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(a) Human sketch overlaid on 
input shape contours

(c) Contours projected using our 
learned perspective (other views)

rotated by -20o

(d) Applying learned perspective 
to new shapes

(b) Contours projected using our 
learned perspective (same view)

rotated by 180o

Fig. 1. Human sketches (a, black) use a perspective projection that deviates from the analytical perspective model. We visualize this perspective deviation by
overlaying the sketch over contours projected using best approximating analytic perspective (a, orange); sketch and contours shown separately as insets. We
learn a model of this human deviation, producing projected contours (b-d, black) that have similar relation to their analytical counterparts. Our deviation
model generalizes to other views (c) and shapes (d), maintaining similar relationship between the two sets of contours.

Artist-drawn sketches only loosely conform to analytical models of perspec-
tive projection; the deviation of human-drawn perspective from analytical
perspective models is persistent and well documented, but has yet to be
algorithmically replicated. We encode this deviation between human and
analytic perspectives as a continuous function in 3D space and develop a
method to learn it. We seek deviation functions that (i) mimic artist deviation
on our training data; (ii) generalize to other shapes; (iii) are consistent across
different views of the same shape; and (iv) produce outputs that appear
human-drawn. The natural data for learning this deviation is pairs of artist
sketches of 3D shapes and best-matching analytical camera views of the
same shapes. However, a core challenge in learning perspective deviation is
the heterogeneity of human drawing choices, combined with relative data
paucity (the datasets we rely on have only a few dozen training pairs). We
sidestep this challenge by learning perspective deviation from an individual
pair of an artist sketch of a 3D shape and the contours of the same shape
rendered from a best-matching analytical camera view. We first match con-
tours of the depicted shape to artist strokes, then learn a spatially continuous
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local perspective deviation function that modifies the camera perspective
projecting the contours to their corresponding strokes. This function retains
key geometric properties that artists strive to preserve when depicting 3D
content, thus satisfying (i) and (iv) above. We generalize our method to
alternative shapes and views (ii,iii) via a self-augmentation approach that al-
gorithmically generates training data for nearby views, and enforces spatial
smoothness and consistency across all views. We compare our results to po-
tential alternatives, demonstrating the superiority of the proposed approach.
Code and models will be released upon acceptance.
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manipulation.
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1 Introduction
Line drawings, or sketches, are a simple and powerful medium for
conveying shapes between humans [Eissen and Steur 2008, 2011]
and have long been hailed as a potential interface for bidirectional
human-computer communication [Sutherland 1964]. Unfortunately,
computer generated sketches lack the communication power of
human ones, and computers are not yet able to fully parse human
sketches [Bessmeltsev and Liu 2024].

When sketching a 3D object (e.g. Figure 1a), artists make three key
choices: (i) which 3D curves to draw; (ii) what 3D-to-2D projections
to employ to project the 3D curves on a 2D medium; and (iii) how
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to stylize the 2D projections of the chosen curves. While the first
and last items have been extensively researched (Section 2), the
second one [Hertzmann 2024] is less studied and rarely modeled.
Computer graphics applications typically use an analytical model of
projection (e.g. single vanishing-point perspective or orthographic
projection); in contrast, artist projection approximates but does
not match any such analytical model [Hertzmann 2024; Pepperell
and Haertel 2014]. Researchers [Gombrich 1951; Hertzmann 2024;
Pepperell and Haertel 2014; Singh 2002] speculate that the deviation
between artist-employed and analytical perspective models is due
to a combination of artists using deliberate distortions as a key
mechanism to emphasize essential features and reduce cognitive
load, thereby enabling more effective communication; and inherent
human imprecision. We refer to this discrepancy between analytical
and artist-drawn perspectives as human perspective deviation.

Although this human perspective deviation has been consistently
observed, we are aware of only one prior effort to model it. Specifi-
cally, Xiao et al. [2022] note the discrepancy between artist-sketched
and analytically projected shape contours, and use a 2D multi-layer
perceptron (MLP) to learn to deform the analytical contours to-
wards their sketched counterparts. However, this approach collec-
tively models all three above-mentioned drawing choices and does
not offer a factorized treatment. Even when applied to contours
in their training corpus, their model, trained on professional artist
line-drawings, produces unnatural looking deviations containing
high-frequency noise, atypical of artist choices (see Section 4).
We develop a deviation model that is designed to reflect artist

perspective choices. Since there is no unified perceptual model of
artist perspective deviation upon which we can draw, we propose a
learning-based approach and use pairs of artist sketches, dominated
by contour strokes, and renders of analytically projected contours
of the artist-depicted shapes aligned to match the artist’s chosen
view as training data (Figure 1a). Given this data, we seek deviation
models that (i) mimic artist deviation on our training data; (ii) gener-
alize to other shapes; (iii) are consistent across different views of the
same shape; and (iv) produce outputs that appear human-drawn.
A core challenge in learning perspective deviation that reflects

artist choices is the heterogeneity of human drawing choices, com-
bined with relative data paucity (the datasets we rely on have less
than a couple of hundreds of training pairs). Rather than attempt-
ing to learn a single unified probabilistic model that can generate
outputs that fit individual styles on demand, we learn models that
reflect the perspective in individual sketches. While our model can
be extended to learning from multiple sketches at once (Section 4).
such “averaged” models tend to be less expressive.

