previously de�ned
test sequence.

The work just described constitutes important progress in automated class testing but
contains precious few actual test suites for industrial class libraries. Only the work by
Fiedler and the work by Murphy describe such suites. The Fiedler paper provides no
information on the testing techniques used. The Murphy paper uses a tool adapted from
a predecessor to ClassBench [10, 12].

3 ClassBench

The ClassBench framework [13, 9] is a collection of tools and techniques supporting the
automated testing of C++ classes. With ClassBench, the tester performs three tasks:

1. Develop the testgraph. The testgraph nodes and arcs correspond to the states and
transitions of the class-under-test (CUT). However, the testgraph is vastly smaller
than the CUT state/transition graph.

2. Develop the Oracle class. The Oracle is used to check the correctness of the be-
haviour of the CUT. It provides essentially the same operations as the CUT but
supports only the testgraph states and transitions. As a result, the Oracle is usually
signi�cantly cheaper to implement than the CUT, and is more reliable as well. The
Oracle member functions are invoked frequently for output checking and, perhaps
surprisingly, for input generation.

3. Develop the Driver class. The Driver class contains cut and orc, instances of the
CUT and Oracle. Driver also provides three public member functions: reset places

3

Containers Adaptors Iterators Algorithms

set stack input non-mutating sequence
multiset queue output mutating sequence
map priority queue forward sorting related

multimap bidirectional generalized numeric
vector random
deque istream
list ostream

Table 1: STL inventory

both cut and orc in the initial state, arc generates the transition in cut and orc

associated with the testgraph arc traversed, and node checks that, in each node, the
cut behavior is consistent with the orc behavior.

To add
exibility to the framework, each test suite may have a test suite parameter.
This parameter is typically used to determine the size of the container to be tested, so that
containers of di�erent sizes may be tested without recompiling the test suite.

To support the tester, the ClassBench framework provides a graph editor, a graph
traversal algorithm, and support code in the form of skeletons and demonstration test
suites. The testgraph editor provides the facilities commonly available in today's graph
editors. Testgraphs can be accessed from disk; nodes and arcs can be added and deleted.
The testgraph traversal classes automatically traverse a stored testgraph, calling the ap-
propriate Driver member functions: reset is called at the start of each path, arc is called
each time a testgraph arc is traversed, and node is called each time a testgraph node is
visited.

4 The Standard Template Library

The STL [16] provides the services outlined in Table 1. Seven containers are provided,
each implemented as a generic class. There are also three container adaptors; each of
these is a wrapper around one of the other containers, adapting the container to produce
a new type of container. There are seven types of iterators that provide an interface that
is used by the algorithms to access the containers. The iterators can be thought of as a
generalization of the concept of pointers. Eighty-one algorithms are included, divided into
the four groups shown in Table 1. Several characteristics of the STL make it signi�cantly
di�erent from other class libraries:

� In addition to the member functions speci�c to the container type, each container
also provides an iterator interface. The iterators provide a standardized interface to
all containers. Each algorithm accesses a container solely through the iterator inter-
face, allowing a single algorithm to operate on a variety of containers, and avoiding
the \algorithm explosion" problem that results when each algorithm must be im-
plemented separately for each container [18]. Because the algorithms and containers

4

// constructors

list();

list(const list<T>& x);

// assignment amd equality

list<T>& operator=(const list<T>& x);

template <class T> bool operator==(const list<T>& x, const list<T>& x);

// access member functions

bool empty();

size_type size();

size_type max_size();

// insert member functions

iterator insert(iterator position, const T& x);

void insert(iterator position, size_type n, const T& x);

// erase member functions

void erase(iterator position);

// special list functions

void splice(iterator position, list<T>& x);

Figure 1: List member functions

can be combined so freely, it is not su�cient to test the code on a few expected cases;
thorough testing will require many test cases.

