
Testing Library Components:
Experience with Red-Black Trees

formalWARE Presentation

October 8, 1997

Lee White

Department of Computer Science

University of Victoria

Component Testing:

Types of Libraries: STL for C++,
Ada Library

•Specification Test (Black Box)
•Implementation-Based Test

Tests Library
Component

Objective: This testing should be as thorough as possible
in terms of detecting errors, but very efficient in terms of
tester’s time; use automated testing to the greatest extent
possible

Implementation Based:

Given some information about the implementation, we want to
take advantage of this in our testing.

Example: If container is known to be implemented as red-black
tree, don’t build the trees, but specify the inputs to test these
structures.

Implementation-Dependent:

Given the exact method of implementation, base tests on this; less
desirable, because implementation details could change, in this
library or from one library to another.

Spec.
Based

Impl.
Based
& Dep.

Impl.
Based

Y N

Y

N

Implementation Dependent?

Specification
Based?

Both

Look at case of Specification-Based and Implementation-
Dependent: Ex: Tables of data of a certain kind will be
used in solution, given as part of the specification.

Testing: Specification-Based vs Implementation-Based:
Detected by motivation.

Testing: Implementation-Dependent: Detected by
specification.

We wanted to do Implementation-Based Testing
for Containers:

Containers: Red-Black Trees
Deques
Doubly-Linked Lists
Vectors (Arrays)

Insert (Key)

Delete (Key)

Find (Key)

Test
Container

Component

Problems of Observability and Controllability

A Red-Black Tree:

Is a Binary Search Tree (BST) in which every node
has either the color red or black, and which satisfies:

•Every leaf (nil) is black.

•If anode is red, then both its children are black.

•Every simple path from a node to a descendant leaf
 contains the same number of black nodes.

26
17 41

30
14 24 47

3828

35 39

23

10 16

19
7 12 15

3

An AVL Tree (or Balanced BST) is a BST which
satisfies the following condition:

•For every node in the BST, the maximum path
lengths in the left subtree and right subtree differ
by no more than one.

Red-Black Trees vs AVL Trees

An AVL Tree can be colored as a Red-Black Tree
(actually a Fibonacci Tree):

A Red-Black Tree which cannot be an AVL Tree:

Approach:

Implementation-Based Testing of Red-Black Trees:

•Construct all red-black trees automatically with
<= N nodes, and then perform insert and delete
operations on them.

Generation Technique:

•Breadth-first generation of red-black trees.

•We quickly found that some red-black trees
could not be generated in this way, even though
their shape as BST’s were as targeted.

Initial RB-Tree

Inserts:
RB-Tree Obtained:

Insert 0 Delete 0

Desired RB-Tree

4

2

1

5

3

4

2

1

5

4

2

1

5

3

4

2

1

0

5

3

4

2

1

0

5

3

4

2

1

5

3

•The next objective as implementation-based testing
was to generate all BST’s using breadth-first generation.

•Breadth-first generation worked OK until N=10 node
counter example.

•Could not generate this BST by breadth-first generation
method.

•Could not generate it by any permutation of input keys.

•Could not generate it by inputs alone.

7

5

3

2

1

4

6

9

10

8

Counter example for N=10

Why? Because adding node 1 will require rotations,
which will change the shape of the BST.

Necessary and Sufficient Conditions for BST’s given
as red-black trees to be generated by the breadth-first
method using the insert and elete algorithms of Cormen,
Leiserson & Rivest:

For every subtree of the given BST, compute the height
of the left subtree, HL, and of the right subtree, HR.

Then for every subtree, either

1) | HL - HR | <= 1, or

2) Max (HL, HR) = k (even) and
 Min (HL, HR) = (k - 2).

7

5

3

2

1

4

6

8

9

10

11

BST Counterexample

Add node 11 to satisfy necessary
and sufficient conditions at every node.

Now breadth-first algorithm can be used to generate this
BST, and then node 11 can be deleted.

We are now working on the conditions to generate all
red-black trees with N nodes.

