
Controllable Modular Trees
Suzuran Takikawa

University of British Columbia
Vancouver, Canada
stakikaw@cs.ubc.ca

Riccardo Tinchelli
Netflix Animation Studios

Vancouver, Canada

Mike J Davison
Netflix Animation Studios

Vancouver, Canada

Curtis Andrus
Netflix Animation Studios

Vancouver, Canada

James John Drown
Netflix Animation Studios

Sydney, Australia

Alla Sheffer
University of British Columbia

Vancouver, Canada

(a) Input Trunk, Crown Shape,
and Branch Modules

(b) Modular Tree
Branch Structure

(c) Modular Tree Render
with Leaves Added

Figure 1: Given as inputs a crown shape, trunk, and branch modules (a) we automatically generate a natural looking modular
tree (b) that aligns with the input crown shape. Storing our tree using the modular structure without the leaves (c) requires an
uncompressed file size of 1.8 MB, while storing it as a mesh would require 180 MB. (If the leaves are included, the sizes are 6.6
MB and 1.2 GB, respectively)

Abstract
Trees are a ubiquitous part of virtual environments, but faithfully
modeling trees is challenging because of their incredible diversity.
Tree modeling methods face two key challenges, as users want to
create trees that look realistic but retain control over key elements
of their appearance, such as the shape of the tree crowns. Traditional
tree modeling methods are geared to produce tree models that are
both detailed and unique and are typically stored as high-triangle
count meshes or skeletons plus radii. Storing and manipulating
such traditional tree models comes with a significant memory cost.
Recent approaches have proposed to use modular trees consisting
of a finite set of branch modules, which are transformed (scaled,
translated, and rotated) to jointly form realistic looking trees. Con-
sequently, modular trees require orders of magnitude less memory
than their traditional counterparts. However, existing methods for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GI’25, Kelowna, BC, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

modeling modular trees focus on visual realism and provide only
minimal mechanisms for artists to control the look and shape of
the resulting trees. We propose a controllable method for modeling
modular trees, enabling artists to define the tree’s overall crown
shape while maintaining a plausible appearance using a small set
of replicated branch modules. We formulate the computation of
realistic modular trees that conform to a user-specified crown shape
as a constrained mixed-variable optimization problem. We then
compute the trees that satisfy these constraints using a method
that grows trees one layer of branches at a time, maintaining re-
alism throughout and promoting accurate approximation of the
target crown shape. We extensively test our method on diverse
crown shapes and compare against baselines, demonstrating its
effectiveness.

CCS Concepts
• Computing methodologies→ Shape modeling.

Keywords
Tree modeling, modular trees, tree silhouette control

ACM Reference Format:
Suzuran Takikawa, Riccardo Tinchelli, Mike J Davison, Curtis Andrus, James
John Drown, and Alla Sheffer. 2025. Controllable Modular Trees. In Graphics

https://doi.org/10.1145/nnnnnnn.nnnnnnn

GI’25, May 26–29, 2025, Kelowna, BC, Canada Takikawa et al.

Interface (GI’25), May 26-29, 2025, Kelowna, BC, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Trees are ubiquitous in digital media applications, including video
games, movies, landscape visualization, forestry simulation, and
many more. Tree modeling methods often need to balance two
potentially conflicting sets of requirements as users want to create
trees that are realistic, but retain control over their appearance.
Advances in tree modeling methodologies have enabled efficient
modeling of realistic trees through many approaches, including
recursive or hierarchical modeling [16, 31, 35], sketch-based mod-
eling [23, 25], data-driven modeling [5, 15, 17], and many more,
some methods offering more control than others. However, storing
highly detailed realistic trees requires a lot of memory. Traditional
tree modeling methods typically produce trees that are stored as
high-triangle-count meshes or skeletons plus radii. While the latter
representation can be more compact for storage, for texturing and
rasterization, it typically requires converting it into a dense mesh.
As an example, storing the tree in Fig. 1 as a mesh requires 180 MB
(not including the leaves). The large memory footprint of realistic
looking trees poses a significant challenge, especially for large-scale
scenes with hundreds or thousands of trees.

This challenge motivates the work to reduce the memory cost of
representing realistic trees. Replicating entire trees across a scene
dramatically reduces realism and is thus unappealing. A more prac-
tical and recent alternative focuses on modular trees [10, 24, 32].
Modular trees are modeled by assembling replicated branch shapes
to represent a tree (see Fig. 1b). Replicated branch shapes are called
branch modules, which in our case are a fixed set of precomputed
branch geometries. The tree can then be represented with a set of
branch module types and their spatial transformations. For storage
purposes, rather than storing the mesh of every branch, we store
one mesh for each branch module type and the spatial transfor-
mations for each copy used in the modeled tree. This approach
results in a significantly smaller memory footprint than that of tra-
ditional trees through GPU geometry instancing [6], while allowing
significant diversity via generation of different branch module com-
binations. Existing work on modular trees allows only minimal
artist control of the resulting tree shape (Sec. 2).

We know that controlling the crown shape is one of the most pop-
ular mechanisms for artist control [4, 31, 41, 42, 49]; this preference
is consistent with our observations of artists’ preferred workflows
for tree modeling in game and video production. Although impos-
ing crown shape constraints for traditionally modeled trees is a
well-understood problem, e.g. [31, 42], these methods do not extend
to modular trees. Our experiments (Sec. 5) suggest that using naive
extensions of these methods to the modular tree settings results
in trees that either appear unnatural or do not adhere to the artist-
specified crown shape. Consequently, we introduce a new method
for controlling the shape of the tree crown while operating with
modular trees (Fig. 1).

We first analyze the properties we need our output trees to sat-
isfy in order to achieve realismwhile retaining control. Our analysis
suggests a modeling method that should adhere to the following
properties: crown shape adherence, scaling consistency, and natural

connectivity. We formalize our definitions of these properties in
Sec. 3. These properties guide the development of our approach and
facilitate the creation of natural-looking trees (Fig. 1). Given the
above requirements, we formulate the problem of controllable mod-
ular tree modeling as a constrained mixed-variable optimization
problem that solves for the selection of branch modules, branching
positions, branching directions, and scales. We solve this optimiza-
tion problem using an iterative approach to build the tree structure
by layers of branches in each iteration. We satisfy our objectives via
a combination of a global step that identifies potential branching
directions and branch geometries, and a local step that ensures
that the output branches satisfy the properties above, ensuring the
realism of each branch layer.

