
Applying an Automated Test Description Tool
to Testing Based on System Level Requirements

Michael R. Donat
5NIVERSITY�OF�"RITISH�#OLUMBIA

$EPARTMENT�OF�#OMPUTER�3CIENCE

�����-AIN�-ALL

6ANCOUVER��"RITISH�#OLUMBIA

#ANADA�6�4��:�

Jeffrey J. Joyce
2AYTHEON�3YSTEMS�#ANADA�,TD�

)NTERNATIONAL�!IRSPACE�-ANAGEMENT�3YSTEMS�$IVISION

������"RIDGEPORT�2OAD

2ICHMOND��"RITISH�#OLUMBIA

#ANADA�6�6��*�

Abstract. A partially automated process for generating
test procedures has been experimentally applied to a
portion of the Software Requirements Specification for
an Air Traffic Management system. This process uses
algorithms based on formal logic to automate some of
the more tedious and error prone aspects of deriving
test procedures from requirements. This approach is
particularly well suited to functional requirements in-
volving complex decisions within stimulus-response
relationships. In addition to the potential improvement
to requirements-based test generation methodology,
this process may also be used to improve requirements
authoring.

INTRODUCTION

This paper presents a partially automated process
for generating tests from system level requirements
specifications. To assess the practical usefulness of
this process, it was experimentally applied to a portion
of the Software Requirements Specification (SRS) for
the Canadian Automated Air Traffic System (CAATS)
being developed by Raytheon Systems Canada Ltd.
This process is designed to be integrated with current
industrial practices such as DO178B and MIL-STD-
498. It directly addresses the issues of coverage con-
sistency, traceability of requirements to tests, and
minimum imposition of tools on current practice. This
process is the fruition of concepts originally laid out in
(Toth et. al. 1996) and incorporates the theory detailed
in (Donat 1997).

This paper demonstrates that a formal representa-
tion of a set of system requirements can be parsed and
algorithmically transformed into a set of test descrip-
tions called test frames. These test frames are com-
plete with respect to an objective definition of cover-
age and include accurate tracing information. Al-
though this process requires a formal specification, this
task is more like formatting than mathematical model-
ling.

The context of this process is discussed in the next
section. The following two sections then discuss

problems with the current manual process and issues
involved in automating it. The automated process is
then introduced. Two coverage criteria are briefly de-
scribed. This is followed by a description of the appli-
cation of this process to a portion of the CAATS soft-
ware requirements. Conclusions and future applica-
tions of this work are also discussed.

CONTEXT

This paper focuses on aspects of the planning
phase of system-level requirements-based testing for
the purpose of requirements verification.

Following a methodology consistent with standard
industry practice, descriptions of test steps form the
basis for defining test procedures. In this paper these
descriptions are referred to as test frames. Each test
procedure contains a sequence of test steps. Each test
step specifies the list of stimuli to be given to the sys-
tem, the list of conditions describing the state of the
system at the time of the stimulus, and the expected
response of the system at that step in the test proce-
dure. Successful execution of these test procedures
along with documentation that the test steps provide
adequate coverage of the requirements constitutes
verification of the requirements. A test frame such as,

Stimulus Condition Response
altitude
check

{altitude} is greater
than 38,000 feet

issue a warning

might be instantiated1 as the following step in a test
procedure:

Stimulus Condition Response
altitude
check

{altitude} is 39,000
feet

issue a warning

�������������������������������������������������������
�
�4HIS�INSTANTIATION�OF�TEST�FRAMES�TO�TEST�STEPS�IS�DIFFI

CULT�TO�AUTOMATE�IN�SOME�CASES�AND�CAN�BE�IMPOSSIBLE

IN�OTHERS��/UR�RESEARCH�FOCUSES�ON�THE�DERIVATION�OF�TEST

FRAMES�FROM�REQUIREMENTS���7E�HAVE�NOT�CONSIDERED�THE

SEPARATE�PROBLEM�OF�DERIVING�TEST�STEPS�FROM�TEST

FRAMES�



Test frames provide a reliable basis for test plan-
ning while avoiding the risks of committing resources
to constructing detailed test steps early in the devel-
opment cycle.

