
A Framework for Log File Analysis

James H. Andrews

Dept. of Computer Science
University of Western Ontario

London, Ontario, Canada N6A 5B7

Abstract. Large software systems typically keep log �les of events for
use in debugging or regression testing. A formal framework is proposed
for analyzing these log �les to verify that the associated system has the
desired behaviour. Taking into account some common properties of log
�les, a log �le analyzer is de�ned as a set of possibly communicating
state machines, which accept a log �le if the �le causes the machines
to move through valid sequences of states. A prototype implementation
consistent with the formal de�nition is described, and examples of its use
are given. Suggestions are made as to how such log �le analysis could be
used in general software testing.

1 Introduction

Large-scale programs or software systems often keep what are called \log �les"
{ continuous reports of events that have occurred during the running of the
program. These log �les are typically used for debugging, fault location in pro-
duction software, regression testing, or administrative information. In the words
of a software quality assurance specialist:

Use of log �les helps testing by making debugging easier. It allows you
to follow the logic of the program, at a high level, without having to run
it in debug mode. [Mor98]

However, analysis of these log �les is often made di�cult by their size and the
complexity of their structure. In this paper, we describe a formal framework to
assist in log �le analysis, including a prototype system, and suggest how use of
automatic log �le analysis could help in the wider problem of software testing.

Typically, a program's use of log �les (we will concentrate on individual
programs for simplicity) has the following characteristics.

{ The log �le is an output �le of ASCII text, distinct from the other outputs
of the program.

{ On startup of the program, the log �le is empty or contains whatever was
left by some previous run. The system continuously appends lines to the log
�le, never deleting or changing any previously-written text.

{ Each line or group of lines in the �le reports on some given event: for instance,
an input or output, the parameters or results of a function call, the setting
of variables, or the current values of variables.

temp 21

temp 20

temp 19

heater on

temp 19

temp 20

temp 21

heater off

temp 21

temp 21

malloc 2096

temp 19

malloc 2088

malloc 1016

heater on

temp 19

temp 21

free 2088

heater off

temp 21

Fig. 1. Left: a simple log �le. Right: a more complex log �le.

{ The information reported on is the information that programmers feel will
be useful in monitoring the system and/or locating faults.

The left-hand side of Figure 1 shows part of a log �le from a hypothetical
program, one of whose tasks is to control a heater in a room (compare [CG94]).
The program gets input every �ve seconds from a digital thermometer, printing
a message of the form temp n every time a room temperature of n degrees
Celsius is reported. The program is supposed to switch on the heater whenever
the temperature drops below 20, and switch it o� as soon as the temperature
rises to 20 or more again; it reports on these events with log �le messages of the
form heater on or heater off.

Though the format of the log �le is simple, it is tedious and sometimes di�cult
to analyze such a log �le for errors by human inspection alone. Note, for example,
that the log �le given does not conform to the informal speci�cation given above;
the heater is not turned o� until at least �ve seconds after the temperature has
returned to 20 or above. It would be useful to have some automated support for
analyzing such log �les and producing reports of whether the log �le conforms
to the speci�cation, or in what way it does not. We can take ad hoc measures
such as writing Perl scripts, but what we really need is a well-de�ned framework
in which all such log �le analysis can be done.

Simple log �les with one \thread" of events can be validated easily by conven-
tional grammars; for instance, a context-free grammar of \valid heater monitor
log �les" can be written. The same cannot be said for more complex log �les.
The right-hand side of Figure 1 is an example. Here, the system not only controls
the temperature in the room, but also does tasks which involve the allocation
and deallocation of memory. The system reports on each call to the C functions
malloc and free, to aid in detecting problems like memory leaks. The result is
two separate \threads" of log �le reports which are arbitrarily interleaved.

It is possible to de�ne a grammar for such log �les, but in general the size
of the grammar is exponential in the number of separate threads. We need log
�le analyzers which are conceived and expressed as a set of grammars, or state

machines, running in parallel on the reports in the log �le. This is what this
paper explores.

