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Fig. 1. NESI compactly represents detailed 3D shapes (a, 109K faces) as intersections of neural explict height-field surfaces (HFs) (d-f). It compactly encodes a
set of differently oriented double (DHF) and single HFs (d) whose intersection well approximates the input. Given the same parameter budget, NESI provides
more accurate approximations (e) of the inputs than state of the art alternatives: (b) NGLOD [Takikawa et al. 2021], (c) NGF [Sivaram et al. 2024]. At higher

parameter counts (f) our results are visually indisitinguishable from the input.

Compressed representations of 3D shapes that are compact, accurate, and
can be processed efficiently directly in compressed form, are extremely use-
ful for digital media applications. Recent approaches in this space focus
on learned implicit or parametric representations. While implicits are well
suited for tasks such as in-out queries, they lack natural 2D parameterization,
complicating tasks such as texture or normal mapping. Conversely, paramet-
ric representations support the latter tasks but are ill-suited for occupancy
queries. We propose a novel learned alternative to these approaches, based
on intersections of localized explicit, or height-field, surfaces. Since explicits
can be trivially expressed both implicitly and parametrically, NESI directly
supports a wider range of processing operations than implicit alternatives, in-
cluding occupancy queries and parametric access. We represent input shapes
using a collection of differently oriented height-field bounded half-spaces
combined using volumetric Boolean intersections. We first tightly bound
each input using a pair of oppositely oriented height-fields, forming a Double
Height-Field (DHF) Hull. We refine this hull by intersecting it with additional
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localized height-fields (HFs) that capture surface regions in its interior. We
minimize the number of HFs necessary to accurately capture each input and
compactly encode both the DHF hull and the local HFs as neural functions
defined over subdomains of R%. This reduced dimensionality encoding deliv-
ers high-quality compact approximations. Given similar parameter count, or
storage capacity, NESI significantly reduces approximation error compared
to the state of the art, especially at lower parameter counts.
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1 Introduction

Shape representations which support efficient geometry manipu-
lation and processing, while also being accurate and compact, are
of major interest for applications such as video games, 3D con-
tent streaming, and VR/AR [Karis et al. 2021]. Popular traditional
representations include implicit surfaces, piecewise explicit repre-
sentations, and piecewise parametric surfaces (B-Reps) [Botsch et al.
2010; Cohen-Or et al. 2015; Farin 2002; Marsh 2005], each with pros
and cons. Implicits support in-out queries but cannot easily be pa-
rameterized, and thus do not directly support important geometry
processing tasks such as texture mapping. Piecewise parametric or
piecewise explicit surface representations, including meshes, can be
effectively used for many geometry processing operations [Botsch
et al. 2010; Cohen-Or et al. 2015], but do not directly support in-out
queries. In general, traditional representations are far from compact,
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Fig. 2. A shape (a) represented (d) as the intersection (green) of a DHF hull
(b) and an additional HF (c). Localizing the HF to a narrower parameter
domain Q (e), by implicitly assuming it to match the DHF elsewhere, reduces
representation redundancy.

and require large numbers of parameters, or degrees of freedom,
to capture detailed shapes; this has motivated the recent quest for
more compact neural alternatives (Sec. 2). State-of-the-art neural
implicit [Sitzmann et al. 2020b; Takikawa et al. 2022a, 2021, 2023] or
parametric [Morreale et al. 2022, 2021a; Sivaram et al. 2024] shape
representations provide a compact alternative to traditional repre-
sentations, and can accurately encode highly detailed shapes using
much fewer parameters. However, they inherit the processing lim-
itations of their traditional counterparts: neural implicits do not
support operations that require local or global surface parameteriza-
tion, such as meshing and texture mapping, while neural parametric
surfaces do not support occupancy queries. We propose a novel
shape representation which is more compact than existing alterna-
tives, and supports both fast in-out queries and processing tasks that
leverage parameter domain information, such as texture or normal
mapping.

We achieve this goal by leveraging the representational power
of explicit, or height-field (HF), surfaces. We recall that an explicit
or height-field (HF) surface is defined as the graph of a function
z = f(x,y) over a 2D domain Q € R? (see inset) and has an explicit
parameterization relative to this domain (i.e. P(x,y) = (x,y, f(x, ).
Moreover, HF surfaces partition space into inside (light blue) and
outside (white) half-spaces: a point (x,y,z) € R? is inside the half-
space, or volume, E(f), associated with the HF surface f if and only if
(x,y) € Q and  f(x,y) > z.
As such, explicit HF-based representations H
combine the processing advantages of im-
plicit and parametric ones. They are also in-
herently more compact than general para-
metric or implicit representations due to di-
mensionality reduction: all one must store
are the z = f(x, y) values over their param-
eter domain Q. However, the range of shapes representable by a
single HF surface is highly limited, as an HF can only represent
a surface with a single z value for each (x,y). Piecewise explicit
surface [Guskov et al. 2000; Maggiordomo et al. 2023] or volume
[Muntoni et al. 2018, 2019; Yang et al. 2020] representations, which
approximate surfaces or volumes using unions of HF surface patches
or bounded half-spaces, are no longer compact and cannot robustly
support in-out queries (Sec. 2).

We extend the advantages of explicit representations to generic
shapes by observing that even extremely complex shapes can be
accurately approximated using a Boolean intersection of just a
few judiciously selected overlapping HF half-spaces; for instance,
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the happy buddha (Fig. 1d) can be accurately approximated by in-
tersecting just five such half-spaces. Moreover, using intersecting
half-spaces as a shape representation allows for robust and efficient
in-out queries and trivial surface parameterization. We refer to this
HF intersection based representation as Explicit Surface Intersec-
tion, or ESI. We further note, importantly, that an intersection of
HF half-spaces can be compactly encoded in neural form by taking
advantage of the fact that each HF is simply defined by a function
z = f(x,y) over a 2D domain; encoding HFs in this manner produces
a Neural Explicit Surface Intersection, or NESI, representations.

While early attempts at representing shapes using HF intersec-
tions [Richter and Roth 2018; Shade et al. 1998] use a large set of
fixed, shape-independent, HF half-space orientations, or axis direc-
tions, they frequently fail to approximate large portions of the input
surfaces (see Sec. 2, Fig. 5). In contrast, we compute a minimal set
of best-approximating HF axes per input, achieving high approxi-
mation quality with just a handful of HFs (Sec 4, Fig. 5). This ability
to accurately represent diverse geometries using a small handful of
HFs is key to our shape representation.

Given an input shape defined via a mesh or other standard repre-
sentation, we tightly bound it using a pair of oppositely oriented HF
half-spaces that jointly define a Double HF (DHF) hull of the input
shape (Fig. 2b, Fig. 1d - blue). We refine this hull by intersecting it
with additional HF half-spaces that capture input surface regions
lying inside the hull’s interior (Fig. 2¢, Fig. 1d - yellow, purple, pink).
We optimize the choice of DHF and HF axis directions to minimize
approximation error, while still keeping the number of HFs used
as small as possible. Performing this optimization via brute-force
search makes the problem intractable, as even the evaluation of the
approximation quality of a single ESI is highly time consuming. We
make the problem tractable via a combination of pre-computation
and a branch-and-bound discrete optimization strategy that quickly
rejects direction candidates to arrive at an optimal solution with
minimal HF count. We avoid representational redundancy, where
multiple explicits describe the same areas on the input shape (e.g.
turtle arms in Fig. 2c), by only storing HF surface geometry in ar-
eas where it is not already adequately described by other explicits
(Fig. 2e). This localization process reduces the geometric complexity
of each HF, and thus the number of parameters required to encode
it. Using our scheme, the vast majority of shapes in commonly used
3D shape databases [Koch et al. 2019; Zhou and Jacobson 2016] can
be accurately represented using a DHF hull plus one to three addi-
tional HFs, with many shapes accurately represented using their
DHF hull alone (31% of objects tested in our experiments; Sec. 7).
We encode our DHFs and HFs using SIREN Multi-Layer Perceptron
(MLP) architecture [Sitzmann et al. 2020b], as it does not require po-
sitional encoding [Tancik et al. 2020] and yet is able to encode both
high- and low-frequency shape details. Our experiments (Sec. 6, 7)
demonstrate that NESI allows for straightforward surface parame-
terization, enabling texturing (Fig. 9) and other similar tasks, and
supports efficient and accurate in-out queries performed by follow-
ing the sequence of local intersection operations; the latter are used
to ray-trace all of our outputs throughout the paper.

