
Generating Safety Verification Conditions Through Fault Tree Analysis and Rigorous Reasoning

Jeffrey Joyce; Raytheon Systems Canada Ltd.; Richmond, BC, Canada

Ken Wong; Department of Computer Science, University of British Columbia; Vancouver, BC, Canada

Keywords: safety requirements, system safety engineering.

Abstract

An approach based on informal, rigorous
reasoning is described as a means of discovering
“safety verification conditions” (SVCs). The
approach can be carried out at various levels of
detail. When the approach is carried out at the
level of a “black box” view of the system, the
result is a set of system safety requirements. The
approach has similarities with Fault Tree
Analysis (FTA) and Software Fault Tree
Analysis (SFTA). Like FTA, a given hazard is
traced backwards through the system to cover all
the ways in which a hazardous condition can
occur. Like SFTA, a “proof-by-contradiction”
style reasoning is employed. The approach is
illustrated by a detailed (hypothetical) chemical
factory information system which is similar to
other safety-related real-time information
systems.

Introduction

This paper describes the use of semi-formal
mathematical techniques for the stepwise
refinement of hazard definitions into “safety
verification conditions” (SVCs). Carrying out the
derivation process down to the level of a "black
box" view of the system results in SVCs which
can be regarded as system safety requirements.
The development of safety requirements is
mandated in most system safety standards, such
as MIL-STD-882C (ref. 1) and IEC 1508 (ref. 2).

The semi-formal approach described in this
paper is intended to improve upon the accuracy
and thoroughness of an ad hoc approach that
relies entirely on engineering judgment. Our
approach is particularly useful for deriving SVCs
for a real-time system. Time-dependent hazards
will typically involve subtle relationships
between various temporal constraints. An
important aspect of our approach is the
systematic derivation of key temporal constraints
and relationships from hazard definitions. This

improves upon an ad hoc approach where these
temporal relationships may be especially elusive.

Our approach is similar to Fault Tree Analysis
(FTA) (ref. 3), as well as to Software Fault Tree
Analysis (SFTA) (ref. 4). Our approach is similar
to FTA in the sense that it begins with an
assumption that the hazardous condition has
occurred. From this point, the analyst uses FTA
to work "backwards" to systematically cover all
the possible ways in which this condition might
have arisen. Like Software Fault Tree Analysis
(SFTA), our approach uses a style of reasoning
known as “proof-by-contradiction” to show that
each disjunctive branch of the tree leads to a
logical contradiction. However, the purpose of
our approach, unlike FTA or SFTA, is to derive
SVCs for the system and system components.

The approach described in this paper is one of
the results of a university-industrial collaborative
project called “formalWARE” (ref. 7). The
approach is illustrated in this paper by means of a
hypothetical chemical factory information
system. This example has similarities with other
safety-critical information systems such as Air
Traffic Management (ATM) systems (ref. 5). In
the development of the chemical factory
example, the use of rigorous, mathematical
reasoning led to the discovery of several system-
level SVCs, including some conditions that we
believe are not obvious.

The approach outlined in this paper provides a
systematic approach to the discovery of system-
level SVCs. The following section introduces the
example used in this paper to illustrate our
approach. Next, the inadequacies of an ad hoc
approach to the derivation of SVCs is presented.
This is followed by a sketch of the stepwise
process used to generate SVCs for a particular
hazard identified for this system. A discussion of
some related work is presented, followed by a
summary of the paper.

Example - Chemical Factory Information System

For illustrative purposes, this paper focuses on a
hypothetical information system for a chemical
factory. The chemical factory information system
is similar to other real-time information systems,
like ATM systems, in that environmental data is
received, processed and displayed to operators.
The operators then make safety-critical decisions
based on the information displayed by the
system.

System Description: The factory consists of a set
of reactor vessels equipped with sensors that
record data such as temperature and pressure.
The sensors are connected through a LAN to the
chemical factory information system, which runs
on a central server and a set of workstations. The
information system maintains and processes the
vessel information it receives over the LAN and
displays it on the workstation monitors.