We align the renderer camera parameters to best match the artist
sketches and algorithmically match the rendered projected contours
to artist strokes. We then use these correspondences to learn a per-
spective deviation function that maps contours to their matching
strokes. Our experiments (Section 4) suggest that generalization
across views and shapes requires learning a 3D, rather than a 2D,
perspective deviation function. We therefore model perspective
deviation using a 3D spatially varying multiplicative matrix that
adjusts the analytical projection matrix; specifically, we use an MLP
to define, for every point in 3D space, an associated deviation ma-
trix. To generalize the output perspective deviation across multiple

camera views, we use a self-augmentation process where we first
learn artistic deviation from the sketch contour pairs above; then,
we learn a deviation function across both the original input and
synthetic training examples generated from the original deviation.
We train our method on 169 sketch/shape pairs sourced largely

from [Gryaditskaya et al. 2019] and [Xiao et al. 2022], and show
the results of applying these models to different shapes and views
throughout the paper and the supplementary material. Our outputs
retain the perspective of the input sketches when applied to their
corresponding training shapes, both from original and novel camera
views (e.g. Figure 1bc), and translate across shapes (e.g. Figure 1d).
We validate our results both quantitatively and via perceptual stud-
ies, and demonstrate their superiority compared to existing and
potential alternatives (Section 4).
In summary: our main contribution is to learn human perspec-

tive deviation models that capture the characteristics of individual
artist choices and that generalize across views and shapes. In the
process, we contribute to the understanding of human employed
perspective in line drawings, and identify the relevant factors in
modeling human perspective deviation. Beyond addressing the tech-
nical challenge of modeling perspective deviation for individual
artists and inputs, our approach advances the understanding of how
computational models can replicate human perception.

2 Related Work
Sketching with Perspective. Analytical, linear, perspective projec-

tion is ubiquitously used for precise depiction of 3D content from a
given viewpoint in manually drafted technical drawings and com-
puter generated renders. Artists are often encouraged [Eissen and
Steur 2008] to aim for analytic perspective and historically have at-
tempted to accurately reproduce it; for example, it is speculated that
the Dutch masters used camera obscura to capture this perspective
[Steadman 2002]. However, various user studies have demonstrated
that artists almost never use precise linear perspective for sketch-
ing [Koenderink et al. 2016; Pepperell and Haertel 2014]. Some
deviations arise due to faulty estimation [Kemp 1991; Kubovy 1986]
while others are the result of artists intentionally using varying
(local) perspective [Coleman et al. 2005; Hertzmann 2024; Pepperell
and Haertel 2014; Schmidt et al. 2009a; Singh 2002]. Research on
human perception of 2D depiction of 3D objects strongly suggests
that humans make systematic errors when estimating foreshortened
shapes and dimensions even for simple tasks [Koenderink and van
Doorn 1991; Nicholls and Kennedy 1995; Reith and Liu 1995; Taylor
and Mitchell 1997]. While studies suggest that using scaffolds for
guidance [Hennessey et al. 2017; Schmidt et al. 2009a] improves the
alignment of artist and analytic perspectives, artists often forego
scaffolds when sketching free-hand.

Non-Photorealistic Rendering (NPR). Numerous NPR methods ex-
plore the use of line drawings for effectively conveying shape, and
investigate which surface curves or contours to draw, e.g. [Cole
et al. 2008] and how to stylize their 2D projections, e.g. [Hertz et al.
2023; Wang et al. 2024]. DeCarlo et al. [2003] generate collections of
curves that emphasize object features; recent variants (e.g., Hähnlein
et al. [2022], Liao et al. [2024]) convert CAD sequences to concept
sketches, blending geometric precision with stylistic abstractions to
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emulate human sketches. All above methods explicitly or implicitly
rely on traditional analytical perspective.

Advances in machine learning have opened new possibilities for
synthesizing line drawings from 3D shapes, including neural style
transfer [Gatys et al. 2016], image-to-image translation [Isola et al.
2017], or using CLIP scoring to distill shape abstractions [Vinker
et al. 2022]. Liu et al. [2020] propose a neural framework for gener-
ating contour lines directly from 3D models, showcasing the ability
of neural networks to learn artistic cues. Chen et al. [2022] propose
neural variants for synthesizing line drawings that simultaneously
capture geometric accuracy and semantic meaning. These methods
demonstrate the potential of machine learning to mimic artistic
styles, but are mainly trained on synthetic renderings of 3D models
using analytical projections, and learn styles rather than human per-
spective. These methods do not address the perspective distortion
humans naturally introduce, as particularly evident when compar-
ing NPR outputs with human-drawn sketches (see supplementary).
Closest to our work, DifferSketching [Xiao et al. 2022] use a

data driven approach to learn a 2D difference function between
projected contours and artist sketches (assumed to be drawn in the
same view) from a large collection of paired contours and sketches.
As our experiments show, despite relying on professional sketches,
their method introduces notable high-frequency distortion when
applied even to their training inputs. Training the method on a
subset of the dataset, e.g., drawings of the same shape, or single
accurate drawings increases rather than decreases this distortion.
We compare theirs with our approach on their dataset in Section 4.

Sketch-Based Modeling. Sketch-based modeling systems focus on
creating 3Dmodels from 2D sketches; see [Bessmeltsev and Liu 2024;
Choi et al. 2024; Olsen et al. 2009] for comprehensive surveys. Many
such systems ignore the problem of perspective entirely, and use
2D contour curves drawn in the image plane as input [Dvorožňák
et al. 2020; Li et al. 2018; Nealen et al. 2007; Zhang et al. 2022]; they
create 3D geometry by inflating these contours and incorporate
depth either by explicit annotation or relying on stroke draw order.
These methods implicitly assume orthographic perspective. Other
methods rely on sketched input from multiple views, where artists
sketch strokes from different viewpoints onto existing 3D geome-
try (e.g., [De Paoli and Singh 2015; Igarashi et al. 1999; Kara and
Shimada 2007]). Several methods require users to manually specify
analytic perspective “scaffolds” to regularize perspective [Schmidt
et al. 2009b], or use strokes to define transient surfaces to recover
3D curves [Bae et al. 2008].
Works addressing 3D reconstruction from single sketches ob-

serve that user inputs have inexact perspective, but seek to correct
or sidestep this inexactness by detecting and enforcing different reg-
ularization cues [Shao et al. 2012; Xu et al. 2014], construction lines
[Gryaditskaya et al. 2020], or local symmetries [Hähnlein et al. 2022].
Recent developments have shifted towards data-driven approaches
by leveraging 3D datasets, synthetically rendered with a pinhole
camera model with either non-photorealistic rendering or manual
contour tracing, to create training and test data [Li et al. 2022; Liu
et al. 2024, 2023]. When applied to human sketches, they frequently
produce unexpected or inconsistent outputs, highlighting the need
for frameworks that explicitly incorporate human perceptual biases.