We thoroughly validate the effectiveness of our method by evalu-
ating ESI accuracy across 320 inputs, and by learning NESI repre-
sentations of 100 diverse representative shapes using four different
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Fig. 3. NESI approximations (e) of complex inputs (a) are much more detailed
and accurate than those generated by leading implicit alternatives: (b)
[Takikawa et al. 2022a], (c) SIREN [Sitzmann et al. 2020b], and (d) [Takikawa
et al. 2021], despite using fewer parameters.

parameter counts for each shape. We compare our results to those
generated by leading alternatives using same or higher parameter
counts. On average our outputs are 30% more accurate than those
produced by the best-performing alternative (NGF [Sivaram et al.
2024]) using the same or lower parameter counts, with improvement
most pronounced at lower parameter counts. 86% of our learned
outputs more accurately approximate the input ground truth shapes
than those produced by this alternative, and our largest error across
all inputs tested is only one third of theirs.

2 Background and Related Work

A vast body of previous work exists on 3D shape representations,
each with their pros and cons. Here, we focus on representations
closest to NESI in terms of goals or properties.

Traditional Shape Representations. Parametric, or boundary (B-
Rep) representations, including polygonal meshes, define the bound-
ing surfaces of closed 3D shapes using collections of parametric
patches connected together along common boundary seams [Botsch
et al. 2010; Farin 2002]. These representations were designed for

surface-based tasks such as texturing, meshing, or (re)parameterization,

and rasterization. To support computing in-out queries using these
representations for tasks such as raytracing or collision detection,
those representations require non-trivial intersection computations
which are typically accelerated by building auxiliary data structures,
increasing their memory footprint. Accurately approximating input
shapes using either meshes or piecewise smooth parametric patches
requires large patch and parameter counts [Botsch et al. 2010; Li et al.
2006; Litke et al. 2001; Luebke 2001]. Mesh compression schemes
target compact mesh storage and transmission, and require decom-
pressing the outputs prior to actual use [Alliez 2005; Maglo et al.
2015]. Geometry Images [Carr et al. 2006; Gu et al. 2002; Sander et al.
2003] compress meshes via 2D parameterization; they retain the
inherent limitations of parametric representations and require large
amounts of atlas space to obtain quality approximations. Our NESI
representation combines the advantages of parametric representa-
tions with fast in-out queries, has a much smaller memory footprint,
and can be processed directly in its compressed form. In Fig 6 we
approximate the Buddha mesh with 120K triangles using just 48k
parameters, producing a visually practically identical render (the
chamfer distance between our model and the input mesh is 0.28).
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Fig. 4. Comparing ESls vs prior explicit based representations: (a) [Guskov
et al. 2000] use 98 explicit defined over a base mesh to represent the three-
hole torus, (b) we use a single DHF. Shape partitions into single [Muntoni
et al. 2018] height field explicits (c), and double height-field explicits [Yang
et al. 2020] (d) use much larger numbers of explcits than ESI (e).

Implicit representations (e.g. [Blinn 1982; Osher and Fedkiw 2005;
Wyvill et al. 1998]) define a closed surface S as a level set of a func-
tion F : R® — R. Implicits support efficient in-out queries [Jones
et al. 2006; Takikawa et al. 2022b] but are difficult to parameter-
ize either globally or locally [Schmidt et al. 2006], making them
challenging to texture, mesh, or normal map. Converting generic
surfaces into analytic implicit form remains an open problem [Buon-
amici et al. 2018]; the commonly-used grid-based representations
of implicits (e.g. [Museth 2013; Williams et al. 2024]) are highly
memory consuming.

Explicit Surfaces. Classical explicit, or height-field (HF), surfaces
are defined as height functions z = F(x,y), (x,y) € Q over a 2D
domain Q € R? [Farin 2002; Marsh 2005]. In the general case, the
parameter domain can lie in any plane in R?, and the height z
represents the offset or distance from this plane along the plane’s
normal, or axis. HFs can be viewed as a special case of parametric
surfaces and trivially support parameterization-based tasks. Since
few shapes can be described by a single explicit surface, numerous
attempts had been made to describe shapes using combinations of
multiple HFs.

Approximating existing shapes using piecewise HFs defined over
polygonal domains [Guskov et al. 2000; Khodakovsky et al. 2000;
Novak and Dachsbacher 2012] significantly reduces the memory
footprint of a shape relative to a standard mesh representation, and
facilitates efficient rendering using displacement maps [Maggior-
domo et al. 2023; Thonat et al. 2021]. Accurate piecewise explicit
approximation of complex shapes requires a large number of patches
and is far from compact. For instance, [Guskov et al. 2000] uses 98
patches to approximate the three-holed torus (Fig 4a)., whereas
we approximate it using a single DHF hull (Fig 4b); [Novak and
Dachsbacher 2012] use hundreds of patches to represent the dragon
in Fig. 3, which we approximate using one DHF and 3 HFs.

By defining the “inside” of a height-field z = f(x, y) as the vol-
ume between the parameter domain and the surface, explicits can
also be viewed as a special case of occupancy function implicits
[Mescheder et al. 2019]: points (x, y, z) are inside the shape if and
only if (x,y) € Q and z € [0, f(x,y)] (placing the parameter do-
main at z = —oo partitions R? into inside and outside half-spaces).
Several fabrication methods partition shapes into explicit volumes
bounded by either a height-field and its parameter domain [Fekete
and Mitchell 2001; Gao et al. 2015; Herholz et al. 2015; Hu et al. 2014;
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Fig. 5. Depth fusion methods (a,c) use intersections of multiple depth maps
with fixed, input independent axis directions (visualized by arrows) to ap-
proximate input shapes. These methods often fail to approximate large parts
of the input surfaces (red in a and c) not visible along these axes. (a) 20
axis directions evenly distributed on a circle in the x — y plane [Shade et al.
1998]; (c) 6 directions aligned with the +/- axes of the object’s coordinate
system [Richter and Roth 2018]. (b,d) ESI accurately captures both shapes
using a single DHF with automatically computed optimal axis.

Muntoni et al. 2018, 2019] (Fig. 4c), or by pairs of oppositely ori-
ented height-fields [Alderighi et al. 2021; Yang et al. 2020] (Fig. 4d).
Both piecewise and volumetric explicit representations are far from
compact, requiring high block counts for quality approximation;
for the example Muntoni et al. [2018] require 13 explicit volumes
and [Yang et al. 2020] requires 12 to approximate the lion statue in
the inset; we accurately approximate this input with one DHF hull
and one HF (Fig. 4d). More importantly, while partition-based rep-
resentations are theoretically suitable for in-out queries, in practice
assessing if a point is inside a union of non-overlapping blocks leads
to false negatives for points next to boundaries between the different
volumes, even deep inside the original shape. The likelihood of such
catastrophic failures increases when the individual explicit volume
geometries are compressed. By representing shapes as intersections
of explicits, rather than unions, we drastically reduce the number of
explicits required to accurately represent general shapes and side-
step the need to handle gaps and floating point issues along internal
boundaries.

Our representation is inspired by depth fusion approaches for
shape reconstruction [Curless and Levoy 1996; Richter and Roth
2018; Turk and Levoy 1994] and representation [Richter and Roth
2018; Shade et al. 1998] (Fig. 5ac). These methods define shapes as
intersections of differently oriented depth maps or height-fields.
The key difference between these approaches and ours is the choice
of HF orientations, or axis directions. Depth fusion methods rely
on large sets of input independent depth map axis directions. Re-
construction methods such as [Curless and Levoy 1996; Turk and
Levoy 1994] use input camera views as directions. Others rely on
a fixed set of axis directions: e.g. [Shade et al. 1998] uses 20 direc-
tions evenly distributed on a circle in the xy plane (Fig. 5a), while
[Richter and Roth 2018] uses the positive and negative axes of the
standard Euclidean coordinate system (Fig. 5c). As [Richter and
Roth 2018] acknowledges, this approach often fails to capture large
portions of input shape surfaces. To address this challenge, they
use 5 layers of depth maps, placed one inside the other (forming a
“matryoshka”); effectively, this means their method requires 30 (5x6)
depth maps. The key distinction between these works and NESI is
our use of HF axes that are optimized per-input so as to maximize
approximation quality (Fig 5bd). Finding these optimal directions
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efficiently requires solving a complex combinatorial optimization
problem across a large potential solution space (Sec 4). This opti-
mization based approach allows us to approximate 3D shapes with
much higher accuracy, while using significantly fewer HFs overall.
We require only 1 DHF for the examples in Fig 5; on average we
use 1 DHF and fewer than 2 HFs to well approximate the 320 inputs
tested (Sec 7).