� The STL is a part of the new ANSI C++ standard and is already shipped with most
C++ compilers. Thus, STL reliability is critical and development of a substantial
test suite is justi�ed.

� The STL standard includes performance speci�cations for each algorithm and con-
tainer. Thus, an STL conformance test suite should evaluate performance as well as
functionality.

In this paper, we focus on the testing of the seven containers and the three container
adaptors, including the iterators provided by each container. Testing of the STL algorithms
and performance testing are both work in progress.

4.1 Example: The List Container

To illustrate the interface provided by the STL containers, we use the List container as an
example. List provides a type of sequence. Sequential access to the list is allowed via the
bi-directional iterators provided by the class. Elements may be inserted or deleted at any
iterator position in constant time.

The interface to List varies slightly for di�erent versions of the STL, and the interface we
describe here is the Hewlett Packard reference implementation. This interface contains 42
member functions. Figure 1 shows some of these member functions. The type T represents
the generic parameter to List that identi�es the type of elements stored in List. The types

5

iterator and size type are de�ned by List, and de�ne an iterator for the List class and
a type that is used to describe quantities of list elements respectively.

Figure 1 shows two of the constructors for List. The constructor list() creates an
empty list, whereas list(l) creates a copy of the list l. There are two other List construc-
tors.

There are operators for list assignment (operator=) and list equality (operator==).
There are sixteen member functions that can be used to access elements in a list or

to obtain other information about a list. For example, the function empty() returns true
or false according to whether the list is empty, size() returns the number of elements in
the list, and max size() returns the maximum number of elements that can be stored in
a list.

There are six member functions to insert elements in a list and four member functions
to erase elements from a list. The call insert(i,x) inserts x at the position pointed to by
iterator i, and insert(i,n,x) inserts n copies of x at the position pointed to by iterator
i. The �rst call returns an iterator that points to the newly inserted element. Similarly,
the call erase(i) deletes the element pointed to by iterator i.

Most of the algorithms in the STL are generic and can be applied to a number of
containers. However, for e�ciency reasons, some algorithms work only for List , or require
a specialized version for List. For example, the splice function can be used to splice
parts of one list into another list. There are three versions of splice; for the one shown in
Figure 1, the call splice(i,l) destructively copies all elements from list l to the position
pointed to by iterator i. List also provides functions to remove all elements from a list
equal to a given value, to remove duplicate elements from a list, to merge two sorted lists,
to reverse a list, and to sort a list.

The bi-directional iterator for List provides operator* that can be used to both read
and write values pointed to by an iterator. It also provides operator== and operator!= to
test equality and inequality of two iterators. Finally, it provides pre�x and post�x versions
of both operator++ and operator-- to traverse a list in a forward or backward direction.

5 STL Testing

5.1 Testing Issues

The test suite for the STL containers is driven by four key decisions, each brie
y described
below.

5.1.1 Programmatic Testing

Exhaustive testing is not feasible for any STL container. Consider the List class. Even
if only lists of size 10 are considered, most of the possible states will never be reached.
With care, however, all members of certain families of tests can be executed a�ordably.
For example, for a particular list of 100 elements, it is feasible to delete every element from
the list, checking the entire list contents after every deletion. This thinking illustrates
the new economics of programmatic testing. Traditionally, testing methods have sought to
minimize the number of test cases; testing was at least partially manual and each execution

6

of each test case was expensive. With programmatic testing, repeating a test case costs
very little. Consequently, the goal is to minimize test suite development, while keeping
machine costs acceptable.

5.1.2 Iterators and Algorithms

The STL provides 10 containers and 81 algorithms. Most of the algorithms work with most
of the iterators, creating a potential problem for the tester: it would be very expensive to
develop tests for every algorithm/container combination. To avoid this expense, we aim to
thoroughly test the iterators for each container and then test all the algorithms on a single
container. This approach is motivated by the central design decision of the STL itself:
allow an algorithm to access a container only through the iterator interface. In the STL,
the algorithm/container separation forces careful speci�cation of the iterator interface.
In our STL test suite, this separation forces careful testing of the iterator interface, but
permits signi�cant savings in testing the algorithms.

