
Abstract. This paper presents the advantages of using a
Stimulus Response Requirement Specification (SRRS)
technique to reduce costs, development time, and errors
in the generation of system level test cases in compari-
son to using a Structured Analysis (SA) technique. A
SRRS technique describes requirements in terms of
externally visible inputs (stimuli), processing, and exter-
nally visible outputs (responses). The SRRS techniques
may be viewed as a general category of requirements
specification techniques that are based on concepts orig-
inating in system test methods. Currently used, popular
SRRS techniques include Use Cases and Scenario
driven techniques. This paper first reviews a basic pro-
cess for developing system test cases. An example from
a library system is used to illustrate the first step of this
process with a conventional SA requirements specifica-
tion and a SRRS. The use of a SRRS technique to docu-
ment the requirements specification simplifies the test
case generation process by eliminating the first step in
the three step process.

INTRODUCTION

Requirement specification techniques may be cate-
gorized based on how the requirements are partitioned.
The taxonomy used in this work is based on two broad
partitioning categories: the internal, or construction
view, and the external, or stimulus response view, of the
requirements. The internal view of partitioning the
requirements is used in Structured Analysis (SA) tech-
niques whereas the external view is used in Stimulus
Response Requirement Specification (SRRS) tech-
niques such as Use Cases and Scenarios.

SA techniques have been in use in industry for over
twenty years (Ross 1977, Demarco 1978, Hatley 1988)
and are now considered to be a well established, or con-
ventional, technique for specifying requirements. The
SA techniques use an internal, or construction view, of
the system based on functional decomposition to “divide
and conquer” the complexity of the system. However,
this approach to decomposing the system suffers from a

number of problems:

• There is a lack of user’s perspective and guidance
during project development (Hsia 1988). The sys-
tem is developed from a system generation perspec-
tive, not a system acceptance perspective. Users
find it difficult to identify the parts of the decompo-
sition that map to their specific requirements.

• There is a lack of progress visibility (Hsia 1988).
Users are left out of the software development pro-
cess until the product is integrated and demon-
strated to them. Documentation and code are the
typical products which reflect the progress of the
project.

• There are maintenance problems (Hsia 1988). Min-
imality, the goal of documenting one requirement in
one place, usually reduces the understandability of
the model because it increases the interactions
among the components. This increased coupling
makes maintaining the requirements specification
model more difficult, as changes to the model are
not localized.

• The functional decomposition may imply a design
(Alford 1977). The functional decomposition may
be viewed as a specific design, with subroutines to
implement subfunctions. If an object oriented
design is proposed, the mapping of the require-
ments to the design may be very time consuming.

• There are difficulties testing the requirements
(Alford 1977). A fundamental difficulty with the
functional decomposition is that the processing for
one stimulus might be described by a number of the
subfunctions in the model. In addition, the input to
exercise a specific subfunction may be difficult to
construct. Since most requirements are stated at the
subfunction levels, it is difficult to test such a speci-
fication.

Advantages of Stimulus Response Requirement
Specification Techniques for System Testing

Mabo Ito
The University of British Columbia

Department of Electrical and Computer Engineering
2356 Main Mall Vancouver, B.C. V6T 1Z4

mito@ee.ubc.ca

Kendra Cooper
The University of British Columbia

Department of Electrical and Computer Engineering
2356 Main Mall Vancouver, B.C. V6T 1Z4

kendrac@ee.ubc.ca

Although SRRS techniques and tool support have
also been available for over twenty years (Davis 1977,
Deutsch 1988), they have been overshadowed by the SA
techniques. This is changing as Use Case and Scenario
driven techniques (Jacobson 1992, Regnell 1996), vari-
eties of the SRRS category, are being incorporated into
software development methodologies. SRRS techniques
are seen as a means of overcoming the shortcomings of
the SA techniques. The SRRS techniques focus on
structuring the requirements from an external, or user’s,
view of the system. This partitioning has a number of
advantages:

• The requirements specification is driven by the
user’s perspective. The mapping from their needs to
the requirements specification document is straight-
forward. This makes the document well suited for
use as a contract and communication tool between
the customer and the developers.

• The requirements may be clustered for an incre-
mental, or iterative, development lifecycle, allowing
subsets of the system to be implemented and dem-
onstrated to the customer (Hsia 1988). The progress
of the project may be monitored by the customer
using these demonstrations.

