
StripMaker: Perception-driven Learned Vector Sketch Consolidation
CHENXI LIU, University of British Columbia, Canada
TOSHIKI AOKI, University of Tokyo, Japan
MIKHAIL BESSMELTSEV, Université de Montréal, Canada
ALLA SHEFFER, University of British Columbia, Canada

(b) [Stanko et al. 2020](a) Input sketch (c) [Xu et al. 2019]
[Puhachov et al. 2021]

(e) StripMaker strips(d) [Liu et al. 2018] (f) StripMaker output

[Liu et al. 2018]
strips

Fig. 1. Given a vector sketch with multiple overdrawn strokes (a) StripMaker automatically consolidates it (f) replacing each detected viewer perceived strip of
strokes (e, each strip in different color) with the corresponding intended curve. StripMaker outputs (e) are better aligned with user expectations than those
produced by state-of-the-art algorithmic alternatives (b,c,d). Inset in (d) shows [Liu et al. 2018] strips. Frames point to artifacts in outputs of previous methods.
Input image © jwalsh under CC-BY-2.0.

Artist sketches often use multiple overdrawn strokes to depict a single in-
tended curve. Humans effortlessly mentally consolidate such sketches by
detecting groups of overdrawn strokes and replacing them with the corre-
sponding intended curves. While this mental process is near instantaneous,
manually annotating or retracing sketches to communicate this intended
mental image is highly time consuming; yet most sketch applications are not
designed to handle overdrawing and can only operate on overdrawing-free,
consolidated sketches. We propose StripMaker, a new and robust learning
based method for automatic consolidation of raw vector sketches. We avoid
the need for an unsustainably large manually annotated learning corpus by
leveraging observations about artist workflow and perceptual cues viewers
employ when mentally consolidating sketches. We train two perception-
aware classifiers that assess the likelihood that a pair of stroke groups jointly
depicts the same intended curve: our first classifier is purely local and only
accounts for the properties of the evaluated strokes; our second classifier
incorporates global context and is designed to operate on approximately
consolidated sketches. We embed these classifiers within a consolidation
framework that leverages artist workflow: we first process strokes in the or-
der they were drawn and use our local classifier to arrive at an approximate
consolidation output, then use the contextual classifier to refine this output
and finalize the consolidated result. We validate StripMaker by comparing its
results to manual consolidation outputs and algorithmic alternatives. Strip-
Maker achieves comparable performance to manual consolidation. In a com-
parative study participants preferred our results by a 53% margin over those
of the closest algorithmic alternative (67% versus 14%, other/neither 19%).

CCS Concepts: • Computing methodologies → Image manipulation.

Authors’ addresses: Chenxi Liu, chenxil@cs.ubc.ca, University of British Columbia,
Vancouver, Canada; Toshiki Aoki, aoki-toshiki1127@g.ecc.u-tokyo.ac.jp, University
of Tokyo, Tokyo, Japan; Mikhail Bessmeltsev, bmpix@iro.umontreal.ca, Université
de Montréal, Montréal, Canada; Alla Sheffer, sheffa@cs.ubc.ca, University of British
Columbia, Vancouver, Canada.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3592130.

Additional Key Words and Phrases: Vector graphics, sketch consolidation,
line art

ACM Reference Format:
Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer. 2023. Strip-
Maker: Perception-driven Learned Vector Sketch Consolidation. ACM Trans.
Graph. 42, 4 (August 2023), 15 pages. https://doi.org/10.1145/3592130

1 INTRODUCTION
Free-form sketches are highly effective in communicating artist-
intended content, and are frequently used as input to various com-
puter applications. While historically sketches were often drawn
on paper, an increasing number are now traced using touch and
pen displays and recorded in vector form [Adobe Inc. 2021; Blender
2022; van Mossel et al. 2021; Yin et al. 2022]. While artists often seek
to use their raw sketches as input to various computer applications,
their drawings often do not conform to the input requirements
of these applications [Yan et al. 2020]. In particular, while artists
frequently employ groups of tightly drawn strokes to depict individ-
ual intended curves (Fig. 1a), sketch processing software typically
expects each intended curve to be depicted using a single stroke.
Consolidating sketches by replacing groups of overdrawn strokes
(Fig. 1e) by their corresponding intended curves produces clean, and
more aesthetic, versions of the original sketches (Fig. 1f) that are
well-suited for downstream applications.