As explained previously, this paper focuses on the testing of the containers and their
iterators.

5.1.3 Oracles

Because programmatic testing generates so many test cases, test oracles must be carefully
planned and implemented. Otherwise, the development cost of the oracle code will be
una�ordable. With the large number of STL containers, considerable sharing of oracle
code is essential. In our STL test suite, we use two oracles: one for the set-like classes|
Set, Multiset, Map, Multimap|and one for the sequence-like classes|Vector, Deque, List,
Stack, Queue, and Priority Queue.

5.1.4 Testing Templates

It is important to test template classes for di�erent types, and the C++ type conversion
mechanism provides a convenient method to do so. To test a new type T, all we need to
do is provide a new class Element with a constructor that maps int to T. Usually, we test
classes for one builtin and one user-de�ned type [9]. In the STL test suite described in
this paper, we test most classes using integers only. The Deque class was also tested with
an integer-like class that allowed the element size to be varied.

5.2 Speci�cation-based Testing: List

A speci�cation-based test suite was developed for List using the ClassBench framework
and the testgraph is shown in Figure 2. The state EMPTY represents a list containing no
elements; ALL, ODD and EVEN represent lists of contiguous and non-contiguous ascending
element values; REV represents a list of descending element values; and DOUBLE represents
a list containing duplicate element values. The test suite parameter, parm, determines
the maximum element value for the list. Elements are in the range 0..parm-1. Beside
each state, the state value is shown for a test suite parameter of 10. The initial state,
distinguished by an arc with no source node, is EMPTY.

7

EMPTY ALL

ODD

EVEN

REV

DOUBLE

ADDALL

CLEAR

DELODD

UNIQUE

REVERSE

CLEAR

DELEVEN

ADDDOUBLE

REVERSE

[9,8,...,1,0]

[0,0,1,1,...,8,8,9,9]

[0,1,...,8,9]

[1,3,5,7,9]

[0,2,4,6,8]

[]

Figure 2: Testgraph for List class

The oracle class, which is also used in the test suites forVector, Deque, and the container
adaptors, stores the sequence of elements in an array. The oracle provides 21 member
functions and two simple iterator classes for manipulating and observing the sequence.
Unlike the STL iterators, the oracle iterators signal exceptions when illegal actions take
place.

Part of the declaration of the Driver class for the test suite is shown in Figure 3.
The driver follows the usual form of a ClassBench driver, providing the reset, arc, and
node functions. Due to the large number of member functions to be checked at each node,
the node function delegates its work by calling other check functions. We brie
y describe
several of these below.

The CheckCut function compares the CUT with the oracle by checking the results of
size and empty and by iterating over the CUT and oracle and comparing each element.

CheckIterators tests the bi-directional iterators by traversing forwards and back-
wards over the CUT and oracle using the pre- and post�x versions of operator++ and
operator--, and comparing the results of operator*. The constant and non-constant
versions of both the forward and reverse iterators are tested in this manner.

CheckCopyConstructor calls the copy constructor to create a copy of the CUT and
then checks it against the oracle. The other constructors are checked similarly.

CheckOpEqualEqual creates additional instances of the CUT and oracle representing
each testgraph state and then checks that operator== returns the appropriate value when
comparing each of these with the current state. The = and < operators are checked similarly.

CheckInsert tests all four insert functions. For each, it attempts to insert a new
element at each iterator position within the CUT and checks the result against the oracle.
The checking for splice and erase is done in a similar manner.

The driver does not test the max size function. The speci�cation [20] does not give
a speci�c value, but indicates that a list should be able to hold at least max size ele-
ments. However, none of our testing platforms have su�cient memory to construct a list
of max size elements. The return value of max size on all of our testing platforms would
require a minimum of 4 gigabytes of memory.