• The requirements are straightforward to maintain
because the user’s tasks are decoupled and docu-
mented separately in the specification.

• The requirements specification does not imply a
design, and may be mapped to either a functional or
object oriented design.

• The system level test cases are simpler to generate.
The external view of the system is well suited for
use as a working document by the system level test
authors, as the external stimulus and response pairs
are documented in a single place.

This paper examines the benefits of using a SRRS
technique to simplify the test case generation process.
The basic steps in a test case generation process are
reviewed in this paper. Following the review, a compari-
son of using the process with a SA and a SRRS tech-
nique is made using an example from an automated
library system requirement specification. The process is
shown to be simpler when a SRRS technique is used and
is amenable to partial automation.

PROCESS OF DEVELOPING SYSTEM LEVEL
TEST CASES FROM REQUIREMENTS

A systematic process used to derive system level
test cases from a requirements specification has three
basic steps. The first step is the extraction of the system
level test threads from the requirements specification. A
thread is an end-to-end description of the requirement
that needs to be verified and is composed of the external
stimulus, conditions that must be met, and external
responses. The second step uses the test threads to write
the test frames. Each test thread is decomposed into one
or more test frames based on the logical connectives
used in the condition. Thirdly, the test frames are instan-
tiated with values and sequenced to generate a test case.
The process is described using the Integrated Definition
Methodology (IDEF0) in Appendix A.

EXAMPLE OF GENERATING TEST THREADS

The example provided in this section is derived
from a library system specification described in (Cortez
1987) as the Integrated On-line Library System (IOLS).
The portion of the requirements used as an example in
this work is the “Discharge Item” function which allows
a borrower to return an item (book, magazine, cd, video,
etc.) to the library. In the IOLS a request to return a
library item is rejected if the item is not in the catalogue
database, the borrower is not in the borrower catalogue,
or the status of the item in the catalogue database is not
“charged out” or “missing”. If the discharge request
passes these validation checks, then the status of the
item is updated to “discharged” and the borrower’s
account is updated to indicate the item has been
returned. If the item is returned late, the fine is calcu-
lated and the borrower’s account is updated to include
the new fine.

Although this part of the library system is small, it
is useful to illustrate the differences in the first step in
the test case generation process (extracting the test
threads) using a specification written with a SA tech-
nique and a SRRS technique. The test threads generated
are the same when extracted from the SA and the SRRS
techniques. There is a difference in the process, how-
ever, and as a result in the amount of effort necessary to
extract the test threads from the requirements specifica-
tion. The test threads are summarized in Table 1. After
the test threads are available, the second and third steps
of the test case generation process are the same.

SA Requirements Specification Example. The
requirements to discharge an item are described in this
section using an SA technique. The level one diagram in
the IOLS SA model has eight data flow diagram bub-

bles: 1. Maintain Catalogue, 2. Manage Acquisitions, 3.
Manage Circulation, 4. System Services (including
security, communication, and date/time management),
5. Statistical Gathering and Analysis, 6. Manage
Accounting, 7. Maintain Serials, and 8. Maintain Refer-
ence. In order to extract the end-to-end test thread for
the discharge item functionality, six primitive level pro-
cess specifications (PSPECS) are used. The PSPECS
have been identified using the heuristics in (Jorgensen
1995). Each PSPEC has a unique identifying number
(using the standard SA numbering convention) title,
input, output, and description section and are outlined
below:

1.4.6.1 Obtain Catalogue Item’s Sta-
tus
Input: item identifier
Output: rejection/item status
Description: This PSPEC obtains the
status of a catalogue item. Values
allowed include “missing”, “charged
out”, “hold”, “discharged”, “on
shelf”, “in process”. If the item
identifier is not found in the cata-
logue, the IOLS shall output a rejec-
tion. Otherwise the IOLS shall output
the item’s status.

1.4.6.2 Update Catalogue Item’s Sta-
tus
Input:item identifier, item status
Output: rejection/acceptance
Description: This PSPEC updates the
status of a catalogue item. Values

allowed include “missing”, “charged
out”, “hold”, “discharged”, “on
shelf”, “in process”. If the item
identified is not in the catalogue or
the status is not one of the allowed
values, the IOLS shall output a rejec-
tion. Otherwise the IOLS shall output
an acceptance.