When presented with raw overdrawn sketches, human observers
effortlessly imagine the artist-intended stroke groups and their cor-
responding curves. However annotating or retracing sketches to
produce these viewer imagined consolidated outputs is highly time-
consuming [Liu et al. 2018]. While a range of attempts have been
made to automate consolidation of both vector [Liu et al. 2018,
2015] and raster [Stanko et al. 2020; Xu et al. 2019] sketches (Sec. 2),
existing consolidation algorithms frequently fail to produce viewer-
expected results (Fig. 1b-d). We propose a new vector sketch consol-
idation method that produces outputs significantly better aligned

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

HTTPS://ORCID.ORG/0000-0003-3613-1662
HTTPS://ORCID.ORG/0000-0002-4880-3107
HTTPS://ORCID.ORG/0000-0002-8864-2934
HTTPS://ORCID.ORG/0000-0001-9251-3716
https://orcid.org/0000-0003-3613-1662
https://orcid.org/0000-0002-4880-3107
https://orcid.org/0000-0002-8864-2934
https://orcid.org/0000-0001-9251-3716
https://doi.org/10.1145/3592130
https://doi.org/10.1145/3592130

2 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

(a) Distance (d) Narrowness (f) Local Context

(c) Density (e) Evenness (g) Global Context

(b) Angle

Fig. 2. Consolidation cues: Locally groups of strokes are seen as belonging
to the same strip if they are proximate (a), roughly parallel (b) , and approx-
imately evenly spaced (c). Strips are expected to be narrow (d) and have
roughly even width throughout (e). Local (f) and global (g) context impacts
strip perception.

with viewer expectations than those produced by these alternatives.
We focus on vector inputs since, as noted above, such sketches and
the interfaces used to create them are increasingly ubiquitous, and
the additional information they contain can be potentially used to
simplify the consolidation task. Vector sketch consolidation can be
thought of as a combination of two tasks: clustering strokes into
groups that jointly depict intended curves (Fig. 1e) and fitting the
best corresponding curve to each such group (Fig. 1f). We focus on
the clustering task, and use the state-of-the-art method of [van Mos-
sel et al. 2021] for the latter. Following van Mossel et al., we refer to
stroke groups that depict intended curves as strips and consequently
refer to our method as StripMaker.

Prior research and our observations (Sec. 3) suggest that viewers
decide which strokes belong to the same strip based on the spatial
relations between these strokes, the local context surrounding these
strokes, and the global properties of the viewed sketches (Fig. 2). In
particular, when evaluating whether groups of strokes form strips,
observers mentally establish dense correspondences between the
side-by-side portions of these strokes [Liu et al. 2018; van Mossel
et al. 2021] and use these correspondences to assess the compatibility
between them (Fig. 2a-e). Our analysis suggests that viewers are
impacted by the presence of actual or viewer-perceived intersections
between the assessed and neighboring strokes (Fig. 2f). Lastly, we
speculate that viewers are more likely to see farther apart strokes
as belonging together, if the drawings appear less accurate overall,
and to group strokes less aggressively given drawings which appear
more neat (Fig. 2g). Still, it remains unknown how viewers measure
or balance the different factors, or cues, involved.
A potential approach for addressing perception motivated tasks

with similar unknowns is to learn the viewer desired outcomes from
manually annotated data [Yin et al. 2022]. Learning to consolidate
sketches requires addressing several challenges. Even with a user-
friendly UI, strip annotation takes between 10 and 30 minutes for
small- to medium-complexity sketches (see Supp. 2.3) This makes
collecting thousands or even hundreds of annotated training exam-
ples impractical. At the same time, the need to account for global and
contextual factors impacting human consolidation choices strongly
suggests that brute-force learning of viewer preferences is only pos-
sible using large datasets which span a diverse spectrum of local,

contextual, and global factor combinations. We address this chal-
lenge by leveraging a number of observations that allow us to break
our clustering problem into sub-problems, the answers to which
can be learned using limited amounts of training data. We first
note that while correctly clustering strokes often requires global
context, many clustering decisions can be made using purely local
information. In other words, we can often correctly classify groups
of strokes as belonging to the same strip without considering the
properties of any other strokes in the drawing. We also observe
that given an approximately consolidated sketch, we can compactly
encode the global context required for making even more accurate
local consolidation choices. Following this observation we use a two
step consolidation process: our first temporal consolidation step
uses purely local properties to obtain an approximate, or preliminary
consolidation; our second step refines this preliminary outcome by
combining local cues with contextual and global features computed
using preliminary strips (Sec. 4).
Both stages of our algorithm require a way to robustly and ef-