8

class Driver f

public:

Driver(int parm0);

void reset();

void arc(int arcNum);

void node() const;

private:

TestCut cut;

Oracle orc;

int parm;

void CheckCut() const;

void CheckIterators() const;

void CheckCopyConstructor() const;

void CheckOpEqualEqual() const;

void CheckInsert() const;

g;

Figure 3: Partial declaration of Driver class for List test suite

The speci�cation-based test suite for List achieves statement coverage of 99.2%. The
only statements not executed are those in the function body of the max size member
function. Since the speci�cation-based test suite meets our goals for coverage, we did not
conduct any further testing on List .

5.3 Implementation-based Testing: Deque

Like List , the STL Deque class provides a type of sequence. However, Deque allows random
access rather than the sequential access provided by List. Further, Deque supports constant
time insertion and erasure of elements at either end of the sequence, but insertion in the
middle of the sequence takes linear time.

The List and Deque interfaces are similar. While Deque does not provide any of the
specialist List functions for splicing, merging, sorting, reversing, removing duplicates or
removing all instances of an element, it adds some other services. Deque adds constant
and non-constant versions of operator[]. Deque also provides random access iterators. In
addition to the functionality of a bi-directional iterator, a random access iterator can move
multiple elements forwards or backwards along a container using the += and -= operators,
and it can access elements forwards or backwards of the current position using the []

operator.

5.3.1 Speci�cation-based Test Suite

The speci�cation-based test suite for Deque is similar to the test suite for List . The test
suite uses the same oracle that was used in the List test suite. Duplicate elements and the
ordering of element values are not signi�cant in Deque. Thus, the testgraph states DOUBLE
and REVERSE and their associated arcs were omitted from the testgraph and driver. In the

9

3
4
5

1
2

6
7
8
9
10
11
12
13

14
15
16

start finish

Figure 4: A typical instance of the deque data structure

driver, the code to test the specialist list operations that are not provided by Deque was
omitted, and code to test both versions of operator[] was added. The max size function
was not tested, for the same reasons as outlined for the same function of the List class.
The speci�cation-based test suite for Deque was executed with test suite parameters of 1,
2, 5, 10 and 100. This yielded statement coverage of only 86.8% percent, which did not
meet our goal of exercising every statement apart from those in the max size function.

Deque is implemented as a sequence of �xed-size blocks of storage, each of which
contains one or more elements of the deque, as illustrated in Figure 4. These blocks are
allocated and deallocated at each end of the deque as it grows or shrinks. An array of
pointers to the blocks is stored and the class begins by allocating the pointer at the middle
of the array to point to the �rst block allocated for the deque. When the deque has reached
the start or the end of the pointer array, the array is reallocated to allow the deque to
grow further. A signi�cant portion of the Deque implementation is devoted to managing
this data structure.

A close examination of the implementation reveals three reasons why the speci�cation-
based test suite failed to achieve full statement coverage. Firstly, the test suite never builds
a deque that spans more than one block in the data structure. Secondly, the test suite
never attempts to insert a group of elements larger than one block into a deque by using
the \copy iterator range" forms of the constructor and insert functions or the form of
insert that inserts multiple copies of a single element. Finally, the test suite never causes
the block pointer array to be reallocated.

5.3.2 Implementation-based Test Suite

The solution to these problems is to develop an implementation-based test suite for Deque.
The tested implementations of STL use a block size equal to the maximum of the

element size and 4096 bytes. Thus, to make the structure span multiple blocks a deque
containing at least 1025 integers (an integer takes four bytes) is required. However, when
the test suite parameter is increased to 1025, the test suite takes an unacceptably long time

10

class integer

f

integer(const int);

integer& operator=(int);

integer& operator=(const integer&);

int operator==(const integer&);

...

private:

int value;

char blank[EXTRA SIZE];

g

Figure 5: Partial declaration of the integer class

to execute, mainly due to the complex checking required for the deque insert functions.
We solved this problem by substituting the class integer, shown in Figure 5, for int

as the element type for the deque. The integer class is a wrapper around int that uses
EXTRA SIZE more bytes of memory. Thus, we reduce the number of elements needed to �ll
a block and consequently the execution time to test deques that span multiple blocks. For
the implementation-based test suite, we set EXTRA SIZE to 60, producing a Deque with
64-byte elements stored in blocks each containing 64 elements.

