
Higher Order Process-Algebraic
Axiomatizations

of Statecharts Variants

James H. Andrews

Dept. of Computer Science
University of Western Ontario

London, Ontario, Canada N6A 5B7

Abstract. Axiomatizations are given for some prominent variants of the
semantics of the statecharts formalism. The axiomatizations highlight the
similarities and di�erences amongst the semantics. In particular, all the
semantics rely on the same notion of \microstep", but di�erent notions
of \step sequence".
A process-algebraic approach is taken, and an executable variety of
higher order logic is used, allowing test runs to be performed concerning
the e�ects of the semantics. It is shown that the higher order logic set-
ting facilitates the addition of complex features not previously studied
in process-algebraic approaches, including state-exiting transitions and
history transitions. Other desirable features are also added, such as state
name scoping.

1 Introduction

Despite being a relative latecomer to the concurrent systems scene, the state-
charts formalism [Har87] has achieved some notable successes. Closely related
formalisms have been used in safety-critical projects in aeronautics [LHHR94],
with the e�ect that statecharts are now becoming widespread in the aeronau-
tics and aviation industry [ADJ97]. A version of it has also been integrated
into the Uni�ed Modelling Language (UML), one of the most important object-
oriented design tools [HG97]. Its success can be attributed, in part, to the fact
that every statechart has a diagrammatic representation which is easy even for
non-specialists to read.

However, its youth is not the only hurdle the statecharts formalismhas faced.
There has also been considerable confusion regarding its semantics. Its origina-
tor, David Harel, intended it to be a \visual formalism" with both a visual
component and a formal de�nition. In spite of this, the only rigorous early se-
mantics [HPSS87] is widely regarded as having de�ciencies. In 1991 Pnueli and
Shalev produced a semantics which seemed to correct the problems [PS91]. How-
ever, in 1996 Harel and Naamad [HN96] described a di�erent semantics to Pnueli
and Shalev's { the semantics of the Statemate tool, which was the original im-
plementation of statecharts. Harel and Naamad's description is informal, and is
imprecise on some points. Mikk et al. [MLPS97] give a more formal version, but
of course can only argue informally that it is equivalent to Harel and Naamad's.

Added to the confusion about the \o�cial" semantics is the proliferation
of statecharts variants described in the literature. Many of these variants omit
features of statecharts included in the early descriptions, such as history or
state-exiting transitions; many add features, such as prioritized transitions or
timing constraints. Day [Day93] and von der Beeck [vdB94] describe some of the
variants, their properties and their problems. It is unclear when or whether any
resolution will be achieved amongst all these semantic models.

This paper therefore takes a di�erent tack: it provides a high-level and par-
tially executable semantics for a variety of statecharts variants, thus highlighting
their similarities and their di�erences, by providing modularized axiomatizations
of those variants in an executable variety of higher order logic. It is hoped that
with similar semantics, present and future researchers can express succinctly and
homogeneously the precise nature of their view of the meaning of a statechart,
and test the e�ects of their semantics directly.

1.1 Process-Algebraic Presentations

We take, as a starting point, previous work on process-algebraic presentations
of statecharts. Early work on statechart semantics [HPSS87, PS91] gave math-
ematical de�nitions of statechart diagrams which resembled de�nitions of �nite
state machines; that is, with sets of states, sets of transitions over those states,
a \substate" relation and so on. This tended to produce complex semantics with
many auxiliary de�nitions. It also allowed nonsensical statechart diagrams to be
built, which had to be disallowed in separate de�nitions.

Uselton and Smolka [US94] were the �rst to realize that the elegant and
parsimonious process algebra style of Milner's CCS [Mil80] could be used to
express simply the syntax and operational semantics of statecharts. The main
di�erences between statecharts and such systems as CCS are that statecharts
use broadcast communication and have hierarchically structured states. Uselton
and Smolka's semantics took account of these di�erences.

Unfortunately, broadcast communication can lead to unpleasant causal para-
doxes such as self-triggering (in which a process makes a set of transitions not
triggered by events in the environment) and inconsistency (in which a transi-
tion leads to actions which negate its own condition). Levi [Lev96] showed that
Uselton and Smolka's semantics leads to self-triggering and does not su�ciently
distinguish between idle and active processes. She gave another process-algebraic
semantics, which she proved equivalent to Pnueli and Shalev's [PS91]. However,
both Uselton and Smolka's and Levi's semantics depend on a complex structure
of events auxiliary to the main structured operational semantics; neither at-
tempts to capture either variant of the Statemate semantics [HN96]; and neither
considers such features as state-exiting transitions.

1.2 The Approach of this Paper

In this paper, we use higher order logic [Chu40] to axiomatize several statecharts
semantics. The main advantages of higher order logic are that (a) it is a general

and widely accepted logical framework, (b) it has a built-in mechanism (lambda-
abstraction) for the variable scoping constructs we need to express such things as
loops in diagrams, and (c) its type system forces us to be clear about the types
of objects worked with in the semantics. Using higher order logic, in contrast
to a higher order functional programming language such as ML, allows us to
express more naturally the relation between a nondeterministic process and its
possible outputs.