We demonstrate the effectiveness of our method across diverse
shapes and compare with baselines (Sec 5). We show that compared
to different baselines, our method produces significantly better
results visually and fulfills our goals more effectively. Our control-
lable modular trees require two orders of magnitude less memory
compared to their traditional counterparts: our experiments found
that the average compression ratio of our trees was 1:110.

2 Related Works
We build on the extensive body of work on plant modeling, focus-
ing on modular tree creation and artistic control. We review the
most pertinent works below and refer the readers to a survey of
procedural generation of virtual worlds [45] and a course on plant
modeling [33] for a more comprehensive background.

Non-instanced Tree Modeling Methods. The vast majority of
tree modeling methods target non-instanced, or non-modular trees.
Early works model tree structures in many different forms, in-
cluding fractals [30], discrete grammars [1], L-systems [21, 35],
and particle systems and cellular automata [2, 8, 40]. L-systems in
particular were highly influential, fostering a line of extensions,
including capturing continuous development [36] and environmen-
tal interaction [27]. A well-known problem with L-systems is the
requirement of significant skill and time to create the desired plant
models. Some recent work has alleviated this issue, such as utilizing
Markov chain Monte Carlo to control stochastic grammars [46],
or machine learning to learn L-systems [9, 16], but it remains a
difficult task.

Many works have recognized that modeling the underlying bio-
logical processes for plant growth is important for realistic branch-
ing structures. These biological processes include competition for
resources [31, 41, 42], growth simulation [23], environmental inter-
action [27, 34], root systems [18], and complex forms such as holes
or twists [19].

Due to the challenge of modeling realistic branching structures,
multiple methods focus on reconstruction of tree models from
sensor data, namely images and point clouds. Approaches to re-
construct trees from multi-view images have used L-systems [43],
volumetric representations [39], structure from motion [38], parti-
cle flow [28], and statistical modeling [5]. For single image recon-
struction, user annotation [47] and more recently machine learning
[15, 17, 20] has been used. Many approaches using point clouds
focus on reconstructing the tree skeleton [12, 50]. Xie et al. [49]

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Controllable Modular Trees GI’25, May 26–29, 2025, Kelowna, BC, Canada

uses point cloud scans to assemble a tree-cut dataset to combine
and generate new trees. While modeling methods allow for varying
degrees of artistic control, as discussed below, reconstruction-based
methods have little to no control of output tree shape with these
shapes almost entirely dependent on input images or laser scans.

All above methods create non-instanced, unique, tree geometries
that are stored as either dense triangle meshes or skeleton with
associated radii. While the latter representation is more compact to
store than a mesh, it still requires a lot more space than a modular
one. Skeleton-based representations must be converted into a dense
mesh for rendering, dramatically increasing their memory footprint.
Our work builds on modular tree representations, described next,
that require two orders of magnitude less memory (Fig. 1, Sec. 5).

Modular Trees. Modular trees leverage the self-similar nature
of tree structures and are modeled using replicated branch con-
nectivity [24] and/or geometry [22] (Fig 1). This approach enables
the use of GPU geometry instancing [6] to store and render trees,
and has garnered significant industry attention due to its ability
to scale when rendering large scenes or simulating large sets of
trees. Modular trees have been successfully applied to large-scale
simulation, including modeling wildfires [10] and responding to
climate changes [32]. Existing work in this space supports minimal
artistic control over the crown shape of the tree. Livny et al. [22]
generates a modular tree that approximates a laser scan of a tree,
andMakowski et al. [24] uses biological processes to model modular
trees and has some collision avoidance. Other related work includes
work that uses preconfigured branches to fabricate structures that
fit a specified 3D surface [14].

Control. Artists require control when modeling trees, and various
methods have been developed to provide this flexibility for non-
instanced trees. Sketch-based tree modeling methods allow artists
to directly draw branch skeleton strokes, lobes, or silhouettes that
the tree should adhere to [7, 13, 23, 25, 29, 48, 49]. While these
methods can effectively model trees that adhere to the artist-drawn
controls, the produced result is a non-modular tree that must be
converted to a mesh, and there is no clear way of extending them
to modular trees.

Crown shape, also known as silhouette, volume, or overall shape
(Fig 1a, grey) is one of the most common properties that artists
want to control. Crown shape constraints allow for modeling of
diverse trees with the same look, and the shape of the crowns can
be defined procedurally. This control mechanism can therefore be
used to generate diverse tree collections. Prusinkiewicz et al. [37]
aims to produce trees that look like a topiary rather than a tree
that happened to naturally grow to fit the specified shape. Boudon
et al. [4] constrained tree shapes to a hierarchy of envelopes that
defined their overall structure. More recently, works involving
competition for space [31, 41, 42] integrated this control directly
within the competition for space, allowing the creation of more
natural looking trees. The Space Colonization Algorithm (SCA),
proposed by Runions et al. [42], constructs a tree skeleton to fit a
point cloud sampled from the desired crown shape. This point cloud,
called attraction points, guides the growth of the tree skeleton. In
each iteration, the attraction points are paired with nearby tree
nodes on the skeleton, and the tree nodes grow in the direction

(a) (b) (c) (d)

Figure 2: Control requirements: the distance from the crown
surface to the tree should not be large (a), tree branches
should not protrude outside the crown (b) nor cross areas
outside it (c).

of their associated attraction points. Our work is inspired by the
line of work for competition for space, but while these methods
are designed for non-instanced and non-modular trees, we target
modular trees. Our experiments (Sec. 5) demonstrate that naively
applying competition for space approaches in our setting results
in unnatural looking trees or do not adhere to the specified crown
shape. We propose the first, to our knowledge, method for modeling
artist controllable modular trees (Fig 1bc). Our method is capable
of generating modular trees that combine a natural look with strict
adherence to a crown shape constraint.

3 Problem Formulation
We take as inputs the trunk geometry, the desired crown, and avail-
able branch modules, where our branch modules are both fixed
in connectivity and geometry. We aim to output a modular tree
that adheres to an artist-specified crown shape while fulfilling our
desired properties to ensure realism. In order to achieve this, we
must determine four key attributes for each branch in the tree:
branch module, branching position, branching direction, and scale.
To ensure that the generated modular tree adheres to the desired
properties for realism, we formalize the constraints and optimiza-
tion objectives from earlier in the introduction. These are defined
explicitly as follows:

Crown Shape Adherence. The tree must conform to the artist-
specified crown shape. Specifically, the tree should both fill the
crown shape as much as possible and stay within the shape simul-
taneously, as seen in Fig 2.

