Supplementary: Capturing Non-Linear Human Perspective in Line

Drawings

JINFAN YANG, University of British Columbia, Canada

LEO FOORD-KELCEY, University of British Columbia, Canada

SUZURAN TAKIKAWA, University of British Columbia, Canada

NICHOLAS VINING, University of British Columbia, Canada and NVIDIA, Canada

NILOY MITRA, University College London, United Kingdom and Adobe Research, United Kingdom

ALLA SHEFFER, University of British Columbia, Canada

ACM Reference Format:

Jinfan Yang, Leo Foord-Kelcey, Suzuran Takikawa, Nicholas Vining, Niloy
Mitra, and Alla Sheffer. 2025. Supplementary: Capturing Non-Linear Human
Perspective in Line Drawings. ACM Trans. Graph. 1, 1 (September 2025),
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Additional Implementation Details

Here we describe details of our implementation of learned human
perspective, including sketch and NPR contour preprocessing; MLP
architecture; parameter choices; our post-inference regularization
step; and other technical details.

1.1 Preprocessing

Our method takes as input a paired human sketch and a 3D model
with an estimated camera position matching the human sketch.
For our experiments, we evaluate our method on inputs from the
OpenSketch data set [Gryaditskaya et al. 2019]; the DifferSketching
data set [Xiao et al. 2022], and a cube.

Preprocessing consists of four basic tasks that are orthogonal
to our method: alignment of the 3D model to the input drawing;
extraction of a set of NPR contours from the 3D model; vector-
ization of the extracted contours; and preprocessing of strokes in
input human sketches. In our experiments, we used off-the-shelf
methods for these tasks, discussed below. We require that the in-
put 3D meshes are properly oriented with respect to the drawings,
and consist of clean geometry with no extraneous material and no
non-manifold elements. This is required to generate a clean set of
contours [Bénard et al. 2019]. Inputs taken from the OpenSketch
dataset include calibrated camera information, and provide code to
estimate camera information including the model view matrix and

Authors’ Contact Information: Jinfan Yang, University of British Columbia, Canada,
yangjf@cs.ubc.ca; Leo Foord-Kelcey, University of British Columbia, Canada, leofk@
cs.ubc.ca; Suzuran Takikawa, University of British Columbia, Canada, stakikaw@cs.
ubc.ca; Nicholas Vining, University of British Columbia, Canada and NVIDIA, Canada,
nvining@cs.ubc.ca; Niloy Mitra, University College London, United Kingdom and
Adobe Research, United Kingdom, niloym@gmail.com; Alla Sheffer, University of
British Columbia, Canada, sheffa@cs.ubc.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2025/9-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Fig. 1. All 3D model shapes used for our experiments.

intrinsic camera parameters; we use this information directly when
rendering the NPR contours. For DifferSketching, we found that
we had to repair the input meshes and align them by hand. This
time-consuming manual process restricted the amount of data we
were able to evaluate from their corpus to 9 inputs total.

For each input, we generate a rasterized set of NPR contours using
the standard silhouette rendering technique [Bénard et al. 2019].
These raster NPR renders are then vectorized using the method
proposed in Gutan et al. [2023], producing a set of vector strokes.
In practice, these raw vectorization outputs often contain excessive
points and exhibit arbitrary stroke segmentation. To address this,
we preprocess the vector data in several stages. First, we evenly
sample points along each vector stroke; then, using the method from
[Baran et al. 2010], we fit each stroke to geometric primitives. Instead
of using the fitted primitives directly, however, we leverage their
endpoints to segment our strokes into subcurves with smoothly
changing curvature (e.g. lines, arcs, and clothoids). As Cornucopia
may oversegment contours for our purpose (for instance, splitting
lines into multiple segments), we merge connected neighbouring
strokes if they have the same stroke type and similar tangent and
curvature. Finally, the segmented vector data is normalized to the
range [—1,1]? to standardize scale across objects.