Safety-Related Hazard: Following a process such
as the system safety engineering process outlined
in Reference 6, we assume that the display of an
"invalid" value for the temperature of a vessel is
identified as a system hazard for the chemical
factory control and monitoring system.

It may be assumed that the identification of this
hazard resulted from some earlier analysis, which
shows that the display of an invalid value for the
temperature of a vessel, in combination with
other conditions, could lead to a mishap such as a
fire or explosion.

Hazard Analysis: Based on analysis of the
hazard, it may be assumed that the simple failure
to display a valid vessel temperature will not
cause the hazard. When the system is unable to
display a valid temperature for a particular
vessel, the system is required to mark the
temperature field for this vessel as "unavailable".
Even though the appearance of "unavailable" on
the operator display in the temperature field for
some particular vessel may be a result of a
system fault, it has been determined (for this
hypothetical example) that its appearance is not
unsafe. This determination may, for instance, be
partially based on the assumption that the human
operator should not be misled by the

"unavailable" indication in the same way that he
or she may be misled by an invalid value. Hence,
the term "invalid" is used in the definition of this
particular hazard to refer to a temperature that
could be mistaken as a valid temperature of the
vessel. In particular, the appearance of
"unavailable" on the operator display in the
temperature field for some particular vessel is
excluded from the definition of this hazard.

Further analysis of the hazard provides a more
precise definition of the sense in which a
displayed temperature value may be "invalid":

where MAX_DISP_TEMP_DIFF and
MAX_DISP_TEMP_STALE are “requirements-
level” system constants defined as follows:

• MAX_DISP_TEMP_DIFF is the tolerance
allowed for displayed temperatures, i.e., the
maximum difference allowed between the
actual temperature of the vessel and the
value displayed to the operator;

• MAX_DISP_TEMP_STALE is the
maximum amount of time that a value may
be displayed before it is considered "stale".

Hence, a displayed value may be invalid because
it has been corrupted or because it has become
stale.

System-Level SVCs

An important step in any safety engineering
process is the derivation of safety requirements
from analysis of system hazards. For example,
the international safety standard IEC 1508 (ref.
2) defines the development of a system safety
requirements specification designed to mitigate
the identified system hazards. The system-level
SVCs discussed in this paper correspond to
system safety requirements.

The system-level SVCs are derived by treating
the system as a “black box”. This involves

Hazard:
An invalid temperature, D, is displayed for
vessel V at time T.

The value displayed at time t as the
temperature of a particular vessel is "invalid"
if and only if the value displayed at time t for
the vessel has not been within
MAX_DISP_TEMP_DIFF degrees of the
actual temperature of the vessel at some time
t' within MAX_DISP_TEMP_STALE milli-
seconds before time t.

defining the system boundaries and the relevant
system inputs and outputs. For example, the
chemical factory hazard is ultimately tied to the
vessel’s actual temperature, which is reported by
the external monitoring system. Both the
monitoring system and the vessels are external to
the chemical factory information system. The
chemical factory information system receives
reports from the vessel monitoring system as
inputs and displays vessel temperature values as
outputs. The system-level SVCs will be
expressed in terms of these system inputs and
outputs.

The derivation of the appropriate SVCs will be
based upon results of the system hazard analysis.
In the case of the chemical factory, the hazard
analysis revealed that the system hazard may be
the result of a corrupt or stale temperature value.
SVCs are derived to mitigate these hazard
causes.

In general, the system-level SVCs will include:

• functional correctness conditions;

• system and environmental assumptions

required to carry out safety verification;

• constraints on variable system parameters or
constants - typically expressed as
mathematical inequalities, e.g., "X must be
refreshed at a greater rate than Y".

The SVCs are typically constructed in an ad hoc
fashion. Some of the limitations of an ad hoc
approach to deriving SVCs are presented in the
following sections.