Relief texture mapping [Baboud and Décoret 2006; Oliveira et al.
2000] is a rendering method that adds surface detail to low-resolution
meshes during the rendering process without performing displace-
ment mapping. It achieves this goal by applying heightmaps from
fixed, orthogonal directions to a low resolution mesh at a per-pixel
level, effectively augmenting standard texture maps with per-texel
depth, as such they share some similarity with the reconstruction
methods above, and specifically [Richter and Roth 2018] in their
use of 6 axis-aligned heightmap directions. Relief texture mapping
methods only attempt to simulate the illusion of detailed surface
geometry during rendering, and do not attempt to represent it; as
such, they solve a problem distinct from ours. We compare our com-
puted axis selection against the use of orthogonal axis directions
(similar to those used by relief texture mapping and [Richter and
Roth 2018]) in Sec. 7.

Neural Shape Representations. Recent research efforts have at-
tempted to encode many of the representations above using neu-
ral networks. Learning meshes or general explicit/parametric B-
Rep/patch-based representations is known to be challenging due to
their topological irregularity [Hanocka et al. 2019; Maron et al. 2017]
and the need to ensure continuity across inter-patch boundaries
[Groueix et al. 2018]. AtlasNet [Groueix et al. 2018] and its followups
[Bednarik et al. 2020; Deng et al. 2020; Deprelle et al. 2022, 2019]
represent surfaces using disconnected partially overlapping patches.
Since this representation is not watertight, it cannot be reliably used
for in-out queries. Yang et al. [2023] rely on largely manually created
patch layouts to learn closed B-reps of input shapes. Both families
of methods require megabytes of storage (20 for [Bednarik et al.
2020; Deng et al. 2020] and 5 for Yang et al.) to accurately represent
input shapes. We achieve higher accuracy using filesizes under 280
kilobytes (Sec 7). Moreover, NESI is computed fully automatically
and robustly supports in-out queries.

Neural Surface Maps [Morreale et al. 2021b] represents surfaces
as learned geometry images; follow-up work [Morreale et al. 2022]
learn geometry images and a series of patch-based displacements.
Both methods suffer from the same issues as classical geometry
images, most notably lack of support for in-out queries and a re-
quirement that the input surface be cut so that it is homeomorphic
to the unit disk. Neural displacement methods [Chen et al. 2023a;
Sivaram et al. 2024] (Fig 1c) represent surfaces as a simplified coarse
meshes overlaid with a neurally encoded displacement map; like
other displacement map based representations, they do not directly
support in-out queries, and require a sufficiently dense base mesh to
capture topological details. Since extreme mesh simplification can
be challenging for inputs with complex topology, these methods
may fail or introduce severe visual artifacts at low parameter counts
(Sec. 7). We outperform the state-of-the-art methods in this category
[Morreale et al. 2022; Sivaram et al. 2024] by notable margins (Sec. 7).



NESI remains robust across all 400+ inputs and parameter count
combinations tested.

Many methods address learning of compact neural implicit shape
representations, including occupancy maps [Mescheder et al. 2019]
and Signed Distance Functions (SDF) [Chen and Akleman 1999;
Miiller et al. 2022]. Recent efforts include learning compact neural
implicit functions with a variety of internal representations [Chen
et al. 2023b; Chen and Zhang 2019; Davies et al. 2021; Li et al. 2022;
Mescheder et al. 2019; Park et al. 2019; Sitzmann et al. 2020a,b;
Yifan et al. 2022], or focusing on adaptive multiresolution hierar-
chies, combining sparse hierarchical grids with neural networks
[Takikawa et al. 2022a, 2021]. Yifan et al. [2022] represent shapes
as a combination of an implicit SDF and a height, or displacement
map. While drastically more efficient than naive storage, these meth-
ods inherit the limitations of traditional implicits when it comes to
parameterization-driven processing tasks such as texturing or geo-
desic computation. Sec. 7 compares NESI to representative recent
works in this category [Chen et al. 2023b; Li et al. 2022; Sitzmann
et al. 2020b; Sivaram et al. 2024; Takikawa et al. 2022a, 2021; Yifan
et al. 2022]; our method outperforms the best performing implicit-
based alternative (SIREN w/o eikonal loss) on 93% of the input shape
and parameter count combinations tested, and improves accuracy
(measured using L; Chamfer distance ) by a factor of 2.6.

[Richter and Roth 2018] propose a neural encoding of their depth
map grid based shape representation. They use 30 (5x6) depth maps
to encode each shape. Their reliance on grids (256° in their imple-
mentation) limits the accuracy of their outputs. NESI representation
is based on precise HF/DHF intersection, and uses smooth 2D ba-
sis functions to encode the individual explicits, facilitating a much
higher degree of accuracy. See Sec. 7 for additional comparisons.

Lastly, several methods focus on compact neural representation
of specific classes of shapes, e.g. CAD models [Lin et al. 2022; Yu
et al. 2023]. NESI is not class specific, and as demonstrated in Sec. 7 it
compactly and accurately represents both organic and CAD shapes.

3  Overview
3.1 Definitions.

Our shape representation centers around two types of volumetric ex-
plicits (VEs): closed double height field (DHF) hulls (Fig 2b) and open
half-spaces defined by single height-fields (HFs) (Fig 2c). We define
both DHFs and HFs with respect to their local x-y-z coordinate sys-
tems, as follows. Let Q denote a 2D bounded domain in the x-y plane,
and let f,(x,y) and f;,(x, y) be two piecewise continuous functions
defined over Q, with f;(x,y) > fp (x,y), V(x,y) € Q; then the DHF
hull is defined by DHF = {(x,y,2)|fa(x,y) 2z > fo(x,y) A (x,y) €
Q}. Here f,(x,y) and f,(x,y) are called the bounding functions of
the DHF. Similarly, let Q denote a 2D bounded domain in the x-y
plane, and let f(x,y) be a piecewise continuous function defined
over Q. We define HF = {(x,y,2)|z < f(x,y) A (x,y) € Q}. Here
f(x,y) is the bounding function or height function of the HF.
When a DHF hull or an HF is assigned a general orientation, we
associate it with its local coordinate system. In the notation below
we use a 3D unit direction vector d to denote the z-axis of the local
coordinate system and call d the axis of the corresponding VE. By
definition, a DHF hull is always closed, or bounded. In contrast, a
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HF is only half-bounded since it is unbounded in the direction of —d.
By these definitions, a DHF can be also viewed as the intersection
of a pair of HFs with parallel but opposite axis directions.

3.2 ESIs and NESIs.

Our analytic Explicit Surface Intersection (ESI) and learned Neural
Explicit Surface Intersection (NESI) representations use the inter-
section of one DHF hull DHF(d,) and zero or more HFs HF. (dy)
(k =1,2,...,m) to approximate a given 3D object. More specifically,
let S denote the set of points occupied by a given 3D shape; we then
approximate S by the set S = DHF(dy) N, HFy(dk). By construc-
tion, the DHF hull provides a closed and tight bounding volume
of S. Intersecting the DHF hull with the HFs further tightens this
bounding volume to achieve an accurate approximation of the input.
The key to our method is the observation that the vast majority
of shapes can be well approximated using the intersection of one
DHF and a very small number of HFs, with judiciously selected
coordinate system axes.

Computing ESIs. Acting on the observation above, we propose
an effective and efficient algorithm for computing the combination
of a DHF hull and an as-small-as-possible number of HFs whose
intersection accurately approximates the input shape (Sec. 4). As our
evaluation (Sec. 7) demonstrates, on average one DHF and two HFs
are amply sufficient to well approximate typical geometric shapes,
and many shapes (31% in our experiments) can be well approximated
using a single DHF.

3.3 Computing and Utilizing NESIs.

We convert ESIs into a neural form by learning neural representa-
tions of the individual volumetric explicits (Sec. 5). We minimize the
size of the learned DHF representations by leveraging the relation
between their two bounding functions, and reduce the size of the
individual HF encodings by only learning their surface shape in
areas not well-represented by the DHF or other HFs. Finally, we
propose efficient algorithms for performing common geometry pro-
cessing tasks directly on the learned NESI representations (Sec. 6).
NESI’s support for real-time in-out query computation enables fast
ray-tracing, collision detection, and other similar tasks; at the same
time, explicit surface parameterization of the individual VEs enables
other tasks such as texturing and meshing.

Extension to Occluded Surfaces. In our target applications, such
as video games or VR/AR immersion, the viewer is typically located
outside of rendered shapes and does not see content that is not
well visible from outside; our core method targets this setting and
implicitly prioritizes approximation of visible surface areas. We effi-
ciently extend our method to approximate shapes containing fully
or partially occluded surfaces by using unions of volumetric NESI
explicits S (see Fig. 22, Appendix C). Unless specifically indicated
otherwise, all results and measurements reported and shown in the
paper are generated without this extension.