1.1 The Organization of This Paper

In Section 2, we give formal de�nitions for the abstract notion of \report trace"
and its correspondence to the concrete notion of log �le. In Section 3, we de�ne a
log �le analyzer as a set of parallel state machines with a well-de�ned semantics,
giving examples. In Section 4, we describe a prototype implementation which
allows us to de�ne, compile and run log �le analyzers on actual log �les. In
Section 5, we suggest how log �le analysis could be applied to the general problem
of software testing. Finally, Section 6 discusses related work and Section 7 gives
conclusions.

2 Report Traces and Log Files

De�nition 2.1 Given a set R of report elements, and a distinguished subset
K � R of keywords, we de�ne a report as a �nite sequence of report elements
beginning with a keyword.

We assume that each report starts with a keyword because this is a common
pattern in log �les, and because it will later help us de�ne a �rst order term
corresponding to a report. We write RR for the set of reports arising from R.

De�nition 2.2 We de�ne a report trace as a �nite or in�nite sequence of
reports1. For a report trace � of �nite length, we de�ne j�j as the length of
the trace; for in�nite �, we de�ne j�j = !.

We must consider in�nite report traces because of the possibility of a process
which is intended to run continuously, such as an operating system. Generally,
we write a (�nite or in�nite) sequence of which the �rst element is e and the
rest is � as e; �.

Report traces are the mathematical notion; log �les are their real-world man-
ifestation. For clarity, we give a simpli�ed de�nition of a log �le corresponding
to a given �nite report trace. An in�nite report trace would have to be split up
across a sequence of log �les.

De�nition 2.3 A portrayal function is an injective function a from report el-
ements to sequences of non-blank, printable ASCII characters, such that for a
keyword k, a(k) is a sequence of alphanumeric characters and underscores be-
ginning with a lower case letter.

We extend a portrayal function a to a function from reports to printable
ASCII strings by de�ning a(e1; : : : ; en) as a(e1) :: b :: : : : :: b :: a(en), where :: is

1 We choose the term \report trace" because the unadorned term \trace" has been
used with a somewhat di�erent meaning in the testing literature [WP94].

the string concatenation operator and b is the ASCII blank. We further extend a

to a function from �nite report traces to ASCII strings by de�ning a(r0; : : : ; rn)
as a(r0) :: m :: : : : :: m :: a(rn) :: m, where m is a sequence of characters
indicating the end of a line (for instance, ASCII code 13 for Unix systems).

For a given report trace t, we call a(t) the log �le corresponding to t.

3 Log File Analyzers

The considerations mentioned in the Introduction suggest a formalism for log
�le analyzers in which object-like state machines are speci�ed, each analyzing
some separate aspect of the report trace. A further advantage to using a state-
based formalism over a grammar-based formalism is that state machines are
understandable to a broad range of software developers without extensive new
training.

In this section, we de�ne log �le analyzers and their semantics along these
lines, and give examples. The de�nitions in this section use standard notation
for describing state machines, e.g. from [Yu97].

3.1 De�nitions

De�nition 3.1 A (log �le) machine for report element set R consists of:

1. An identifying name Name.
2. A countable set Q of machine states.
3. A distinguished initial state i 2 Q.
4. A set F � Q of �nal states.
5. A countable set N � RR of reports which the machine notices.
6. A relation � � Q�N � Q; �(s1; r; s2) is intended to represent the fact that

if the machine is in state s1 and receives report r, it can make a transition
to state s2.

Note that the set of states is not necessarily �nite, and that the transition relation
may give more than one transition for any given report.

A log �le analyzer is de�ned as a countable set of machines. We will refer to
the set of machine states of machine m in a given log �le analyzer as Qm, the �
relation of that machine as �m, and so on. Note that even an analyzer containing
a countably in�nite set of machines is implementable if only a �nite number of
machines are in non-initial states at any one time.