ficiently cluster strokes into strips using relevant geometric fea-
tures. Even when focusing on local or compactly encoded global
features, learning N-way clustering where N can vary is likely to
require large amounts of training data. We dramatically reduce the
amount of training data necessary by focusing on binary classi-
fication: given two groups of strokes, we train our classifiers to
determine if the union of the two forms a common strip (Sec. 5).
Since typical sketches contain dozens of strips, and exponentially
more sub-strips (groups of strokes which are part of a strip), such
classifiers can be successfully trained using a relatively small set
of diverse sketches (our classifiers were trained on 66 annotated
sketches). Robustly assessing if a pair of sub-strips belongs together
requires capturing the different features that impact human cluster-
ing decisions, and thus requires establishing dense correspondences
between the side-by-side portions of the sub-strips; computing such
correspondences algorithmically is far from instant [Liu et al. 2018;
van Mossel et al. 2021]. We therefore require a principled way to
keep the number of such correspondence computations and the
classifier calls that trigger them small without sacrificing output
accuracy.

Bottom-up strategies that first apply a classifier to all pairs of in-
dividual strokes in a sketch, and then repeatedly apply it to all pairs
consisting of newly formed and other sub-strips, are unsuitable for
our needs as they are likely to require a prohibitive number of clas-
sifier calls. We obtain our preliminary consolidations while keeping
down the number of calls by observing that during the drawing
process artists often, though not always, draw strokes belonging to
the same strip temporally close to one another. Following this ob-
servation, we employ an incremental pairwise sub-strip evaluation
order that leverages this workflow and allows us to dramatically
limit the number of classifier calls (Sec. 4.1).
We refine the resulting preliminary consolidation by reevalu-

ating the clustering decisions within each preliminary strip and
in-between adjacent preliminary strips using our second classifier
which uses both local and contextual features and is trained on the
same compact set of annotated drawings (Sec. 4.2). In our cross-
validation experiments, our refinement step improves consolidation

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 3

accuracy, measured as distance between algorithmically and manu-
ally consolidated sketches by 20%.

We validate our method via a range of quantitative and qualitative
comparisons to prior art and manual consolidation (Sec. 7). Our
comparative study participants preferred our results over the closest
alternative 67% of the time, judged them as on par 19% of the time,
and preferred the alternative only 14% of the time. Our evaluations
demonstrate that StripMaker significantly outperforms the state
of the art in terms of alignment with user needs. An additional
advantage of ourmethod over earlier techniques is that our temporal
consolidation step can be run interactively as the artist adds strokes
and only the refinement needs to be performed at the end. This
makes our framework well suited for interactive settings.

2 RELATED WORK
Vector Sketch Processing. Multiple tools target processing of artist

sketches, facilitating tasks such as colorization [Adobe Inc. 2021],
shading [Finch et al. 2011; Shao et al. 2012], beautification [Baran
et al. 2010; Cheema et al. 2012; Fišer et al. 2016] editing [Igarashi
et al. 2005] and 3D inference [Lipson and Shpitalni 1996; Xu et al.
2014]. Most of these tools are designed for processing consolidated
or overdrawing-free vector sketches whose strokes correspond to
intended, meaningful curves [Yan et al. 2020]. By facilitating auto-
matic consolidation, we enable a seamless workflow where these
tools can be directly used on raw sketches (Fig. 11).

Topology Cleanup. Topological cleanup methods correct impre-
cise raster or vector sketch connectivity and connect strokes that
are intended to intersect but stop short of doing so [Asente et al.
2007; Fourey et al. 2018; Jiang et al. 2021; Wang et al. 2020; Yin
et al. 2022]. Vector-space connectivity extraction methods [Asente
et al. 2007; Jiang et al. 2021; Yin et al. 2022] target overdrawing-
free sketches, and require a consolidation pre-process to be applied
to raw sketches. Yet, topology cleanup and consolidation are in-
terconnected — human decisions regarding which strokes define
the same intended curves are impacted by viewer-perceived inter-
stroke connectivity [Liu et al. 2015]. We successfully account for this
interconnectedness when making consolidation decisions (Sec. 4.2).