Functional Correctness: The most obvious SVCs
are “correctness” conditions necessary to
mitigate the hazard. For the chemical factory, a
SVC would be introduced to ensure that a
displayed temperature value had been delivered
in a timely and correct fashion. Another SVC
would be introduced to ensure that stale
temperature values are displayed as
“unavailable”. These type of SVCs are often
captured in an ad hoc approach.

Assumptions: The introduction of SVCs will
typically include assumptions about the system
and the environment. For example,
environmental conditions might be assumed such

as the timely and correct delivery of the
temperature value from the external vessel
sensors to the system. Assumptions might be
made about the ways in which the temperature
display may be updated. These assumptions are
often implicit in an ad hoc introduction of SVCs.

It is important that the underlying implicit
assumptions are made explicit, especially if they
are necessary for the mitigation of the hazard.
The hazard-related assumptions should be
included as additional SVCs.

Temporal Constraints and Relations: For a real-
time system, some hazards will depend on the
temporal ordering of events. For the chemical
factory hazard, the display of invalid temperature
values will depend on events such as the sensor’s
acquisition of data values, and the reception and
display of temperature values by the information
system. The processing of incoming temperature
values will be concurrent with the monitoring of
current temperature values for staleness.

Time-dependent hazards will lead to SVCs which
place real-time constraints on the system. These
SVCs will involve system constants that place
limits on the system operations such as the
minimum system propagation time for a
temperature data value. Moreover, there will be
dependencies between the temporal system
constants. The system determination of a stale
temperature value will be related to the
maximum system propagation time for the
temperature value. The relationships between the
temporal constraints can be fairly subtle and not
easily determined in an ad hoc approach. We
suspect that the ability to systematically derive
key temporal constraints and relations from
hazard definitions may distinguish our approach
most clearly from other existing methods.

Mathematical-Style Reasoning

Our approach uses a style of mathematical
reasoning called “proof-by-contradiction”. To
prove an assertion “X”, this style of reasoning
begins with the introduction of a conjecture that
X is not true, i.e., “not X”. The argument
proceeds by showing that “not X” inevitably
leads to a contradiction. If this can be
demonstrated, then we may conclude that “not
X” is false – that is, X is true.

The task of showing that “not X” inevitably leads
to a contradiction typically includes steps where
the argument is “split” into multiple branches.
Each branch of a split in the argument represents
one of the cases in a case analysis. When the
structure of the argument is viewed graphically,
the splitting of some steps of the argument by
case analysis has the effect of giving the
graphical representation a “tree-like” appearance.

In the course of developing a proof by
contradiction, we may introduce assumptions.
The validity of the assertion proved in this
manner with the aid of these assumptions will
depend on the validity of the assumptions.

The next section of this paper describes how this
mathematical style of reasoning may be adapted
to serve as a means of generating SVCs.

Generating System-Level SVCs

A sketch of the analysis is provided for the
chemical factory information system as a means
of illustrating the process by which the SVCs are
introduced.

Hazard analysis of the chemical factory
information system reveals the existence of three
time constants which have a direct relevance to
the hazard:

• S1 - the maximum time required for a
temperature value to be propagated through
the chemical factory information system;

• S2 - the maximum time required for a
temperature value to be propagated from the
temperature sensors to the chemical factory
information system via the external
monitoring system;

• S3 - the maximum amount of time that the

system will display the value in the absence
of an external update before the system will
set the displayed temperature to
“unavailable”.

S1 and S3 are software-level constants which
denote upper bounds on the performance of the
software system. S2 is an upper bound on the
performance of an external system.

The discovery of SVCs begins with the
conjecture that the identified system hazard has
occurred at some particular instant of time. There
are two main parts to the subsequent analysis.
The first part of the analysis establishes a
backward chain of causal relationships. These
steps will include the introduction of three SVCs
which will eliminate the display of a corrupt
temperature value as a possible cause of the
hazard. The second part of the analysis involves
the introduction of additional constraints on the
functionality of the system (i.e., more SVCs) that
eliminates the possibility of a stale temperature
value as the hazard cause.