4 ESI Computation

Given an input 3D shape S, represented using a triangular mesh,
we seek to approximate it as an intersection of DHF hull and zero
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Vv

(a) Input (b) DHF + HF

"

DHF Network

HF Network

(c) Network Architecture

6K parameters
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b
’
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=, CD:0.296x10°
PN
5 Inference =~

(d) Neural Field DHF+HF
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Fig. 6. Given an input 3D shape (a), we compute a DHF hull and HFs whose intersection accurately approximates the input (b). We then employ MLPs (c) to
encode the DHF and HFs as R? — R functions (on the HF only purple areas are inside the Q parameter domain) (d). At inference time we combine (intersect)

the MLP outputs (e).

or more HFs. Since processing time and memory footprint both
increase with the number of HFs, we aim to keep this number as
small as possible, while maximizing approximation quality.

Our approximations must satisfy two properties: volumetric ap-
proximation and surface coverage. The former property requires the
intersection of the volumetric explicits we use to closely overlap
the input shape S, and is critical for reliable in-out queries. The
surface coverage property requires the bounding functions of the
participating volumetric explicits to jointly cover the surface. This
property enables bijective piece-wise parametric representation of
the outer surface, or shell, of S.

To satisfy these properties, for an HF or
DHF with a known z-axis di, we position its
x-y plane just under the bounding sphere of
S along the axis direction (at the sphere-axis
intersection) and define the domain Q of the
VE in this plane as the 2D region bounded
by the silhouette of the object viewed along

DHF&HF intersection the axis direction. For the DHF, denoted by
DHF(dy), we define its bounding functions f;(x, y) (inset red) and
f»(x,y) (inset purple), over the domain Q, as the two depth maps
of the shell S when viewed along the —dy and d, directions, re-
spectively. For any given HF, denoted by HF,(dy), we define its
bounding function fi (x, y) (inset blue) over the domain Qy as the
depth map of the shape S when viewed along the direction di (see
Fig 2, 6b). This formulation ensures that the input shape S is en-
tirely contained inside each VE, and that each of the VE’s bounding
functions overlaps with the depth map of S with respect to the
corresponding axis.

With this definition in place, the problem of computing an opti-
mal set of VEs can be recast as one of computing the optimal set
of VE axis directions that best satisfy the two criteria above. We
note that optimizing either volumetric approximation or surface
coverage in isolation can produce outputs poorly suited to our needs.
oir oir In the inset, the top, horizontal, DHF axis choice pro-
= = duces a DHF that accurately approximates the input
shape, but whose bounding functions only cover the

DHF
axis

DHE,
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Fig. 7. Approximation criteria: given the inputs on the left (a), using only
surface coverage as an axis selection criterion produces VE intersections
that may contain extra undesirable connected components (b, highlighted
in red). Optimizing for both volumetric approximation and surface coverage
produces the outputs we seek (c).

square’s sides, whereas using the diagonal axis on the
bottom produces a DHF that satisfies both volumet-
ric approximation and surface coverage. Perhaps less
intuitively, as Fig 7 shows, surface coverage does not guarantee
volumetric approximation: while the choice of axes in (b) results in
a set of VEs whose bounding functions cover the input shape, the
intersection of the corresponding volumes contains an additional
undesirable connected component.
Based on these observations, we measure the quality of a given
approximation S, defined in terms of the participating DHF and HF
axes, as

E(S) = Dist(S, S) + min(u(S)(Dist(S,S) + &), 2) 1)

Here Dist(S, 5) measures the bidirgctional L Hausdorff, or closest,

distance between S and S; and u(S) measures the quality of the

surface coverage of S provided by the bounding functions of the
participating VEs:

() = Area(S) — Ar~ea(Ufk) @
Area(S)

The combined loss function balances the two criteria while pri-
oritising volumetric approximation. The set of variables we operate
on is the number of HFs and the axis directions of the DHF and
participating HFs; we seek to efficiently compute the combination



of axis directions that minimizes E(S). Unfortunately, even just com-
puting E(S) for a given set of VE axes is highly time consuming, as
it requires computing the geometry of the participating VEs, com-
puting their Boolean intersection, and then finally computing the
distance between this intersection and the input shape. To make this
optimization tractable, we rely on a discrete optimization process
that leverages the unique geometric properties of our DHF and HF
shapes, and an effective branch-and-bound scheme that exploits our
problem setup.

We first discretize E(S) by sampling both S and $ uniformly and
densely, producing sets of points P and P. Dist is then evaluated
point-to-point on these two sets (a.k.a. L; chamfer distance). We
avoid explicit computation of the bounding functions f. Instead,
for each point § € P, we estimate its likelihood of being on f; based
on its visibility v(p, di) along the axis di and the angle between p’s
normal 7i; and the axis direction. We set o(p, di) to 1 if the point is
visible (the ray from p along di does not intersect the surface) and
0 otherwise. We set

On(p, di) =max((1 = v(p,dp)), T(cos™" (5 - di))) ©)

Here T is the shifted and scaled tanh
function, tanh(x —85°)/2+ 0.5, shown
in the inset, chosen so that T is 0 if
fij is well-aligned with dj (the angle
between them is significantly below
90°) and increasing to 1 as the angle
approaches or exceeds 90°.

tanh(x - 85%) /2 + 0.5

75 80 85 900 95 100

We then define y as
L

=z 2, minOn(p, di) @
=

Even with this discretization in place, computing E(S) takes a
non-trivial amount of time, as it requires sampling points on S which
is not explicitly defined. We therefore seek to minimize the number
of E(S) evaluations.

To this end, rather than optimizing over an infinite set of possible
axis directions, we use a finite set of well-distributed potential axis
direction samples in our implementation (50 for DHF, and 80 for
HFs). Since each direction vector corresponds to a point on the unit
sphere, we evenly pick HF and DHF axis candidates by sampling
these points on the unit sphere S? using spherical Fibonacci sampling
[Keinert et al. 2015]. Since many objects encountered in practice are
axis-aligned, we augment our sampled candidate directions with
the three major axes (both directions).

As we expect approximation quality to improve as more HFs are
added, we compute solutions incrementally for each possible HF
count m, starting with m = 0 (i.e a DHF only); we terminate the
process only once adding an extra HF fails to improve accuracy, or
a maximal number of HFs is reached (we cap this number at 3; see
Sec. 7 for validation of this choice.) Even with m = 3, however, the
space of all possible axis combinations has 25.6 million combinations
(50 - 80%), necessitating both a highly efficient strategy to evaluate
E(S) and a robust search method that minimizes the number of
evaluations required.
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To achieve this speedup, we first recall that the term Dist is bidi-
rectional, and can be written as the sum of two nonnegative, one-
directional Chamfer distances (denoted CD): the Chamfer distance
between the candidate ESI and the mesh, and the Chamfer distance
between the mesh and the ESI:

Dist(S, S) = CD(S, S) + CD(S, S) (5)

We observe that we can sample points on our DHF and HFs by
leveraging simple-to-evaluate in-out queries: a point is inside an
HF (defined as above) if and only if a ray originating at the point
and emanating along the HF direction axis intersects the input
surface S, and a point is inside a DHF if and only if rays emanating
along both positive and negative axis directions intersect S. We use
this observation in a ray-casting framework to robustly compute
points on the surface of all potential DHF and HF volumes. Notably,
this computation is done as a pre-process, once for each potential
DHE/HF axis. We further observe that an immediate consequence
of this framework is that computing CD(S, S) is much faster than
computing the inverse distance CD(§, S), as it can be expressed in
terms of distances between precomputed sample points on S and
the participating VEs. Furthermore, as CD is strictly nonnegative,
we can use CD(S, ) as a lower bound to quickly reject candidate
VE combinations against the best known solution. We therefore
search for VE candidates in parallel, and for each VE combination
we only proceed to evaluate E(S) in full if CD(S, S) is lower than
the best quality score encountered so far. This branch-and-bound
strategy reduces the number of full evaluations for m = 2,3 by 98%
on average. For an additional speed up, before testing points and
rays against S we reject sample points and ray directions that do
not intersect the convex hull of S.

Overall our optimized ESI computation takes 3 minutes on aver-
age to determine the complete set of required VEs and axis directions
on a 16-core Intel Xeon Gold 6130 CPU (an average of 2 minutes of
preprocessing time, and 1 minute or less for axis selection), and up
to 12 minutes on complex models like the happy buddha (Fig. 1); 9
minutes preprocessing time, 3 minutes axis selection).

5 Learning NESIs

Once ESI is computed, we encode the bounding functions f;, f;, and
fr of its participating VEs in a compact neural form as a set of MLPs.
We now describe how to determine the domain Q of each bounding
function; the loss functions for training; the point sampling strategy
in each domain used for evaluating the loss functions; and the overall
neural network architecture.