Raster Sketch Consolidation and Vectorization. Multiple methods
simultaneously consolidate and vectorize raster sketches [Chen
et al. 2018; Egiazarian et al. 2020; Favreau et al. 2016; Kim et al.
2018; Mo et al. 2021; Parakkat et al. 2021, 2018; Stanko et al. 2020]
either automatically or semi-interactively. Alternatively, one can
first consolidate these sketches in raster space either automatically
[Simo-Serra et al. 2018a, 2016; Xu et al. 2019] or interactively [Simo-
Serra et al. 2018b] and then vectorize them using vectorization
methods designed for overdrawing-free sketches [Bessmeltsev and
Solomon 2019; Bhunia et al. 2021; Das et al. 2021; Donati et al. 2017,
2019; Guo et al. 2019; Puhachov et al. 2021]; see, e.g., Xu et al. [2022]
for a recent survey. Raster CAD sketches can be consolidated using
the domain specific method of [Manda et al. 2022].
While one can potentially consolidate vector sketches by ras-

terizing them first and then using one of these workflows, this
approach faces major challenges. First, as recently acknowledged
by Parakkat et al. [2021], the problem of automatically vectorizing

(a) Input sketch (c) [Liu et al. 2018] (e) Our output

[Liu et al. 2018]
strips Our stripsRasterized input

(d) [Xu et al. 2019]
[Puhachov et al. 2021]

[Xu et al. 2019]
raster output

(b) [Stanko et al. 2020]

Fig. 3. Consolidating typical inputs (a) using state-of-the-art methods for
simultaneous consolidation and vectorization [Stanko et al. 2020] (b), and
vector [Liu et al. 2018] (c) and raster [Xu et al. 2019] (d) space consolidation,
often results in both loss of details and under-consolidation. Rasterized input
used for (b) and (d) shown as inset in (a). The raster output of [Xu et al. 2019]
(shown in the inset in (d)) was vectorized using the method of [Puhachov
et al. 2021]. Our method (e) produces viewer expected consolidations on
these inputs. Please zoom-in to see details. Input image from [Gryaditskaya
et al. 2020].

raster sketches, while simultaneously consolidating them, remains
unsolved. Yan et al. [2020] reach a similar conclusion for both raster
space workflows (raster-to-vector and raster-to-raster-to-vector).
In addition, when consolidating vector sketches in raster space the
choice of rasterization resolution can significantly impact output
quality, and there exists no principled way of choosing the best res-
olution [Yan et al. 2020]. Figs. 3 and 1 compare our method against
state of the art approaches using these workflows ([Xu et al. 2019]
and [Stanko et al. 2020]); see Appx. D.1 for rasterization details.
Additional comparisons to these and other raster space methods
[Favreau et al. 2016; Mo et al. 2021; Parakkat et al. 2021] are in-
cluded in Sec. 7 and the supplementary. As these examples show,
StripMaker is consistently better at preserving fine details often
destroyed by the raster-space methods (e.g. intersections in Fig. 3)
and correctly consolidates overdrawn content these methods leave
as-is (e.g. outline in Fig. 1). In our comparative study (Sec. 7), viewers
preferred our outputs over those of the methods of [Xu et al. 2019]
and [Stanko et al. 2020] by margins of 57% and 78% respectively.

Vector Sketch Consolidation. Vector sketch consolidation involves
solving two separate problems: locating strips, or groups of strokes
perceived as depicting single curves, and fitting the desired curves
to each strip [Liu et al. 2018, 2015; Orbay and Kara 2011]. While
successful solutions to the strip fitting problem exist, e.g. [Liu et al.
2018; vanMossel et al. 2021], clustering of strokes into strips remains
an open problem [Yan et al. 2020]. We therefore focus our efforts
on stroke clustering and fit curves to our output strips using the
method of van Mossel et al. [2021].

Early consolidation methods compared features such as proxim-
ity and degree of parallelism between strokes against user spec-
ified per-input thresholds to determine which strokes belong to
the same strip [Bao and Fu 2012; Barla et al. 2005; Chen et al.
2013; Nan et al. 2011; Rosin 1994; Shesh and Chen 2008]. Gryadit-
skaya et al. [2020] and Yin et al. [2022] similarly employ proximity
and tangent similarity thresholding to obtain approximate, conser-
vative consolidations; as they acknowledge these features alone
are not sufficient to accurately predict intended stroke grouping.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

4 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

[Orbay'11]

Orbay and Kara [2011] use per-artist learned thresh-
olds on nearest point distance and tangent difference
to obtain initial strips. They then algorithmically re-
fine these strips using hardcoded parameters; as the
inset shows this approach dramatically over-merges
strokes (each strip colored in a different color).