Informally, a log �le analyzer accepts a given report trace if the reports in the
trace cause the machines in the analyzer to move through transitions beginning
from their initial states, and all ending at �nal states (if the report trace is
�nite). The following situations result in a report trace not being accepted:

{ A report in the trace which is not noticed by any of the analyzer's machines.
{ A report r in the trace such that some m notices r, but such that m cannot
make a transition on r.

{ A machine which is not in one of its �nal states after the end of the report
trace.

An implementation of a log �le analyzer should, of course, inform the user of
these situations in its output.

3.2 Formal Semantics

More formally, given a log �le analyzer M (i.e. a set M of log �le machines),
let us call a state function for M a function which maps each m 2 M to a
state in Qm. A state function captures the \current state" of all the machines
in the analyzer at a particular point in the report trace. We use � to stand for
a sequence of state functions.

De�nition 3.2 We say that a sequence of state functions for M is a partial
accepting sequence for a report trace (i.e. a sequence of reports) only under the
following conditions.

{ The sequence of state functions consisting of the single function curr is a
partial accepting sequence for the empty report trace, if curr(m) 2 Fm for
all m 2M .

{ The sequence (curr; curr0; �) of state functions is a partial accepting se-
quence for the sequence (r; �) of reports if:
� r 2 Nm for some m 2M ;
� For all m 2 M , either r 2 Nm and �m(curr(m); r; curr0(m)), or r 62 Nm
and curr0(m) = curr(m); and

� The sequence (curr0; �) is a partial accepting sequence for �.

We say that a non-empty sequence of state functions for M beginning with
curr is an accepting sequence for a report trace if it is a partial accepting sequence
and curr(m) = im for all m 2M .

We say that a report trace � is non-conforming with respect to an analyzerM
if there is no sequence of state functions forM which is an accepting sequence for
�. We claim that a report trace � is non-conforming in the situations described
informally in the last section.

3.3 Examples

The top of Figure 2 shows a log �le machine, heatermonitor, which accepts
correct log �les for the heater monitor speci�cation from the Introduction. (It
correctly does not accept the log �le at the left of Figure 1, because it cannot
make a transition from the should be off state on the log �le.) The usual
conventions for depicting state machines are used; �nal states are indicated by
double circles, the initial state is indicated by a small arrow, and conditions on
transitions appear in square brackets, as in the statecharts formalism [Har87].

should
_be_on

_be_off
should

heatermonitor:

heater off heater on

temp N [N>=20]

temp N [N<20]

temp N [N>=20]

temp N [N<20]

memcheck(N):

off

on

unalloc alloc

malloc N

free N

Fig. 2. Top: a log �le machine for the heater monitor system. Bottom: a log �le
machine for memory leak checking.

The bottom of Figure 2 shows a schema for the countably in�nite set of log
�le machines named memcheck(n), where n is any integer. Each such machine
has only two states, alloc (meaning that the integer is a pointer to a block
of memory which has been allocated) and unalloc (meaning that the corre-
sponding block of memory is currently unallocated). Note that all the states
in heatermonitor are �nal, but only the unalloc state in the memcheck ma-
chines is �nal. This is intended to represent the common requirement that a
program free all allocated memory before terminating. The log �le analyzer
fheatermonitorg[fmemcheck(n)jn � 0g accepts correct log �les for the heater
monitor problem which also show that the system has freed all memory it has
allocated.

We can extend the de�nition of log �le analyzer to include communication
amongst the machines of an analyzer. Space does not permit us to explore this
issue, but the resulting formalism is similar to that of Harel's statecharts [Har87],
where parallel machines communicate via broadcast communication.

4 Implementation of Log File Analyzers

To implement log �le analyzers, we require a system which takes a speci�cation
written in a simple but powerful notation and compiles the speci�ed oracle into
executable code. We have implemented a prototype of such a system, which we
describe here.

<analyzer> ::= {<machine> | <prolog-clause>}*

<machine> ::= machine <term>; <decl>* end.

<decl> ::= initial_state <term>;

| <trans-clause> [, <trans-clause>]*;

| final_state <term>;

<trans-clause> ::= from <term>

| on <term>

| to <term>

| if <prolog-goal>

| where <prolog-goal>

Fig. 3. The syntax of the log �le analyzer speci�cation langauge.