3 Method

3.1 Overview
Modelling Human Perspective. As discussed in Section 2 while

artistic perspective typically deviates from analytic one, this devi-
ation is relatively subtle, and changes gradually across drawings,
with parts of the content drawn larger or smaller relative to their
analytical projection. To capture these properties, we model artists’
perspective as a 3D deviation from a standard pinhole camera pro-
jection that smoothly varies across 3D space (we treat orthographic
projection as a special case of perspective with the camera placed
at infinity).

Setup. In computer graphics, projection is handled analytically
through the camera projection matrix P and the modelview matrix
M. For simplicity we refer to the product of these matrices C = PM
as the camera projection matrix. When applying a perspective pro-
jection, any point p ∈ R3 on a 3D shape is mapped, working in
homogeneous coordinates, to p → C[p; 1].Then, C[p; 1] is con-
verted to 2D points in image space by performing a perspective
divide (see [Foley et al. 1996]).
We model human perspective deviation as a local multiplicative

adaptation of the projection operator. Empirically, we found that hu-
man perspective is best modeled in a normalized world coordinate
space, and not in image space. We therefore model human perspec-
tive at p as p → D(p)C[p; 1], where a D(p) is a 4 × 4 deviation
matrix, followed by perspective division by 𝑝𝑤 . Input shapes are
normalized so their origin is at (0, 0, 0) and the shape is within the
[−1, 1]3 unit box. We parameterize D using these normalized world
coordinates.

We represent D as an MLP that takes in 3D (normalized) coordi-
nate information and outputs 15 values. We reshape these values to
a 4 × 4 matrix, with the last element set to 1. Given this one-to-one
relation, we use D to represent, based on context, both the human
perspective matrix as well as the MLP output.

Additional Deviation Properties. In addition to expecting our learned
deviation functions D to change gradually across the input shapes,
we aim for them to preserve core properties of the projections of the
depicted curves such as slope and shape; prior research on sketch
analysis [Shao et al. 2012; Xu et al. 2014] suggests that artists seek
to preserve these properties in their sketches. Hence, while artists’
local or global perspective deviation may be quite substantial, we do
not require our deviation to be minimal across the board. Last but
not least, we seek learned deviations that generalize across views
and similar shapes; to this end, we explicitly seek deviations that
are similar across similar views and are spatially smooth even when
away from the input shape surface.

Algorithm Overview. We learn a deviation matrix D(p), (illus-
trated in the inset) from one or more pairs of a source sketch along
with its corresponding 3D object and an estimated camera matrix
that best aligns the sketch and camera views. We break the task
into the following stages (Figure 2): (i) matching between sketched

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.



4 • Jinfan Yang, Leo Foord-Kelcey, Suzuran Takikawa, Nicholas Vining, Niloy Mitra, and Alla Sheffer

rotated 
by 10o

rotated 
by -10oHuman Sketch Input Shape Overlay

y
x

z

d1
d2

d15
D(p)

-10o

10o

y
x

z

d1
d2

d15
D(p)

Matching Learning Learning

(e) Contours 
projected using 
final inference

(f) Overlaid 
with human 

sketch

(g) Contours projected 
using our learned 

perspective (rotated views)

(d) Learning with 
data augmentation

(c) Contours projected
using initial inference

(b) Matches(a) Input

Inference & 

Regularization

Inference & 

Regularization

Fig. 2. Algorithm overview: Given an input sketch (black) and corresponding analytically projected 3D shape contours (orange) in a matching view (a), we
match the contours to artist strokes (b). We then use a two-step process to learn the deviation between the contour and sketch projections (c-e): we learn an
initial deviation function D(p) that balances satisfying the computed matches against adherence to core deviation properties and apply the learned deviation
to the input contours (c); we augment our learning data with synthetic sketch/contour pairs and re-learn a deviation that best fits the augmented training set
(d,e). The contours projected using our deviation align with the artist’s strokes (f). Our deviation consistently generalizes to other views (g).

strokes and 3D shape contour curves computed and analytically pro-
jected using the estimated camera; (ii) modeling and learning a hu-
man perspective deviation function, as a spatially-conditioned MLP,
that moves contour points toward their matched stroke positions;

Human sketch 
overlaid with 

contours

Learned 
deviation applied 
to bounding box 

and contours

(iii) regularizing the curves obtained
by applying the learned perspective
deviation, enforcing topological and
other global constraints; and (iv) self-
augmentation to create additional data
to retrain the MLP to better align D(p)
with our global priors and better gener-
alize to novel views. At inference, given
a new shape and camera combination,
we apply the learned perspective de-

viation function, followed by regularization (Figure 2,right). We
describe the method’s stages below; see supplemental material for
additional details and hyper-parameter settings.

3.2 Preliminaries
We use the calibrated camera information to generate vector format
occluding contours, sharp features, and surface boundaries of the
input shape; referred to as contours throughout. We vectorized the
input sketches, if needed, and resample both contour curves and
sketch strokes using a fixed sampling interval rate (we denote the
sampling interval length as 𝑙 ). In the following, unless stated other-
wise, the term curve refers to a resampled projected contour curve
and the term stroke refers to a resampled sketch stroke.

We use 𝑝 as the 3D locations of the 2D contour vertices 𝑝 . Given
a vertex 𝑝 and a projection matrix D, the function proj(𝑝,D) is the
2D vertex computed by taking the matrix-vector product DC · 𝑝 in
homogenous coordinates, and applying the perspective divide.