Input Ground truth Simo-Serra Simo-Serra + Puhachov Mo Stanko SA full Prediction
(500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding, padding to square) (500 px longer axis, 20 px padding)

(missing)

Chamfer: NA NA NA NA NA NA

(missing) NA NA NA NA

benchmark width/Ind product baseline 10.scap (missing)

Measured on stroke-stroke pairs:
SA full:

NA
Ours:
NA

Measured on training example pairs:
SA full:

NA
Ours:
NA

189

Several drawing systems consolidate sketches on-
the-fly, deciding for each newly drawn stroke whether
it should be grouped with some of the previously
drawn ones [Bae et al. 2008; Baudel 1994; Grimm and
Joshi 2012] based on spatial and temporal proximity.
Noris et al. [2012] leverage drawing order as a consol-
idation cue and incorporates user input when faced with ambiguous
drawings. Our analysis of manually consolidated inputs shows that
around 30% of viewer perceived multi-stroke strips contain strokes
which were not drawn consecutively, see typical example on the
right (color represents drawing order). StripMaker uses drawing
order to guide consolidation workflow, and uses other perception
motivated features to determine which strokes to consolidate.

Liu et al. [2018] and Liu et al. [2015] use a combination of local and
global cues to guide their consolidation strategies, and rely on either
user-specified or fixed parameters in their decision process. Figs. 1, 3
compare our results against those of Liu et al. [2018]; additional
comparisons against both methods are included in Sec. 7. Qualitative
and quantitative comparisons (Sec. 7) demonstrate that StripMaker
produces outputs better aligned with viewer expectations than these
methods. We achieve this improvement by leveraging a combination
of a learning-based strategy and an efficient computation workflow
based on sketch drawing order.

3 ANALYSIS OF OVERDRAWN SKETCHES
Professional and amateur artists often depict intended curves using
strips of overdrawn strokes [Arora et al. 2017; Eissen and Steur
2008; Yan et al. 2020]. They use overdrawing to correct or refine
earlier strokes, emphasize specific curves, and break down hard to
draw long and complex curves into shorter, easier to sketch strokes.
Observers easily overcome such inaccuracies and correctly interpret
artist intent. To match this intent when forming strips we therefore
consider both artistic practices and research on human perception.
While the exact mechanism viewers employ to parse sketches re-
mains unknown, based on prior work and our own observations
we speculate that viewers employ the following cues when consol-
idating sketches (Fig. 2). We leverage those cues in our algorithm
(Sec. 4).

Correspondence. At its core, consolidation merges to-
gether groups of strokes that are fully or partially side-
by-side , or next to one another. Research suggests that
when making consolidation decisions, viewers rely on

implicit dense correspondence (orange isolines in inset) between side-
by-side stroke sections when evaluating the degree of compatibility
between them [Liu et al. 2018], and expect each strip to allow for a
low distortion 1D parameterization and be well approximated by a
single curve [van Mossel et al. 2021].

Local Geometry. Application of Gestalt psychology grouping prin-
ciples [Koffka 1955; Wagemans et al. 2012] to strokes suggests that
parallelism, distances, and density play a major role in consolidation
decisions (Fig. 2a-c). Viewers are more likely to group strokes which
are more parallel and closer to one another along their side-by-side
sections. Density suggests that viewers are more inclined to see
strokes as forming a strip if the distances between adjacent strokes
are more even, in particular this suggests that wider sub-strips are
more likely to be seen as belonging to the same strip than more nar-
row sub-strips spaced at the same distance, see Fig. 2c. In addition,
Liu et al. [2018] demonstrate that viewers expect strips to be narrow,
having a small width to length ratio (Fig. 2d). We further observe
that viewer perceived strips typically have roughly the same, or
even, width throughout with no drastic changes (Fig. 2e).

Input Ground truth Simo-Serra Simo-Serra + Puhachov Xu Xu + Puhachov Mo Stanko SA full Prediction
(500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding, padding to square) (500 px longer axis, 20 px padding)

(missing)

Chamfer: NA NA NA NA NA NA NA NA

(missing) NA NA NA NA NA NA

website/ariel-4.scap (missing)

Measured on stroke-stroke pairs:
SA full:

NA
Ours:
NA

Measured on training example pairs:
SA full:

NA
Ours:
NA

7

Drawing Order. Our analysis of sketch drawing order
confirms observations in prior literature [Grimm and
Joshi 2012; Noris et al. 2012] that strokes belonging to
the same intended strip are often drawn temporally

close to one another, and are frequently drawn consecutively; in the
inset the coloring reflects drawing order (bluer strokes are drawn
earlier and redder ones later) — while few strips are drawn fully
consecutively, large portions of many strips are.

