
C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 27

C The Q Requirements Speci�cation Language

This report introduces a speci�cation making use of certain requirements speci�-
cation language features. These features are combined to formQ, a requirements
speci�cation language. This section describes the motivation for Q and de�nes
the Q speci�cation language.

C.1 Overview

To be practical, the syntax of the speci�cation language should impose as few
restrictions on speci�cation authors as possible. It may be necessary to produce
test frames for a speci�cation which is an arbitrary relation between any number
of stimuli, pre- and post-conditions, and responses. This approach is di�erent
from techniques based on speci�cation styles such as Z [12] or VDM [7] which
require speci�cations to be broken down into pieces to be modeled in terms of
schemata or operations.

The objective of Q is to provide a means of formalizing requirements phrases
while maintaining readability and conciseness as much as possible. The formal
aspect of the language is required by the test frame generator. A formal spec-
i�cation that is also readable relieves the need for maintaining two speci�ca-
tions; one formal for input to the test frame generator and another readable
by non-specialists. Thus, a key design issue is that Q must be readable by
non-specialists.

The speci�cation language provides a concise syntax for denoting the logical
relationships and alternatives within the requirements while also providing a
natural language style. For example, the requirement fragment,

Either the leading aircraft or the trailing aircraft is supersonic

is speci�ed as

fany of fthe leading aircraft, the trailing aircraftgg is supersonic.

The braces impose a parseable structure on the requirements. The semantics
of the language constructs, such as ``any of,'' allows the test frame generator
to calculate the logically equivalent expression, which in this case is:

ffthe leading aircraftg is supersonicg or ffthe trailing aircraftg
is supersonicg.

Q is implemented as an extension of the S speci�cation language [9] and
is used to formalize natural language stimulus-response style speci�cations for
the purpose of requirements-based testing. Q can be used to de�ne predicates
within a requirements speci�cation but relies on S syntax for de�ning constants,
type, and functions. Q statements are contained within the keywords BEGIN Q
and END Q.

C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 28

The light-weight simplicity of the Q language helps to preserve the read-
ability and conciseness of the speci�cation. The mathematical semantics of Q
ensure that each statement has an unambiguous meaning. With these qualities,
Q provides the mathematical link between a requirements speci�cation and the
test frame generation tool introduced in the previous chapter.

Three features of Q substantially contribute to preserving readability and
conciseness. The �rst is the use of braces, fg, which delimit phrases and pa-
rameters within the speci�cation. Injecting these braces into the speci�cation
e�ectively transforms the phrases of natural language into formal functions and
arguments. This technique was �rst used by Joyce in his Test Case Element
Language (TCEL) [8].

When formalizing the natural language phrase

the leading aircraft is supersonic or the following aircraft is super-
sonic

for the purpose of system-level requirements-based testing, only the choices need
to be made explicit. Thus, the appropriate formalization for testing is to choose
``or'' as the predicate and the two adjoining phrases are conditions. The
resulting Q version of the above phrase is:

fthe leading aircraft is supersonicg or fthe following aircraft

is supersonicg.

In this Q expression, `` * or * '' is the function and ``the leading aircraft

is supersonic'' and ``the following aircraft is supersonic'' are its
arguments. The lambda calculus equivalent is

`` * or * '' ``the leading aircraft is supersonic'' ``the following

aircraft is supersonic''

where `` * or * '' has the type bool ! bool ! bool, as expected.
The `` * '' in the function name denotes positions in the text where ar-

guments are placed. This type of notation is referred to as a ex-�x notation
[1]. Flex-�x, the second Q feature, allows arguments to be distributed within a
function name. This helps preserve readability. For example, the Q expression

``faircraft Ag and faircraft Bg are separated by at least f1000
feetg''

corresponds to the following lambda calculus representation:

`` * and * are separated by at least * '' ``aircraft A'' ``aircraft

B'' ``1000 feet.''

The Q expression is more readable than, say, a Z or VDM-SL expression

ABS (Altitude(aircraft A) �Altitude(aircraft B)) > feet(1000):

The third feature of Q, due to the author, is the use of keywords which de�ne
multiple arguments for a function's parameter. These keywords are motivated
by natural language phraseology such as \both aircraft are...," \either A or B
is a... ." For example, the requirement

C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 29

either the leading aircraft or the following aircraft is supersonic

can be formalized in Q as

fany of fthe leading aircraft, the following aircraftgg is supersonic.