IC: invalid
temperature D
is displayed at

time T

LC-1: display was set
to temperature D

at time T1

LC-2: most recent
update was received

at time T2

See Figure 2

Level 4

Level 3

Level 2

Level 1

SVC-1

SVC-2

LC-3: actual
temperature was

sampled at time T3

SVC-3 Step 3

 Step 2

 Step 1

Figure 1: Graphical representation of the first
three steps of the analysis.

Figure 1 provides a graphical representation of
the structure of the first part of our analysis. The
box at the top of Figure 1 represents the initial
conjecture. The remaining boxes represent
logical consequences (LC) of this initial
conjecture. The ovals represent SVCs which are
introduced as assumptions at various steps in the
analysis. These assumptions are used along with
the IC or LC of the “current” level to generate a
LC for the next level of the analysis. Each level
of the analysis is linked to the next lower level by
an arrow. The arrow may be read as “implies”.
For example, the initial conjecture (IC), in
combination with SVC-1, implies LC-1.

Initial Conjecture: The analysis begins with a
conjecture that an instance of the hazard has
occurred:

Based on the results of the hazard analysis
presented earlier, the “initial conjecture” (IC) can
be re-written in a more precise form as:

Corrupt Temperature Value: As shown in Figure
1, the first three steps of the analysis each
involve tracing backward from an event to its
cause. In this respect, our approach is very much
like the FTA process of tracing “backwards”
from a hazard to its causes. Step 1 traces the
occurrence of the hazard at time T (represented
by the IC in the first level of analysis) backwards
to an event at time T1 (represented by LC-1 in
the second level of the analysis). Step 2 traces
this event at time T1 to an earlier event at time
T2. In turn, Step 3 traces this event at time T2 to
an earlier event at time T3.

For this example, we have adopted the
convention that upper case letters are used to
denote specific instances (e.g., V, D, T, T1, T2,
T3, T4). Lower case variables (e.g., v, d, t, t’,
t’’) are used within the statement of a SVC for
variables that are “universally quantified” by a
“for all” operator.

In general, only some of the steps in the analysis
will involve a relationship between an event and
its cause. Some steps may be purely a matter of
logical reasoning. The analysis will typically
make use of logical laws (i.e., tautologies) as
well as arithmetic laws. Although these laws may
be cited in the written record of the analysis, they
are not shown in the graphical representation.

Step 1: We suppose that the display part of the
chemical factory information system is
implemented by Commercial-Off-The-Shelf
(COTS) hardware and software. For this

illustrative example, we narrow the scope of our
analysis to the application-specific, custom
software which drives the COTS-based display
subsystem. To this end, we introduce a high level
assumption about the display subsystem which
allows us to trace the cause of the hazard directly
back to the application-specific, custom software.

Given this SVC, we can derive the LC-1 as a
logical consequence of the initial conjecture.

Step 2: The displayed temperature value is the
result of a system output which can be traced
back to a system input. A second SVC is
introduced to ensure that the displayed vessel
temperature is the result of a temperature update
from the external sensor monitoring system.
Furthermore, the SVC ensures that the
temperature update has been delivered correctly
and within the time constraint, S1:

Given SVC-2, we can derive the following as a
logical consequence of LC-1:

An invalid temperature, D, is displayed for
vessel V at time T.

IC: invalid temperature D is displayed at
time T.
The temperature, D, displayed for vessel V at
time T has not been within MAX_DISP_TEMP
_DIFF degrees of the actual temperature of
the vessel at any time within MAX_DISP
_TEMP_STALE milliseconds before time T.