Input Ground truth Simo-Serra Simo-Serra + Puhachov Xu Xu + Puhachov Mo Stanko SA full Prediction
(500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding) (500 px longer axis, 20 px padding, padding to square) (500 px longer axis, 20 px padding)

(missing)

Chamfer: NA NA NA NA NA NA NA NA

(missing) NA NA NA NA NA NA

website/ariel-4.scap (missing)

Measured on stroke-stroke pairs:
SA full:

NA
Ours:
NA

Measured on training example pairs:
SA full:

NA
Ours:
NA

7

More generally, we note that incomplete sketches,
i.e., sketches visualized at any intermediate drawing
time steps, share many properties with finished ones,
see inset on the left which has the first half of the

strokes of the cupcake above it. In particular, strokes perceived as
belonging to the same strip in an incomplete sketch are highly likely
to be perceived as such in the finished one. The same holds to a
weaker degree in the inverse direction — strokes perceived as being
apart in an incomplete sketch more often than not continue to be
seen as belonging to different strips in the final sketches. We refer
to this property as temporal persistence.

Global and Local Context. Our analysis suggests that
viewers’ consolidation decisions are impacted by the
overall sketch precision. Viewers aremore likely to group
widely spaced strokes together on rough messy draw-
ings, where all strips have more spaced out strokes. In
contrast, on cleaner drawings, views are likely to see
adjacent side-by-side strokes as separate intentional de-

tails rather than a byproduct of sketchy overdrawing (inset top vs
bottom). In particular, viewers are likely to incorporate stand-alone,
outlier, strokes (red in the top inset) into one of their adjacent strips
when their surrounding clusters are less precise [Liu et al. 2018].

Input Ground 2noisreV1noisreVhturt

(missing)

Art logo JS 02 norm rough (missing)

9

Lastly and importantly, consolidation decisions are im-
pacted by perception of inter-strip junctions. Specifically,
viewers expect connectivity to be non-accidental, and are
less likely to mentally consolidate strokes when doing
so reduces the number of perceived inter-strip junctions.

In the inset the two highlighted groups of strokes look likely to be
in the same strip in isolation (top), but are viewed as apart when
the gray strip is present (bottom). We refer to this property as con-
nectivity preservation.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 5

(a) Input Sketch
(c) Preliminary Strips and

Corresponding Fi�ed Curves
(d) Refinement

(e) Final Strips and
Corresponding Fi�ed Curves

Drawing
order

...

...

...

...

(b) Temporal Consolidation

Merge

Split

Merge

Fig. 4. Given an input sketch (a) StripMaker uses a two step process to compute strips (e,left) and fitted curves (e,right) consistent with viewer-expectations.
Our first temporal consolidation step (b) leverages drawing order (visualized via stroke color) and local cues to generate preliminary strips (c, fitted curves
included for clarity). Our second, refinement step, further improves this preliminary result by leveraging local and global context (d) to arrive at the final
desired output (e). Input image © Dave Pagurek van Mossel.

4 ALGORITHM
Input. The input to our method is a vector format sketch, where

each stroke is a fixed-width curve. We pre-process each curve into
an evenly and densely sampled polyline, remove end-point hook
artifacts resulting from inadequate device capture [Yin et al. 2022],
and break strokes at sharp corners, enabling processing of cases
where users use zigzag overdrawing patterns; see Sec. 6 for details.

Workflow. As discussed in Sec. 1 our algorithm is designed to
produce consolidations consistent with viewer expectations (Fig. 4e)
and to do so efficiently while using a limited size training data
set. We achieve these goals by leveraging the observations detailed
in Sec. 3 regarding artist workflow and viewer perception. These
observations suggest that while correctly clustering strokes often
requires global context, many clustering decisions can be made
using purely local geometric information. In other words, we can
often correctly classify groups of strokes as belonging to the same
strip without considering the properties of any other strokes in the
drawing. Moreover, temporal persistence suggests that many such
decisions can be accurately made by considering only the current
stroke and those drawn before it. Based on these observations we
use a two stage workflow (Fig. 4). We first consolidate the inputs
using an efficient temporal consolidation method that leverages
drawing order and local geometric features of the evaluated strokes
and sub-strips (Sec. 4.1, Fig. 4b). While not perfectly accurate, the ap-
proximate, preliminary consolidations it computes are close enough
to the viewer expected output, enabling us to robustly estimate
sketch precision and likely strip connectivity. We use these esti-
mates in our refinement pass generating the final outputs (Sec. 4.2,
Fig. 4c). By breaking the computation into two stages we are able
to dramatically speed up the consolidation process and overcome
training data scarcity. Both stages of our algorithm use pairwise clas-
sifiers that assess how likely pairs of sub-strips are to belong to the
same viewer-perceived strip. We discuss the design and training of
these classifiers in Sec. 5. Please check Sec. 6 for all implementation
details.