3.3 Matching Contour Curves to Sketch Strokes
First, we establish correspondences between vertices on the pro-
jected contour curves and vertices on the vectorized human sketch
strokes. Intuitively, we seek to match contour vertices to nearby
stroke vertices with similar tangents; we refer to this property as
compatibility. One of the challenges in computing these correspon-
dences is that they are not one-to-one (Fig 2ab). Sketches may con-
tain strokes, or portions of strokes, with no matching contours, due

to oversketching [Van Mossel et al. 2021]; contour curves may be
depicted using multiple strokes, and some of the curve vertices may
not have corresponding stroke locations. At the same time, while
we do not expect exact one-to-one contour to stroke matches, we
generally expect segments formed by consecutive contour vertices
to match similarly consecutive stroke vertices, or in cases where a
curve may correspond to multiple artist strokes or stroke sections,
to match pairs of stroke vertices that form roughly parallel line
segments; we refer to this property as consistency.

This combination of requirements differs from the classical image
space matching setting where users seek to match points with simi-
lar features with no requirement for any consistency between the
matches. Dropping the consistency requirement makes the problem
much simpler but results in matches that do not align with artist
intent (Figure 3b uses DIFT [Tang et al. 2023], Figure 3c uses our
compatibility score). We account for both compatibility and con-
sistency by formulating matching as an instance of the classical
Hidden Markov Model (HMM) problem [Yoon 2009] (Figure 3de).
Given a contour curve 𝑆 := {𝑝1, . . . 𝑝𝑛}, we first form, for each

contour vertex 𝑝𝑖 , a candidate set of potential matching stroke ver-
tices 𝑄 := {𝑞1, . . . 𝑞𝑚} on the human sketch based on the distance
between these vertices in 2D image space.We then evaluate potential
matches (𝑝𝑖 , 𝑞 𝑗 (𝑖 ) ) using a combined vertex-to-vertex compatibility
score 𝑆𝑣 (𝑝𝑖 , 𝑞 𝑗 (𝑖 ) ) and a consistency score 𝑆𝑒 (𝑝𝑖 , 𝑝𝑖+1, 𝑞 𝑗 (𝑖 ) , 𝑞 𝑗 (𝑖+1) ),
which assesses compatibility between potential matches of consecu-
tive curve vertices. Using the classical HMM formulation, the overall
score given by matching the vertices of 𝑆 to the vertices of 𝑄 is:

𝑀 (𝑆,𝑄) :=
∏
𝑖

𝑆𝑣 (𝑝𝑖 , 𝑞𝑖 )𝑆𝑒 (𝑝𝑖 , 𝑝𝑖+1, 𝑞𝑖 , 𝑞𝑖+1). (1)

Using a product, rather than a sum, discourages outlier matches. We
compute the matches for each curve that maximize𝑀 (𝑆,𝑄) using
the Viterbi algorithm [1967]. To obtain a valid solution, we exclude
any vertices with empty matching candidate sets, and any edges
emanating from such vertices, from the per-curve score.

Compatibility Score (𝑆𝑣). Given a paired curve vertex 𝑝 and stroke
vertex 𝑞, we define the score of using 𝑞 as the match of 𝑝 as a
function of two terms, designed to be on the same scale, as:

𝑑𝑎 = ∥𝑝 − 𝑞∥2
𝑑𝑡 = 1 − |T𝑆 (𝑝) · T𝑄 (𝑞) |. (2)
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(a) Human sketch 
overlaid with contours

(c) Matching with our 
compatibility score only

(d) First round matching 
(compatibility + consistency)

(e) Second round matching
(compatibility + consistency)

(b) Matching with 
DIFT only

Fig. 3. We seek for artist-intended matches between contour curves and
sketch strokes (a). Using only vertex-to-vertex matching scores whether
feature based (DIFT [Tang et al. 2023]) (b) or our compatibility based (c) pro-
duces locally optimal but globally poor matches; accounting for consistency
(d) produces better matches at contour level but can still lead to instances
where multiple curves match the same stroke (see inset zoom). Our second
matching step resolved these undesirable many-to-one matches (e).

The first term is the absolute distance between them, while the
second term measures the similarity of the vertices’ tangents and
encourages matches that have similar orientations: here, T𝑆 (𝑝) is
the normalized tangent vector of 𝑆 at 𝑝 (respectively for𝑄 at 𝑞). The
overall score for matching 𝑞 → 𝑝 is thus:

𝑆𝑣 (𝑝, 𝑞) = 𝑒−(𝑑𝑎+𝑑𝑡 )2/2𝜎2
1 . (3)

Consistency Score (𝑆𝑒 ). We formulate consistency purely geomet-
rically, and prioritize matching contour edges to pairs of vertices
where the line connecting these vertices has similar length and
orientation to the edge ones. Given a pair of consecutive vertices 𝑝𝑖
and 𝑝𝑖+1 (potentially) respectively matching a pair of vertices 𝑞 𝑗 (𝑖 )
and 𝑞 𝑗 (𝑖+1) , we measure consistence 𝑆𝑒 (𝑝𝑖,𝑖+1, 𝑞𝑖 |𝑞𝑖+1) as:

𝑑𝑝 = ∥(𝑝𝑖+1 − 𝑝𝑖 ) − (𝑞 𝑗 (𝑖+1) − 𝑞 𝑗 (𝑖 ) )∥2 (4)

𝑆𝑒 (𝑝𝑖,𝑖+1, 𝑞𝑖 |𝑞𝑖+1) = 𝑒
−𝑑2

𝑝/2𝜎2
1 .