We also added code to the driver to test the insertion of groups of elements larger than
one block, and code to cause the block pointer array to be reallocated. The implementation-
based test suite was executed with test suite parameters 1, 2, 63, 64, 65, 127, 128 and 129,
corresponding to testing around the boundaries of one, two and three blocks.

The implementation-based test suite revealed a performance error in the insert(

iterator, const T&) function. The speci�cation for this function states that it takes
constant time if the element is inserted at the front or back of the deque, and linear time
in the minimum of the distances from the insertion point to the front and back of the
deque, if the element is inserted at any position between the �rst and last elements. How-
ever, the if statement that is meant to select the minimum of the two distances always
selects the distance from the front, making the insertion take time linear in the distance
from the front of the deque. This error was detected when the statements that use the
distance from the back of the deque were not executed by the appropriate test cases.

The implementation-based test suite for Deque achieved statement coverage of 98.9%.
The only statements not executed were the body of max size and the else part of the
erroneous if statement in insert(iterator, const T&) which is unreachable due to the
error discussed above.

5.4 Implementation-dependent Testing: Set

The STL Set class stores a sorted collection of elements without duplicates. The class is
parameterized by the element type and a comparison function for that element type. The
Set class supports insertion and deletion of elements in logarithmic time.

The interface to Set is similar to that of List . Since Set stores a sorted collection, it

11

does not provide the functions for adding, retrieving and removing elements from the front
and back of a list (push front, pop front, etc). Since duplicate elements are not allowed,
the multiple-element versions of the constructor and insert functions are also omitted.
Finally, Set does not provide the specialist List functions, but instead provides some other
services for accessing the set. Set provides bi-directional iterators which return elements
in the order de�ned by the comparison function object.

5.4.1 Speci�cation-based Test Suite

The speci�cation-based test suite for Set is similar to that of List. The testgraph has
four states: EMPTY, ODD, EVEN, and ALL. These represent the empty set, the set of odd
integers less than the test suite parameter, the set of even integers less than the test
suite parameter, and the set of all integers less than the test suite parameter respectively.
The oracle, which is also used for Multiset, Map and MultiMap, stores the number of
occurrences of each element less than the test suite parameter in an array. The driver
checks each member function of Set in a similar manner to the List driver. The driver
does not test the max size function for the reasons outlined earlier.

The Set class is implemented using a red-black tree data structure [4]. Red-black trees
are similar to AVL trees, but use less stringent restrictions on the balancing of the tree to
reduce the amount of rebalancing required, thus improving e�ciency.

The speci�cation-based test suite was executed with test suite parameters of 2, 5, 10
and 100. This yielded statement coverage of 97.3%. The unexecuted code consisted of
the max size function and part of the code that rebalances the tree after insertions and
deletions.

While the speci�cation-based test suite achieves reasonably good statement coverage,
it achieves very low coverage of the underlying red-black tree data structure. Very few
of the possible red-black trees are created and exercised by the test suite. Whereas the
List and Deque data structures do not depend on the values of each element, the red-black
tree used by Set depends on the element order determined by the comparison function.
Thus, the small set of states used in the testgraph is not su�cient to adequately exercise
the red-black tree structure. It turns out that generating speci�c red-black trees using a
speci�cation-based test suite is known to be di�cult [3].