Output. We fit an aggregate curve to each output strip using
the method of van Mossel et al. [2021]. Prior to the fitting, we
identify strips that form continuation end-end junctions using a
simplified version of the method of [Yin et al. 2022]. We merge

strips connected via continuation junctions and fit them jointly.
Similar to Liu et al. [2018] we delete single stroke strips which
almost completely overlap multi-stroke ones, as these are perceived
as noise.

4.1 Local Temporal Consolidation
Our main consolidation step uses a local-feature-based classifier
to group the input strokes into preliminary strips (Fig. 4ab). Com-
puting the geometric features necessary to evaluate whether two
sub-strips belong to the same strip requires computing a correspon-
dence between them, a computationally non-trivial task. We thus
require a consolidation workflow that keeps the number of classifier
calls and corresponding feature computations small.

New stroke (red)

1st iteration

2nd iteration

s

s

B

B
We limit the number of classifier calls by lever-

aging temporal persistence and drawing order.
Given the time-ordered sequence of sketch strokes
as the input, our algorithm processes one stroke
at a time, see inset. Given the new stroke 𝑠 (red
in the inset), we measure the likelihood that the
stroke belongs to one of the previously formed
sub-strips using our local classifier (Sec. 5). If the
classifier indicates the stroke may belong to one

or more of these sub-strips, we add it to the sub-strip 𝐵 with the
highest classifier likelihood (purple in the inset); otherwise we store
the stroke as a separate sub-strip. In case a stroke is added to a
sub-strip, the classification process is iterated, this time assessing if
this new sub-strip should be combined with one of the previously
formed sub-strips. If yes, the new sub-strip is combined with the
sub-strip with the highest classifier likelihood (inset, bottom). We
repeat the process until there are no sub-strips to combine.

Speed-up. Naively testing new strokes or sub-strips against all
previously formed sub-strips at each iteration would imply perform-
ing numerous classifier calls, the vast majority of which are likely
to provide a negative answer. To gain necessary performance, as a
pre-filter to the classifier, we first evaluate the compatibility of the
assessed sub-strips, and only call the classifier if they are deemed
compatible, i.e. have non-zero likelihood of belonging to a common
strip. We consider sub-strips compatible if three conditions are satis-
fied: (1) their side-by-side sections are sufficiently long, (2) they are

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

6 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

at least somewhat proximate and weakly parallel, and (3) their joint
parameterization has low enough distortion, see Sec. 6 for detailed
criteria. These compatibility checks reduce classifier call count and,
therefore, runtime by a factor of 7.

Naively comparing each newly formed sub-strip against all other
sub-strips necessitates many classifier calls, the vast majority of
which return a negative answer. We speed up the computation by
leveraging the observation that a stroke 𝑠 is more likely to belong
to the same strip as its temporally previous stroke 𝑠𝑝 , than to any
other multi-stroke strip. We denote the sub-strip that 𝑠𝑝 belongs to
as 𝐵𝑝 . Given a new stroke 𝑠 we compute the sub-strip 𝐵 it is most
likely to belong to as per-above. We then distinguish between two
cases. If 𝑠 is deemed most likely to belong to the same sub-strip as
𝑠𝑝 (𝐵 = 𝐵𝑝) we add 𝑠 to 𝐵, delay any new sub-strip comparisons,
and proceed to the next stroke in the temporal order. Otherwise, if
𝐵𝑝 has more than one stroke, we assess if 𝐵𝑝 can be merged with
other strips. Specifically, we use our local classifier to evaluate the
sub-strip 𝐵𝑝 against all previously formed sub-strips, merging it
with an existing sub-strip if the classifier deems the two to belong
to the same strip, and repeat the iterative evaluation when a merger
occurs. This delayed evaluation reduces the number of classifier
calls by an order of magnitude.