In some ways, the desiderata of simplicity and power are in conict. However,
it seems that the Prolog programming language [O'K90] o�ers the best base on
which to build such a language. It has a simple syntax, we can use Prolog's inher-
ent uni�cation capabilities to match patterns in reports simply and logically, and
we can use Prolog's built-in predicates and write our own predicates to express
the sometimes complex conditions on transitions. Modern Prolog compilers also
allow us to generate e�cient executable code.

The syntax of a prototype language is shown in Figure 3. <term>,
<prolog-goal> and <prolog-clause> represent terms, goals and clauses of
Prolog. The meanings of the constructs are straightforward except for the
<prolog-clause> construct, which can be used to supply auxiliary clauses used
in the de�nitions of machines, states and transitions. where and if clauses (which
mean the same thing, but are more natural in di�erent contexts) can be used to
link de�nitions to general logical relations.

As an example, consider the log �le machines from Figure 2. These are spec-
i�ed in the prototype language in Figure 4. In heatermonitor, note the use of
the Prolog variable N to match the current temperature read from the log �le,
and the use of Prolog goals like N >= 20 to represent transition conditions. In
memcheck, note the parameterization of the machine name with the Prolog vari-
able Ptr, which is then matched to the pointers read from the �le. In general,
we use a straightforward mapping of reports onto Prolog terms (e.g., the term
temp(20) for the report temp 20) to match report patterns.

The prototype implementation consists of two predicates, translate

and analyze. When we place an analyzer de�nition in a �le whose
name is fname.ora (ora standing for \oracle"), and call the Prolog goal
translate(fname), the system produces the �le fname.pl containing Pro-
log clauses which correspond to the de�nition. When we then load the .pl �le
and call the Prolog goal translate(logfile), where logfile is the name of a log
�le, we get a \conformance report" either indicating that the log �le conforms
to the loaded oracle, or describing why it does not.

machine heatermonitor;

initial_state off;

from off, on temp(N), if (N >= 20), to off;

from off, on temp(N), if (N < 20), to should_be_on;

from should_be_on, on heater(on), to on;

from on, on temp(N), if (N < 20), to on;

from on, on temp(N), if (N >= 20), to should_be_off;

from should_be_off, on heater(off), to off;

final_state Any.

machine memcheck(Ptr);

initial_state unalloc;

from unalloc, on malloc(Ptr), to alloc;

from alloc, on free(Ptr), to unalloc;

final_state unalloc.

Fig. 4. The de�nition of the heatermonitor and memcheck log �le machines in
the log �le analyzer language.

5 Log Files and Testing

In testing a piece of software, we have two tasks: the selection of the test cases,
and the writing of the code to evaluate the results (the \test oracle"). Log �le
analyzers cannot help with the �rst task. However, if the informal speci�cation
of the system under test states clearly what logging is to be done, then we can
trust the log �le as a reliable report of what is going on inside that system. An
analyzer can therefore act as a test oracle for the system.

We believe that automated log �le analysis would be especially useful in
situations in which tailored test oracles are unavailable; for instance, in random
testing, or for test cases which have been included to achieve some structural
coverage criterion.

Log �le analysis may also be used as an aid in regression testing. Traditional
regression testing is not always appropriate for systems in which time-sensitive
information is logged, or in which events can happen in di�erent orders on dif-
ferent runs. This volatile information may be able to be extracted from log �les
for automatic analysis, leaving only a smaller, non-volatile subset of information

to be subjected to regression testing.

6 Related Work

A log �le analyzer can be seen as a speci�cation of a test oracle, or of the system
under test itself. Hence it is most appropriate to compare this work with work
on test oracles.

Several researchers [PP84, RAO92, ORD96] have worked on generating test
oracles from formal speci�cations. However, in their work, formal speci�cations
of the complete system under test have to be prepared in complex graphical
or logical notations. Here, an oracle is speci�ed directly using a straightforward
state-machine notation which is directly executable.