We also preprocess the input human sketches to ensure compara-
bility with the vectorized NPR data. First, we remove hooks at the
end of strokes; we then uniformly resample them at the same rate as
the NPR data. This ensure compatibility and enhances performance
for subsequent matching.

Finally, we subdivide vector curves from both human sketches
and NPR contours into regular polylines whose vertices are [units
apart. For our experiments we set [= 0.02.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2« Jinfan Yang, Leo Foord-Kelcey, Suzuran Takikawa, Nicholas Vining, Niloy Mitra, and Alla Sheffer

Bounding Box Normalization for Human Sketches and NPR Vectors.
All 3D objects are normalized to a [~1, 1]* bounding box by scaling
the longest axis. We use the width and height of the human sketch
to normalize the NPR vectors to fit in a [~1, 1]? bounding square.

1.2 Parameters.

We use the same parameters for all experiments in our paper. To
support sketches with large perspective deviation, we set o1 to
be a fairly large value o1 = 10/ (where [is the curve and stroke
sampling density), ensuring that the score does not drop too fast.
We set 0y = /9 using the three sigma rule, so that once the angular
difference approaches 302 = /3 the confidence drops to near zero.
Finally, we set ¢ = 0.1 during the computation of the shape loss
term Lypape-

1.3 Post-Inference Regularization.

We use our learned MLP to project 3D surface vertices p to image
space by first applying the camera matrix C, multiplying the result
by D(p), and applying perspective division. Simply rendering the
resulting curves can, however, lead to several notable artifacts. First,
while the deviation is subtle, it can sometimes subtly change the
depth order between the projections of nearby surface curves -
such that previously visible projected curves become occluded or
vice versa (Figure 2bc). In this case rendering all curves results
in an incoherent output. Second, changes in projection may lead
to shifts in locations of T-junctions formed by partial occlusion;
rendering the previous curves in this setup would lead to either
gaps between the leg of the T and the top or in crossings where the
leg intersects the top (Figure 2d). Similarly coincident end vertices
of projected contours may no longer remain coincident. Last but not
least, perspective deviation can also exaggerate small imperfections
in the input contours. We eliminate these by applying a geometric
smoothing step (Figure 2bc, framed corner).

We address all challenges above via a simple regularization step.
We first perform a global smoothing step to better approximate local
shape in the original sketch, while preserving and restoring corners
((Figure 2bc). Let p! be the 2D position after applying the learned
distortion matrix D. We compute new 2D positions r; for all vertices
by minimizing

E=wylri - Pl/' ”% + WshapeEshape + WeoiEcoi (1)

Here the first term seeks to keep the final vertices’ locations r;

at their predicted location p;. Ecuro is constructed similarly to the
curvature loss:

lpi+1 — pill
Eshape = lIriv1 —1i = R; |Ipf+—p- i” (ri—ri-Dl3)
1 1—
N Wshape = 9 * tanh(500 = (cosf — 1)) + 10 (3)

Here R; is the rotation matrix in 2D space that ro-
tates the vector p; —p;i—1 to pi+1 — pi, and 0 is the angle
between p; — pi—1 and pj41 — pi. In order to explicitly
emphasize that straight lines should remain straight,
we weight E¢yrp by a tanh function (inset). Finally, E;
seeks to keep curve end vertices r;, r; that are coinci-
dent in the original vectorized contours, coincident:

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

Ecor=wj ., llri=rjll3 @
i,jeCi#j

Here C is the set of all contour end vertices coincident in the origi-
nal vectorized contours. We then detect newly occluded curves or
portions of curves and remove them from the output ((Figure 2cd;
we detect occlusions in 2D by checking when curves change sides
relative to one another and use depth to decide which curve portion
to delete). As a final step, any T-junctions that we identified in the
original vector contours are preserved by snapping any deformed
legs of a previously identified T-junction that are now disconnected
back into place (Figure 2de).

1.4 MLP Architecture and Training Details

We use an MLP with four hidden layers, and each hidden layer has
a ReLU activation layer following it; the number of perceptrons
for each layer are 16, 128, 64, and 15 for the final output layer
that produces our perspective deviation matrix. We use the Adam
optimizer [Kingma 2014] to train 10,000 epochs, with a learning rate
of le-4.