PROBLEMS

The following problems exist in the process of de-
riving test frames from requirements specifications:

1.� Extracting test frames from the require-
ments specification requires a great deal of ef-
fort. Requirements specifications are often large
and complex. This complexity arises through
the use of decisions referring to several condi-
tions and the negation of such decisions. As a
result, manual test frame derivation is a tedious,
routine, and error prone task. The nature of this
task requires that additional effort be spent in
reviews to ensure that the test frames satisfy
certain properties. The work presented in this
paper addresses this extraction process without
placing unreasonable constraints on other as-
pects of system-level requirements-based testing
where engineering judgement and skill are re-
quired.

2.� Re-working test procedures as a result of
specification changes is costly not only due to
the effort involved, but also due to the impact
on schedules.

3.� The lack of well-defined coverage crite-
ria for system-level requirements-based testing
places too much dependence on engineering
judgement and experience. This accentuates dif-
ferences in performance within the test team to
the point where it becomes a management issue.
While documents such as DO178B, DOD-STD-
2167A, ANSI/IEEE 829-1983, and MIL-STD-
498 provide some general guidelines for re-
quirements-based testing, they do not provide
the specific detail required to objectively decide
if a particular test frame is missing or redun-
dant.

4.� Ensuring that traceability exists between
requirements and tests assists in addressing
problems 2 and 3 above by providing an index
that can be used to facilitate the appropriate re-
view tasks. However, these problems are not
solved by traceability alone.

5.� The act of producing test frames often
uncovers anomalies in the specification. How-
ever, the loose connection between specification
authoring and test planning causes this feedback
to be delayed until late in the process of
authoring requirements.

CHALLENGES FOR AUTOMATION

The previous section noted problems that stem
from a typical test derivation process. This section
discusses additional issues that arise when attempting
to automate it.

The first challenge is to choose an approach that
ensures that the test frames produced are consistent
with the specification. It will also be necessary to de-
tect dependencies between conditions within the speci-
fication so that no infeasible test frames are generated
and that redundant conditions are removed. One ap-
proach is the use of formal rules of logic as a medium
for calculating test frames from the specification. This
is analogous to the use of statistical analysis in the
calculation of marketing statistics by a spreadsheet
program.

This leads to the second challenge. An automated
approach based on formal logic requires an amount of
formal structure in the specification. Since it is unde-
sirable to incur the costs of maintaining both a lay-
man-readable specification and a formal specification,
it is necessary to have a readable specification that
contains enough structure for the purposes of test
frame generation.

To be usable, the syntax of the specification lan-
guage should impose as few restrictions on specifica-
tion authors as possible. It may be necessary to pro-
duce test frames for a specification that is an arbitrary
relation between any number of stimuli, conditions,
and responses.

Information that allows traceability from require-
ments to tests will always be necessary for auditing
purposes. Any automated approach will need to keep
track of the source of the test frame components as the
test frames are being constructed.

THE AUTOMATED PROCESS

Figure 1 illustrates the process used to automati-
cally generate test frames from a requirements specifi-
cation together with information about dependencies
and a particular coverage scheme.

#OVERAGE

3CHEME2EQUIREMENTS

3PECIFICATION $EPENDENCIES

4EST�&RAME
'ENERATION

4EST�&RAMES

Figure 1. Automated Test Frame Generation



The specification language provides a concise
syntax for denoting the logical relationships and alter-
natives within the requirements while also providing a
natural language appeal. For example, the fragment,

%ITHER�THE�LEADING�AIRCRAFT�OR� THE
TRAILING�AIRCRAFT�IS�SUPERSONIC�

may appear as part of the conditions in the require-
ments for the separation of two aircraft. The logical
structure of this fragment is formally represented in
our approach as,

[ANY�OF�[THE�LEADING�AIRCRAFT�� THE
TRAILING�AIRCRAFT]]�IS�SUPERSONIC�

The brackets impose a parsable structure on the
requirements. The semantics of the language con-
structs, such as “any of”, allows the test frame gen-
erator to calculate the logically equivalent expression,
which in this case is:

[[THE� LEADING� AIRCRAFT]� IS� SUPER
SONIC]� OR� [[THE� TRAILING� AIRCRAFT]
IS�SUPERSONIC]�

Once these constructs are expanded into their
logical equivalents, test frames are produced according
to the algorithm given in (Donat 1997). This algorithm
uses well-defined rules of formal logic to calculate a
set of feasible test frames that satisfies the coverage
scheme. A variety of coverage criteria that govern test
selection are supported. Two of these are discussed in
the next section. Along with selection of the coverage
scheme, the test frame generator also provides several
other means by which processing can be controlled by
the test engineers.