SVC-1.
For all temperatures, d, times, t, and vessels,
v, if d is displayed at time t as the
temperature of vessel v, then there is some
time t’, t’ <= t, when the temperature of vessel
v was set to d and this was the most recent
change made to the displayed temperature
for vessel v.

LC-1: display was set to temperature D at
time T1.
At time T1, T1 <= T, the temperature of
vessel V was set to D and this was the most
recent change made to the displayed
temperature for vessel V.

SVC-2.
For all vessels, v, displayed temperatures, d,
and times, t, if the displayed temperature of
vessel v is set to d at time t then at some time
no earlier than S1 milliseconds before t the
system received a report from the external
sensor monitoring system that the
temperature of vessel v is d.

LC-2a.
At some time T2, T2 < T1 and T1-T2 <= S1,
the system received a report from the
external sensor monitoring system that the
temperature of vessel v is D.

Without loss of generality, this logical
consequence may be refined into:

Step 3: The temperature update received by the
system can be traced back to the vessel sensors.
A third SVC is then introduced to ensure that the
temperature update is correct, within a given
tolerance, and has been delivered to the system
within the time constraint, S2:

This SVC is used to derive the following logical
consequence from LC-2:

So far in our analysis, we have constructed a
backward chain of events using symbolic names,
T, T1, T2 and T3, to represent the times of these
events. The order of these times is represented by
the timeline in Figure 2.

T2 TT1T3

actual
temper-
ature was
sampled

most
recent
update
was
received

display
was set to
temper-
ature D

invalid
temper-
ature D
is dis-
played

time

most
recent
update
was
received

 <= S2

most
recent
update
was
received

 <= S1

Figure 2: Timeline of Events

By the introduction of SVCs 1-3, the display of a
corrupt temperature value has been eliminated as
a possible hazard cause. The rest of the analysis
involves the introduction of additional SVCs to
remove the possibility of a stale temperature
value as the cause of the hazard.

Stale Temperature Value: At this point, the
analysis could be brought swiftly to a conclusion
by the introduction of a SVC which asserts that
the system will always change the displayed
temperature to “unavailable” before the
displayed value becomes stale. However, we
contend that the phrase “before the displayed
value becomes stale” is unacceptably vague. In
particular, common sense suggests that the
SVC(s) required to conclude this analysis should
involve one or more explicit references to the
value of S3.

LC-4: T3 must be more
than MAX_DISP_
TEMP_STALE ms

before time T

LC-5: more than S3 ms
have passed since the

update at time T2

Contradiction

Level 7

Level 6

Level 5

SVC-4

LC-6: the temperature
displayed at time T is

not D

SVC-5 Step 6

 Step 5

 Step 4

Figure 3: Graphical representation of the second
part of the analysis.

As defined earlier in this paper, S3 is a constant
of the software system for the maximum amount
of time that a value may be displayed before it is
considered stale. We can imagine that S3 is used
in the software implementation of the system to
set a timer when an update is received. If the
timer is not reset by a subsequent update, then
eventually the software will initiate an action to
cause the displayed temperature to be changed to
“unavailable”.

Hence, the value of S3 is a key consideration in
the mitigation of this hazard. It is easy to

LC-2: most recent update received at time
T2.
T2 is the most recent time before T1 when
the system received a report from the
external sensor monitoring system that the
temperature of vessel V is D.

SVC-3.
For all vessels, v, displayed temperatures, d,
and times, t, if the system receives a report at
time t from the external sensor monitoring
system that the temperature of vessel v is d,
then at some time no earlier than S2
milliseconds before t the actual temperature
of vessel v was within MAX_DISP_TEMP
_DIFF degrees of d.

LC-3: actual temperature was sampled at
time T3.
At some time, T3, T3 < T2 and T2-T3 <= S2,
the actual temperature of vessel V was within
MAX_DISP_TEMP_DIFF degrees of D.

construct scenarios where “too small” or “too
large” a value for S3 may cause an occurrence of
the hazard. Common sense leads us to expect that
S3 is related to the “requirements-level” system
constant MAX_DISP_TEMP_STALE, but the
precise relationship between the two values may
not be so obvious.