A predicate containing an \any of" argument is equivalent to a disjunction of
that predicate evaluated at each of the values in the \any of" set. In this case,
the equivalent expression is

ffthe leading aircraftg is supersonicg or ffthe following aircraftg
is supersonicg.

This example contains more formal detail than the �rst example in this
section. Here, there are formal references to two aircraft. In the �rst example,
there were only two conditions. The fact that these conditions were based on
two aircraft was not made explicit in the �rst example. This latest example
is referred to as a deeper speci�cation because it contains more formal detail.
Test engineers decide how deep a speci�cation should be by determining the
condition dependencies they wish to reveal to the test frame generator.

Another parameter mechanism is the \distinct choices" keyword. This key-
word is used in encoding phrases such as:

all of the following are true:

1. aircraft A is dumping fuel,

2. aircraft B is using standard altimeter setting,

3. if one aircraft is supersonic and the other is not then ...

In this example, \one aircraft" and \the other" refer to either \aircraft A" or
\aircraft B," interchangeably. i.e., They represent distinct choices of the two
aircraft. The Q version is:

fall of f

1. faircraft Ag is dumping fuel,

2. faircraft Bg is using standard altimeter setting,

3. if ffone aircraft, the otherg are any distinct choices of faircraft
A, aircraft Bg in

fffone aircraftg is supersonicg and fit is not the case that

ffthe otherg is supersonicgggg then...

The loss of conciseness in this example is necessary in order to formally de�ne
the references \one aircraft" and \the other." However, this construction is still
more concise and more readable than the full expansion of the distinct choice
which is:

C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 30

fffaircraft Ag is supersonicg and

fit is not the case that ffaircraft Bg is supersonicggg
or

fffaircraft Bg is supersonicg and

fit is not the case that ffaircraft Ag is supersonicggg

This point is even more apparent when considering the case where a third
aircraft is involved.

fone aircraft, anotherg are any distinct choices of faircraft A,

aircraft B, aircraft Cg in

fffone aircraftg is supersonicg and fit is not the case that ffanotherg
is supersonicggg

is equivalent to:

fffaircraft Ag is supersonicg and fit is not the case that ffaircraft
Bg is supersonicggg or

ffffaircraft Ag is supersonicg and fit is not the case that ffaircraft
Cg is supersonicggg or

ffffaircraft Bg is supersonicg and fit is not the case that ffaircraft
Ag is supersonicggg or

ffffaircraft Bg is supersonicg and fit is not the case that ffaircraft
Cg is supersonicggg or

ffffaircraft Cg is supersonicg and fit is not the case that ffaircraft
Ag is supersonicggg or

ffffaircraft Cg is supersonicg and fit is not the case that ffaircraft
Bg is supersonicgggggggg

This example also demonstrates that the use of the distinct choices keyword
helps preserve the understandability of the speci�cation. Comprehending the
Q expression above requires more e�ort than text which makes use of the
``distinct choices'' keyword.

The formal semantics of ``any of,'' its counterpart, ``each of,'' and
other parameter mechanisms are more precisely de�ned in later sections.

C.2 Expressions

A Q expression is a string of at least one word and any number of arguments sep-
arated by white-space characters. Arguments are expressions contained within
a comma delimited list surrounded by braces. In this thesis Q expressions are
usually enclosed in braces to delimit them from the rest of the text. To be
concise, an ambiguous grammar is used to express the syntax of Q. In the fol-
lowing grammar, e* represents zero or more e's concatenated, e.g., any of nil,
e, ee, : : :, where nil is the empty string. The expression e+ is equivalent to ee*.
Parentheses are used to group expressions together in order to then apply * or
+, e.g., a (\;" b)* represents any of a, a;b, a;b;b, : : :.

C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 31

expression := word+ \." primitive expression
j primitive expresion

primitive expression := (\f" expression (\," expression)* \g")+ primitive expression
j primitive expression (\f" expression (\," expression)* \g")+
j word+

The optional pre�x for each expression allows speci�cation authors to tag
expressions for traceability purposes. These tags have no semantic value with
respect to the logical meaning of the speci�cation.