Some languages built on higher order logic, such as the speci�cation lan-
guage S [JDD94], have the further advantages of allowing speci�cations to be
written in ASCII characters (encouraging portability), and being equipped with
typecheckers. Indeed, Day [Day93] has given a version of statechart semantics
in higher order logic for use in model checking and theorem proving.

Another advantage of higher order logic is that there is at least one executable
variant of it. Lambda Prolog [NM94, Mil96] is a logic programming language
based on higher order logic. In this paper, we use Lambda Prolog notation to
express the axiomatization, giving us one further side bene�t: we can use the
Lambda Prolog system to execute test cases for the semantics. (Miller has used
Lambda Prolog to de�ne the pi-calculus [Mil96] in a somewhat similar manner.)
The ability to actually run test cases is especially useful, and such a capability
may have allowed earlier researchers to avoid problems in their semantics without
having to buy commercial tools. All the semantics referred to in this paper are
available freely on the WorldWide Web [And98], as is the Lambda Prolog system
itself [Mil96].

The three top-level step semantics we de�ne here are in the style of Harel
and Naamad's synchronous and asynchronous semantics [HN96], and Pnueli and
Shalev's semantics [PS91]. Our goal here is not to achieve, for its own sake,
equivalence with previously-published semantics. Rather, we wish to present
semantics which avoid the paradoxes of broadcast communication (such as self-
triggering) and maintain the essence of the solutions embodied in the published
semantics, while retaining the elegance and simplicity of the process algebra
presentation.

We also use the framework we establish to add standard features to the
semantics which are absent from earlier process-algebraic treatments, such as
state-exiting transitions, transition conditions on state inhabitation, and a \his-
tory" facility. We also add features, such as parameterized states and event
renaming, which are not part of the original statecharts descriptions but are
nevertheless useful.

The remainder of this paper is structured as follows. Section 2 gives some
basic de�nitions. Section 3 describes the encoding of statecharts as terms, and the
axiomatization of the notion of microstep, common to all the semantics. Section
4 describes the axiomatization of the three high-level semantics we consider.
Section 5 describes the axiomatization of the additional features. Finally, section
6 discusses some issues to do with the execution of the semantics by Lambda
Prolog, and section 7 presents some conclusions and discusses possible future
work.

2 De�nitions

Here we de�ne some of the basic notions of this paper. We begin with a tradi-
tional but informal graph-theoretic description of statecharts, and then introduce
the Lambda Prolog notation for higher order logic.

2.1 Statecharts

We assume given sets of events, states, transitions, and state names.
A statechart consists of a set of states (possibly with names) and a set of

transitions, together with various relations amongst them. Each transition has
a source state and a target state, one or more trigger events, a condition, and
zero or more actions. Trigger events and actions are events. Conditions are of
the form in(statename) or not in(statename).

A state is either a basic state, an or-state, or an and-state. Or-states and
and-states contain substates. When a statechart is in an or-state, it also is (and
must be) in exactly one of its immediate substates; when it is in an and-state,
it also is (and must be) in all of its immediate substates. Thus or-states act
at their top level like conventional state-transition systems, and the immediate
substates of and-states act as concurrent processes. Each or-state has a default
substate, and the statechart as a whole has a root state. When a transition is
made to an or-state, the substate it is in is its default substate. A statechart
con�guration consists of a set of states of the statechart consistent with the
above, and describes a particular condition which the statechart can be in.

Informally, a transition is taken when its trigger event is active and its condi-
tion is true; it performs its actions on the transition, and these actions can then
trigger other transitions elsewhere in the statechart. All events are broadcast to
all states (the key di�erence with formalisms such as CCS).

The top of Figure 1 gives an example of a statechart. The statechart is an
\and-state" consisting of three concurrent components (which are separated by
dashed lines). The top state is a state which can make a transition on event a,
yielding event d1 as an action, and then make a transition on event b, yielding
d2 as an action. The middle state can make one of two transitions if event c is
not a current event: one producing c itself, or another producing d3. The bottom
state can make a transition on event c, producing d4.

2.2 Lambda Prolog Notation

A Lambda Prolog program contains kind declarations, type declarations and
clauses. The only kind declarations we will use here are of the form

kind lci type.
where lci is an identi�er (sequence of alphanumeric characters and underscores)
starting with a lower case letter. This declaration declares lci to be a type,
suitable for mentioning in type expressions. The prede�ned types are o, the type
of propositions, and int, the type of integers.

Lambda Prolog has an LF-style [HHP93] type system. The type expressions
we will use are the user-de�ned or prede�ned types, and expressions of the form
(list type-expr) or (type-expr -> type-expr). Type declarations are of the form

type lci type-expr.

Thus, for example, the standard map predicate on integer lists, which maps a
binary relation over the list to produce another list, can be declared as follows:

type map (int -> int -> o) -> (list int) -> (list int) -> o.