1.5 Additional Evaluation Information.

We now provide additional details on our comparison setup for alter-
native methods; additional details on our ablations; and additional
details of our three user studies.

Visual Comparison to Additional Prior Work. In addition to the
comparisons to DifferSketching [Xiao et al. 2022] discussed in the
main paper, we compare our method to representative approaches
that address related problems that hypothetically could be used for
our needs.

First, we compare our method to Zerolto3 [Liu et al. 2023], a
representative approach for novel view synthesis. In theory, given an
input sketch, such methods may be able to reproduce the sketched
content appropriately rotated and retain the artist’s perspective.
Zerolto3 requires raster input, so we rasterize both the human
sketch (for our main comparison; Figure 5) and our output vectors
(Figure 6) to a bitmap with a white background. To generate our
results, we query the model with front view rasters and horizontal
camera rotations (azimuth angle) of the same degree as our output
rotation. As Figure 5 shows, the pre-trained Zero1to3 model fails
to generate meaningful results on many inputs. In particular, we
found that Zerolto3 failed to rotate both the sketches and contour;
we expect the model was not trained on similar line drawings. To
confirm our experiments were done correctly, we queried their
model with shaded rasters (aligned with the front view contour),
and observed that this input does correctly synthesize rotated views.

In a second experiment (Figure 6), we used our initial view output
as the input to Zerolto3 and performed the same rotation task
(Figure 6). This experiment similarly failed to produce the expected
outputs and hallucinated details that were not present in the input.
After larger rotations, the original input lines become completely
unstable.

Second, we compare our learned perspective results, both under
original and novel viewpoints, to those produced by [Chan et al.

Supplementary: Capturing Non-Linear Human Perspective in Line Drawings « 3

R

(a) Analytically projected contours (b) Inference output

(c) Geometry regularization

(d) Remove occluded contours e) Restore T-junctions

Fig. 2. Topology and geometry regularization: (a) analytically projected contours; (b) Inference output. After inference, geometry regularization is applied (b,c);
newly occluded contours (bcd, red) are detected and removed; (e) T-junctions that are no longer properly connected (d) are restored.

2022], a state-of-the art method for generating stylized line draw-
ings from images. Chan et al. [2022] only requires raster input. We
performed two experiments by feeding them first, the shaded im-
ages, second, the raster image of the contour lines. Their model was
trained on OpenSketch-style data, aligning with our human sketch
dataset. Their method focuses on stylization, and as our experiments
(Figure 4) confirm, does not change the input perspective. As shown
in Figure 4, when overlaying their outputs with the input projected
vector contours, they are perfectly matched. This result holds true
whether the input to their method is a shaded (Figure 4,b) or contour
(Figure 4,c) render. In contrast, contours rendered by our method
reproduce the perspective deviation present in the artist sketches.

Finally, we compare our outputs to those obtained by retraining
pix2pix [Isola et al. 2017] (the PyTorch implementation) on rasterized
pairs of contours and human sketches. Rather than learning per-
spective deviation, the resulting model produces somewhat messy,
no longer stroke based, stylized outputs which retained the original
analytic perspective when presented with same view or rotated
contours.

In all cases, our experiments show that these alternative methods
fail to reproduce human perspective deviation, showcasing both the
need for a method that explicitly aims to learn perspective deviation
and our method’s ability to do so.

Additional Comparison vs DifferSketch Details. The authors of
DifferSketching provided us with both their pre-trained models and
code. Their pre-trained models are not artist-specific, and are trained
on 3620 sketches. Fig. 5¢ in the paper shows the output of this model
on input shapes in their training corpus, in a view which is identical
or very similar to the ones they trained on. As the figure clearly
shows, this pretrained model introduces stylization and distortion
beyond the desired perspective deviation. Their model, by design,
does not attempt to transfer individual artist choices. In order to try
to evaluate their model’s ability to mimic individual artist choices,
we trained DifferSketching on smaller subsets of their corpus (all
professional sketches of a given shape from a given view); and on
single sketch/contour pairs (Fig. 5de, main paper). When trained on
these smaller sets, output quality catastrophically deterioriated, as
shown in columns d and e.