Customized test oracle speci�cations have been used in some application
areas, such as protocol testing. Bochmann et al. [vBDZ89] report on one scheme
in which ESTELLE speci�cations are translated into Pascal. This paper can be
seen as a generalization and formal de�nition of such techniques.

Finally, Chechik and Gannon [CG94] consider C programs annotated with
expressions in a symbolic language related to SCR-style speci�cations [Hen80].
Some of the annotations are comparable to the write statements needed to pro-
duce a log �le, and others put conditions on the states of variables; the result
is a general technique for formal program veri�cation. However, their work re-
quires information about source code structure obtained from such tools as gcc,
whereas we are concerned with techniques for analyzing log �les produced by
programs regardless of source language.

7 Conclusions and Future Work

We have given the theoretical foundations of a framework for analyzing debug-
ging and monitoring logs. We have de�ned a log �le analyzer as a set of state
machines, and have described a language for specifying analyzers, and its asso-
ciated implementation.

Further work includes improvements to the implementation, linking the im-
plementation with test case generation, and a study of the application of log
�le analysis to larger systems, such as protocol conformance testing and GUI
testing. We eventually hope to catalogue the nature of the situations in which
log �le analysis is applicable, and develop a methodology for its use.

8 Acknowledgments

Thank you to Martin Stanmore, Phil Maker, Je� Joyce of Hughes Aircraft, Jack
Morrison of Sun BOS Product Assurance, and Janette Wong of IBM Toronto
for informal discussion of the use of log �les in their respective organizations and
projects.

The ideas reported on in this paper were formulated while the author was
working on the FormalWare project at the University of British Columbia,
Hughes Aircraft of Canada Limited Systems Division (HCSD), and MacDon-
ald Dettwiler (MDA). Thanks especially to Richard Yates of MDA for our many
discussions concerning these ideas. Thanks also to Mike Donat, Phil Gray, Dan
Ho�man, Je� Joyce, Hanan Lut�yya, Phil Maker, and Gail Murphy for helpful
comments and suggestions.

The FormalWare project is �nancially supported by the BC Advanced Sys-
tems Institute (BCASI), HCSD, and MDA. The author is currently supported
by a grant from NSERC and by his startup grant from the Faculty of Science,
University of Western Ontario.

References

[CG94] Marsha Chechik and John Gannon. Automatic veri�cation of requirements
implementation. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), 1994.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231{274, 1987.

[Hen80] K. Heninger. Specifying software requirements for complex systems: New
techniques and their applications. IEEE Transactions on Software Engi-
neering, SE-6(1):2{12, January 1980.

[Mor98] Jack Morrison. Personal communication. February 1998.
[O'K90] Richard A. O'Keefe. The Craft of Prolog. MIT Press, Cambridge, Mass.,

1990.
[ORD96] T. Owen O'Malley, Debra J. Richardson, and Laura K. Dillon. E�cient

speci�cation-based oracles for critical systems. In Proceedings of the Cal-
ifornia Software Symposium, 1996.

[PP84] Dennis K. Peters and David L. Parnas. Using test oracles generated from
program documentation. In Proceedings of the International Symposium on
Software Testing and Analysis, 1984.

[RAO92] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O'Malley.
Speci�cation-based test oracles for reactive systems. In Proceedings of the
14th International Conference on Software Engineering, Melbourne, Aus-
tralia, May 1992.

[vBDZ89] Gregor von Bochmann, Rachida Dssouli, and J. R. Zhao. Trace analysis
for conformance and arbitration testing. IEEE Transactions on Software
Engineering, 15(11), November 1989.

[WP94] Yabo Wang and David Lorge Parnas. Simulating the behavior of software
modules by trace rewriting. IEEE Transactions on Software Engineering,
20(10), October 1994.

[Yu97] Sheng Yu. Regular languages. In Handbook of Formal Languages, Berlin,
1997. Springer.

This article was processed using the LaTEX macro package with LLNCS style