To operate on a bounded numerical range, we define each explicit
in its local axis-aligned coordinate system and restrict it to a [-1, 1]*
bounding box. We normalize our 3D shapes S to be strictly inside
this box by scaling them to be inside of [—ﬁ, ﬁ]3 . All our learned
functions are thus defined over Dy = [-1, 1]2.

5.1 DHF Hull Domain Sampling.

A fully-supervised training of a network that reproduces the DHF
bounding functions f; and fj, requires first obtaining sample points
(xi,yi) € Qo, together with the ground-truth function values at
these sample points (xi, Y1) for supervision.
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To generate sam-
ple points for learn-
ing fy(x,y) and
fo(x,y) (inset, left),
we first uniformly
sample a dense
set of points Q = {q;}, where q; = (x;,y;, z;), on the surface of
the shape S (dots in the inset, middle). We then filter these points
to find a set of samples Q, that well approximates f,(x,y). We set
Qq = Q, then shoot rays from each point ¢; € Q, along do, and
remove q; from Q, if the ray intersects S (yellow dots in the inset,
remaining points in red). We generate Qj, in a similar way, but using
rays along —do (purple dot, inset middle). We project the sample
points in Q, J Qp onto the x-y plane to obtain Py = {p;}, where
pi = (x;,y;) (inset, right green). By construction, the projected
sample points p; = (x;, y;) all lie within Q, and provide a dense cov-
ering of the domain. For each p € P, we compute the corresponding
function values f;(p) and f,(p) (the surface intersections that are
furthest apart along the DHF axis), as well as the surface normals
nq(p), np(p) at these intersections (red and purple point pairs, inset,
right).

In addition to the height functions themselves, we must also
encode or store the domain Q of the bounding functions for the
DHF and HFs. For the DHF hull, we observe that we can encode
this domain intrinsically by requiring that f,(x,y) < fa(x,y) for
all (x,y) € Qp, and fi,(x,y) > fo(x,y) for all (x,y) ¢ Q. To obtain
sample coverage for Dy \ Qy, we sample points in Dy, then shoot
rays from each point along both dy and —d,, discarding points if the

S e
&

DHEF bounding functions ~ Surface sampling & filtering ~ Projected sample points

ray intersects S. The remaining points form our P set.

5.2 HF Domain Sampling.

We generate sample points for learning the height
functions f; of each HF volume HF(dy) (k =
1,2...,m, see inset) using a similar process, with
one major difference (Fig 2de). We observe that
each explicit provides two types of information
about the approximated shape - the outline of its
visual hull (Qg) and the shape geometry inside
this outline. Our explicits often cover overlapping regions on the
input shape (Fig 6b); encoding the geometry in these regions more
than once introduces unnecessary redundancy, wasting network
capacity. To avoid such redundancy we seek to restrict the parameter
domain for which we store the geometry (height values) of each
additional learned HF to only span those surface regions on the
input shape S that have not been well-covered by the combination
of the DHF and any previous HFs. We denote surface regions which
are covered by HF,(dy), but not well covered by prior explicits, as
Sk (in Fig 6¢ the purple regions on the HF correspond to areas not
well covered by the DHF). A point g on S is in S if the ray from ¢
along di does not intersect the surface and if one of the following
three conditions holds:

HF bounding function

9 5 (1) A ray from g along any of the directions

NN {dy, —do,d1, ..., dx_1} intersects S; in other words,

?\/2~..\~

/ 7
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Sampling in restricted domain

q is not on the surface of the DHF or any preced-

ing HFs and hence is not represented by them

(blue dots in the inset),

(2) g is on the surface of the DHF or any previous

HF; but is nearly a grazing point of S with respect
to the axis of this previous HF or DHF; that is, the angle between
the surface normal vector at g and the corresponding axis d; is
larger than a minimum threshold (70° in our implementation). The
rationale behind this condition is twofold. First, we seek an approx-
imation which supports low distortion parameterization, thus we
prefer surface regions to be approximated using HFs which better
align with their normal, and to specifically avoid high parametric
distortion. Moreover, small errors in height function approximation
in grazing regions can result in large approximation error in R?
(green dots in the inset).
(3) There exists a point a on the ray from q along dj. that is invisible
from all previous directions {do, —do, ds, . .., dx—1 }. This condition
is critical for approximating the interior of large voids or concav-
ities which are not captured by previous explicits. see Fig. 21 for
illustration of the importance of this criterion.

Formally, the domain Q of a height field HFy is defined the same
way as for the DHF, delineating the outline of the HF’s visual hull.
However, for height learning purposes, we restrict HF to only cover
the region S not properly covered by the DHF or any preceding
HFs and focus on the subdomain of Q. given by the projection of
Sk in the direction of di onto the x-y plane; we denote it as Q.
We note that with these restricted domains Qk in place, one can
recast the Boolean definition of NESI using subtraction instead of
intersection (see Sec, 7.3).

With these criteria in place, we compute three sets of training
samples. We first form Q, the subset of samples on S such that a
ray from q € Qi along di does not intersect S. We then compute
the subset of points Q; € S* by evaluating if they satisfy one of
the criteria above. We project these points to the x-y plane of HF;
forming Py and P/, and form Py using the same process as for P;.

In addition to the height functions themselves, we must also
encode the domains Q. and Q. of the bounding functions for each
HF. The former defines the visual hull of the shape along the axis di
while the later encodes the domain within which we want to encode
the HF geometry. We encode Qy implicitly by forcing the height
values at points inside Pg \ P, to be above the surface. We use an
explicit binary mask §j to specify the domain Qj and encode each
HF as an MLP that returns both the bounding function f; and the
mask Jx; we observe that this mask can be constructed to require
significantly less network capacity than fi itself.

5.3 Network Architecture.

We adopt the SIREN architecture

[Sitzmann et al. 2020b] for our MLP

®/ () network. Our network takes 2D lo-
o cations (x, y) as input. For the DHF,
®inin " the network outputs two values,
DHF Network @I each corresponding to the height
values of the two bounding func-

'/N%N% @®/,xy) tions f;(x,y) and f,(x,y) of each

Hci'éiﬂ Field Module

S ~
S e

Mask Module
HF Network

@/ (xy)




side of the DHF (inset, top). We en-

code the height and mask of each

HF as two separate MLP networks

(inset, bottom). The height func-

tion module outputs a single height

value fi(x,y) for all points in the
restricted domain Qk, inside Q \ Qk, the network is trained to out-
put a height value that is greater than ground truth (i.e. fi (x,y) >
for(x,9),Y(x, y) € P{). The domain of Qy is encoded as a binary in-
dicator function §(x, y) by a separate compact MLP. Both networks
take 2D coordinates (x, y) as input, and pass them through n hidden
layers with sine activation functions between adjacent ones. For
DHFs, we output two height field values to bound the finite volume
of the target shape. For HFs and their masks, we use a smaller SIREN
network to infer height field values and a very compact network
to infer an indicator § which indicates whether a point is inside
or outside the projected shape region Q. The final encoded NESI
representation consists of 2m + 1 MLPs: 1 MLP, the largest one, for
the DHF; m smaller ones for the HFs; and m tiny MLPs for the HF
masks.

5.4 Objective Functions.

To learn the neural encodings of the DHF hull and our k HF vol-
umes we minimize the following loss functions, defined in the local
coordinate frame of each explicit volume.

Our DHEF loss is defined as

D _ pD D D
L" = ‘CHeight + ‘CDomain + aNormal‘LNarmal (6)

where the first terms encode the heights of the explicit surfaces;
the second delineates Qy; and the third term encodes the explicit
surface normals:

L gt = |P|Z(m<p) YOI+ IAE - @) 0

PEP
L omain =ﬁ > max(fa(p) - fi(p) +€,0) ®
PePy
1 ni(p) - nd' (p)
Ly orma TN} (1- - 7 ) )
Normat = Zb lPolp;‘o max([|ni(p) Iz - [In? (p) Iz €)

Here f;(p) and ﬁg [(p) are the learned and input function values,
nf *(p) is the input surface normal at p, and n;(p) is the normal com-
puted by backpropagating the network that learns f;. The weight
QNormal 15 used to suppress the normal loss at the beginning of train-
ing, then gradually increase it after a certain number of iterations.
We set this weight as a = 0.05 tanh((i — 4000)/10) + 0.05, where i
is the current iteration.
The loss function for the kth HF is defined as

‘LH(k) = Hezght (k)+‘£Domam (k) +‘£Mask (k)+aN0’mal‘£gormal (k)
(10)
where .ED omain Codifies the function behavior across Qg \ Q. and

L mask defines the mask used to delineate Q.
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Liteigne®) =377 ,,;, fe(p) - £ @) ()
‘Egomain(k) =m Z max ((fkgt(.p) —fk(P)) + €, O)
PEPL\P;
o (12)
Litask = Z BCE(8:(p), 67 (p)) (13)
k pePr
.9t
Normal ’ Z ( nk(p) nk (gpi) ) (14)
|P Ipep, max(||ng(p)llz - In}. (p)ll2, €)

Here BCE is the binary cross entropy (BCE) loss [Good 1952], and
Py = P U Py is the collection of all previously computed sample
points for this HF.