1.6 Additional Ablations and Experiments.

Perspective Comparison Across Artists. Figure 8 shows the results
of applying our learned perspective from a given input sketch and

object pair to another sketch of the same object from a different
view by a different artist. Each of the two input sketches clearly
has a very different perspective, and learning and applying this
perspective produces clearly different outputs for the same camera
position. However, we observe that for both views and both sets of
perspectives, the outputs have cross-sections that are more circular
and less elliptical compared to ground truth. Additionally, both out-
put perspectives exhibit less foreshortening and a greater tendency
towards an orthographic perspective than projected contours. This
agrees with perceptual literature [Hertzmann 2024], which states
that humans consistently underestimate foreshortening and prefer
to draw more circular cross-sections, even under perspective.

Ablation versus 2D MLP.. We validate our design choice to con-
struct a 3D perspective deviation function by comparing against an
alternative that operates entirely in two dimensions. In this ablation,
we modify our training by performing all computations exclusively
in 2D. We compute our smoothess loss in two dimensions instead of
three, omit the depth regularizer, and omit the 3D grid stabilization
term. Fig. 7 in the main paper shows the output of this approach.

Ablation of discrete set of D matrices versus our learned function.
We compare our learned distortion field versus (i) a single deviation
matrix D to model perspective deviation throughout; or (ii) a small
finite set of (9) perspective deviation matrices positioned at evenly
distributed fixed points and linearly interpolated everywhere else.
Results of this experiment are shown in Figure 3; neither approach
satisfactorily captures human perspective deviation.

Ablation of learning on single sketch versus many sketches. We
also validate our decision to use single sketch-contour pairs to learn
meaningful deviation function by training our perspective MLP on
larger data corpuses. We train it on one corpus consisting of all
inputs drawn by the same artist (Fig. 8, main paper, left) and another
containing all artists’ sketches of the same object (Fig. 8, main paper,
right). In both cases, the magnitude of the deviation visibly and
quantitatively diminishes: in the first case the distance between the
output and input contours drops to 5.69 - 103 compared to average
distance of 7.34 - 10~3 for the deviations learned from single pairs
(same artist different shapes). In the second case, distance drops
to 3.14 - 1073 compared to average distance of 6.57 - 10~ for the
deviations learned from single pairs (same shape, different artists).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

4 .« Jinfan Yang, Leo Foord-Kelcey, Suzuran Takikawa, Nicholas Vining, Niloy Mitra, and Alla Sheffer

(a) Contour and sketch overlay (b) Projection using single learned

deviation matrix
overlaid with contour

(c) Projection using 9 learned
deviation matrices
overlaid with contour

(d) Projection using our learned
pointwise deviation matrix
overlaid with contour

Fig. 3. Ablation. We confirm that capturing human perspective requires a smooth continuous function across object space, by comparing our outputs (d) with

those generated using a single deviation matrix per input (b) or using 9 evenly-spaced and interpolated ones (c). Our output (d) reproduces human sketch
(a,black) perspective much more faithfully. In each of (b,c,d) overlay of output and conoturs (blue) on the left, overlay of output and sketch (green) on the right.

(a) Input Shape +

Contours given shape render as input given contours as input
N
(g) Input Shape + (h) Output of [Chan et al. 2022] (i) Output of [Chan et al. 2022]
Contours given shape render as input given contours as input

(b) Output of [Chan et al. 2022] (c) Output of [Chan et al. 2022]

(f) Our output overlayed
on the input contour

(d) Our training data

(e) Our output

2

(j) Our training data

(k) Our output (1) Our output overlayed

on the input contour

Fig. 4. Comparison. (a) Input shape for [Chan et al. 2022] and ours; (b) output from [Chan et al. 2022] overlaying with the shaded render of the input shape;
(c) output from [Chan et al. 2022] overlaying with the input contour; (d) our paired training data; (e) our output overlaying with the shaded render of the input
shape; (f) our output overlaying with the input contour. As the examples show, [Chan et al. 2022] faithfully reproduces the analytic perspective in the inputs

but does not model human deviations; in contrast, we learn and reproduce the human perspective.