1.4.2.1 Obtain Catalogue Item’s Due
Date
Input:item identifier
Output: rejection/due date
Description: This PSPEC obtains the
catalogue item’s due date. If the item
identified is not in the catalogue or
the status of the item identifier is
not “charged out”, the IOLS shall out-
put a rejection. Otherwise the IOLS
shall output the due data of the cat-
alogue item.

3.3.1 Update Borrower’s Fine/Fee
Owing
Input:borrower identifier, amount
Output: rejection/acceptance
Description: This PSPEC updates the
amount of money the borrower owes in
fees and fines. If the borrower iden-
tifier is not in the borrower data-
base, the IOLS shall output a
rejection. Otherwise, the IOLS shall
update the borrower’s fines/fees
owing with the amount and output an

Test
Thread

Stimulus Condition Response

1 discharge
item
request

the item identifier is not found
in item catalogue or the bor-
rower identifier is not found in
the borrower catalogue or the
item with item identifier does
not have an item status of
“missing” or the item with item
identifier does not have an item
status of “charged out”.

rejection with reason.

2 discharge
item
request

the discharge request is not
rejected and the discharge date
occurs on or before the due date
or the discharge request is not
rejected and the discharge date
occurs after the due date.

update the item status
to “discharged” in the
item catalogue, update
the borrower’s account
to discharge the item,
update the borrower’s
fine/fee owing.

Table 1: System Level Test Threads for the Discharge Item Library Example

acceptance.
3.4.2 Update Borrower’s Item Charges
Input: item identifier, borrower
identifier, charge/discharge
Output: rejection/acceptance
Description: This PSPEC updates the
items that are charged out (i.e.
signed out) to a borrower. If the bor-
rower identifier is not in the bor-
rower database or the item identifier
is not in the catalogue the IOLS shall
output a rejection. If the update is
to charge an item and the item’s sta-
tus is not “on shelf” the IOLS shall
output a rejection. If the update is
to discharge an item and the item’s
status is not “charged out” the IOLS
shall output a rejection. If the
update is to charge an item and the
request has passed the validation
checks the IOLS shall update the bor-
rower’s account to include the item
identifier. If the update is to dis-
charge an item and the request has
passed the validation checks the IOLS
shall update the borrower’s account to
remove the item identifier from their
charges.

4.3.2 Obtain Current Date
Input: date/time request
Output: date/time
Description: This PSPEC obtains the
current date or time in the system.If
a date request is received the IOLS
shall output the system date. If a
time request is received the IOLS
shall output the system time.

Extracting the Test Threads from the SA Specifica-
tion. The six PSPECS used to describe the test threads
for discharging an item cut cross three sets of diagrams
and are found at varying levels in the hierarchies. When
extracting the test threads in the test case generation
process, the test author must work through the SA
model to obtain an end-to-end test thread. In this exam-
ple, the sequence of PSPECS to determine if the dis-
charge request is valid is PSPEC 1.4.6.1. The sequence
of PSPECS used to update the status of the item, update
the status of the borrower’s account, and if necessary,
update the borrower’s fines/fees owing is: PSPEC
1.4.6.1, PSPEC 1.4.6.2, PSPEC 3.4.2, PSPEC 4.3.2,
PSPEC 1.4.2.1, and PSPEC 3.3.1.

SRRS Requirements Specification Example. The fol-
lowing discharge item requirements are written in a
SRRS technique in a single section in the software
requirements specification document. The three sections
in the specification are the title, overview, and require-
ments. The title uniquely identifies the task in the speci-
fication document while the overview provides a
summary of what the task provides for the user. The
requirements have the basic formstimulus, condition,
response.

Title:
Discharge Item

Overview:
The Discharge Item specification unit
describes the processing performed
upon receipt of a request to discharge
(i.e., return) an item to the library.
If the item is found in the item cat-
alogue then the discharge request is
processed. Otherwise, the request is
rejected.

Requirements:
1)Upon receipt of a discharge item

request from an operator, if any of
the following conditions hold:
a) the item identifier is not found

in IOLS item catalogue;

b) the borrower identifier is not
found in the borrower cata-
logue;

c) the item identifier does not
have the status of “missing”, or
“charged out”

, then the IOLS shall return a rejec-
tion with reason to the operator.

2)Upon receipt of a discharge item
request, if the request is not
rejected, then the IOLS shall:
a) update the borrower’s account to

discharge the item;

b) update the item’s status in the
catalogue to “discharged”;

c) if the discharge date occurs
after the due date then the IOLS
shall commit the discharge fine
to the borrower’s account.