In higher order logic, a term is a constant, a lambda-abstraction �var:term,
or an application (term term). Terms of the form (: : : ((t1 t2) t3) : : : tn) can be
written (t1 t2 t3 : : : tn). In Lambda Prolog, free variables are identi�ers which
start with upper-case letters, but lambda-abstraction variables are written as
constants (lower case identi�ers). The lambda-abstraction �x:term is written x

\ term. The usual typing rules of higher order logic [HHP93] apply. The special
variable _", called the anonymous variable, is a variable which is distinct each
time it is used; we usually use it to hold the place of variables whose values we
don't care about. Terms of the type (list T) can also be of the form nil (the
empty list) or of the form (expr1 :: expr2), where expr1 is of type T and expr2
is of type (list T).

A clause in Lambda Prolog is of the form \atom:" or of the form \atom :-

atom; atom; : : : ; atom:", where each atom is a term of type o. As in Prolog, the :-
is interpreted as a backwards implication arrow , the comma is interpreted as
conjunction, and the free variables are implicitly interpreted as being universally
quanti�ed over the whole clause. Thus the map predicate can be de�ned using
the following clauses:

map _ nil nil.

map R (X::Xs) (Y::Ys) :-

R X Y,

map R Xs Ys.

Note the use of the anonymous variable _" in the �rst clause to indicate the
irrelevance of the relation being mapped.

3 Statechart Terms and Microsteps

3.1 Statechart Terms

Following Uselton and Smolka [US94] and Levi [Lev96], we de�ne statecharts as
terms, in which a statechart together with its current con�guration are encapsu-
lated in a single term. We begin with �ve basic types, event, name, cond, state
and basic state.

Following Day [Day93], we generalize conditions (type cond) as being built
up from basic conditions of the form (ev Event) or (in Statename), using the
operators andc, orc and notc. (ev Event)means that the given Event has been
raised by the environment or by a concurrent state, and (in Statename)means

that the statechart is currently in the state labelled by Statename. We de�ne
the types of the operators to conform to this usage.

In statecharts, a superstate with transitions leading from it can enclose an
arbitrarily complex substate. It is therefore necessary to preserve a distinction
between basic and non-basic states: basic states can perform transitions and can
act as the enclosing state of a superstate, while non-basic states can contain,
for example, parallel components. We de�ne basic states as being of one of the
following forms.

{ null, the state that can do nothing.
{ (reg trans Cond Actions State), the state which can make a regular

transition to State if Cond is true, performing the list of events Actions.
(This form of state is similar to CCS processes of the form a:P .)

{ (alt B C), the state which can act either like B or like C (similar to B + C
of CCS).

So we declare, for instance,
type reg_trans cond -> list event -> state -> basic_state.

(Non-basic) states are of one of the following forms.

{ (basic B), where B is a basic state.
{ (and S T), the state which consists of states S and T operating in parallel

and possibly communicating (similar to S j T of CCS).
{ (super S B), the state which contains the substate S, but which makes a

transition of the basic state B if that transition is enabled.
{ (named Name S), the state S labelled with the name Name.
{ (loop LxS), where LxS is of type state -> state. (loop xnS) acts as the

�xpoint, on the state variable x, of the process S. (We use the keyword \loop"
rather than the more common \�x" to emphasize the use of the construct
to encode looping paths in statecharts.)

As an example, the state depicted on the top of Figure 1 is represented by the
statechart on the bottom.

Levi [Lev96] gives a similar language, and shows how to derive a term from
a statechart diagram in a meaning-preserving fashion.

3.2 Microsteps

The major published semantics agree on the operation of a \microstep", the
group of transitions and actions immediately triggered by a set of events. They
di�er largely concerning how the triggered actions feed back into the statechart
and interact with external events.

We de�ne the relation microstep of type state -> (list event) ->

(list name) -> outcome -> o as a relation between:

{ An initial state S;

{ A list of input events;
{ A list of state names (intended to be the names of all the named substates
that S is currently inhabiting); and

{ One possible outcome of the execution of that state, given those events and
inhabiting state names.

Outcomes are of the type outcome, and are of one of two possible forms:

{ (idle S), indicating that the original process has stayed in the state S

without making any transitions; or
{ (moves T Actions), indicating that the original process has made some
internal transitions to state T, performing the list of events in Actions.

For now we consider only transitions which stay within the boundaries of a
superstate.

Figure 2 gives the axioms for the microstep relation. microstep passes
some of its work o� to basic microstep, which de�nes the outcomes of basic
states. basic microstep in turn refers to cond holds, a straightforward predi-
cate which de�nes when a condition holds. microstep de�nes for itself the mean-
ing of loop states; for all other kinds of states, microstep and basic microstep

determine the outcomes of any constituent states and then pass those outcomes
to an \outcome" predicate (and outcome, super outcome, etc.).

The axioms for the outcome predicates are shown in Figure 3. We will discuss
two of them. alt outcome gives the outcome of a basic state (alt B C) given
the outcomes of B and C. The state is idle if both B and C are idle; it makes a
transition deterministically if only one of B and C are idle; and if both B and C

can make a transition, the transition made is nondeterministic. super outcome

states that if a superstate can make a transition, that transition is taken, even
if the substate can also make a transition; and that otherwise the superstate
remains, enclosing its substate, which may have itself taken a transition. The
other outcome predicates are similar.