Scaling Consistency. Scaling for any branch module must remain
uniform to prevent texture distortion. For any branch module𝑀 ,
the scaling factor 𝑠 must satisfy 𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 = 𝑠 . Furthermore,
the scaling factor 𝑠 must be restricted by the lower and upper
bounds defined by the user: 𝑠ℓ ≤ 𝑠 ≤ 𝑠𝑢 . For all examples, we use
𝑠ℓ = 0.5, 𝑠𝑢 = 2.0 except for Fig. 1, where 𝑠ℓ = 0.8, 𝑠𝑢 = 0.9. Finally,
deviations from the identity scaling (𝑠 = 1) are penalized to preserve
the original proportions of the branch module.

Natural Connectivity. To ensure realistic branch connections,
the following constraints are imposed. The radius constraint en-
sures that the radius 𝑟𝑐 of a child branch must not exceed the
radius 𝑟𝑝 of its parent branch at the connection point: 𝑟𝑐 ≤ 𝑟𝑝 .
The branching direction constraints ensure that branching direc-
tions must conform to realistic angles observed in nature. For a
parent branch with tangent direction 𝑡𝑝 , the angle 𝜃 between the
parent tangent and the child branch direction 𝑣𝑐 should satisfy:

GI’25, May 26–29, 2025, Kelowna, BC, Canada Takikawa et al.

(d) Branching Direction Constraint

(a) Uniform Scaling Constraint

(e) Branching Point Constraint(c) Branch Radius Constraint

(b) Scaling Limit Constraint

Figure 3: Scaling consistency and natural connectivity con-
straints: branches should not scale non-uniformly (a) or ex-
cessively (b); child branch radii should not exceed the parents’
radii (c); branching direction should be consistent with tree
species properties (d); child branches should grow away from
their parents (e).

𝜃ℓ ≤ cos−1
(

𝑡𝑝 ·𝑣𝑐
∥𝑡𝑝 ∥ ∥𝑣𝑐 ∥

)
≤ 𝜃𝑢 . As this angle can vary by species, the

specific angle bounds are set by the artist for each tree. For most
of our examples we use 𝜃ℓ = 15◦, 𝜃𝑢 = 90◦. Finally, the branching
point constraint ensures that the placements of child branches are
natural. A child branch should start on the surface of the parent,
and grow outwards with respect to the parent branch. Some in-
tersection between the parent and child branches at the root of
the child branch is inevitable and acceptable. The branching point
constraint exists to minimize the intersection between the parent
and child branches and ensure the root is entirely inside the parent
branch. (see Fig. 3e).

These constraints and objectives are integrated into the opti-
mization framework, guiding both the global and local steps of our
iterative algorithm.

4 Method
Our method is inspired by SCA [42], and we share the idea of
guiding growth using attraction points, point cloud samples that
represent the shape of the crown. Unlike SCA [42], which builds a
tree skeleton with nodes, our method focuses on the placement of
branch modules with the appropriate properties, including branch
module type, position, orientation, and scaling in each iteration.
The attraction points help us determine the appropriate properties
in order to ensure that the resulting tree aligns well with the user-
specified crown shape.

4.1 Overview
Our method begins with the trunk and iteratively adds branches
layer by layer. Each iteration consists of a global step that identifies
potential branch placements and a local step that ensures that our
placements are consistent with our desired properties. These steps
work in tandem to ensure that the resulting tree adheres to the artist-
specified crown shape while maintaining realism. The algorithm
terminates when either all attraction points are pruned or no more
branches are placed. We illustrate an overview of our method in
Fig. 4.

4.2 Initialization
All branch modules are preprocessed to generate an internal skele-
ton curve used to transfer radius and curve tangent information to
our potential branching points. See Appendix A for details on the
method.

We then sample the attraction points from the artist-specified
crown shape. We first compute a signed distance field from the
crown shape. Then, we sample points in an axis-align bounding
box surrounding the crown shape. Any points outside the shape,
determined with the signed distance field, are then culled. We con-
tinue until the target number of points is reached. This set of points
is combined with another sampling of points on the surface of the
crown shape. For all of our examples, we use a fixed set of 5000
internal and 2000 surface samples for a total of 7000 samples. Using
a signed distance field enables the sampling to be biased to sample
less or more near the surface of the shape. Since this sampling is
randomized, it can be used to trivially create variations of trees
with the same crown shape (Fig. 5).

4.3 Global Step
At the start of each iteration, we apply a global step to produce a set
of potential branch placements and their associated properties. We
first start by sampling potential branching points from the branches
generated in the previous iteration, starting with the trunk for the
first iteration. Any branching points that lie outside the crown
shape are pruned at this point. For special trees where the trunk
starts outside the crown shape, we do not prune these points to let
the generated tree reach the crown shape first. An example of such
a tree can be seen in Fig. 11. Furthermore, the sampled branching
points are combined with the unused branching points from the
previous iterations. The sampling uses the internal skeleton curve
by casting a ray from the skeleton curve to the surface geometry
at specific intervals of distance Δ𝑥 and junction angles 𝛼 , as seen
in Fig. 6. This leads to a more plausible choice of branching points
compared to a random sample on the surface geometry. To account
for species variation, sampling can be controlled by parameters
such as density, number of junction points, and angle of junction.
Furthermore, points are culled with a random variable to introduce
variance. These points represent the potential branching points
where a branch can be placed, and the tangent and radius of the
curve of the branch are transferred to each of these points from the
internal skeleton curve.

Then, for each attraction point, we must choose its best branch-
ing point based on some criteria. A naive approach would be to
choose the closest branching point as in SCA [42], but this leads
to early termination due to the radius constraint as seen in Fig. 7.
Instead, we compute a branching point cost 𝜎 for each possible
pairing of attraction and branching points. If any attraction and
branching point pair crosses over the crown shape surface, the pair
is invalidated to ensure crown shape adherence. This is evaluated
using Sphere Tracing [11] along the path between the two points.
For efficiency, we only compute the branching point cost 𝜎 on the
25 closest branching points for each attraction point.