1.7 Applications

Our learned perspective can be part of a larger stylization or NPR
pipeline. Figure 9 shows our learned perspective applied to contours
that are subsequently restyled with the CAD2Sketch style transfer
pipeline [Hahnlein et al. 2022].

1.8 Runtimes

The first training stage for our MLP takes approximately between
five and ten minutes on average on an NVIDIA Tesla V100 with 16GB
of memory; the second stage with augmented points from novel
views takes between 1-2 hours. Our inference and regularization
stage are fast and take approximately ten seconds overall.

1.9 Perceptual Study Details

We validate our method by performing four perceptual user studies.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

Study 1: Generalization. Participants were shown an example
drawing, consisting of an artist sketch (in black) overlaid with an-
alytical contours (); and two pairs of drawings beneath it,
consisting of two pairs of algorithmically generated contours (in
black) with overlaid analytical contours (). Participants were
asked the following question: "Given the relationship (distances
and relative locations) between the orange and black curves in the
drawing on top (A), which drawing on the bottom (B,C) exhibits a
more similar relationship (distances and relative locations) between
its orange and black curves to the one in the drawing above (A)?
Please zoom in to see the differences. If both exhibit similar rela-
tions, select "Both". If neither has similar relations, select "Neither.""
The answer options were "B", "C", "Both", and "Neither." One pair of
algorithmically generated contours represents our model, trained
on the input on top, applied to the contours of a different shape;
the other pair of algorithmically generated contours was trained on

Supplementary: Capturing Non-Linear Human Perspective in Line Drawings « 5

YA

(b) Sketch overlaid with
input shape contours
in best matching view

(e) Contours projected
using our learned perspective
(rotated view)

(f) Our projected contours
overlaid on rotated
view contours (c)

(a) Human sketch (c) Rotated input shape (d) Sketch (a) rotated

using Zerol123

Fig. 5. Comparison versus Zero123 [Liu et al. 2023], applied to our input human sketch. Left-to-right: (a) input human sketch; (b) 3D projected contours (in
blue; inset shows contours overlaid on human sketch); (c) contours in rotated view; (d) Zero123 output for this new view given sketch (a) as input; (e) contours
projected using our perspective for the same novel angle. Zero123 introduces degenerate and hallucinated results and fails to preserve object shape. Our
rotated view prediction correctly produces a new set of contours that align with viewer expectations and respects the perspective present in the original sketch.

VYN
Biete

(b) Sketch overlaid with
input shape contours
in best matching view

(a) Human sketch (c) Contours projected
using our learned perspective

(same view)

(d) Rotated input shape

NI

GIie
%

(e) Our output (c) (f) Contours projected (g) Our projected contours
rotated using Zero123 using our learned perspective overlaid on rotated
(rotated view) view contours (d)

Fig. 6. Comparison vs. Zero123 [Liu et al. 2023], applied this time to the same-view output of our method. Left to right: (a) input human sketch; (b) 3D
projected contours (in blue); (c) our learned same-view output; (d) rotated contours under analytic projection; (e) our learned same-view output, rotated to a

novel view angle using Zero123; (f) our rotated view prediction.

a different sketch/contour pair. We recruited 21 participants; each
participant answered 10 questions, assigned from one of the three
strata. All study data is provided in the additional supplemental
material. Viewers rated the outputs trained on the input pair on
top as having a more similar relation to the references 63% of the
time (versus 21% other, 2% both, 14% neither); this shows that our
method generalizes deviation present in training sketches to other
outputs.