4 Three High-Level Step Semantics

The published semantics for statecharts all attempt to avoid the paradoxes of
broadcast communication, such as self-triggering, while still allowing the rich
expressiveness of statecharts. Each semantics can be criticized on some grounds,
but each attempts to solve the paradoxes and retain expressiveness in its own
way.

Here we will study axiomatizations of three semantics. The �rst is in the
style of Harel and Naamad's synchronous semantics, and the second is in the
style of their asynchronous semantics [HN96]. The third is in the style of Pnueli
and Shalev's semantics [PS91].

The basic task, in all the axiomatizations, is to de�ne the precise mean-
ing of the predicate step sequence, of type state -> (list (list event))

-> state -> (list (list event)) -> o, which gives the �nal outcome of a
sequence of steps. This is a relation between:

{ An initial state S;
{ A script, which is a list of lists of events, each list of events representing the

events happening externally at each step of a sequence of steps;
{ A �nal state, which is the con�guration of S after the entire script has been

processed; and
{ A trace, which is also a list of lists of events, each list representing the set

of actions performed by the statechart at each step.

Consider the statechart on the top of Figure 1, whose term representation is
shown at the bottom of the �gure. Each of the semantics produces a di�erent
�nal result when given the script (a::nil)::(b::nil)::nil (that is, a script
of two steps in which the �rst one receives only event a from the environment,
and the second receives only event b).

4.1 Statemate Synchronous Style

In the Statemate synchronous style, the actions performed on a microstep are
taken as a�ecting the statechart at the next whole step. A step is, in some sense, a
microstep, and the actions of a microstep are added to the environment's events
to produce the set of events a�ecting the next step.

The axioms for this style of semantics are given in Figure 4. (From this point
on, we omit type declarations in the �gures.) The predicate current statenames

simply determines which named substates the statechart is currently in, and
is de�ned much as in Levi [Lev96]. The auxiliary predicate after microstep

analyzes the outcome of a microstep and de�nes the �nal state and trace based
on it.

On being run on the di�erentiating statechart and the script
(a::nil)::(b::nil)::nil, the Statemate synchronous semantics produces
two possible traces: (d1::c::nil)::(d2::d4::nil)::nil

and (d1::d::nil)::(d2::nil)::nil. The two traces correspond to the two
possible transitions which can be taken by the middle concurrent substate. Note
that the transition :c=c is allowed to be followed, even though its e�ect negates
its condition, because the e�ect is taken as occurring later.

4.2 Statemate Asynchronous Style

The Statemate synchronous semantics is perhaps the simplest, but is very sensi-
tive to the precise sequence of events from the environment and how they interact
with \internal" events. In the Statemate asynchronous style, a microstep again
feeds its actions back into the statechart without regard for whether its actions
have negated the conditions on the transitions. However, before the next set
of events from the environment is processed, the statechart continues to make
feedback microsteps until it is �nally idle.

Harel and Naamad [HN96], in their informal semantics, do not make precise
whether the events from the environment persist throughout the entire step in
the asynchronous semantics. (Mikk et al. [MLPS97] do not give details of their

formal version of the asynchronous semantics.) Here we assume that environment
events persist only for the �rst microstep, but the axioms could easily be changed.

To axiomatize this semantics, we give an overall de�nition of step sequence

which depends on a speci�c predicate step. step in turn performs a microstep
and feeds back the results until quiescence. Figure 5 gives these axioms. The
predicate outcome state simply takes an outcome and returns the result state
and the list of events (if any) it has performed.

On being run on the di�erentiating statechart and
the script (a::nil)::(b::nil)::nil, the Statemate asynchronous semantics
also produces two possible traces: (d1::c::d4::nil)::(d2::nil)::nil and
(d1::d3::nil)::(d2::nil)::nil.The �rst trace shows that the two-transition
cascade caused by the condition :c being true has now happened all on the �rst
step, leaving only d2 to occur on the second. The second trace is the same as
the second trace from the synchronous semantics, since no transition cascades
are involved.

4.3 Pnueli-Shalev Style

A possible criticism of both the Statemate semantics is that the �ring of transi-
tions with negated conditions is still sensitive to the sequence of events generated
internally. Furthermore, it is still possible for a transition to �re which eventually
brings about a situation in which its own condition does not hold.

Pnueli and Shalev [PS91] instead take the view that a transition with condi-
tion :a, for instance, cannot logically happen on the same step as a transition
which produces a. In their view, the upper transition of the middle substate
of the statechart in Figure 1 should never be followed, since its action negates
its own condition. They therefore de�ne \what is in a step" as a set of transi-
tions, each of which is triggered by one of the events from the environment or
by some other transition, but none of which negate the conditions of any of the
others. The constructive de�nition of this set involves taking the �xpoint of a
transformation, or iterating a nondeterministic microstep operation. The price
we pay for this semantics is less clarity in what transitions are allowed in certain
circumstances, and greater nondeterminism in other circumstances [LHHR94].

Space does not permit us to describe our axiomatization of the Pnueli-Shalev
semantics fully, but here we touch on the main points. The interested reader can
access the full axiomatization [And98].