Traceability is achieved by attaching tags from the
specification to the corresponding identifiers in the
underlying logical expressions. In order to maintain
the link between requirements and test frames, these
tags are propagated by the rewrite system which per-
forms the logical manipulations during test frame pro-
duction.

COVERAGE CRITERIA

In this paper, the Disjunctive Normal Form (DNF)
and Term Coverage schemes shall be discussed. The
test frame generator groups test frames based on the
particular stimulus/response behaviour, referred to as a
test class, from which the test frames were generated.

DNF Coverage means that the disjunction of the
stimulus and conditions portions of the test frames
form a disjunctive normal form of the stimulus and
conditions portion of the associated test class. Several
test generation techniques have been based on a DNF

approach (Dick and Faivre 1993, Weyuker et. al.
1994). In contrast, Term Coverage means only that
each stimulus and condition in the test class is listed in
at least one test frame. Term Coverage is similar to
condition/decision coverage (Chilenski 1994).

Depending on the complexity of the specification,
DNF and Term Coverage produce dramatically differ-
ent test suite sizes. DNF Coverage is desirable to
achieve, especially in safety critical portions of the
system, due to the number of different combinations
tested. However, in the worst case, test suites with
DNF Coverage grow exponentially with the number of
stimuli and conditions while growth is linear with
Term Coverage.

RESULTS

The example reported in this paper is taken from a
portion of the CAATS software requirements that re-
fers to separation rules. The separation rules form a set
of complex conditions under which certain responses
occur. The specification of the separation rules is
composed of several subsections dealing with different
aspects of separation. The portion of the specification
used in this example contains 177 requirements desig-
nated as testable requirements2.

In our evaluation of this process we chose not to
produce a test suite with DNF Coverage for this speci-
fication due to the large number of test frames that
would have resulted. The specification refers to the
separation rules in both a negative (the aircraft are not
separated) and a positive (the aircraft are separated)
context. This results in two corresponding test classes.
The numbers of test frames constituting DNF Cover-
age are estimated to be approximately 1000 for the
positive case and roughly 1024 for the negative case.

Test frames were generated using a Term Cover-
age scheme. This resulted in approximately 130 test
frames for the positive case and approximately 230
test frames for the negative case.

Table 1 gives one of the test frames generated by
our automated process. This test frame is only an ex-
ample and was generated from a representation of only
a portion of the CAATS software requirements that
was used to evaluate the usefulness of this process.
Any errors or omissions in this test frame are due to
the way in which this portion was extracted by the
authors.

�������������������������������������������������������
�
�)N�ADDITION�TO�REQUIREMENTS�THAT�CAN�BE�VERIFIED

THROUGH�TESTING��REQUIREMENTS�SPECIFICATIONS�OFTEN�CON

TAIN�REQUIREMENTS�THAT�CANNOT�BE�VERIFIED�THROUGH�A�TEST

PROGRAM�AND�MUST�BE�ADDRESSED�BY�OTHER�MEANS�THAT

ARE�BEYOND�THE�SCOPE�OF�THIS�PAPER�



DISCUSSION

This paper has discussed the application of an
automated test frame generation process to a real
world system-level requirements specification. This
demonstrates the effectiveness of the concepts and
techniques discussed in (Toth et. al. 1996) and (Donat
1997). This process automatically produces test frames
logically consistent with the specification. These test
frames also satisfy a given coverage scheme. Since
this process is based on a mathematical system the
need for reviewing the correctness and completeness
of the test frames is reduced. Should such a review be
desired, tracing information is provided.

An important result of this work is that test frames
are produced with a consistency of coverage that is
difficult to achieve manually. In the manual process,
different levels of experience within the test team may
produce tests with uneven coverage. This lack of qual-
ity is eliminated by the test frame generator.

Beyond the test frame generation aspects of this
automated process there are other possible benefits to
be exploited:

1.� Reviewing test frames can play a role in
validation. Since each test frame is a theorem of
the specification, the identification of a test
frame specifying undesirable or unexpected be-
haviour implies an error in the specification.

The trace information will aid the reviewer in
determining the source of the error.