4.3.1 Branch Module Selection. In order to assign a cost to every
pair of attraction points and branching points, the type of branch
module and its scaling must be chosen for each pair. The goal

Controllable Modular Trees GI’25, May 26–29, 2025, Kelowna, BC, Canada

(b) Iterative Branch Growth (c) Final Result (after Iteration 4)

Global Attraction-Branching Point Pairing Local Branch Placement

Global Attraction-Branching Point Pairing Local Branch Placement

Iteration 1

Iteration 2

(a) Inputs and Initialization

Figure 4: From the input crown shape, trunk, and branch modules we initialize the system by sampling the attraction points (a).
We then iteratively add layers of branch modules using a combination of a global step that pairs branching and attraction
points, and a local step that finalizes branch choice and placement (b). The final result is produced when attraction points are
all pruned or branches can no longer be placed (c).

(a) Inputs (b) Generated Tree (c) Different
Point Cloud Samples

(d) Different
Branch Point Culling

Figure 5: Different tree variations starting from a given in-
put (a) using different randomization seeds. Default result is
shown in (b). Changing the random seed for attraction point
sampling lead to the same large branch placements while
modifying the smaller branch placements (c), and changing
the seed for the branching point culling leads to visibly dif-
ferent branch placement (d). For all of the variations, our
modular structures would require 1 MB of storage, while
storing them as mesh would require 110 MB.

of the selection of the branch module and the scaling is to find
the branch module 𝑀 and the scaling 𝑠 (𝑀) such that the scaled
branch length (size(𝑀) · 𝑠 (𝑀)) is as close as possible to the target
distance 𝑑𝑡 , the distance between the attraction and branching
points, without breaking the scaling or radius constraints. Thus,
without considering constraints, the ideal scalar is 𝑑𝑡

size(𝑀) . This
scalar will be bound by the lower and upper limits of the scaling
[𝑠ℓ , 𝑠𝑢] and the ratio of the radii of the parent and child branches
𝑟𝑝
𝑟𝑐
. The best branch module𝑀𝑏 and its scaling 𝑠 (𝑀𝑏) for each pair

α

∆x

Branch Surface

Branch Curve

Figure 6: Branching point generation is done by ray-casting
from the internal skeleton curve to the surface. The direc-
tions are determined by the number of junction points 𝑛 and
the junction angle 𝛼 , and the interval is specified by Δ𝑥 .

are calculated as the branch module that provides the scalar closest
to identity after the constraints are applied:

𝑀𝑏 = arg min
𝑀∈M

|𝑠 (𝑀) − 1| ,

where 𝑠 (𝑀) = max
(
𝑠ℓ ,min

(
𝑑𝑡

size(𝑀) , 𝑠𝑢 ,
𝑟𝑝

𝑟𝑐

)) (1)

4.3.2 Branching Point Selection. Once a branch module and scaling
have been chosen for every pair of attraction points and branching
points, we must select a single branching point for each of the at-
traction points. For each attraction point, the branching point with
the lowest cost is selected. We first calculate 𝑑𝑐 for each attraction
point, which is the smallest distance between the attraction point
and all of its paired branching points. By construction, 𝑑𝑐 is strictly
less than or equal to 𝑑𝑡 .

We would like our cost to be structured so that when 𝑑𝑐 is small,
which means that the attraction point has at least one branching

GI’25, May 26–29, 2025, Kelowna, BC, Canada Takikawa et al.

(a) Inputs (b) Euclidean Distance (c) Branching Point Cost

Figure 7: Naively using Euclidean distance for the attraction-
branching point pairing leads to early termination (b), failing
to conform to the input crown shape (a). Using our branching
point cost promotes the growth of branches in areas with
higher branch radius rather than proximity, so that all of the
attraction points can be reached to conform closely to the
crown shape (c). Storing (c) as modular structures requires 1
MB, while storing them as a mesh requires 150 MB.

point close in proximity, the branching point should be selected
based on the distance to its attraction point, that is, 𝑑𝑡 . On the other
hand, when 𝑑𝑐 is large, which means that all branching points are
far away from the attraction point, the branching point should be
selected based on whether a branch placed at that point can reach
the attraction point or not. This means that when 𝑑𝑐 is large, we
often prioritize branching points where the radius of the parent
branch is high, so a thick branch can be used, even if it is not the
closest branching point to the attraction point. This helps prevent
the problem of early termination when only using Euclidean dis-
tance proximity (see Fig. 7), as the selected branches will be thicker
and able to reach the farther attraction points. We measure this as
the ratio between the length of the scaled branch (size(𝑀) · 𝑠 (𝑀))
and the distance to the target 𝑑𝑡 . In the ideal case, the ratio will be
equal to 1.

To smoothly blend between these two cases, we use two positive
weights 𝜆1, 𝜆2 that sum to 1 and set it to the saturation function
𝜆1 =

𝑑𝑐
𝑑𝑐+𝐶 with a constant𝐶 that controls the saturation rate. When

𝑑𝑐 is small, 𝜆1 ≈ 0, 𝜆2 ≈ 1, so the second term will be dominant.
When 𝑑𝑐 is large, the first term will be dominant. To account for
the scale difference between the two terms, we also use the satu-
ration function for the target distance 𝑑𝑡 with the same constant
𝐶 . This prevents 𝑑𝑡 from disproportionately affecting the cost by
normalizing it to be between 0 and 1.We set this constant𝐶 to be ap-
proximately 1/5 of the largest axis of the bounding box containing
both the trunk and crown shape.

Finally, to compute the branching point cost𝜎 , we take aweighted
sum of the two terms:

𝜎 = 𝜆1 ·
���� size(𝑀𝑏) · 𝑠 (𝑀𝑏)

𝑑𝑡
− 1

���� + 𝜆2 ·
𝑑𝑡

𝑑𝑡 +𝐶
,

where 𝜆1 =
𝑑𝑐

𝑑𝑐 +𝐶
, 𝜆2 = (1 − 𝜆1)

(2)

vp

np

c

vp

c

t
p

pnew

pu1

c
t

ф

u2

r

(a) Circle center computation

t

(b) Circle parameterized in 3D (c) Angle ф computation

Figure 8: Branching points are adjusted when its position
𝑝 and branching direction 𝑣 are misaligned with the parent
branch. A circular cross section is computed (a), parameter-
ized (b), and a rotation angle 𝜙 for the branching point is
found such that the branching direction will now face out-
ward from the parent branch (c).