Study 2: Human-Like Outputs. Our second study assesses whether
our output contours look more human-like than those generated
with analytical perspective. Participants were shown drawings of
3D shapes and were asked to assess if they were drawn algorithmi-
cally, or by a human. Study participants were shown two images,
presented side-by-side and in random order, labeled “A” and “B”.
Both images were generated using perspective contours from our
data set; one image had our learned perspective from the input
human sketch applied, and the other did not. Participants were then

asked: “The following drawings “A” or “B” depict the same underly-
ing shape (from the same view). Carefully examine these drawings
and identify the differences between them. Imagine the shape they
depict. Which of the two drawings, “A” or “B”, would you consider
more likely to have been drawn by a human?” The answer options
were “A”, “B”, “Both”, and “Neither”.

We evaluated our method versus undeformed perceptual contours
with a total of 54 questions, divided into three strata of 18 questions
each. We recruited 45 participants; each participant answered 18
questions, assigned from one of the three strata. In total, we collected
15 answers for each question. All study data is provided in the
additional supplemental material. Participants felt that our deformed
contours were more likely to have been drawn by a human 71% of
the time; felt that the projected contours were more likely to have
been drawn by a human 12% of the time; judged both results as
equally likely to be drawn by a human 8% of the time, and neither
9% of the time.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

6 + Jinfan Yang, Leo Foord-Kelcey, Suzuran Takikawa, Nicholas Vining, Niloy Mitra, and Alla Sheffer

_~ \\ =
(b) Contour and
sketch overlay

(c) pixépix predicted
same-view output

(a) Human sketch

(d) Our learned same-view (e) Rotated view
output overlaid
with contours

(f) pix2pix rotated view
prediction overlaid
with contours

(g) Our learned rotated view
prediction overlaid
with contours

Fig. 7. Comparison to pix2pix [lIsola et al. 2017], a conditional GAN image-to-image translator, highlights the fact that translation methods are not suited for
learning perspective from sparse data. Pix2pix trained on our training corpus fails to apply the input human sketch perspective from (a) to the 3D projected
contours (b) and introduces spurious lines (c, f); our method correctly learns and applies input sketch perspective to both same- and novel-view contours.

S eI,

(d) Applying D of
Professional3

(a) Professional4’s (b) Contours under
sketch Professional4’s camera

(c) Applying D of
Professional4

60 10

(g) Applying D of
Professional3

(h) Applying D of
Professional4

(e) Professional3’s (f) Contours under
sketch Professional3’s camera

Fig. 8. Perspective Comparison: Given two artist sketches (a,e) with dif-
ferent camera views (b,f) we show the results of applying the perspectives
learned from each sketch to the original (c,g) and other sketches (d,h) views.
Notice how both sketches generate more circles and a closer to orthographic
perspective.

(d) Our stylized
projected contour

(b) Our stylized
projected contour

(a) Contour (c¢) Contour

Fig. 9. Our perspective can be combined with any stylization method; here
we style the contours using [Hahnlein et al. 2022].

Study 3: Accuracy Comparison versus 2D MLP. We compared our
method’s output directly against the 2D design alternative. Partici-
pants were shown a reference line drawing (top) and two candidate
drawings (A, B; bottom), one generated by our full method and
one by the 2D MLP alternative as described above. Participants

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

were then asked the following question: "In the figure below, you
are shown three line drawings, one at the top (Reference) and two
below (A and B). The Reference drawings show a front-view draw-
ing of an object, while drawings A and B depict the same shape
after being rotated by a certain degree. Carefully examine these
line drawings and identify the differences between them. Which
of the two line drawings, "A" and "B", would you consider more
accurately depicts the shape of the reference image after rotation? If
both are equally accurate, select "Both"; if neither is accurate, select
"Neither"" Options were "A", "B", "Both", and "Neither".

We recruited 15 participants in one tranche, and showed them
12 questions each, for a total of 180 responses. Participants ranked
ours as more precise 79% of the time (vs 6% 2D MLP, 7% both,
8% neither). This confirms our assertion that while the 2D MLP
model can replicate the artist deviation in the input view, outputs
are inconsistent across views as the learned model significantly
deforms the contours.