We de�ne \tagged" versions of most of the main predicates, such as
microstep and the outcome predicates. These tagged predicates do much the
same as the originals, but also produce a version of the state being processed with
tags on the transitions which have been followed. When these tagged states are
fed back into the predicates, they ensure that tagged transitions can be followed
and that they are not overridden, for instance by superstate transitions.

The axiomatization of the Pnueli-Shalev notion of step is contained in Figure
6. The axioms for step sequence and outcome state are exactly as in the
Statemate asynchronous semantics. Note that tmicrostep is run repeatedly on
the same state, adding more and more events to the current event set and more

and more tags to transitions. This continues until the process reaches a �xpoint
at which the actions produced are a subset of the events input. The outcome of
the original state is then taken to be the outcome of the �xpoint tagged state. If
a causal paradox arises, such as a transition in a substate triggering a transition
from a superstate, then a �xpoint does not exist. Following Pnueli and Shalev,
we declare such a state to be idle.

On being run on the di�erentiating statechart and the
script (a::nil)::(b::nil)::nil, the Pnueli-Shalev semantics produces only
one possible trace: (d1::d3::nil)::(d2::nil)::nil. Because the upper tran-
sition of the middle concurrent state can never be followed, event c cannot be
produced and the lower state must remain idle.

5 Adding Features

We have already described one feature not dealt with in previous process-
algebraic treatments: general transition conditions including state inhabitation.
Here we discuss the axiomatization of some other features of published stat-
echarts systems, as well as some useful features which the higher order logic
setting helps to axiomatize. We show that it is even possible to model state
history and persistent variables with these features.

Unless otherwise stated, the features described here involve only more con-
stants, more axioms for the microstep predicate, and more auxiliary predicates.
The full axiomatization of these features can be found on the associated Web
site [And98].

State Name Scoping, Action Renaming. It is often useful, when building large
systems, to be able to allow several similar states to be active concurrently. Hav-
ing a global namespace for states and actions inhibits this, since (for instance)
if there are several states with the same name, it is impossible to distinguish
between them in transition conditions.

We provide a state name scoping mechanism via a new form of state,
(name scope LnS), where LnS is a term of type name -> state. Event scoping is
more problematic because of the broadcast nature of statechart communication
and the global feedback of events required for many of the semantics.

We therefore provide a bidirectional event renaming mechanism via a new
form of state. (event rename Extevent Intevent S) represent the state which
renames any incoming event Extevent as Intevent for use internally, and any
outgoing action Intevent as Extevent. This does not, however, preclude the
state S sending out Extevent and having it re-enter as Intevent via one of
the feedback loops. Alternatives include some mechanism such as Levi's event
structures or a more local de�nition of the e�ect of an action.

Prioritized Transitions. Distinctions in priority between transitions can be mod-
elled easily in a process-algebraic setting. We add a new form of basic state,
(prio B C), to represent the state which makes a transition of B if one is en-
abled, and otherwise makes a transition of C if one is enabled.

(prio B C) is similar in e�ect to (super (basic C) B), which would lead
one to question whether priorities are necessary. However, a transition of C causes
us to leave B in (prio B C), whereas a transition of C in (super (basic C) B)

makes us retain �B as an enclosing state.

State-Exiting Transitions. Previous process-algebraic treatments have not con-
sidered the modelling of state-exiting transitions { that is, transitions which
begin in one state and end in a state outside that state's superstate. Such tran-
sitions are useful, since it may only be within a substate that one has the infor-
mation necessary to trigger a transition.

We model state-exiting transitions using a new basic state and a new out-
come. The basic state (exit trans Name Cond Actions S) is a state which can
make a transition to S, exiting the state named Name, and performing the events
in Actions, if Cond is true. The rule we follow is that if more than one transition
exiting a state is enabled, the one which is taken will be the one exiting the high-
est enclosing named state. The term (exits Exitlist) represents the outcome
of a state with transitions which potentially exit more than one enclosing state.
Exitlist is a term of type (list basic state), each of whose elements is a
basic state of the form (exit trans Name Cond Actions S).

The provision of state exiting involves more axioms for the outcome predi-
cates. The augmented outcome predicates ensure that an exits outcome always
takes priority over an idle outcome or a regular move; that competing exits have
their exit lists combined; and that at each named state exited, the exits from
that state are weeded out as of lower priority, until the only exit transitions
remaining are those exiting one state. At that point, if more than one transition
remains, the choice is nondeterministic.

We have provided state-exiting transitions only for the Statemate-style se-
mantics; the extension to the tagged predicates of the Pnueli-Shalev semantics
should be straightforward.

State History. History transitions were not considered by Pnueli and Shalev or
in process-algebraic approaches, but are included in the statecharts described by
Harel. We model the keeping of history as something which happens on a state-
exiting transition, rather than as an inherent property of a state. This allows the
state moved to to be parameterized by the current con�guration of the history
state. It also allows history to be a relatively simple extension of state-exiting
transitions.

We allow another form of basic state, (histexit trans Name Cond Actions

LxS), where LxS is of type state -> state. On exiting the outermost named
state with the normal exit transition (exit trans Name Cond Actions S),
we move to S; in contrast, on exiting the outermost named state with
(histexit trans Name Cond Actions LxS), we simply move instead to (LxS

T), where T is the term representing the former con�guration of the state.