5.4.2 Implementation-dependent Test Suite

To adequately cover the red-black tree data structure, we constructed an implementation-
dependent test suite.

Ruskey [8] has developed an algorithm for generating, in string form, all red-black
trees containing a particular number of nodes. We added a function setTree to the
red-black tree implementation to construct a red-black tree data structure from a red-
black tree string. The implementation of this function is dependent on the particular
implementation of the red-black tree, and the test suite is thus implementation-dependent
rather than implementation-based.

The implementation-dependent test suite takes a tree string as the test suite parameter
and calls setTree to construct the appropriate instance of the data structure. This instance

12

Spec-based Imp-based Imp-dependent
Class Lines Coverage Lines Coverage Lines Coverage

Vector 399 94.4% n/a n/a n/a n/a
List 584 99.2% n/a n/a n/a n/a
Deque 388 86.8% 393 98.9% n/a n/a
Set 367 97.3% n/a n/a 351 99.3%
MultiSet 372 98.6% n/a n/a n/a n/a
Map 420 97.8% n/a n/a n/a n/a
MultiMap 399 98.4% n/a n/a n/a n/a
Stack 167 100% n/a n/a n/a n/a
Queue 167 100% n/a n/a n/a n/a
PriorityQueue 126 100% n/a n/a n/a n/a

Table 2: Summary of STL Container testing results

is then exercised using a simpli�ed version of the checking done by the speci�cation-based
test suite.

The implementation-dependent test suite was executed once for each red-black tree
containing 10 or fewer nodes. Statement coverage of 99.3% was achieved. The only state-
ments not executed were in the function body of max size.

6 Summary of Test Suites and Results

Speci�cation-based test suites were developed for the seven container classes and the three
container adaptor classes. Two oracles were developed: one for the sequence-like classes
(including the three adaptor classes) and one for the set-like classes.

Additional code was developed to test the iterator interface of each container class. All
seven container classes use either bi-directional or random-access iterators, so two di�erent
checking routines were developed. The appropriate code was compiled into the test suite
for each class.

For each test suite, a test plan was developed, describing the strategies to be used to
test each member function. The test plans were useful for checking the completeness of
test suites.

Three di�erent implementations of STL were tested. The Hewlett-Packard implemen-
tation was tested on the AIX operating system using the IBM xlC compiler. The GNU
implementation was tested under Solaris 2.5 and Linux 2.0.32 using the GNU g++ 2.7.2.2
compiler. The Rogue Wave implementation was tested on Windows NT 4.0 using Borland
C++ 5.02. The same test suites were used for all three implementations.

Table 2 shows, for each test suite, the number of lines of code in the driver and the
percentage of basic blocks covered by the test suite.

The coverage information was obtained using the tcov utility with the xlC compiler.
This utility is not available for g++ or Borland C++. The coverage percentages are based
on the number of reachable basic blocks in each class. For example, some code in the red-

13

black tree implementation is only reachable when duplicate element values are permitted,
and is thus not reachable in Set or Map.

The red-black tree data structure used for the Set class is also used for Multiset,
Map, and Multimap. Thus the speci�cation-based test suites for these classes, while
achieving good statement coverage, do not achieve good coverage of the data structure.
Implementation-dependent test suites for these classes would rectify this problem, and may
be produced in the future.

Two errors were found during testing. Both of these were in the Deque class. The error
in insert(iterator, const T&) noted in Section 5.3 was present in all three tested im-
plementations. Additionally, the GNU version of Deque appears to have a bug in insert(

iterator, size type, const T&) which non-deterministically corrupts memory. As yet,
we have not been able to determine the exact nature of this error.

7 Conclusions

With the software component industry �nally coming of age, the issue of component cor-
rectness has become an important one. For example, an STL implementation is now
shipped with each C++ compiler. While most of the current implementations are proba-
bly based closely on the original HP implementation, divergence has begun and will surely
continue. Each variant will have many users, each of whom will use the library in un-
predictable ways. Consequently, test suites exercising a wide variety of uses are badly
needed.