Study 4: Generalization Comparison vs 2D MLP. Our final study
used the same question and experiment setup as our first gener-
alization study, but compared our outputs to that of the 2D MLP
described above. For this study, we recruited 21 participants; each
participant answered 5 questions, assigned from one of the three
strata. Viewers rated the outputs trained on our model as having a
more similar relation to the input pair on top 72% of the time (versus
17% 2D MLP, 6% both, 5% neither).

References

Ilya Baran, Jaakko Lehtinen, and Jovan Popovic. 2010. Sketching Clothoid Splines Using
Shortest Paths. Computer Graphics Forum (2010). https://doi.org/10.1111/j.1467-
8659.2009.01635.x

Pierre Bénard, Aaron Hertzmann, et al. 2019. Line drawings from 3D models: A tutorial.
Foundations and Trends® in Computer Graphics and Vision 11, 1-2 (2019), 1-159.

Caroline Chan, Frédo Durand, and Phillip Isola. 2022. Learning to generate line drawings
that convey geometry and semantics. In CVPR.

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Frédo Durand,
and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 38 (11 2019).

Olga Gutan, Shreya Hegde, Erick Jimenez Berumen, Mikhail Bessmeltsev, and Edward
Chien. 2023. Singularity-Free Frame Fields for Line Drawing Vectorization. Computer

https://doi.org/10.1111/j.1467-8659.2009.01635.x
https://doi.org/10.1111/j.1467-8659.2009.01635.x

Graphics Forum (2023). https://doi.org/10.1111/cgf.14901

Felix Héhnlein, Changjian Li, Niloy J. Mitra, and Adrien Bousseau. 2022. CAD2Sketch:
Generating Concept Sketches from CAD Sequences. ACM Trans. Graph. 41, 6, Article
279 (Nov. 2022), 18 pages. https:/doi.org/10.1145/3550454.3555488

Aaron Hertzmann. 2024. Toward a theory of perspective perception in pictures. Journal
of Vision 24, 4 (04 2024), 23-23.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. CVPR (2017).

Diederik P Kingma. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov,
and Carl Vondrick. 2023. Zero-1-to-3: Zero-shot One Image to 3D Object.

Supplementary: Capturing Non-Linear Human Perspective in Line Drawings « 7

arXiv:2303.11328 [cs.CV]

Stefano Nuvoli, Alex Hernandez, Claudio Esperanca, Riccardo Scateni, Paolo Cignoni,
and Nico Pietroni. 2019. QuadMixer: Layout Preserving Blending of Quadrilateral
Meshes. ACM Trans. Graph. 38, 6, Article 180 (nov 2019), 13 pages. https://doi.org/
10.1145/3355089.3356542

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan.
2023. Emergent Correspondence from Image Diffusion. In Thirty-seventh Confer-
ence on Neural Information Processing Systems. https://openreview.net/forum?id=
ypOiXjdfnU

Chufeng Xiao, Wanchao Su, Jing Liao, Zhouhui Lian, Yi-Zhe Song, and Hongbo Fu. 2022.
DifferSketching: How Differently Do People Sketch 3D Objects? ACM SIGGRAPH
Asia 41, 4 (2022), 1-16.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/10.1111/cgf.14901
https://doi.org/10.1145/3550454.3555488
https://arxiv.org/abs/2303.11328
https://doi.org/10.1145/3355089.3356542
https://doi.org/10.1145/3355089.3356542
https://openreview.net/forum?id=ypOiXjdfnU
https://openreview.net/forum?id=ypOiXjdfnU

	1 Additional Implementation Details
	1.1 Preprocessing
	1.2 Parameters.
	1.3 Post-Inference Regularization.
	1.4 MLP Architecture and Training Details
	1.5 Additional Evaluation Information.
	1.6 Additional Ablations and Experiments.
	1.7 Applications
	1.8 Runtimes
	1.9 Perceptual Study Details

	References