Extracting the Test Threads from the SRRS. The test
threads for the discharge item functionality are visible
directly from the requirements specification and are
found in a single location. The process step to extract
the test threads has already been accomplished using the

stimulus response style for the requirements specifica-
tion.

DISCUSSION

The testability of the SRRS techniques has been
described as one of the key concepts in their develop-
ment (Alford 1977). For example, the development of
one of the early techniques, the software requirements
engineering methodology (SREM), “is based on the
observation that real-time software is tested by inputting
an interface message and extracting the results of the
processing -- output messages and the contents of mem-
ory” (Alford 1977). The SREM technique is based on
providing support for describing requirements in terms
of inputs, processing, and outputs to improve the test-
ability of the specification. The SRRS techniques may
be viewed as an application of system test methods to
the requirements specification phase of the software
development lifecycle.

With respect to the test case generation process, the
advantages of using the SRRS techniques are evident in
the identification of the system level test threads. This
step is time consuming and prone to errors when the
requirement specification is described using the conven-
tional SA technique. In the small example, the author
must work through three data flow diagram hierarchies
(1,3, and 4) to develop the test threads. The process is
simplified if the requirements are written in a more test-
able SRRS style because the requirements are already
structured in a convenient form. The stimuli, conditions,
and responses are immediately visible to the authors in a
single location and test frames may be generated
directly from the requirements specification.

In addition to simplifying the manual process, the
visibility of the stimulus, conditions, and responses in
the stimulus response techniques supports automating
the generation of test frames directly from the require-
ments specification. Automating this process is of sig-
nificant interest in industry as the advantages include
reduced time, development costs, and errors. To support
automation, a machine scannable and parseable notation
with defined syntax and semantics is needed. One option
for automating the generation of test frames from a
SRRS is to extend thestimulus, condition, response
phrasing concept such that the entire specification is
written using a notation that reads like English, has a
defined syntax and semantics, and is completely
machine scannable and parseable. The automatic gener-
ation of test frames from a requirements specification
using this technique is described in (Donat 1998).

CONCLUSIONS AND FUTURE WORK

Adopting a SSRS technique may reduce develop-
ment time, costs, and errors in two ways. Firstly, the
extraction of the system test threads from a specification
is straightforward for the test authors in comparison to
extracting test threads from a SA model of the require-
ments. Since the requirements are already described in
an end-to-end stimulus response style, the step in the
test case generation process to extract the test threads is
eliminated.The testability of the requirements written in
a SRRS technique is a result of the techniques being
based on concepts originating in system testing meth-
ods. System testing is based on describing inputs (stim-
uli), processing, and expected results (responses).
Secondly, if the step to generate test frames is auto-
mated, as described in (Donat 1998) additional reduc-
tions in development time, costs, and errors are
expected.

Having recognized the advantages of the SRRS
technique, the development of tools and techniques to
automate the generation of test frames from a SRRS are
currently being investigated in the FormalWare project
at The University of British Columbia.

ACKNOWLEDGEMENTS

I would like to thank Dr. Jeffrey J. Joyce for his
valuable comments and contributions to this work.

This work is supported byFormalWARE (Joyce
1998) a university-industry collaborative research
project sponsored jointly by the BC Advanced Systems
Institute, Hughes Aircraft of Canada Limited, Mac-
Donald Dettwiler, The University of British Columbia,
and The University of Victoria.

Step T1:Generate Test Threads.
Input. The requirements specification is the input to this
step. The requirements for a project are written using a
particular technique. For example, requirements speci-
fied using the conventional SA technique are docu-
mented with data and control flow diagrams, a data
dictionary, and the process specifications for the primi-
tive level processes.

Process Description.To extract the threads, the system
test authors weave through the requirements to obtain an
externally visible, end-to-end requirement. If the
requirements specification is written in a SA technique
the authors may examine multiple data and control flow
diagrams, process specification descriptions, and
through the data dictionary to obtain the end-to-end sys-
tem test thread. This process step is a time consuming
and error prone process. Heuristics to aid the author in
identifying the system test threads from requirements
specified in a Structured Analysis model are provided in
(Jorgensen 1995).

Output. The system test threads are generated. Each
test thread has a stimulus and response, in addition to
tracing information to the requirement specification
document. The stimulus and response may be associated
with logical conditions expressed in terms of logical
connectives such as ‘and’ and ‘or’.