Thus, the remainder of our analysis focuses on
the problem of generating additional SVCs which
constrain the value of S3, as well as the
behaviour of the system with respect to S3. See
Figure 3 for a graphical representation of the
second part of the analysis.

Step 4: In the first part of the analysis, we have
narrowed the cause of the hazard occurrence to
the situation where a displayed temperature has
become stale. This can be seen more clearly if
LC-1 and LC-2 are used to derive the inequality
T2 < T, and this inequality is, in turn, used to
derive the following logical consequence from
LC-3:

We know from the initial conjecture, IC, that the
actual temperature of vessel V was not within
MAX_DISP_TEMP_DIFF degrees of D at any
time within MAX_DISP_TEMP_STALE milli-
seconds prior to T. So, in light of LC-4a, T3
must be more than MAX_DISP_TEMP_STALE
milliseconds prior to T. This reasoning yields
LC-4:

Step 5: A new SVC is introduced to constrain the
value of S3. MAX_DISP_TEMP_STALE is the
maximum amount of time that a value may be
displayed before the value is considered to be
stale. Similarly, S3 is the maximum amount of
time the system may display a temperature value
before the value is considered to be stale, but as
measured from the time the value is first received
by the system. The value of S3 must be less than
MAX_DISP_TEMP_STALE to take into

account the time required for the temperature
value to reach the system from the external
monitoring system. Since S2 is the maximum
time allowed for a temperature value to reach the
chemical factory information system, the
following SVC is proposed:

This SVC is used to derive (by transitivity of
“>”) the following logical consequence from LC-
4:

From LC-3, we know that T2 - T3 <= S2. This
relation is used, along with various rules of
arithmetic, to derive the following logical
consequence from LC-5a:

Step 6: We can informally assume at this point
that the receipt of an update at time T2 initiates a
process that will cause the displayed temperature
to be changed to “unavailable” if a subsequent
update is not received before the displayed
temperature becomes stale. If a subsequent
update is received in time, the display is updated
to the new value. This leads to the fifth SVC:

Considerable care went into the formulation of
SVC-5 to ensure that it is both sufficiently
general (i.e., constraints on the actual
implementation are minimal) and practically
feasible (i.e., there is likely to be a practical
implementation of this SVC). This new SVC is
used to derive the following logical consequence
of LC-5:

LC-4a.
At some time, T3, T3 < T, the actual
temperature of vessel V was within
MAX_DISP_TEMP_DIFF degrees of D.

LC-4: T3 must be more than MAX_
DISP_TEMP_STALE ms before T.
At some time, T3, T - T3 > MAX_DISP_TEMP
_STALE, the actual temperature of vessel V
was within MAX_DISP_TEMP_DIFF degrees
of D.

SVC-4.
MAX_DISP _TEMP_STALE > S2 + S3

LC-5a.
T - T3 > S2 + S3

LC-5: more than S3 ms has passed since
the update at time T2.
T - T2 > S3

SVC-5.
For all vessels, v, and times, t and t', if time t
is the most recent time that an update for
vessel v at temperature d was received prior
to time t', and t'-t > S3, then at some time, t'',
such that t+S1 < t'' <t', the temperature value
displayed for vessel v shall have been set to
"unavailable" or shall exhibit some value
other than d.

We know from LC-2a that T1-T2 <= S1 and,
from LC-6a that T2+S1 < T4. Using rules of
arithmetic reasoning for inequalities, we can use
the inequality T1-T2 <= S1 as justification for
replacing S1 by T1-T2 in T2+S1 < T4 to obtain
T2+(T1-T2) < T4. In its simplified form, T1 <
T4, this result clearly shows that T4 must be
some time after T1. Therefore, we can derive the
following logical consequence of LC-6a:

LC-6 contradicts LC-1, which states that the most
recent change to the displayed temperature value
occurred when it was set to D at time T1.