The version of history thus implemented is the \deep history" from Harel's
original paper [Har87]. We do not attempt to axiomatize the \shallow history"

which retains only history of the top-level state, or any \history clearing" mech-
anism.

Value-Passing and Parameterization. We add a simple form of value-passing.
We de�ne a parameter as an event of the form (param Tag Value), where Tag
and Value are both events. We then de�ne a new form of state, (param trans

Cond Event Tag LeS), where LeS is of type event -> state. Upon receiving
an event of the form (param Tag Value), a state of this form makes a transi-
tion to the state (LeS Value). In this way, components of a state are able to
communicate values to concurrent components via parameters.

This simple form of value-passing does not permit states which both loop
and depend on parameters. For this, we de�ne another form of state, (parloop
LmLvS Initval), where Initval is of type event and LmLvS is of type (event
-> state) -> event -> state. The one added axiom needed for this state is:

microstep (parloop LmLvS Val) Es Ns Outcome :-

microstep (LmLvS u\(parloop LmLvS u) Val) Es Ns Outcome.

For example, let the term Persistent var have as its value the term

m\ v\ (basic

(alt (param_trans truec nil newval m)

(reg_trans (ev query) (currval v :: nil) (m v))))

(assuming that newval and query are of type event, and currval is
of type event -> event). Then calling microstep on the term (parloop

Persistent var Initval) is equivalent to calling it on the term

(basic

(alt (param_trans truec nil newval

(u\ (parloop Persistent_var u))

(reg_trans (ev query) (currval a :: nil)

(parloop Persistent_var a))))

That is, the term represents a persistent variable which responds with its current
value when queried, and sets itself to a new value when a new value is given.

6 Execution Issues

When viewed as a Lambda Prolog program, the axiomatization in this paper,
including the added features described above, comprises about 700 lines of code.
The code is modularized in order to prevent undue duplication of predicate
de�nitions. It typechecks and has been subjected to a number of tests.

Test cases can be \executed" in the sense that the query (step sequence

State Script Final state Trace) can be posed to the system, with any of
the three top-level semantics and various desired combination of added features.
Here State is a ground (closed) term of type state, and Script is a ground

term of type (list (list event)). The system returns the �nal con�guration
of the state, and the trace of the state when run on the script.

Negation is used in the axiomatization, for instance to tell when a condition
is not satis�ed. Lambda Prolog implements negation as failure (NAF) [Cla78]. In
general, the form of NAF it uses is unsafe, in that it can return invalid results; but
it is safe if no uninstantiated variables are used within negations [And93, St�a94].
We claim that for step sequence queries such as those above, this condition is
always satis�ed.

Thus we can compute the outcome of a state given an event script; but we
cannot, for instance, run a query of the form (step sequence State Script

Final state Trace) where Script is not instantiated but Trace is, and expect
Lambda Prolog to correctly �nd a script leading to that trace. Nevertheless, the
execution facility is useful for checking the correctness of the axiomatization.
Furthermore, the e�ect of such queries as those mentioned can be achieved by
standard logic programming techniques such as generate and test.

7 Conclusions and Future Work

We have given axiomatizations based on three of the most important semantics
for statecharts, using notions from process algebra and an executable version of
higher order logic. We have also described how further desirable features of stat-
echarts can be axiomatized. The process-algebraic framework has proven valu-
able by allowing us to condense the axiomatization and focus on the behaviour
of individual language features. Higher order logic has proved valuable for easily
allowing us to express relationships and variable abstraction constructs.

In the future, we would like to extend this work to encompass other features.
A particularly desirable feature would be event scoping, which comes so naturally
in CCS and may be easier to express using Levi-style event structures than in
the framework advocated here. It would also be interesting to approach the
Statemate semantics more closely by adding the many features of that tool,
such as actions taken on state entry and exit.

While Levi [Lev96] has given a method for translating a statechart diagram
to a term as she de�nes it, it is not completely clear how the features we have
added would a�ect the translation. This issue is important if we want to retain
the diagrammatic representation which has proven so successful.

We would also like to study how far we can go with Lambda Prolog queries
in the analysis and proof of temporal properties of states. The CCS and CSP
communities have gotten a head start on statecharts in this area because they
established a �xed semantics earlier. If statecharts are to be a major part of
industrial object-oriented design, they will have to catch up in this regard.

8 Acknowledgments

This paper comes out of work the author did while funded by the FormalWare
project. Thanks to Je� Joyce, Nancy Day and Michael Donat for many vital

discussions about statecharts during the course of the project. Thanks also to
Francesca Levi for further clari�cations on her papers.

The FormalWare project is �nancially supported by the BC Advanced Sys-
tems Institute (BCASI), Hughes Aircraft of Canada Limited Systems Division
(HCSD), and MacDonald Dettwiler Limited (MDA). While working on the
project, the author derived half his funding from the project and half from
the generous support of Dr. Paul Gilmore of UBC Computer Science, via his
grant from the Natural Sciences and Engineering Research Council of Canada
(NSERC).