While we expect different contours to be depicted using different
strokes, enforcing global matching constraints within the optimiza-
tion framework above would dramatically increase algorithm com-
plexity, making the matching problem NP-complete. Instead, we
compute matches independently for each contour curve (Fig 3d) and
then identify and resolve cases where multiple curves or portions
of curves are matched to the same stroke/stroke portion. We first
identify vertices from different curves that match the same stroke
vertex 𝑞 (Figure 3d,inset). We then do another matching round,
where for these conflicted curve vertices we double the distance
range to search in when finding candidate sets and exclude their
previously matched stroke vertices from the candidate set. For each
curve vertex in conflict, we then assign either its first round stroke
match, or its new second round match, depending on which solution
minimizes its score (Equation (3)), see Figure 3e.

3.4 Learning Human Perspective
We use the matching results to learn a deviation function that ap-
proximately projects the original 3D locations 𝑝𝑖 of the projected
contour vertices 𝑝𝑖 to their matching 2D stroke vertices 𝑞 𝑗 (𝑖 ) , while
preserving contour slope, shape, and spatial smoothness.
Formally, let 𝑃 := {𝑝1, . . . 𝑝𝑛} be all vertices on the projected

contours; let𝑄 := {𝑞1, . . . 𝑞𝑛} be the matched vertices in the human
vector sketch; for notational simplicity, we replace 𝑞 𝑗 (𝑖 ) with 𝑞𝑖 .
By abuse of notation, we identify each vertex 𝑝𝑖 with a distortion
matrix Di that is the output of the MLP at 𝑝𝑖 (i.e., Di = D(p̂i)), and
denote the collection of all such matrices {D1, . . .Dn}. Our learned
MLP takes as input the coordinate 𝑝 , in the normalized object space
[−1, 1]3, and outputs a pointwise deviation matrix Dp̂.

Overall Loss. We learn an MLP that minimizes the following over-
all loss function,

𝐿(𝐷) := 𝑤1 ·𝐿𝑑𝑎𝑡𝑎+𝑤2 ·𝐿𝑠ℎ𝑎𝑝𝑒 +𝑤3 ·𝐿𝑠𝑙𝑜𝑝𝑒 +𝑤4 ·𝐿𝑆 +𝑤5 ·𝐿𝑑𝑒𝑝𝑡ℎ . (5)

The first term aims to project 3D contour vertices close to their
matching stroke vertices; the second and third terms preserve con-
tour shape and slopes; the fourth term ensures deviation smoothness
in 3D space; and the last, regularizer, term seeks to avoid depth in-
stabilities by preserving relative point depth under our distortion
function. We set𝑤1 = 0.001,𝑤2 = 10,𝑤3 = 𝑤4 = 1,𝑤5 = 10−5. This
setting prioritises shape preservation above all other properties, and
prioritizes our general priors about deviation above the data term.
A small depth regularizer is sufficient to avoid instabilities.

Data Loss (𝐿𝑑𝑎𝑡𝑎). The term moves projected contour vertices
proj(𝑝𝑖 ,D𝑖 ) toward their counterparts 𝑞𝑖 on the human sketch, and
is defined as,

𝐿𝑑𝑎𝑡𝑎 :=
1

avg𝑙

1
𝑛

∑︁
𝑖∈𝑛

𝛼𝑖 ∥proj(𝑝𝑖 ,D𝑖 ) − 𝑞𝑖 ∥1 (6)

where avg𝑙 =
1
𝑛

∑
𝑖∈𝑛 ∥𝑝𝑖 − 𝑞𝑖 ∥1 + 𝜖. We normalize each individual

term by a corresponding confidence value 𝛼𝑖 , and normalize the
entire data term by the average distance between matching vertices
(we add 𝜖 to avoid division by zero for perfect matches).

Confidence. While we seek to project 3D contour vertices 𝑝𝑖 to-
ward their stroke matches 𝑞𝑖 , the matches we compute may be
imperfect due to factors such as oversketching (e.g., top of shampoo
bottle in Figure 2b). We therefore associate confidence values 𝛼𝑖
with each matched pair and use these to control the degree to which
they are enforced.We base these values on the difference between in-
trinsic contour and stroke shape at the respective 2D vertices. Since
artist sketches tend to preserve curve shape, mismatches between
local contour/stroke curve shapes point to potential matching errors.
We use polyline angles ∡(𝑝𝑖 ) and ∡(𝑞𝑖 ) at 𝑝𝑖 and 𝑞𝑖 respectively as
proxy for shape (since we use uniform sampling these serve as an
approximation of curvature). We define per-vertex confidence as:

𝛼𝑖 = 𝑒−(∡ (𝑝𝑖 )−∡ (𝑞𝑖 ) )2/2𝜎2
2 . (7)

Shape Loss (𝐿shape). The term aims to ensure our deviation pre-
serves curve shape penalizing non-uniform scale and shear (see
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[Araújo et al. 2022]), while allowing for uniform scale, as:

𝐿shape :=
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝑁 (𝑖 ) ;𝑗≠𝑘

(1 − 𝛼 + 𝜀)∥(proj(𝑝𝑘 ,D𝑘 ) − proj(𝑝𝑖 ,D𝑖 )

−(Ri
∥𝑝𝑘 − 𝑝𝑖 ∥
∥𝑝 𝑗 − 𝑝𝑖 ∥

(proj(𝑝 𝑗 ,D𝑗 ) − proj(𝑝𝑖 ,D𝑖 )))∥2 . (8)

Here, 𝑉 is the set of all vertices lying on the interior of projected
contour curves, and 𝑁 (𝑖) are all neighbouring vertices of the vertex
𝑖; 𝛼 is the minimum confidence value 𝛼𝑖 of the three consecutive
vertices 𝑝 𝑗 , 𝑝𝑖 , 𝑝𝑘 forming the two edges; 𝑅𝑖 is the rotation matrix
in 2D space that rotates the vector 𝑝 𝑗 − 𝑝𝑖 to 𝑝𝑘 − 𝑝𝑖 . We choose not
to penalize uniform scale as artists employ deviation that by design
changes feature scale[Hertzmann 2024].