QED

Discussion: The result of the above analysis is
the discovery of five distinct safety verification
conditions. Although some of these SVCs might
have been anticipated, we believe that it would
be difficult to determine the precise details of
these conditions without carrying out an analysis
such as the one described above.

For example, SVC-5 states that the system shall
update the temperature display for vessel V as
“unavailable” within S3 milliseconds of the most
recent update for vessel V. SVC-5 also states that
the update should occur only after S1
milliseconds had elapsed since the most recent
update. The choice of S1 as the lower bound is
necessary if SVC-5 is to be used to derive the
contradiction, LC-6, from LC-5. If a value
smaller than S1 is chosen, LC-6 would then
allow the temperature of vessel V to be set to
“unavailable”, or to some other value other than
D, at some time before time T1. As a result, there
would be no contradiction. We suggest that the
necessity of a lower bound is not particularly
obvious – and its specification may easily have
been overlooked if an ad hoc process had been
used to generate the SVCs for this example.

Our approach is not a purely “mechanical”
method for the generation of SVCs. Some
inspiration is required to formulate each of the
SVCs. But it is generally better to depend upon a
systematic process which requires many “small”
inspirations than an ad hoc approach which
depends on a few “big” inspirations.

We have found that the use of inequalities
involving variables that represent instants of time
(e.g., t, t’ and t’’) is satisfactory as a means of
specifying temporal relationships. An alternative,
which we have not yet investigated in this
context, is the use of temporal logic notation.

Though we have found that an informal, but
rigorous, style of reasoning to be sufficient for
the derivation of the SVCs, it may be worthwhile
validating the analysis by means of a formal
verification technique. For example, an earlier
version of the analysis presented in this paper
contained errors that invalidated the final
rigorous argument. These errors included a
version of SVC-5 that contained a “loophole”
that would have allowed a stale temperature
value to be displayed if the system received but
failed to propagate a temperature value. These
errors were sufficiently subtle to escape detection
by three external reviewers of the earlier version
of this paper.

Most of the reasoning required by this example
was a matter of arithmetic reasoning about
inequalities. The reader may try his or her hand
at the derivation of LC-5 from LC-5a and the
inequality T2-T3 <= S2 to get a sense that this
kind of reasoning, though error-prone, is nothing
more than “high school level mathematics”. A bit
of predicate logic reasoning was implicitly used
in several steps, such as the refinement of LC-2a
into LC-2. To ensure greater confidence in the
analysis and the resulting SVCs, it may be useful
to perform the analysis with the aid of a formal
verification tool.

Generality

The two key elements of our approach are: (1)
“proof-by-contradiction” style reasoning and (2)
the introduction of SVCs during the reasoning
process to “steer” the proof-by-contradiction
towards the closure of each branch of the proof.
Our style of representing the derivation of SVCs
graphically, as demonstrated in Figures 1 and 3,

LC-6a.
At some time T4, T2+S1 < T4 < T, the
temperature value displayed for vessel v shall
have been set to “unavailable” or shall exhibit
some value other than D.

LC-6: the temperature displayed at time T
is not D.
At some time T4, T1 < T4 < T, the
temperature value displayed for vessel v shall
have been set to “unavailable” or to some
value other than D.

may also be applied generally to other
applications of our method.

Related Work

The refinement of a hazard definition into a set
of SVCs is similar in some respects to FTA. FTA
is often used during hazard analysis to uncover
and organize hazard causes. FTA begins with the
identified hazard and then works backward to
uncover all possible causes. The intermediate
events that cause the hazard are combined using
logical operations such as “AND” and “OR”.
The nodes of the fault tree can be used as the
basis for the SVCs. For example, software safety
requirements were derived from an FTA of a
Magnetic Stereotaxis System (ref. 8).