4.4 Local Step
In our local step, we operate on the set of potential branch place-
ments produced from the global step and finalize the choice of
branch placements and their associated properties. Only branching
points that are associated with at least one attraction point con-
tinue to the local step. We compute its branching direction 𝑣 as the
average direction towards all of its associated attraction points.

4.4.1 Branching Point Adjustment. In some cases, the choice of
branching point and branching direction can be misaligned, violat-
ing the branching point constraint. In most cases, the misalignment
is due to the branching point being on the wrong side of the parent
branch, thus causing severe intersections between the parent and
child branches (see Fig. 3e). To resolve this, we want to rotate the
branching point along the axis of the parent branch (skeleton curve
tangent) so that the child branch is not blocked in its branching
direction (Fig. 8). To accomplish this, for each branching point 𝑝 , we
can retrieve a radius 𝑟 and curve tangent 𝑡 from the internal skele-
ton curve. We also have the surface normal of the parent branch at
the point 𝑝 , which we denote as 𝑛. We now assume that the cross
section, formed by the intersection of the parent branch with the
plane defined by point 𝑝 and normal direction 𝑡 , can be closely
approximated by a circle. With this assumption, we can project
𝑛 to the plane to get 𝑛𝑝 , and get a circular cross section of the
parent branch with radius 𝑟 and center 𝑐 = 𝑝 − (𝑟 · 𝑛𝑝) (Fig. 8a).
Then, the circle can now be parameterized in 3D with basis vectors
𝑢1 = 𝑛𝑝 , 𝑢2 = 𝑡 × 𝑢1 (Fig. 8b). We then find the angle 𝜙 that aligns
𝑣𝑝 so that it faces outside the circle, shown in Eq. 3, where 𝑣𝑝 is the
branching direction 𝑣 projected to the cross-sectional plane (Fig.
8c). We can then compute the new rotated position of the branching
point 𝑝new.

𝜙 = 𝑎𝑡𝑎𝑛2((𝑣𝑝 · 𝑢2), (𝑣𝑝 · 𝑢1))
𝑝new = 𝑐 + 𝑟 · (𝑐𝑜𝑠 (𝜙)𝑢1 + 𝑠𝑖𝑛(𝜙)𝑢2)

(3)

4.4.2 Branching Direction Adjustment. The branching direction
constraint is often violated when the branching directions stray far
from the desired branching angles, leading to unrealistic branching
structures (see Fig. 3d). To achieve better realism, we optionally
apply a bias to align the branching direction closer to the desired

Controllable Modular Trees GI’25, May 26–29, 2025, Kelowna, BC, Canada

angle. For our examples, we add the curve tangent 𝑡 to our branch-
ing direction with a weight (between 0.15-0.30) and renormalize the
vector, aligning our branching direction closer to the curve tangent
direction. Afterward, any branches with an angle that does not fit
within the bounds [𝜃ℓ , 𝜃𝑢] are removed, where 𝜃ℓ = 15◦, 𝜃𝑢 = 90◦
for most of our examples.

4.4.3 Final Branch Module Selection. In the global step, we com-
puted the selection of the branch module and the scaling between
each pair of attraction and branching points. However, the selection
changes in the local step since the branching point and branching
direction could have changed in the branching point adjustment
or branching direction adjustment steps. Furthermore, branching
points can be associated with multiple attraction points, which
requires a common solution. We use Eq. 1 again to select the fi-
nal branch module and scale, where the target distance is set as a
weighted distance to all associated attraction points. The weighted
distance incorporates both the average distance to the attraction
points and the distance to the surface of the crown shape. We in-
corporate distance to the surface in early iterations because the
average distance can be dominated by attraction points that are
very close to the trunk rather than close to the surface. Finally,
we cap the weighted distance by the distance to the surface in the
branching direction so that we do not intersect outside the crown
shape.

We skip the branch point if there is no branch whose scaling
is between the minimum and maximum scaling. We prune all the
attraction points that are within kill distance 𝑑𝑘 of any of the po-
tential branching points at this point before moving on to the next
iteration. For our examples, we use a 𝑑𝑘 between 15 and 25, which
is roughly between 1/20 to 1/10 of the largest axis of the bounding
box containing both the trunk and crown shape.

5 Results
We evaluate our generatedmodular trees qualitatively, using diverse
input crown shapes, different sets of branch modules, and other tree
parameters (Figs. 1, 5, 7, 10, 11). In all cases the output trees look
natural and adhere to the input crown shapes, including highly non-
standard crown shapes, such as a torus (Fig. 9, top), a tetrahedron
(Fig. 11, bottom) or a collection of cubes (Fig. 11, top). The memory
footprint of the trees we generate ranges from 1 to 2 megabytes,
while storing these or comparable complexity trees (branches only)
as meshes requires two orders of magnitude more space.

We further ablate our method against different baselines inspired
by prior skeleton-based methods, and perform different direct abla-
tions of the components of our method, as discussed next.

5.1 Ablations
Baselines.While no artist controllable methods for modular tree
modeling exist, space colonization approaches that generate tradi-
tional trees that conform to a given crown shape, provide a potential
starting point for addressing this problem and serve as inspiration
for our work. We therefore compare our method to a series of
baselines that use these approaches and specifically SCA [42] as a
starting point. Our most straightforward baseline (Fig. 9b) modifies
SCA [42] to be able to generate modular trees. Specifically, we use
the initialization step shared by both SCA [42] and our method,

generating random attraction points inside and on the crown sur-
face at the start of the process and generating random branching
points on the branches added in each iteration. We then follow SCA
[42] and select the branch module based on the average attraction
and branching point distance as the target distance. We then (Fig.
9cd) augment this baseline by enforcing the constraints used by
our method to ensure a more natural tree look; as discussed below
and as the figures demonstrate, such naive augmentation is not
sufficient to produce satisfactory results.

In Fig. 9b we show the generated modular trees from the baseline.
The baseline produces multiple visible artifacts compared to our
method. The most blatant artifact is the lack of adherence to the
desired crown shape. The baseline tree struggles to stay within the
desired crown shape when the crown shape contains concavities, as
there is no explicit restriction that prevents branches from crossing
outside of the shape. Having to impose a convex requirement to
avoid this problem would limit artists significantly since concave
crown shapes are quite common. Furthermore, there are many visi-
ble branch radius inversions as well as unrealistic and inconsistent
branching angles that reduce the realism of the tree.