We have presented a programmatic approach to automated component testing. Test
execution is fully automated, from input generation to oracle. Thousands of cases are
generated, to exercise important values and, especially, their combinations. Programmatic
testing has a di�erent economic basis to other testing methods: cost is dominated by the
development e�ort of the test programs while the number of test cases is largely irrelevant.

We have demonstrated the feasibility of the programmatic approach with test suites
developed for all the STL containers, and applied to STL implementations from three
di�erent vendors. The suites exercised almost all reachable statements, achieved good
coverage of important state and parameter values and their combinations, and revealed
two errors. The test suites also demonstrated the tradeo�s between speci�cation-based,
implementation-based, and implementation-dependent testing.

References

[1] T.R. Arnold and W.A. Fuson. Testing in a perfect world. Commun. ACM, 37(9):78{
86, 1994.

[2] Robert V. Binder. Testing object-oriented software: a survey. Software Testing,

Veri�cation and Reliability, 6:125{252, 1996.

[3] H. Cameron and D. Wood. Insertion reachability, skinny skeletons, and path length
in red-black trees. Information Sciences, 77:141{152, 1994.

14

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.

[5] S.P. Fiedler. Object-oriented unit testing. Hewlett-Packard Journal, pages 69{74,
April 1989.

[6] P.G. Frankl and R.K. Doong. The ASTOOT approach to testing object-oriented
programs. ACM Trans. on Software Engineering Methodology, 3(2):101{130, 1994.

[7] J. Gannon, P. McMullin, and R. Hamlet. Data-abstraction implementation, speci�-
cation and testing. ACM Trans. Program Lang. Syst., 3(3):211{223, July 1981.

[8] D. Ho�man, F. Ruskey, R. Webber, and L. White. Tree generation and automated
class testing. IEEE Trans. Soft. Eng., 1998.

[9] D. M. Ho�man and P. A. Strooper. ClassBench: A methodology and framework for
automated class testing. Software Practice and Experience, 27(5):573{597, May 1997.

[10] D.M. Ho�man. A CASE study in module testing. In Proc. Conf. Software Mainte-

nance, pages 100{105. IEEE Computer Society, October 1989.

[11] D.M. Ho�man and P.A. Strooper. Automated module testing in Prolog. IEEE Trans.

Soft. Eng., 17(9):933{942, September 1991.

[12] D.M. Ho�man and P.A. Strooper. Software Design, Automated Testing, and Mainte-

nance: A Practical Approach. International Thomson Computer Press, 1995.

[13] D.M. Ho�man and P.A. Strooper. The testgraphs methodology: Automated testing
of collection classes. Journal of Object-Oriented Programming, Nov./Dec. 1995.

[14] B. Marick. The Craft of Software Testing. Prentice Hall, 1994.

[15] G. Murphy, P. Townsend, and P.S. Wong. Experiences with cluster and class testing.
Commun. ACM, 37(9):39{47, 1994.

[16] D.R. Musser and A. Saini. STL Tutorial and Reference Guide. Addison-Wesley, 1996.

[17] D.J. Panzl. A language for specifying software tests. In Proc. AFIPS Natl. Comp.

Conf., pages 609{619. AFIPS, 1978.

[18] M. Sirkin, D. Batory, and V. Singhal. Software components in a data structure pre-
compiler. In Proc. Intl. Conf. Software Engineering, pages 437{446. IEEE Computer
Society, May 1993.

[19] M.D. Smith and D.J. Robson. A framework for testing object-oriented programs.
Journal of Object-Oriented Programming, 4(6):45{53, June 1992.

[20] ANSI Standards Committee X3 (Information Processing Systems). Draft proposed
international standard for information systems programming language C++. Docu-
ment X3J16/96{0225 WG21/N1043, American National Standards Institute, Decem-
ber 1996.

15