2.� Making the test frame generator avail-
able to specification authors may provide bene-
fits similar to those of integrated product teams.
An important aspect of team integration ideas
(Browning 1997) is an appreciation for how
one’s work is used by other individuals. By pro-
viding authors with the means of “compiling”
their specification into test frames they will be
able to review the results before handing their
work to other individuals.
A problem that arose during the development of

this example was the capacity of the test frame gen-
erator to construct intermediary results from which test
frames are selected. It is expected that an increase in
capacity would result in smaller test suites satisfying
the same coverage criteria. For this example, this
problem was overcome by iteratively expanding the
detail of selected portions of the separation rule defi-
nitions and combining the results of each iteration.

It is important to note that the success of this ex-
ample was due to the following essential qualities:

1.� The consistency of the test frames, the
assurance of proper coverage, and the accuracy
of the tracing information are due to the
mathematical underpinnings of the algorithms
used.

ROIDs 84672 224215 226547 226549 226550
Stimulus Conditions Responses
{ACC operator}
requests planned
clearance

1.� {planned clearance} exists for the flight

2.� the source of the {planned clearance} is an aerodrome
control tower with a tower method of operation of
complex

3.� the aircraft state is not AIRBORNE

4.� {intruder} is using {altimeter setting}

5.� {planned clearance} is using {altimeter setting}

6.� the lowest altitude in the protected altitude band for
{intruder} is at or below {FL 290}

7.� the lowest altitude in the protected altitude band for
{planned clearance} is at or below {FL 290}

8.� the protected altitude band for {intruder} is vertically
separated from the protected altitude band for
{planned clearance} by {1000} feet or more

9.� (NOT {planned clearance} is dumping fuel)

10.� (NOT {intruder} is dumping fuel)

1.� {ATA} shall commit
{planned clearance}

Table 1. An Automatically Generated Test Frame



2.� The formal version of the software re-
quirements fragment contained enough mathe-
matical structure to facilitate test frame genera-
tion while still being readable.

3.� Conditions were relatively independent,
which allowed for a simple encoding of the ex-
isting condition dependencies.
The test frame generator does not yet include the

capability of dealing with changes to the specification.
This is the subject of future enhancements.

ACKNOWLEDGEMENTS

Our colleague, Kendra Cooper has also influenced
aspects of the specification language. This work is
supported by� FORMAL7!2% (Joyce et. al. 1998), a
university-industry collaborative research project
sponsored jointly by the BC Advanced Systems Insti-
tute, Raytheon Systems Canada Ltd., MacDonald
Dettwiler, The University of British Columbia and The
University of Victoria.

BIOGRAPHY

Michael R. Donat is completing his Ph.D. thesis in
Computer Science at the University of British Colum-
bia. His supervisor is Jeffrey J. Joyce.

Jeffrey J. Joyce was director of the FORMAL7!2%

research project� until its completion at the end of
March 1998. He is currently employed by Raytheon
Systems Canada Ltd.

REFERENCES

Browning, Tyson R., “Mechanisms for interteam inte-
gration: Findings from five case studies.” In Lisa
Hritz and Judith Peach, editors, Systems Engi-
neering: A Necessary Science, Proceedings of the
Seventh Annual International Symposium of the
International Council on Systems Engineering,
volume 1, August 1997, pages 649-656.

Chilenski, John Joseph and Newcomb, Philip H.,
“Formal specification tools for test coverage
analysis.” KBSE’94 Knowledge-Based Software
Engineering, 1994, pages 59-68.

Dick, Jeremy and Faivre, Alain, “Automating the gen-
eration and sequencing of test cases from model-
based specifications.” In Formal Methods Europe
’93, volume 670 of Lecture Notes in Computer
Science. Springer-Verlag, 1993, pages 268-284.

Donat, Michael R., “Automating formal specification-
based testing.” In Michel Bidoit and Max
Dauchet, editors, TAPSOFT ’97:Theory and Prac-
tice of Software Development, 7th International
Joint Conference CAAP/FASE, volume 1214 of
Lecture Notes in Computer Science. Springer-
Verlag, April 1997, pages 833-847.

Joyce, Jeffrey J., et. al.,
HTTP���WWW�CS�UBC�CA�FORMAL7!2%.

Toth, K., Donat, M. R. and Joyce, J. J., “Generating
test cases from formal specifications.” In 6th An-
nual Symposium of the International Council on
Systems Engineering, Boston, July 1996. Interna-
tional Council on Systems Engineering.
HTTP���WWW�INCOSE�ORG�.

Weyuker, E., Goradia, T., and Singh, A., “Automati-
cally generating test data from a Boolean specifi-
cation.” IEEE Transactions on Software Engi-
neering, 20(5):353-363, May 1994.