In Fig. 9c we show the generated modular trees from the same
baseline, but with our constraints for crown shape adherence en-
forced. Even with these constraints, we see that the baseline car-
ries the same issues with regards to branch radius inversions and
branching angles.

Finally, in Fig. 9d we show the generated modular trees from
the baseline but with both constraints for crown shape adherence
and branch radius enforced. We can see immediately that the gen-
erated branches reduce in scale drastically as layers are added. The
branches reduce to sizes that are not consistent with artist expecta-
tions of realism. Furthermore, the generated trees do not sufficiently
fill the desired crown shape, and the method essentially terminates
prematurely due to its inability to grow more branches without
violating the radius constraints.

Method Components. In Fig. 5 we showcase our ability to gen-
erate diverse trees using the same crown shape and set of branch
modules. By varying the random seeds for attraction point sampling
and branching point culling, variations can be generated trivially.
In Fig. 10 we show our generated modular trees using a decreas-
ing number of available branch modules. We show that even at an
extremely low number of branch modules, our method produces
a plausible tree adhering to the crown shape. In Fig. 11 we show
results of our modular trees with more unique crown shapes and dif-
ferent sets of branch modules, as well as the placement of modular
leaves.

5.2 Implementation Details
We implement our framework with Houdini [44], using both C++
and VEX. Much of our operations are parallel and heavily benefit
from parallel execution via Shape Operators. Specifically, all of the
operations per-attraction point and per-branching point can be ex-
ecuted in parallel. For rendering, we represent our branch modules
as instanced geometry to save on memory. The computation time
(time it takes to model the tree) of our algorithm on our simplest
tree, Fig. 9 (bottom), is 500ms with 120 branch modules placed and

GI’25, May 26–29, 2025, Kelowna, BC, Canada Takikawa et al.

(a) Input (b) Baseline (c) Baseline
+ Crown Shape

(d) Baseline
+ Crown Shape

+ Branch Radius

(e) Ours

Figure 9: Comparisons of our modular trees (e) against baselines enforcing a subset of our constraints (b-d). (b) Baseline inspired
by SCA (Runions et al.) [42], places attraction points inside the crown shape, but does not enforce any other constraints. (c)
Enforces strict crown shape adherence on top of the baseline, and (d) enforces both crown shape adherence and the branch
radius constraint. Noted by the ellipsoid next to the tree on the bottom of (b), the large branch can only generate child branches
on one side of the tree due to being too close to the crown shape boundary. Storing the trees (top, bottom) as modular structures
require 1 MB and 0.9 MB respectively, while storing as a mesh requires 80 MB and 30 MB respectively.

(a) Input (b) Tree using
5 Branch Modules

(c) Tree using
2 Branch Modules

(d) Tree using
1 Branch Module

Figure 10: From the input (a), we produce multiple modu-
lar trees using a different number of branch modules (b-d).
While the diversity of branches goes down, even with 1 or
2 branches modules we achieve natural looking trees that
adhere to the crown shape. Storing these trees as modular
structures require sizes ranging between 0.6 MB to 1 MB,
compared to 140 MB to 170 MB for storing them as a mesh.

the computation time for our most complex tree, Fig. 11 (top), is
2400ms with 4600 branch modules placed. To generate the trees in
our results we used a Intel®Xeon Gold 6226R, 16 × 2.90GHz with
96GB RAM, and an NVIDIA Quadro RTX 5000 GPU (16GB RAM).

(a) Input Trunk, Crown Shape,
and Branch Modules

(b) Modular Tree
Branch Structure

(c) Modular Tree Render
with Leaves Added

Figure 11: Unique tree shapes and different types of branch
modules. The tree on the top features a slight variation to
our method to allow growth from a trunk that sits outside of
the crown shape(s). The bottom tree features branchmodules
created for pine-like trees. Storing the trees (top, bottom) as
modular structures require 1.8 MB and 0.8 MB respectively,
while storing as a mesh requires 180 MB and 120 MB respec-
tively.

Controllable Modular Trees GI’25, May 26–29, 2025, Kelowna, BC, Canada

6 Conclusions
We have demonstrated that our method effectively enables the
generation of modular trees that adhere to artist-specified crown
shapes, overcoming the limitations of previous approaches. By
integrating constraints on shape, scaling, and natural appearance
into a constrained mixed-variable optimization framework, we
achieve the balance between realism and control. Our controllable
modular tree modelingmethod represents a significant step forward
in balancing artistic control, modular efficiency, and realism.

There is an inherent conflict between control and realism: ad-
hering strictly to artist restrictions while satisfying strict botanical
tree properties may not always be possible. This challenge is shared
by all methods that support strong artist control. In particular, our
iterative approach, which builds the tree layer by layer, does not
inherently support the simulation of complex tropism behaviors,
such as large branches drooping or bending significantly under
the influence of gravity. Additionally, because our branches do not
grow after placement, this can lead to creating dead ends where no
additional growth can occur from the tip of the branch. These global
tropism effects often require a holistic approach to tree generation,
where the structural stability, deformation, and growth of the entire
tree are considered simultaneously rather than in a localized and
iterative manner. An interesting direction would be to solve this
kind of challenge in a post-processing step, where the structure
of the tree is already decided. Because our method is greedy and
forward-only, another promising direction would be to extend our
method to allow for backtracking, possibly by trying different sets
of branching point samples.

Another limitation of our method is self-intersections. Although
our algorithm inherently discourages self-intersections since at-
traction points are exclusive to a single branching point in any
iteration, self-intersections are not explicitly prevented. When trees
are viewed from very close, self-intersections between branches
can be visible. Future work could focus on the intersection-free
construction of trees, or deintersecting any branches that currently
exist.

Acknowledgments
This work was supported by Mitacs through the Mitacs Accelerate
program.

References
[1] Masaki Aono and Tosiyasu L. Kunii. 1984. Botanical Tree Image Generation.

IEEE Computer Graphics and Applications 4, 5 (1984), 10–34.
[2] James Arvo and David B. Kirk. 1988. Modeling plants with environment-sensitive

automata. Proceedings of Ausgraph’88 (1988), 27–33.
[3] James Bartolozzi and Matt Kuruc. 2017. A hybrid approach to procedural

tree skeletonization. In ACM SIGGRAPH 2017 Talks (SIGGRAPH ’17). Article
53, 2 pages.