Step T2:Generate Test Frames
Input. The system test threads are the input to this step.

Process Description.The test threads are used to gener-
ate test frames. To manually derive test frames from a
requirement, test engineers are generally guided by
words and phrases that occur in the text of the require-
ment. The derivation of the test frames focuses on dis-
secting the logical complexity within the requirements.
This complexity is brought about by the composition of
logical formulae, the embedded choices (the presence of
the word "or''), and the context of those choices. For
example, the presence of the word "or'' in the antecedent
of a requirement of the form, "When Stimulus S occurs
and Condition C1 or Condition C2 is true, then the sys-
tem shall produce Response R." indicates that the
requirement must be decomposed into at least two sepa-
rate test frames: one for when Condition C1 is true and
another separate test frame for when Condition C2 is
true.

Output. Test frames are generated in this step. Each test
frame is composed of a source, stimulus, condition,
expected response, and destination along with tracing
information to the requirements specification.

Step T3:Generate Test Cases.
Input. Test frames are used as the input to this step.

Process Description.The test frames are used to gener-
ate test cases. The test frames are instantiated with data
values and sequenced to produce test cases.

Output. Test cases are generated in this step.

APPENDIX A. A Process for Generating System Level Test Cases

Figure 2: A Basic Process for Generating System Level Test Cases

Extract
System

Write

Frames

T1

T2

System Test Author

System Test Author

Requirements
System Level Test Threads

Test Frames

Test Technique

Test TechniqueThreads

Level

Test

Write
System

Cases
T3

System Test Author

Test Case

Test Technique

Test

Test

System

Specification

REFERENCES

Alford, Mack, “A Requirements Engineering Methodol-
ogy for Real-Time Processing Requirements”,
IEEE Transactions on Software Engineering, Vol-
ume SE-3, Number 1, January 1977, pp 60 - 69.

Cortez, E., Proposals and contracts for library
automation: guidelines for preparing RFPs,
American Library Association, USA, 1987.

Davis, C. and Vick, C., “The Software Development
System”, IEEE Transactions on Software Engineer-
ing, Volume SE-3, Number 1, January 1977, pp 69-
84.

Demarco, Tom,Structured Analysis and System Specifi-
cation, Prentice-Hall, Inc., USA, 1978.

Deutsch, M., “Focusing Real-Time Systems Analysis on
User Operations”,IEEE Software, September 1988,
pp 39-50.

Donat, Michael and Joyce, Jeffrey, “Applying an auto-
mated test description tool to testing based on sys-
tem level requirements”, in 8th Annual Symposium
of the International Council on Systems Engineer-
ing, INCOSE July 1998. To appear.

Hatley, D. and Pirbhai, I.,Strategies for Real-Time Sys-
tem Specification, Dorset House Publishing Co.,
Inc., USA, 1988.

Hsia, P. and Yuang, A., “Another Approach to System
Decomposition: Requirements Clustering”, In Pro-
ceedings of the Twelfth Annual International Com-
puter Software and Applications Conference
(COMPSAC 88), Chicago, USA, pp 75-82.

Jacobson, Ivar,Object-Oriented Software Engineering a
Use Case driven approach, Addison Wesley Long-
man Ltd., England, 1992.

Jorgensen, P., Software Testing A Craftsman’s
Approach, CRC Press, Inc., USA, 1995.

Joyce, Jeffrey, FormalWARE project director, 1998.
http://www.cs.ubc.ca/formalWARE

Jorgensen, P., Software Testing A Craftsman’s
Approach, CRC Press, Inc., USA, 1995.

Regnell, B.,Anderson, M. and Bergstrand, J., “A hierar-
chical use case model with graphical representa-
tion”, in IEEE Symposium and workshop on
engineering of computer based systems, Germany,
March 1996, pp 270-277.

Ross D.and Schoman, K. Jr., “Structured Analysis for
Requirements Definition”,IEEE Transactions on
Software Engineering, Volume SE-3, Number 1,
January 1977, pp 6-15

BIOGRAPHY

Kendra Cooper is a Ph.D candidate at The Univer-
sity of British Columbia in the Department of Electrical
and Computer Engineering. Her research interests
include investigating formal methods in requirements
engineering.

Mabo Ito is a professor in The University of British
Columbia in the Department of Electrical and Computer
Engineering. His broad area of interest is computer
engineering.