6 Using NESI Representations

Finally, we show how NESI can be used as either an implicit surface
or as a piecewise parametric representation.

NESI Occupancy Function. NESI trivially supports in-out occu-
pancy tests. For a given 3D point p, we simply check whether it
is inside or outside of the DHF and any HFs: we first convert p to
the local coordinates (x, y) of each DHF and HF; for HFs, we check
if the (x,y) in this coordinate system is inside the domain using
the mask; and finally we compare the associated height z to the
predicted height values from the network to determine if it is inside
or outside based on the definition of explicits. The point is inside
the NESI if and only if it is inside all its explicits.

NESI as a Parametric Representation. NESI’s parameter domain,
or atlas, consists of Qq, used twice for the DHF hull top and bottom;
and Q. for each HF. To map a surface point p to the atlas, we locate
the explict whose surface it is closest to and then use the (x,y)
coordinates of the point in the coordinate system of this explicit as
its (u, v) parameters.

7 Results

We evaluate our analytic (ESI) and neural (NESI) representations
qualitatively, via visual inspection; and quantitatively, by measuring
the distance (chamfer L;) between the inputs and our analytic and
learned outputs. We compare our results against an extensive list of
alternatives, and ablate different algorithmic choices as discussed
below. Finally, we showcase applications of using NESI for different
graphics applications, discuss its limitations, and propose extensions
addressing those. Throughout the paper we showcase 57 represen-
tative NESI outputs highlighting their high visual quality, which
remains high even at low parameter counts (e.g. Fig. 8, 13, 14, 18).
All renderings of both our and alternative results were generated
via our raytracing code and colored using a phong shading scheme.
Our raytracer uses NESI’s (and ESI’s) ability to instantaneously
and robustly evaluate in-out queries (Sec 6). See the appendix and
supplementary material for input sourcing details, implementation
details, galleries of input and output visuals, and additional details
of the evaluations below.
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Evaluating ESI. To evaluate the premise behind our ESI and NESI
representations, and their robustness, we seek to answer two ques-
tions: first, how accurately can the ESIs computed using our method
(Sec 4) approximate typical content rendered by consumer facing
graphics applications; and secondly, how many VEs are required to
approximate such shapes to a desired accuracy using our method?

To answer these questions, we assembled a corpus of 320 diverse
inputs representative of the types of geometries rendered by the
applications we target. Our corpus included the Thingi32 [Takikawa
etal. 2021; Zhou and Jacobson 2016] (32 shapes) and DHFSlicer [Yang
et al. 2020](25 shapes) datasets representative of related prior work;
non-trivial random shapes from the the ABC [Koch et al. 2019]
dataset of CAD models (40 shapes); the dataset of Myles et al. [2014]
(98 shapes commonly used in computer graphics); 122 additional
random inputs from Thingil0K [Zhou and Jacobson 2016]; and
complex, canonical, scanned shapes from the Stanford 3D Scanning
Repository [Stanford 2024] (david, dragon, and thai statue). These
inputs span both CAD and organic content, include highly complex
shapes (david, thai statue, and lucy), as well as shapes with high
genus, non-manifold geometry, and other artifacts.

To answer the first question, we used the method in Sec 4 to gen-
erate ESI approximations of these shapes using a fixed number of
HFs (ranging from 0 to 4). We then measured the chamfer distance
between the ground truth shapes and these ESI approximations
(Table 1, all distances multiplied by 1000 and measured relative to
the input bounding box diagonal). As the numbers show, even for
a single DHF with no additional HFs, the approximation quality
is often already very good. The chamfer distance decreases with
additional HFs, but the amount of improvement tapers out, moti-
vating our cutoff of using no more than 3 HFs. To provide some
context to the numbers reported, we recall that while the Hausdorff
distance between a surface and itself is zero, chamfer distance is an
approximation of Hausdorff distance and is measured by computing
the distance between point clouds sampled on the two surfaces. In
particular, chamfer distance depends on sampling density - accuracy
increases as point cloud size grows. chamfer distance between a
surface and itself, measured using two different clouds sampled
from the same surface, will never be strictly zero, but is expected
to decrease as sampling density increases. To obtain high accuracy
distances we use very large clouds (5M points). Even with this high
density, the baseline chamfer from our inputs to themselves is 0.219.
When using up to 3 HFs our ESI approximation quality (average
chamfer 0.241) is within 0.022 of these values (in short, our chamfer
distance is extremely close to the chamfer distance between our
input meshes and themselves. Using 4 HFs instead of 3 HFs provides
only a marginal improvement (0.233 versus 0.241), and only 14%
of inputs show any non-trivial improvement (chamfer distance re-
duction of under 1073). These numbers confirm the main insight
behind our method: typical 3D geometries used in computer graphics
applications can be well approximated by intersecting a small number
of judiciously selected volumetric explicits. While as per above a small
percentage of shapes can benefit from using more than 3 HFs, we
cap the number of HFs used in all experiments at 3 for runtime
efficiency. As the experiments below show even with this cap our
approximations are dramatically better than the alternatives. The
ESI to input distances can be thought of as a lower bound on the
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Dataset DHFonly DH+1HF DHF+2HFs DHF+3HFs DHF+4HFs  # VEsused
Myles'14 0442(1.101)  0.244(0.491)  0.218(0.284) 0.216(0.241) 0.213(0.226) 3(2.82)
Thingilok  0.249(0.734)  0234(0.332)  0.229(0.261) 0.227(0.239) 0.227(0.232) 1(2.03)
Thingi32 0.447(0.687)  0.257(0.301)  0.234(0.238) 0.226(0.231) 0.225(0.229) 3(3.16)
ABC 0359(1.636)  0.278(0.669)  0.263(0.305) 0.259(0.269) 0.259(0.266) 2(2.15)
Other 0398(0.622)  0.256(0.328)  0.218(0.241) 0.217(0.223) 0.216(0.216) 3(2.89)
Overall 0328(0.945)  0.249(0.419)  0.228(0.269) 0.225(0.241) 0.223(0.233) 3(2.43)

Table 1. Median and average (in brackets) Chamfer distances between input
shapes and analytic intersections of volumetric explicits best approximating
them, for different numbers of HFs across the different data sources and
overall. The average lower bound on chamfer distances between input shapes
and themselves is 0.219, representing the maximum accuracy achievable
with this metric; our average and median ESI chamfer distances meet or
are close to this lower bound in many cases, representing extreme accuracy
compared to ground truth.

Dataset 1 DHF 1DHF + 1 HF 1 DHF + 2 HFs 1 DHF + 3 HFs
ABC 16 8 9 7
Thingi32 0 2 18 12
Others 5 4 8 11
All 21 14 35 30

Table 2. DHF/HF counts used for each of the 100 input shapes in our NESI
experiments, separated by originating dataset.

approximation quality provided by the corresponding learned NESI
approximations.

To answer the second question, we computed the ESIs of these
shapes, this time letting our method determine the output number
of HFs used automatically. In our experiments, we did not use an
error tolerance to determine the number of HFs needed, and added
additional HFs if doing so reduced the Chamfer distance by any
amount. In practice we expect users to specify a tolerance for the
accuracy they need, limiting the number of HFs generated further.
We then measured the number of HFs generated for each input (Ta-
ble 1, last column). Across the set of 320 inputs tested, 98 inputs only
required a single DHF (31%); 59 used 1 HF (18%); 75 used 2HFs (23%);
and 88 used three HFs in addition to a DHF (28%). This experiment
highlights the efficacy of our approach - the median input requires
just 1 DHF and 2 HFs to produce accurate approximations.

Evaluating NESI. We evaluate our neural NESI representation
by learning 400 NESI models using diverse parameter counts and
ground truth input shapes. Specifically, we use a subset of the dataset
above containing the Thingi32 [Takikawa et al. 2021; Zhou and
Jacobson 2016] (32 shapes) and DHFSlicer [Yang et al. 2020] (25
shapes) datasets, the subset of the ABC [Koch et al. 2019] dataset
(40 shapes), and the 3 models from [Stanford 2024] for a corpus of
100 input shapes total. These inputs are representative of the type
of content we target, as well as shapes processed by state-of-the-
art neural representation and compression methods. Tab 2 shows
the number of volumetric explicits used by our method across this
dataset. Predictably many CAD shapes can be well approximated
using a single DHF, while organic content often requires including
one or more HFs. Roughly half (49%) of the approximations use one
to two HFs, and only 30% use our maximal HF number - three.