[4] Frédéric Boudon, Przemyslaw Prusinkiewicz, Pavol Federl, Christophe Godin, and
Radoslaw Karwowski. 2003. Interactive Design of Bonsai Tree Models. Computer
Graphics Forum 22, 3 (2003), 591–599.

[5] Derek Bradley, Derek Nowrouzezahrai, and Paul Beardsley. 2013. Image-based
reconstruction and synthesis of dense foliage. ACM Trans. Graph. 32, 4, Article
74 (2013), 10 pages.

[6] Francesco Carucci. 2005. Inside Geometry Instancing. In GPU Gems 2: Pro-
gramming techniques for high-performance graphics and general-purpose compu-
tation (gpu gems), Matt Pharr and Randima Fernando (Eds.). Addison-Wesley
Professional, Chapter 3. https://developer.nvidia.com/gpugems/gpugems2/part-
i-geometric-complexity/chapter-3-inside-geometry-instancing

[7] Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing Kang.
2008. Sketch-based tree modeling using Markov random field. ACM Trans. Graph.
27, 5, Article 109 (2008), 9 pages.

[8] Ned Greene. 1989. Voxel space automata: modeling with stochastic growth
processes in voxel space. In Proceedings of the 16th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’89). 175–184.

[9] Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang,
Dani Lischinski, and Hui Huang. 2020. Inverse Procedural Modeling of Branching
Structures by Inferring L-Systems. ACM Trans. Graph. 39, 5, Article 155 (2020),
13 pages.

[10] Torsten Hädrich, Daniel T. Banuti, Wojtek Pałubicki, Sören Pirk, and Dominik L.
Michels. 2021. Fire in paradise: mesoscale simulation of wildfires. ACM Trans.
Graph. 40, 4, Article 163 (2021), 15 pages.

[11] John C. Hart. 1996. Sphere tracing: a geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer 12 (1996), 527–545.

[12] Shaojun Hu, Zhengrong Li, Zhiyi Zhang, Dongjian He, and Michael Wimmer.
2017. Efficient tree modeling from airborne LiDAR point clouds. Computers
Graphics 67 (2017), 1–13.

[13] T. Ijiri, S. Owada, and T. Igarashi. 2006. Seamless Integration of Initial Sketching
and Subsequent Detail Editing in Flower Modeling. Computer Graphics Forum
25, 3 (2006), 617–624.

[14] Maria Larsson, Hironori Yoshida, and Takeo Igarashi. 2019. Human-in-the-
loop fabrication of 3D surfaces with natural tree branches. In Proceedings of the
3rd Annual ACM Symposium on Computational Fabrication (SCF ’19). Article 1,
12 pages.

[15] Jae Joong Lee, Bosheng Li, Sara Beery, Jonathan Huang, Songlin Fei, Raymond A.
Yeh, and Bedrich Benes. 2024. Tree-D Fusion: Simulation-Ready Tree Dataset
from Single Images with Diffusion Priors. arXiv:2407.10330 [cs.CV]

[16] Jae Joong Lee, Bosheng Li, and Bedrich Benes. 2023. Latent L-systems:
Transformer-based Tree Generator. ACM Trans. Graph. 43, 1, Article 7 (2023),
16 pages.

[17] Bosheng Li, Jacek Kałużny, Jonathan Klein, Dominik L. Michels, Wojtek Pałubicki,
Bedrich Benes, and Sören Pirk. 2021. Learning to reconstruct botanical trees
from single images. ACM Trans. Graph. 40, 6, Article 231 (2021).

[18] Bosheng Li, Jonathan Klein, Dominik L. Michels, Bedrich Benes, Sören Pirk, and
Wojtek Pałubicki. 2023. Rhizomorph: The Coordinated Function of Shoots and
Roots. ACM Trans. Graph. 42, 4, Article 59 (2023), 16 pages.

[19] Bosheng Li, Nikolas Alexander Schwarz, Wojtek Pałubicki, Sören Pirk, and
Bedrich Benes. 2024. Interactive Invigoration: Volumetric Modeling of Trees
with Strands. ACM Trans. Graph. 43, 4, Article 146 (2024), 13 pages.

[20] Yuan Li, Zhihao Liu, Bedrich Benes, Xiaopeng Zhang, and Jianwei Guo. 2024.
SVDTree: Semantic Voxel Diffusion for Single Image Tree Reconstruction. In
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
4692–4702.

[21] Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in
development I. Filaments with one-sided inputs. Journal of Theoretical Biology
18, 3 (1968), 280–299.

[22] Yotam Livny, Soeren Pirk, Zhanglin Cheng, Feilong Yan, Oliver Deussen, Daniel
Cohen-Or, and Baoquan Chen. 2011. Texture-lobes for tree modelling. In ACM
SIGGRAPH 2011 Papers (SIGGRAPH ’11). Article 53, 10 pages.

[23] Steven Longay, Adam Runions, Frédéric Boudon, and Przemyslaw Prusinkiewicz.
2012. TreeSketch: interactive procedural modeling of trees on a tablet. In Pro-
ceedings of the International Symposium on Sketch-Based Interfaces and Modeling
(SBIM ’12). 107–120.

[24] Miłosz Makowski, Torsten Hädrich, Jan Scheffczyk, Dominik L. Michels, Sören
Pirk, and Wojtek Pałubicki. 2019. Synthetic silviculture: multi-scale modeling of
plant ecosystems. ACM Trans. Graph. 38, 4, Article 131 (2019), 14 pages.

[25] Gilda Manfredi, Nicola Capece, Ugo Erra, and Monica Gruosso. 2023. TreeSketch-
Net: From Sketch to 3D Tree Parameters Generation. ACM Trans. Intell. Syst.
Technol. 14, 3, Article 41 (2023), 29 pages.

[26] Chris Michael and Arunachalam Somasundaram. 2020. Termite: DreamWorks
Procedural Environment Rigging Tool. In ACM SIGGRAPH 2020 Talks (SIGGRAPH
’20). Article 9, 2 pages.

[27] Radomír Měch and Przemyslaw Prusinkiewicz. 1996. Visual models of plants
interacting with their environment. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’96). 397–410.

[28] Boris Neubert, Thomas Franken, and Oliver Deussen. 2007. Approximate image-
based tree-modeling using particle flows. ACM Trans. Graph. 26, 3 (2007), 88–es.