References

[ADJ97] James H. Andrews, Nancy Day, and Je� Joyce. Using a formal description
technique to model aspects of a global air tra�c telecommunications net-
work. In Formal Description Techniques and Protocol Speci�cation, Testing
and Veri�cation: FORTE X / PSTV XVII, pages 417{432, Osaka, Japan,
November 1997. Chapman and Hall.

[And93] James H. Andrews. A logical semantics for depth-�rst Prolog with ground
negation. In Proceedings of the International Logic Programming Sympo-
sium, Vancouver, October 1993. MIT Press.

[And98] James H. Andrews. Web page for higher order process-algebraic axiomatiza-
tions of statecharts variants. http://www.csd.uwo.ca/faculty/andrews/
www/software/statecharts-lambda/index.html, March 1998.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56{68, 1940.

[Cla78] K. L. Clark. Negation as failure. In Logic and Data Bases, pages 293{322,
New York, 1978. Plenum Press.

[Day93] Nancy A. Day. A model checker for statecharts. Master's thesis, Depart-
ment of Computer Science, University of BC, Vancouver, BC, Canada, 1993.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8:231{274, 1987.

[HG97] David Harel and Eran Gery. Executable object modeling with statecharts.
IEEE Computer, 30(7):31{42, July 1997.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�n-
ing logics. Journal of the ACM, 40(1), January 1993.

[HN96] David Harel and Amnon Naamad. The Statemate semantics of statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):293{333,
October 1996.

[HPSS87] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman. On the formal semantics
of statecharts. In Proceedings of the First IEEE Symposium on Logic in
Computer Science, pages 54{64, Ithaca, NY, June 1987.

[JDD94] Je�rey J. Joyce, Nancy A. Day, and Michael R. Donat. S: A machine read-
able speci�cation notation based on higher order logic. In Higher Order
Logic Theorem Proving and Its Applications, 7th International Workshop,
volume 859 of LNCS. Springer-Verlag, 1994.

[Lev96] Francesca Levi. A process language for statecharts. In Proceedings, Analysis
and Veri�cation of Multiple-Agent Languages, number 1192 in LNCS, pages
388{403. Springer, 1996.

[LHHR94] Nancy G. Leveson, Mats P. E. Heimdahl, Holly Hildreth, and Jon D. Reese.
Requirements speci�cation for process-control systems. IEEE Transactions
on Software Engineering, 20(9):684{707, 1994.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[Mil96] Dale A. Miller. Lambda Prolog home page.
http://www.cis.upenn.edu/ dale/lProlog/index.html/, 1996.

[MLPS97] Erich Mikk, Yassine Lakhnech, Carsta Petersohn, and Michael Siegel. On
formal semantics of statecharts as supported by Statemate. In Proceedings
of the BCS-FACS Northern Formal Methods Workshop, Ilkley, UK, July
1997. Springer.

[NM94] Gopalan Nadathur and Dale Miller. Higher-order logic programming. In
D. Gabbay, C. Hogger, and A. Robinson, editors, Handbook of Logic in Ar-
ti�cial Intelligence and Logic Programming, Oxford, 1994. Oxford University
Press.

[PS91] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts.
In Proceedings of the Symposium on Theoretical Aspects of Computer Soft-
ware, volume 526 of LNCS, pages 244{264, Berlin, 1991. Springer.

[St�a94] Robert St�ark. The declarative semantics of the Prolog selection rule. In
Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer
Science (LICS '94), Paris, 1994. MIT Press.

[US94] Andrew Uselton and Scott Smolka. A compositional semantics for state-
charts using labelled transition systems. In Proceedings of CONCUR 94,
volume 836 of LNCS, pages 2{17. Springer, 1994.

[vdB94] Michael von der Beeck. A comparison of statecharts variants. In Proceed-
ings, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
863 of LNCS, L�ubeck, Germany, September 1994. Springer.

This article was processed using the LaTEX macro package with LLNCS style

a/d1 b/d2

~c/c

~c/d3

c/d4

(and

(basic (reg_trans (ev a) (d1::nil)

(basic (reg_trans (ev b) (d2::nil) (basic null)))

))

(and

(basic (alt

(reg_trans (notc (ev c)) (c::nil) (basic null))

(reg_trans (notc (ev c)) (d3::nil) (basic null))

))

(basic (reg_trans (ev c) (d4::nil) (basic null)))

)

)

Fig. 1. An example statechart, and the term which encodes it.

type basic_microstep basic_state -> (list event) -> (list name) ->

outcome -> o.

basic_microstep null _ _ (idle (basic null)).

basic_microstep

(reg_trans Cond Actions S) Es Ns

(idle (basic (reg_trans Cond Actions S))) :-

cond_holds (notc Cond) Es Ns.

basic_microstep (reg_trans Cond Actions S) Es Ns (moves S Actions) :-

cond_holds Cond Es Ns.

basic_microstep (alt B C) Es Ns Outcome :-

basic_microstep B Es Ns BO,

basic_microstep C Es Ns CO,

alt_outcome BO CO Outcome.

type microstep state -> (list event) -> (list name) ->

outcome -> o.

microstep (basic B) Es Ns Outcome :-

basic_microstep B Es Ns Outcome.

microstep (and S T) Es Ns Outcome :-

microstep S Es Ns SO,

microstep T Es Ns TO,

and_outcome SO TO Outcome.

microstep (super S B) Es Ns Outcome :-

microstep S Es Ns SO,

basic_microstep B Es Ns BO,

super_outcome SO BO Outcome.

microstep (named Name S) Es Ns Outcome :-

microstep S Es Ns SO,

named_outcome Name S SO Outcome.

microstep (loop Lx_S) Es Ns Outcome :-

microstep (Lx_S (loop Lx_S)) Es Ns Outcome.