Slope Loss (𝐿slope). The term aims to preserve the slopes of the
projected contours under our learned deviation

𝐿slope :=
1

𝑛 − 1

𝑛∑︁
𝑖=2

(
𝑛̂𝑖 ·

(proj(𝑝𝑖 ,D𝑖 ) − proj(𝑝𝑖−1,D𝑖−1))
∥𝑝𝑖 − 𝑝𝑖−1∥

)2
(9)

where 𝑛̂𝑖 is the 2D normal of the projected contour edge (𝑝𝑖 −
𝑝𝑖−1). While artists do not strictly preserve slopes, the changes they
introduce are typically subtle.

Smoothness Loss (𝐿𝑆 ). The term encourages smooth changes in
the distortion matrix across view space and is computed over a set
of points 𝑆 containing all contour vertices 𝑝 as well as the vertices
of a dense grid spanning our 3D domain box [−1, 1]3. Given pairs if
vertices 𝑠𝑖 ∈ 𝑆 and 𝑠 𝑗 ∈ 𝑆 , we express smoothness as the expectation
for D𝑖 and D𝑗 to be increasingly similar for nearby vertices:

𝐿𝑆 :=
1
|𝑆 |

∑︁
𝑠𝑖 ∈𝑆

∑︁
𝑠 𝑗 ∈𝑆,𝑖≠𝑗

𝑒−(∥𝑠𝑖−𝑠 𝑗 ∥ )2/2𝜎2
1 ∥D𝑖 − D𝑗 ∥Frob . (10)

Depth Consistency Loss (𝐿depth). In post-projection space, invert-
ing depth axis direction, either globally or locally, has no impact
on the 2D projection. Thus, such inversion is not penalized by any
of the terms above. While unobservable for an individual view, in-
version leads to inconsistent results when the camera is rotated.
Our depth consistency loss penalizes inversions by preserving the
relative depth 𝑝𝑧

𝑗
of the transformed vertices 𝑝 𝑗 along the viewspace

z-axis:

𝐿depth :=
∑︁

𝑖, 𝑗∈𝑛,𝑖≠𝑗
∥(𝐷𝑖𝐶𝑝

𝑧
𝑖 − 𝐷𝑖𝐶𝑝

𝑧
𝑗 ) − (𝑝𝑧𝑖 − 𝑝𝑧𝑗 )∥ . (11)

3.5 Inference and Regularization
We use our learned MLP to render any set of 3D curves from a given
camera view. Specifically, we use the MLP to project 3D surface ver-
tices 𝑝 to image space, by first multiplying each vertex by the user
specified camera matrix 𝐶 , multiplying the result by 𝐷 (𝑝) and then
applying perspective divide (Figure 2c). Changing the perspective
can change inter-contour occlusions and shift T-junction locations.
We recover the correct contour topology via a post-inference regu-
larization step (see supplemental material).

3.6 Self-Augmentation for Refined Learning
Our initial learning is based on potentially imperfect contour-to-
stroke matches and can bake in matching imperfections (e.g., top of

the shampoo in Figure 2). It also indirectly promotes consistency
across views, but this is not necessarily the case. To make learning
more robust to matching errors and improve generalizability, we
repeat the learning step using augmented data. The primary goal of
augmentation is to preserve the properties of the projected input
contour curves that artists are known to preserve, thus obtaining
output that appears human-like in all views.
Specifically, we use our inference to generate new pairs of con-

tours and matching deviated contours. We render the contours of
the rotated shape twice, once using an analytical camera matrix
𝐶𝑟 and once using our inference method that multiples 𝐶𝑟 by our
learned deviation matrix D, then regularizes the output. We then
treat the deviated contours as the matched strokes of their analytical
counterparts. We then use these matched contour/”sketch” pairs,
plus the original contours and sketch, as training data for another
learning step using the same MLP architecture and loss functions as
the initial phase. Our data term, by design, has a very small weight
(0.001) relative to the weights of the shape, slope, and spatial smooth-
ness terms (10,10,1). These terms balance fitting the input sketch
against strong expectations that output contours preserve input
contour shape and slopes, even from novel views. During augmen-
tation, these terms act together to counteract data artifacts rather
than propagating/reinforcing them, preventing us from overfitting
to the input view matches.
In our experiment, we perform this step twice, first rotating the

object by [−5,−4, . . . , 4, 5] degrees around the vertical axis and fine-
tuning the MLP. We repeat this process, this time augmenting the
data by rotating the object by [−10,−9, . . . , 9, 10]. We emperically
chose the range [-10,10]: at [-5,5] we observed some artifacts under
large rotations, while [-15,15] offered no additional benefit. This
iterative process enhances visual consistency across different views.
Without self-augmentation, small matching inaccuracies in the orig-
inal view can trigger larger artifacts in close-by views. Removing
augmentation produces wobbly unnatural looking curves, even for
nearby views.

4 Results
Dataset and evaluation. We train our method on 169 individual

pairs of sketches and corresponding shape contours: 96 from OpenS-
ketch [Gryaditskaya et al. 2019] (6 artists, 9 shapes, 1 or 2 views), 68
from [Xiao et al. 2022] (10 artists, 8 shapes), and 5 newly collected
cube sketches from 5 artists. We then evaluate the resulting 169
models on both the input shape contours rendered from different
views (e.g. Figure 6) and on contours computed on other shapes (e.g.
Figure 9). In addition to the representative examples shown in the
paper, we include the outputs of models trained on all above pairs
in the supplemental. In all figures we render contours projected
via analytical perspective in orange and render artist sketches and
contours projected using learned perspective (ours, other methods,
and ablations) in black. We overlay artist sketches and contours
projected using learned perspective over the analytical contours, to
visualize the deviation between them. See supplementary for details
of all evaluations below.