[29] Makoto Okabe, Shigeru Owada, and Takeo Igarashi. 2007. Interactive design
of botanical trees using freehand sketches and example-based editing. In ACM
SIGGRAPH 2007 Courses (SIGGRAPH ’07). 26–es.

[30] Peter E. Oppenheimer. 1986. Real time design and animation of fractal plants
and trees. In Proceedings of the 13th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’86). 55–64.

[31] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane,
Radomír Měch, and Przemyslaw Prusinkiewicz. 2009. Self-organizing tree models
for image synthesis. ACM Trans. Graph. 28, 3, Article 58 (2009).

https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-3-inside-geometry-instancing
https://developer.nvidia.com/gpugems/gpugems2/part-i-geometric-complexity/chapter-3-inside-geometry-instancing
https://arxiv.org/abs/2407.10330

GI’25, May 26–29, 2025, Kelowna, BC, Canada Takikawa et al.

[32] Wojtek Pałubicki, Miłosz Makowski, Weronika Gajda, Torsten Hädrich, Do-
minik L. Michels, and Sören Pirk. 2022. Ecoclimates: climate-response modeling
of vegetation. ACM Trans. Graph. 41, 4, Article 155 (2022), 19 pages.

[33] Sören Pirk, Bedrich Benes, Takashi Ijiri, Yangyan Li, Oliver Deussen, Baoquan
Chen, and Radomir Měch. 2016. Modeling plant life in computer graphics. In
ACM SIGGRAPH 2016 Courses (SIGGRAPH ’16). Article 18, 180 pages.

[34] Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris Neubert,
Radomír Měch, Bedrich Benes, and Oliver Deussen. 2012. Plastic trees: interactive
self-adapting botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012),
10 pages.

[35] Przemyslaw Prusinkiewicz. 1986. Graphical Applications of L-Systems. In Pro-
ceedings of Graphics Interface and Vision Interface ’86 (GI ’86). 247–253.

[36] Przemyslaw Prusinkiewicz, Mark S. Hammel, and Eric Mjolsness. 1993. Ani-
mation of plant development. In Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’93). 351–360.

[37] Przemyslaw Prusinkiewicz, Mark James, and Radomír Měch. 1994. Synthetic
topiary. In Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’94). 351–358.

[38] Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and Sing Bing Kang.
2006. Image-based plant modeling. ACM Trans. Graph. 25, 3 (2006), 599–604.

[39] Alex Reche-Martinez, Ignacio Martin, and George Drettakis. 2004. Volumetric
reconstruction and interactive rendering of trees from photographs. ACM Trans.
Graph. 23, 3 (2004), 720–727.

[40] William T. Reeves and Ricki Blau. 1985. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’85). 313–322.

[41] Yodthong Rodkaew, Prabhas Chongstitvatana, Suchada Siripant, and Chidchanok
Lursinsap. 2003. Particle Systems for Plant Modeling. Plant Growth Modeling
and Applications. Proceedings of PMA03 (2003).

[42] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. 2007. Modeling
trees with a space colonization algorithm. In Proceedings of the Third Eurographics
Conference on Natural Phenomena (NPH’07). 63–70.

[43] Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth Teller. 2001. Reconstructing
3D Tree Models from Instrumented Photographs. IEEE Comput. Graph. Appl. 21,
3 (2001), 53–61.

[44] SideFX. 2024. Houdini. https://www.sidefx.com
[45] Ruben M. Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A Survey

on Procedural Modelling for Virtual Worlds. Computer Graphics Forum 33, 6
(2014), 31–50.

[46] Jerry O. Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen
Koltun. 2011. Metropolis procedural modeling. ACM Trans. Graph. 30, 2, Article
11 (2011), 14 pages.

[47] Ping Tan, Tian Fang, Jianxiong Xiao, Peng Zhao, and Long Quan. 2008. Single
image tree modeling. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08).
Article 108, 7 pages.

[48] J. Wither, F. Boudon, M.-P. Cani, and C. Godin. 2009. Structure from silhouettes:
a new paradigm for fast sketch-based design of trees. Computer Graphics Forum
28, 2 (2009), 541–550.

[49] Ke Xie, Feilong Yan, Andrei Sharf, Oliver Deussen, Hui Huang, and Baoquan
Chen. 2016. Tree Modeling with Real Tree-Parts Examples. IEEE Transactions on
Visualization and Computer Graphics 22, 12 (2016), 2608–2618.

[50] Hui Xu, Nathan Gossett, and Baoquan Chen. 2007. Knowledge and heuristic-
based modeling of laser-scanned trees. ACM Trans. Graph. 26, 4 (2007), 19–es.

Appendix A Branch Module Preprocessing
Our method relies on the existence of an internal skeleton curve to
retrieve radius and curve tangent information for each branching
point. Many methods already exist to solve this particular task,
such as [3, 14, 26] to name a couple. For our method, we have
implemented a custom algorithm for this internal skeleton curve
generation to provide us with flexibility with our method. Unlike
some other approaches [14, 26], our method can compute skeleton
curves on meshes with forks, and we utilize a 2D geodesic field
rather than a 3D distance field [3].

To represent the skeleton curve, we utilize a hierarchy of splines
so that we can handle forks in the branch module geometry. Our
method begins by computing a geodesic distance field and accu-
mulating the shortest distances along the mesh edges from every
vertex to the ground plane. We find the maximum distance on the
mesh and divide the distance according to how many segments we

would like to have on the skeleton curve. This gives us the geodesic
distance values to compute each isoline in the mesh.

To compute each isoline, we iterate through every triangle face
on the mesh and compute the minimum and maximum geodesic
distances of the vertices. If the geodesic distance value is between
the minimum and maximum of the vertices, it must be located on
two of the three edges of the face. We compute the two points on
the two edges with interpolation to match the desired geodesic
distance, and insert the segment formed by the two points into a
disjoint set. We repeat this process for each face. After all of the
faces have been processed, we can obtain the isolines from the
disjoint set.

In the case where there is a fork in the mesh, the isolines will
diverge into multiple islands. We treat the largest isoline as the
parent and the other isolines as the child. To create splines of the
skeleton curves, we compute the centroids of each isoline and
connect them.

https://www.sidefx.com

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Method
	4.1 Overview
	4.2 Initialization
	4.3 Global Step
	4.4 Local Step

	5 Results
	5.1 Ablations
	5.2 Implementation Details

	6 Conclusions
	Acknowledgments
	References
	Appendix A Branch Module Preprocessing