We approximate each input using NESI neural encoding using
4 levels of detail, or DHF/HF network parameter counts, resulting
in a total of 400 encoded NESIs, see Appendix for details. Since we
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Fig. 8. NESI approximations of the lucy and xyzdragon models at low (10k) and
extra high (180k) parameter counts. At low parameter counts, NESI captures
the core properties of the inputs; at high parameter counts, even very fine
details such as lucy’s torch and the scales of the dragon are accurately
represented.

target consumer facing applications, such as streaming/rendering
on low memory devices, we focus most experiments on learning
models using low to medium parameter counts. At the lowest level
we encode each input using under 10K parameters; at the finest
level, we use 50K to 70K parameters to encode each input. We
note that final per-shape parameter count depends both on the
specified DHF/HF network parameter counts and the number of
HFs used to encode the shape. We inspect the results both visually
and quantitatively. Tab. 3 reports the average Chamfer L; distances
between NESI approximation and input shapes for different levels
of detail (all distances multiplied by 1000, measured relative to the
input bounding box diagonal). As the table and visuals (e.g. Fig 8
(middle)) show, even at very low parameter counts NESI captures
the core features of the input shapes. As desired, distance decreases
as parameter count increases. We note that the average distance
between NESI models trained with the largest parameter count
settings and corresponding inputs (0.285) is very close to the distance
between these inputs and their respective ESI approximations (0.247).
This highlights the effectiveness of our neural encoding. We further
break down (Table 4) the distance metrics the for each dataset in
our corpus by both the number of HFs used and the explicit ‘level
of detail’ used. We also report the ESI distances for each subset of
shapes. As expected, for each subset of shapes the overall chamfer
error decreases as level of detail increases, getting closer to the
ESI distance for that subset. We note that higher EDI distance for
the ABC 3HF subset is reflective of the fat that some of the shapes
in this subset have areas barely visible or entirely invisible from
outside (Fig 22). As somewhat expected, the gap between ESI and
NESI distances is smaller for for simpler shapes (zero to two HFs).

To evaluate NESI’s performance at higher parameter counts we
additionally trained it on the lucy and xyzdragon inputs with 120K
and 180K parameters each. Fig. 8 shows the results at 180K. As
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Dataset LOD 1 LOD 2 LOD 3 LOD 4
ABC 0.444 0.350 0.314 0.303
Thingi32 0.538 0.374 0.302 0.279
Others 0.542 0.375 0.293 0.265
All 0.501 0.365 0.304 0.285

Table 3. Average NESI chamfer distances across different (ascending) levels
of detail (parameter counts, see sup for exact settings). As desired NESI
accuracy improves as parameter count increases.

LOD Dataset 1 DHF 1 DHF + 1 HF 1 DHF + 2 HFs 1 DHF + 3 HFs
ESI ABC 0.215 0.259 0.261 0.426
ESI Thingi32 N/A 0.255 0.213 0.267
ESI Others 0.196 0.234 0.224 0.236
ESI All 0.210 0.251 0.228 0.293
LOD 1 ABC 0.325 0.404 0.493 0.696
LOD 1 Thingi32 N/A 0.437 0.449 0.689
LOD 1 Others 0.246 0.490 0.444 0.765
LOD 1 All 0.306 0.433 0.459 0.718
LOD 2 ABC 0.264 0.346 0.357 0.543
LOD 2 Thingi32 N/A 0.324 0.318 0.466
LOD 2 Others 0.216 0.362 0.316 0.496
LOD 2 All 0.252 0.348 0.328 0.495
LOD 3 ABC 0.243 0.313 0.302 0.491
LOD 3 Thingi32 N/A 0.280 0.257 0.372
LOD 3 Others 0.204 0.298 0.259 0.356
LOD 3 All 0.234 0.304 0.269 0.394
LOD 4 ABC 0.235 0.312 0.285 0.474
LOD 4 Thingi32 N/A 0.269 0.238 0.343
LOD 4 Others 0.200 0.275 0.242 0.309
LOD 4 All 0.227 0.295 0.251 0.361

Table 4. (top 4 rows) Average ESI chamfer distances across the 100 shapes
in our NESI experiments broken down by source and number of VEs used.
(rows 5 and on) Average NESI chamfer distance for all shapes and levels of
details, broken down by source, the number of VEs used, and level of detail
(DHF/HF parameter count). For each subset of shapes, Chamfer distance
decreases as the level of detail increases, approaching ESl accuracy at LOD 4.
Both ESI and NESI average chamfer distances are slightly larger at maximal
number of VEs due to presence of shapes with nearly invisible regions. The
overall average NESI distance at LOD 4 is 0.28, the average ESI distance is
0.247, and the chamfer distance from the 100 shapes to themselves is 0.228.

the figure shows we accurately capture fine details such as the
dragon’s scales or the fine geometry on the dress and torch of
lucy. The Chamfer distances for these experiments were: for lucy,
0.272 and 0.244 respectively; for xyzdragon, 0.263 and 0.249. For
comparison, for Lucy the chamfer distance between its ESI and the
input is 0.217, and between two point clouds sampled on the lucy
input it was 0.186; for xyzdragon, these numbers were 0.193 and
0.170 respectively. These measurements confirm that as parameter
count increases, our accuracy approaches that of ESI, which in turn
accurately approximates the original input.

Applications. We demonstrate the versatility of NESI representa-
tions by leveraging the manipulation modes they support (implicit
and parametric) for different classical geometry processing tasks.
We use the implicit access mode for fast in-out queries for raytrac-
ing (used throughout the paper), and use the parametric access for
texture mapping (Fig. 9) and meshing (Fig. 10); see Appendix for
implementation details.

7.1 Comparative Evaluations

We compare our learned NESI outputs against an extensive list of
representative alternatives whose authors provide either outputs
or code to compare against. For fairness and consistency we use

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.
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Fig. 9. NESI supports straightforward texturing of the output models (left) as
well as texture transfer from the input meshes to these models (right): atlases
with checkerboard and original texture (a,c,e,g), and NESI models (textured
with a standard checkerboard texture (a,b,e,f) and texture transferred from
original mesh (c,d,g,h). In the top row we use Q; as HF atlases, in the two
bottom ones we restrict the atlases to Q;, reducing memory footprint.
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Fig. 10. NESI models (green) learned from input meshes (blue) and then
meshed using our parameterization-based method (purple). As reflected
by the Hausdorff distances listed, the output meshes well approximate the
inputs.

raytracing to render all outputs, and use the same point cloud sam-
pling strategy to compute L, chamfer distance for all outputs. (Prior
works may use different sample counts and metrics in their report-
ing (e.g. [Li et al. 2022] and Sivarim et al. [2024] report the square
of L, chamfer distances.)

We compare against the state of the art parametric neural repre-
sentation method of [Morreale et al. 2022] by training our method
on 4 example inputs they show and provide outputs for, and com-
pare our outputs to theirs (Fig 11) (the remaining 3 outputs they
show are open surfaces not amenable to volumetric representation).
While their respective outputs use 100K parameters, ours use only
438K to 68K parameters. Despite the lower parameter count, all of
our outputs more accurately approximate the input shapes (average
chamfer distance 0.335 across their outputs; 0.237 for ours): the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2025.

distance for armadillo [Morreale et al. 2022] was 0.430, ours was
0.230 (68K); for dragon their distance is 0.334, ours is 0.296 (68K);
for bimba theirs is 0.356 and ours 0.241 (58K); and for seahorse their
distance is 0.220 and ours 0.180 (48K) (notably the numbers reported
for their results in their paper are even larger as they used smaller
point clouds to sample the input and outputs). As Fig. 11 shows, our
results retain significantly more visual details.

We compare our method against multiple representative state of
the art neural implicit methods: SIREN [Sitzmann et al. 2020b], both
with and without Eikonal constraints; NeuRBF [Chen et al. 2023b];
implicit displacement fields (IDF) [Yifan et al. 2022]; NGLOD [Takikawa
et al. 2021]; VQAD [Takikawa et al. 2022a]; and the key spheres
method of Li et al. [2022]. For all the methods, except Li et al. [2022]
we ran the code provided by the authors on the complete dataset
detailed above with parameter counts comparable to ours. We were
unable to run the code of [Li et al. 2022]; we therefore qualitatively
and quantitatively compare our results to the output models pro-
vided by the authors for the Thingi32 dataset.