Alignment. Figs. 1b, 2e, 4c, 6b show our models learned on con-
tour/sketch pairs applied to their training view contours. In each

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: September 2025.



Capturing Non-Linear Human Perspective in Line Drawings • 7

(c) Contours projected using 
our post-augmentation learned 

perspective (same view)

(b) Contours projected using our 
initial learned perspective 

(same view)

(a) Overlay of input human 
sketch and shape

(d) Contours projected using 
our initial learned persective 

(rotated view)

(e) Contours projected using
our post-augmentation learned

perspective (rotated view)

Fig. 4. Self-augmentation impact: (a) input sketch and analytically projected contours; (b) same view inference output using first learned MLP; (c) same view
inference output using data augmented MLP, alternative view inference output using first learned MLP (d), alternative view inference output using data
augmented MLP (e). The impact of augmentation is more notable for further away camera views.

case, the overlays show that the deviation between contours pro-
jected using our method and the analytical ones is visually very
similar to that between the artist-sketched and analytical ones. We
confirm this observation quantitatively: the 𝐿1 chamfer distance be-
tween our contours and the artist-sketched ones is on average much
smaller than that between the artist sketch and the analytical con-
tours (2.45𝑒−3 vs. 7.75𝑒−3, averaged over all models, all distances
normalized by input image diagonal). This evaluation confirms that
our inference results are indeed aligned with the training data.

Generalization. We demonstrate that our method consistently
generalizes to alternative views and unseen shapes in Figures 1,
6 (views) and 1, 9, 10 (shapes). In all the figures, the overlays of
our and analytical contours show visually similar deviation to that
between the training sketches and their corresponding analytical
contours. Figure 10 demonstrates the outcome of applying different
models to the same set of analytical contours; the resulting devia-
tions are distinctly different and visually similar to those of their
respective training pairs.

Quantifying Consistency. We quantitatively evaluate consistency
across views as follows. We use our learned perspective deviation 𝐷
to render the contours of our input shape, with perspective deviation,
from a new angle 𝛼 ; we then learn a new perspective deviation 𝐷′

using these new contours as the input ‘sketch’ and apply 𝐷′ to
the original view contours (i.e. by rotating by −𝛼) and compute the
Chamfer distance between these input contours renderedwith D and
those rendered with D’; zero value indicating perfect consistency.
Visually, the results are very similar, especially for smaller 𝛼 , with
the average Chamfer distances between paired contours ranging
from 1.3e-1 for 𝛼 = 𝜋/10, 3.4e-3 for 𝛼 = 𝜋/4, and 3.8e-3 for 𝛼 = 𝜋/2.

Perceptual Evaluation: Generalization. We assess how well our
method generalizes across shapes by examining if viewers can dis-
cern which model was used to generate a set of projected contours.
Our study shows viewers an overlay of a sketch and corresponding
analytical contours on top, and two overlays of contours projected
using learned perspective and their analytical counterparts below.
One overlay shows our model trained on the input on top applied
to the contours of an unseen shape; the second shows the result
of applying a model trained on a different sketch/contour pair to
the same contours. Viewers were asked “Given the relationship
between the orange and black curves at the top which of the pairs
of orange and black curves at the bottom exhibits a more similar
relationship?”. Viewers rate the outputs trained on the input pairs
on top as having more similar relation to the references 63% of the

time (21% other, 2% both, 14% neither), demonstrating that ours
generalizes deviation present in training sketches to other inputs.

Perceptual Evaluation: Human-Like Outputs. We also assessed if
our contour outputs look more human like than those generated
using analytic perspective. Study participants were shown same
view contours projected using both analytical and our learned per-
spective, and were asked to assess which output was “more likely
to have been drawn by a human”. Participants rated our outputs as
more human-like 71% of the time, the analytical contours as more
human like 12% of the time, both equally human-like 8%, neither
human-like 9%. The study confirms that our outputs look more
human-like than analytical contours as desired.

Comparison to Prior Work. Figure 5 compares our results to those
of DifferSketching [Xiao et al. 2022] on input sketch and contour
pairs that are part of their training dataset. In Figure 5c, we show
the output of DifferSketching’s pretrained model. DifferSketching’s
pretrained model (trained on their entire dataset) cannot capture
individual artist choices, exhibit high-frequency noise, and deviate
significantly from the corresponding artist sketches (Figure 5c). Re-
training their model on a subset of the dataset (all sketches of the
input shape (Figure 5d), or a single sketch/contour pair (Figure 5e))
using their default parameters (extrinsic noise = intrinsic noise = 0.3)
dramatically reduces result quality. We also tried using smaller val-
ues for extrinsic and intrinsic noise (both = 0.001), and setting each
of the two parameters to 0 and the other to 0.001 or 0.3. Using their
model with the above settings brings the output contours spatially
closer to the input when compared to the default but retains unde-
sirable stroke "jaggies" and other stroke-level artifacts. In all cases,
learning on a single input or single family of inputs (e.g. all drawings
of the same shape) produces catastrophic failures like those shown
in Figure 5de. Training DifferSketch by fine-tuning their pretrained
model on either one input, or a small family of inputs, produces
similar catastrophic failures as Figure 5de. Our method (Figure 5f)
successfully trains on their inputs and generalizes across shapes.
We conclude that while DifferSketching can be beneficial for other
applications, it is unsuitable for ours.
For completeness, in the supplementary, we provide additional

visual comparisons to methods for novel view synthesis [Liu et al.
2023], generating stylized line drawings from images [Chan et al.
2022], and to Pix2Pix [Isola et al. 2017] trained on our paired sketch
and contour corpus. In all cases, our experiments show that these
alternative methods fail to reproduce human perspective deviation,
showcasing both the need for a method that explicitly learns per-
spective deviation, instead of stylization, and ours ability to do so.
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(a) Training set (c) DifferSketch 
using the 

pretrained model

(d) DifferSketch 
training on the 
5 input images

(e) DifferSketch 
training on the 

blue input image

(f) Our result generated
 by training on the 
blue input image

(b) Input contours

Fig. 5. Comparison versus DifferSketching [Xiao et al. 2022]. (a) same view/shape sketches in DifferSketching dataset; (b) analytically projected contours of
the depicted shapes in a matching view; (c-e) Applying DifferSketching to the contours in (b): (c) DifferSketching pre-trained on full data corpus; (d) trained
only on the sketches in (a) and the contours in (b); (e) trained on the blue sketch in (a) and the contour in (b); (f) Our outputs trained the blue sketch in (a)
and the contour in (b). In all cases, DifferSketching outputs are distorted, and quality reduces as training set size decreases. Our method capture the artists’
deviation and generalizes.