However, FTA is limited to a form of
propositional reasoning where each branch in the
tree corresponds to a disjunction or a
conjunction. Our approach involves “proof-by-
contradiction” style of reasoning that makes
informal use of quantification and rules of
reasoning based on predicate logic.

SFTA also makes use of “proof-by-
contradiction” style reasoning. SFTA is
essentially FTA performed at the source code
level. SFTA begins by assuming a hazardous
output from a given line of source code. The
hazard causes are then traced backwards through
the code with the help of language templates.
The templates are based on the semantics of the
programming language and determine the various
ways a code statement can contribute to the
hazard or to an intermediate event. The analysis
continues until a contradiction is reached.

Unlike SFTA, our approach is not tied
specifically to templates based on the syntax and
semantics of a programming language. Whereas
SFTA is intended to be used as means of
verifying the source code with respect to a
defined hazard, our approach is meant to support
the derivation of system SVCs.

Summary

The approach illustrated by the example in this
paper provides an alternative to an ad hoc
approach to the discovery of SVCs. The result of
our earlier efforts to write SVCs described earlier
in Section 2 lacked the precision of the five
conditions that we later discovered as a result of

performing the analysis sketched in Section 3. In
addition to the principle objective, namely, the
discovery of SVCs, our approach yields a
rigorous argument that may be used to increase
confidence in the safety of the system. Of course,
the validity of this argument depends on showing
that the implementation of the system satisfies
the SVCs.

Acknowledgments

The work described in this paper is a result of a
collaborative industry/university research project
sponsored by the BC Advanced Systems
Institute, Raytheon Systems Canada Ltd., and
MacDonald Detwiller. The authors are grateful to
Cerina Koster and Jerry Grummer of Raytheon
Systems Canada Ltd. for their comments on a
draft version of this paper.

References

1. Department of Defense, “Military Standard
882C: System Safety Program Requirements”,
1993.

2. International Electrotechnical Commission.
“Draft International Standard IEC 1508:
Functional Safety: Safety Related Systems”.
Geneva, 1995.

3. W. E. Vesley, F. F. Goldberg, N. H.
Roberts, and D. F. Haasl. “Fault Tree
Handbook”. NUREG-0942, U.S. Nuclear
Regulatory Commission, 1981.

4. Nancy G. Leveson, Steven S. Cha, and
Timothy J. Shimall. “Safety Verification of Ada
Programs using software fault trees”. IEEE
Software, vol. 8, no. 7, pp. 48-59, July 1991.

5. Bruce Elliott and Jim Ronback. “A System
Engineering Process For Software-Intensive
Real-Time Information Systems”. Proceedings of
the 14th International System Safety Conference,
Albuquerque, New Mexico, August 1996.

6. Nancy G. Leveson. “Safeware: System
Safety and Computers”. Addison-Wesley, 1995.

7. http://www.cs.ubc.ca/formalWARE/

8. John C. Knight and Darrell M. Kienzle.
“Preliminary Experience using Z to Specify a
Safety-Critical System”. Department of
Computer Science, University of Virginia,
Technical Report.

9. Ken Wong. M.Sc. Thesis. Department of
Computer Science, University of British
Columbia, 1998.

Biographies

Jeffrey Joyce, Raytheon Systems Canada Ltd.,
13951 Bridgeport Road, Richmond, BC, V6V
1J6, telephone - (604) 279-5721, fax - (604) 279-
5982, email - jjoyce@west.raytheon..com

Dr. Joyce is a Research Scientist at Raytheon
Systems Canada Ltd. as well as an Adjunct
Professor at The University of British Columbia.

Ken Wong, Department of Computer Science,
University of British Columbia, Vancouver, BC,
Canada, V6T 1Z4, telephone - (604) 822-4912,
fax - (604) 822-5485, email - kwong@cs.ubc.ca

Ken Wong is currently completing his master’s
thesis at the University of British Columbia in
the Department of Computer Science. His
research interests include software safety and
software architectures.