Fig. 12 shows representative comparisons of NESI against SIREN
with Eikonal constraints [Sitzmann et al. 2020b], NeuRBF [Chen
et al. 2023b], and IDF [Yifan et al. 2022]. All three methods generate
implicit SDFs as their output; [Chen et al. 2023b; Yifan et al. 2022]
target much larger models than us (700K and 800K parameters
respectively) but can be modified to use lower parameter counts.
On the examples shown (Fig 12), as well as on many additional
inputs, these methods produce unstable outputs with additional
spurious zero level-set surfaces. In our experiments, such spurious
surfaces appeared in over 50% of the experiments for NeuRBF and
over 30% for SIREN. For IDF [Yifan et al. 2022], the failure rate
was highly parameter-count dependent: e.g. for 14K, 18K and 100K
parameter counts, the method introduced spurious surfaces on over
30% of the inputs, but performed well for other counts (e.g. 25K). By
using explicit rather than implicit representations, NESI robustly
and consistently generates outlier-free approximations. The average
and maximal errors (chamfer distance between an output and input
shapes) across all input and parameter count combination tested for
these methods are 16.507 and 61.538 for NeuRBF, 6.170 and 80.891
for SIREN w/eikonal, and 4.469 and 62.535 for [Yifan et al. 2022].
Our respective average and maximum errors are 0.364 and 1.494,
demonstrating NESI’s consistency/robustness.

We compare NESI both qualitatively (Fig 13-17 and quantitatively
(Tab 5, 6) against four recent methods that use neural implicits:
SIREN [Sitzmann et al. 2020b] without Eikonal constraints, VQAD
[Takikawa et al. 2022a], NGLOD [Takikawa et al. 2022a], and [Li
et al. 2022]. SIREN provides an important baseline, since we use the
SIREN network (i.e., an MLP with sinusoidal activation functions)
as the backbone architecture for neural encoding. The difference
is that we use the SIREN network for learning the simple, explicit
height functions for different pieces of our NESI representation,
while the original SIREN method uses the same network for com-
puting a single zero-level set in R3 to approximate the entire surface
of an input shape, which can potentially be very complex. VQAD,
NGLOD, and [Li et al. 2022] specifically target low parameter count
compression as an application, and thus serve as a natural baseline
to our method. These methods were shown to outperform earlier
alternatives such as [Miiller et al. 2022] and [Davies et al. 2021] in
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Fig. 11. NESI outputs trained using 58K to 68K parameters provide a better, more detailed, approximation of the inputs than the neural models of [Morreale
et al. 2022] which use much higher parameter counts (100K).
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Fig. 12. Comparisons of NESI outputs to these of NeuRBF [Chen et al. 2023b], SIREN with Eikonal constraints [Sitzmann et al. 2020b], and the method of
Yifan et al. [2022]. While NESI results are consistently stable, these prior methods generate spurious extra surfaces on a significant percentage of inputs.
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Fig. 13. Representative comparisons of NESI outputs to these of SIREN [Sitzmann et al. 2020b] (no Eikonal constraints), VQAD [Takikawa et al. 2022a], and
NGLOD [Takikawa et al. 2021]. For similar parameter counts NESI consistently better captures fine details of the input shapes.
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Fig. 14. Additional comparisons with SIREN (no Eikonal constraints). Even with smaller parameter counts NESI consistently captures more geometric details.
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Fig. 15. Additional comparisons with VQAD. Even with smaller parameter counts NESI has higher accuracy and captures more details.
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Fig. 16. Additional comparisons with NGLOD. Even with smaller parameter counts NESI consistently captures more geometric details.
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Fig. 17. Comparisons with [Li et al. 2022]. Even with smaller parameter counts NESI consistently captures more geometric details; improvement is most
noticeable at lower parameter counts. As the bunny (left) illustrates the method of [Li et al. 2022] exhibits occasional instabilities while NESI remains robust.

Dataset #Params VQAD Lietall NGLOD SIR.EN NGF NESI
(wo. Eikonal)
ABC <10k 2.112 1.879 1.524 0.774 0.392
Thingi32 <10k 2.965 2.932 3.091 1.539 0.635 0.538
Others <10k 2.532 2.103 1.508 0.639 0.492
All <10k 2.516 2.345 1.525 0.698 0.458
ABC 10k-20k 1.104 0.597 0.808 0.634 0.408
Thingi32 10k-20k 1.555 0.668 0.779 0.820 0.546 0.374
Others 10k-20k 1.690 0.852 0.829 0.606 0.410
All 10k-20k 1.384 0.722 0.817 0.598 0.395
ABC 20k-40k 1.054 0.509 0.591 0.460 0.291
Thingi32 20k-40k 1.381 0.521 0.598 0.609 0.357 0.302
Others 20k-40k 1211 0.599 0.601 0.435 0.279
All 20k-40k 1.205 0.561 0.600 0.420 0.291
ABC >40k 0.729 0.470 0.450 0.405 0.349
Thingi32 >40k 1.010 0.498 0.493 0.478 0.327 0.279

Others
All
Overall

>40k
>40k

1.010
0.905
1.747

0.476
0.430
1.398

Table 5. Quantitative comparison of NESI (right) against prior art [Li et al.
2022; Sitzmann et al. 2020b; Sivaram et al. 2024; Takikawa et al. 2022a,
2021] across different parameter counts and datasets (Chamfer-L; distance
between input and predicted surfaces). NESI consistently outperforms all
baselines, with improvement most pronounced for low parameter counts.

NESI vs NESI vs

Dataset #Params NESI vs VQAD Lietal. NESI vs NGLOD SIREN (wo.Eikonal) NESI vs NGF
ABC <10k 100% 100% 97% 83%
Thingi32 <10k 100% 100% 100% 100% 95%
Others <10k 100% 100% 100% 100%
<10k 100% 100% 99% 91%
ABC 10k-20k 96% 95% 93% 90%
Thingi32 10k-20k 100% 88% 100% 97% 91%
Others 10k-20k 100% 93% 93% 85%
All 10k-20k 98% 96% 94% 89%
ABC 20k-40k 100% 97% 83% 88%
Thingi32 20k-40k 100% 97% 95% 97% 81%
Others 20k-40k 100% 100% 93% 82%
All 20k-40k 100% 97% 90% 84%
ABC >40k 100% 83% 80% 78%
Thingi32 >40k 100% 100% 100% 100% 88%

Others
All
Overall

Table 6. Percentage of shapes that NESI outperforms each baseline [Li et al.

2022; Sitzmann et al. 2020b; Sivaram et al. 2024; Takikawa et al. 2022a,

2021] on across different datasets and parameter counts. Each individual

comparison evaluates a NESI output against an alternative method’s output

produced using same or higher parameter count.

>40k
40k

100%
100%
100%

100%
94%
96%

96%

terms of quality/compactness tradeoff. Both visual inspection and
quantitative comparisons confirm that NESI significantly outper-
forms all four alternatives, both on average (Tab. 5) and in head to
head comparisons (Tab 6). Our error is 3.8 times smaller than that of
NGLOD, 4.9 times smaller than that of VQAD, and 2.6 times smaller
than that of the SIREN baseline. It is 1.9 times smaller than that of
[Li et al. 2022] (on Thingi32).

For the head-to-head comparisons, we encode each input using
NESI and an alternative method where NESI encoding uses same or
smaller parameter count than the alternative (for each output of an
alternative method, we locate our result with the closest parameter

count smaller than the alternative). As Tab. 6 shows, NESI outper-
forms NGLOD on 96% of inputs tested, VQAD on 100% of inputs,
SIREN on 93%, and [Li et al. 2022] on 96%. Lastly and critically,
NESI is notably more stable than these alternatives: our maximal
deviation from ground truth across all inputs and parameter counts
is 1.494, versus 6.127 for SIREN, 16.068 for [Li et al. 2022], 29.431 for
VQAD, and 35.687 for NGLOD.

We note that our parameter count is a function of both MLP size
and number of HFs used. Accordingly, comparisons of our method’s
aggregate performance to itself across parameter ranges reflects
both MLP size and HF count within each range (Tab. 5). Notably
while the <10K and 20K-40K ranges contain 32 models of ABC
shapes represented using a single DHF (Tab. 8) the 10K-20K and
>40K ranges contain zero models of such shapes. This split explains
the inversion in the distance metric across these ranges.

Finally, we compare our method to the state-of-the-art Neural
Geometry Fields (NGF) method [Sivaram et al. 2024], that encodes
shapes as a combination of a QSLIM simplified mesh and a learned
displacement (Fig 18). Their method fails to produce an output on
21 of the input model/parameter combinations w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>