Fig. 2. Axioms for microsteps for all semantics.

type alt_outcome outcome -> outcome -> outcome -> o.

alt_outcome (idle (basic B)) (idle (basic C)) (idle (basic (alt B C))).

alt_outcome (moves S Actions) (idle _) (moves S Actions).

alt_outcome (idle _) (moves T Actions) (moves T Actions).

alt_outcome (moves S Actions) (moves _ _) (moves S Actions).

alt_outcome (moves _ _) (moves T Actions) (moves T Actions).

type and_outcome outcome -> outcome -> outcome -> o.

and_outcome (idle S) (idle T) (idle (and S T)).

and_outcome (idle S) (moves T Actions) (moves (and S T) Actions).

and_outcome (moves S Actions) (idle T) (moves (and S T) Actions).

and_outcome (moves S S_Actions) (moves T T_Actions)

(moves (and S T) Actions) :-

append S_Actions T_Actions Actions.

type super_outcome outcome -> outcome -> outcome -> o.

super_outcome (idle S) (idle (basic B)) (idle (super S B)).

super_outcome (idle _) (moves T Actions) (moves T Actions).

super_outcome (moves _ _) (moves T Actions) (moves T Actions).

super_outcome (moves S Actions) (idle (basic B)) (moves (super S B) Actions).

type named_outcome name -> state -> outcome -> outcome -> o.

named_outcome Name _ (idle S) (idle (named Name S)).

named_outcome Name _ (moves S Actions) (moves (named Name S) Actions).

Fig. 3. Axioms for \outcome" predicates.

step_sequence Current_state nil Current_state nil.

step_sequence

Current_state (Events::Rest_script) Final_state Trace :-

current_statenames Current_state Names,

microstep Current_state Events Names Outcome,

after_microstep Outcome Rest_script Final_state Trace.

after_microstep (idle S) Rest_script Final_state (nil::Trace) :-

step_sequence S Rest_script Final_state Trace.

after_microstep (moves S Actions) nil S (Actions::nil).

after_microstep

(moves S Actions) (Events::Rest_script)

Final_state (Actions::Rest_trace) :-

append Events Actions Combined,

step_sequence S (Combined::Rest_script) Final_state Rest_trace.

Fig. 4. The axioms for the Statemate synchronous style semantics.

step_sequence Current_state nil Current_state nil.

step_sequence

Current_state (Events::Rest_script)

Final_state (Actions::Trace) :-

step Current_state Events Outcome,

outcome_state Outcome Next_state Actions,

step_sequence Next_state Rest_script Final_state Trace.

outcome_state (idle S) S nil.

outcome_state (moves S Actions) S Actions.

step Current_state Events Outcome :-

current_statenames Current_state Names,

microstep Current_state Events Names Interim_outcome,

after_microstep Interim_outcome Outcome.

after_microstep (idle S) (idle S).

after_microstep (moves S Actions) Outcome :-

current_statenames S Names,

microstep S Actions Names Interim_outcome,

after_move Interim_outcome Actions Outcome.

after_move (idle S) All_actions (moves S All_actions).

after_move (moves S Actions) Actions_sofar Outcome :-

current_statenames S Names,

microstep S Actions Names Interim_outcome,

append Actions_sofar Actions All_actions,

after_move Interim_outcome All_actions Outcome.

Fig. 5. The axioms for the Statemate asynchronous style semantics.

step Current_state Events Outcome :-

current_statenames Current_state Names,

tmicrostep Current_state Events Names Tagged_outcome,

til_fixpoint Tagged_outcome Events Names Outcome.

step Current_state Events (idle Current_state) :-

current_statenames Current_state Names,

tmicrostep Current_state Events Names Tagged_outcome,

not (exists_fixpoint Tagged_outcome Events Names).

exists_fixpoint Tagged_outcome Events Names :-

til_fixpoint Tagged_outcome Events Names Outcome.

til_fixpoint (tidle S) _ _ (idle S).

til_fixpoint (tmoves NewS Actions _ _) Events _ (moves NewS Actions) :-

subset Actions Events.

til_fixpoint (tmoves NewS Actions _ TaggedS) Events Names Outcome :-

not (subset Actions Events),

memb Added_event Actions,

not (memb Added_event Events),

Next_events = (Added_event::Events),

tmicrostep TaggedS Next_events Names Tagged_outcome,

til_fixpoint Tagged_outcome Next_events Names Outcome.

Fig. 6. The axioms for the Pnueli-Shalev style semantics.