Ablations. We compared our method against a 2D version of our
MLP, which attempts to learn pure 2D deviation between artist and
analytical contours.While the outputs generated using these 2D only
models appear reasonable in the input and nearby views, the models
do not generalize to farther away views where their outputs exhibit
undesirable deformation (Fig 7). We validated this observation via
two studies. The first study asked participants whether our outputs,
or ones generated using the 2D MLP, were more accurate rotated
depictions of the original sketched shape. Participants ranked ours
as more accurate 79% of the time (vs 6% 2DMLP, 7% both, 8% neither).
The second study used a similar design to the generalization study
above, but compared our output to that of the 2D MLP. Participants
assessed the relations between our output and analytical contours as
more similar to the reference than the one between 2D MLP outputs
and analytical contours 72% of the time versus 17% for 2D MLP (6%
both, 5% neither). These studies confirm the need for a 3D approach
for encoding and learning perspective deviation.

Figure 8 evaluates our decision to use single sketch-contour pairs
to learn meaningful deviation function by training our perspective
MLP on larger data corpuses. As demonstrated, increasing the size
of the training corpus diminishes the magnitude of the deviation;
contrary to our goal of capturing training sketch deviation. See
supplemental for details and additional ablations.

Applications. Learning human perspective can support a range of
downstream applications. One natural direction is non-photorealistic
rendering, where our approach can add a human touch to generated
outputs in combination with other stylization elements. Another
is content addition or editing (for instance, through generative AI),
where the additions/edits would obey and respect the perspective
deviations present in the input, ensuring visually coherent results.
Our framework could also serve as a tool for analyzing artistic
choices, such as whether artists apply similar perspective deviations
across views or shapes.

5 Conclusion
We presented the first method to model and learn the perspective
projection humans use when creating line drawings. As demon-
strated, our method faithfully captures input sketch artist perspec-
tive and generalizes it across novel views and similar shapes.

Limitations and Future Work. The only notable failure scenarios
we observed were either due to faulty vector contour extraction
from our input shapes or poor input camera estimation for the input
shape/sketches. Our method produces a single learned perspective
deviation per input, leaving it to the user to pick the input they
like best. It would be interesting to analyse the similarities and
differences between the deviation functions we learn across different
shapes and artists and to use the results of this analysis to select or
compute the visually best deviation for a new input.

An exciting follow-up avenue for our work is to use our approach
for learning deviations as a basis for a method capable of inverting
artist deviation, i.e., taking free-hand sketches and producing 2D
curves that are the analytic projection of artist intended 3D surface
curves. Being able to invert deviation will improve the robustness
of sketch-based 3D modeling.
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(a) Input shapes in 
best matching view

(b) Contours projected using our 
learned perspective (same view)

(c) Contours projected using our 
learned perspective (other views)

Fig. 6. A gallery of our results. We show (a) overlay of human sketches and shape contours in best matching view (insets show the sketches and contours
separately); (b) our learned outputs under the same view as (a); (c) Applying our learned perspectives to contours in different other rotated views. In all
examples our outputs match the sketches’ perspective deviations.
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（a) Input （b) 2D （f) Ours（d) Input（c) Ours （e) 2D 

Fig. 7. Ablation against 2D MLP: (a,d) input sketches and matching view contours; (b,e) rotated view outputs generated using 2D MLP; (c,f) our results for
same views. 2D MLP outputs undesirably and notably diverge from the analytical contours in such views. Our results maintain the same deviations relative to
analytical contours, as the input sketches across all views.

(c) Model trained on 18 
sketches (same artist)

(a) Same artist sketches & 
shape contours

(f) Model trained across 6 artists 
(same shape & similar view)

(b) Model trained on 
individual sketches

(d) Sketch & shape 
contours

(e) Model trained on (d)

Fig. 8. Learning from multiple sketch/shape pairs: Left: learning from 18 sketches by the same artist: (a) inputs, (b) our outputs, (c) outputs of learning from 18
sketches. The result captures the common characteristics of artist’s perspective, but is more subtle then one learned form a single input pair. Right: learning
from same shape, approximately same view sketches from 6 artists: (d) input, (e) our output, (f) output of learning from 6 sketches. The result loses the
expressiveness, with learned perspective essentially identical to analytical one.

（a) Input （b) Apply learned 
perspective to new shape

（c) Input （e) Input （d) Apply learned 
perspective to new shape

（f) Apply learned 
perspective to new shape

Fig. 9. Applying learned perspective to new shapes: (a,c,e) overlay of human sketches and shape contours in best matching view ; (b,d,f) Applying our learned
perspectives to contours of other shapes in different views.

(a) Input A (b) Apply learned 
perspective from A

(c) Apply learned 
perspective from B

(d) Input B (a) Input A (b) Apply learned 
perspective from A

(c) Apply learned 
perspective from B

(d) Input B

Fig. 10. Applying different learned perspectives to the same shape. As desired, applying different learned perspectives to the same analytical contours produces
distinctly different projections, each consistent with its source training sketch projection.
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