C.3 Predicate De�nitions

A Q speci�cation is a collection of predicate de�nitions. Predicates are de�ned
using the `` * is true iff * '' statement.

de�nition := \f" parm expression \g" is true i� \f" expression \g" \."

parm expression := (\f" word+ (\," word+)* \g")+ parm expression
j parm expression (\f" word+ (\," word+)* \g")+
j word+

C.4 Conjunctive and Disjunctive Lists

Requirements speci�cations often provide lists of conditions which represent log-
ical conjunction, e.g., \all of the following," or disjunction, e.g., \at least one
of the following." Such a list format is provided by the predicates ``all of''

and ``any of.'' The Q expression fall of fSgg, where S is a comma sepa-
rated list of predicates, is semantically equivalent to

V
S, where

V
(fxg [A) =

x ^ (
V

A), and
V
fg = >. Similarly, fany of fSgg is semantically equivalent toW

S, where
W
(fxg [A) = x _ (

V
A), and

W
fg = ?.

C.5 Argument Based Conjunctions and Disjunctions

The functions ``each of * '' and ``any of * '' are used to construct con-
junctions and disjunctions, respectively, of a predicate over di�erent arguments.
These functions both have the type (t)list ! t . The semantics of these func-
tions is de�ned in terms of predicates (Boolean expressions that do not contain
logical connectives). The equivalent logic expression is determining by eval-
uating the Boolean expression AE Ua P for ``any of'' or AE Ue P for

``each of'' using axioms [4]. These two functions map the application of a
predicate to a list of arguments into a disjunction or conjunction, respectively,
of the predicate applied to each argument of the list, separately.

Although multiple uses of one of these keywords can be used within a pred-
icate, mixtures of ``any of'' and ``each of'' within arguments to a single
reference of a predicate are problematic. This is because it is unclear whether

C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 32

the expression containing argument keywords represents a conjunction of dis-
junctions or vice versa.

For example, the expression

fthe feach of fapple, tomatogg is a fany of fvegetable, fruitggg

may have been intended to mean either

fffthe fappleg is a fvegetablegg or fthe ftomatog is a fvegetableggg
and ffthe fappleg is a ffruitgg or fthe ftomatog is a ffruitgggg

or, alternatively,

fffthe fappleg is a fvegetablegg and fthe ftomatog is a fvegetableggg
or ffthe fappleg is a ffruitgg and fthe ftomatog is a ffruitgggg.

Clearly these two semantic evaluations are logically di�erent.
Although the axioms for ``any of'' and ``each pf'' disambiguate such

a construction, this rule would need to be learned and would not be obvious to
a non-specialist from the text alone. Since this is counter to the objective of Q,
mixtures of ``any of'' and ``each of'' are not allowed within arguments to
the same predicate. The order of semantic evaluation in these situations can be
made more clearly using expression aliasing.

C.6 Expression Aliasing

An expression alias is the same as the let statement found in functional pro-
gramming languages such as ML [10]. The purpose of the alias is to assign a
short name to a complex expression in order to make a portion of text more
readable.

The Q expression ffxg is fyg in fEgg is semantically equivalent to fEg
with y substituted for x. To encourage simpler speci�cations, the expres-
sion E must be a predicate. The predicate ffxg is fyg in fEgg is syntactic
sugar for the lambda calculus expression (� x:E)y. Similarly, the tuple form
ffx,yg are fa,bg in fEgg is syntactic sugar for the lambda calculus expres-
sion (� x; y:E)(a; b).

Using expression aliasing, the earlier ``any of'' / ``each of'' example
can be disambiguated as

ffitemg is feach of fapple, tomatogg in

fthe fitemg is a fany of fvegetable, fruitgggg

which results in a conjunction of disjunctions.

C.7 Argument Permutation

The predicates `` * are all distinct choices of * in * '' and `` * are

any distinct choices of * in * '' are used to construct conjunctions and
disjunctions involving permutations of arguments. An example of the use of
this keyword was given above.

C THE Q REQUIREMENTS SPECIFICATION LANGUAGE 33

ffxg are all distinct choices of fAg in fEgg

is syntactically equivalent to

ffxg are feach of fP(A)gg in fEgg,

where P(A) is a list of all the permutations of tuples the same size as x uses
elements of A. Similarly,

ffxg are any distinct choices of fAg in fEgg

is syntactically equivalent to

ffxg are fany of fP(A)gg in fEgg.

C.8 Quanti�cation

Universal and existential quanti�cation are provided by the syntactic forms ffor
any fxg fEgg, which is equivalent to 8 x:E, and fthere exists fxg such that

fEgg, which is equivalent to 9 x:E.