4.2 Refinement
After the temporal pass is complete we expect the vast majority
of the resulting strips to match viewer expectations (in our cross
validation experiments, Sec. 7, the consolidations produced at this
stage were 97% consistent with the ground truth labels). We thus
only revisit clustering decisions locally where the temporal pass
results are most likely to need refinement. In doing so we seek to
balance the global and local classifier choices. On the one hand, our
global classifier and the algorithm around it are able to leverage
contextual information that is not available during our temporal
pass. On the other hand, our global classifier relies on features
computed using complete sketches, and is thus more sensitive to
the fact that our training corpus is by necessity not large and thus
may not have the necessary overall drawing style diversity to fully
generalize. We thus change preliminary consolidation decisions
conservatively, and only use our global context aware classifier to
reevaluate and split existing strips, when necessary, and to merge
adjacent strips that clearly warrant merging.

(b) Seeds

(a) Assessed strip

(d) Final sub-strips

(c) Growing sub-strips

Strip Reevaluation. We reevaluate each
multi-stroke strip taking context into ac-
count (see inset). For each strip we select two
seed strokes by finding the stroke pair least
likely to belong together using our global
classifier (Sec. 5). If this likelihood is suffi-
ciently high (>0.6), the strip is left as is. Oth-
erwise, if multiple pairs have the same like-
lihood of being together, we select the pair
with the largest average stroke-wise distance as the seeds (see inset,
b). We mark all non-seed strokes as unassigned, and grow sub-strips
incrementally from the two seeds, by adding unassigned strokes to
one of the sub-strips (see inset, c), and stopping when all strokes are
assigned (see inset, d). At each iteration we assess for all unassigned

strokes the likelihood of them belonging to one of the seed sub-
strips. If more than one stroke has a likelihood of 0.5 or higher, we
prioritize strokes that are side-by-side to both seed strips. Among
those we select the ones with the highest likelihood value, and break
ties by prioritizing strokes that are closest to the corresponding seed
strip. If no unassigned strokes are deemed to belong to a seed sub-
strip, we classify one of the unassigned strokes as a new seed, and
continue.
Once all strokes are assigned to sub-strips, we reevaluate if any

pair of sub-strips belongs to the same strip. We merge pairs back
into common strips if they are deemed to likely belong together by
our global classifier, and if doing so does not change the viewer-
perceived sketch connectivity as discussed below. Specifically, sub-
ject to the connectivity assessment below, we merge multi-stroke
sub-strips together if the likelihood is above 0.5 and merge single
strokes with other sub-strips if the likelihood is above 𝑇 = 0.3 (the
conservative threshold is motivated by the observation that human
decisions on such pairs are less affected by context).

Connectivity Preservation. The connectivity preservation prop-
erty suggests that if a sub-strip is perceived to form a junction with
another strip at one of its endpoints, it is more likely to be perceived
as being a stand-alone strip. We detect perceived junctions at the
end-points of the assessed sub-strips by fitting them with the corre-
sponding intended curves and use the classifier in Yin et al. [2022]
determining the likelihood of two curves forming a junction. If a
junction is detected, we do not merge the assessed sub-strips if the
global classifier likelihood is below 1 −𝑇 and the distance from the
junction to the other assessed sub-strip is high (1.5 sub-strip width).

Strip Merging. We merge adjacent strips in the temporal pass
output if they are deemed to be part of the same strip by our global
classifier and if they pass the connectivity preservation test above.
Specifically following the conservative logic above, we merge multi-
stroke sub-strips together if the likelihood is above 0.55, merge
single strokes with mutli-stroke sub-strips if the likelihood is above
0.5, and merge singe strokes if the probability is above 1 −𝑇 .

5 CLASSIFIER DESIGN
At the core of our iterative consolidation pipeline lie two binary
Random Forest [Ho 1995] classifiers, responsible for predicting the
probability that two given sub-strips belong to the same or different
viewer-perceived strips. The classifiers output a number 𝑐 ∈ [0, 1];
if 𝑐 ≥ 0.5, the pair is more likely to belong together than apart.
Random Forests had been shown to be well suited for the type of
problems we address [Grinsztajn et al. 2022; Yin et al. 2022].
Our local classifier is used in our temporal consolidation step,

operates on features that can be computed purely on the evaluated
sub-strips, and is trained on sub-strips similar to the ones encoun-
tered during temporal consolidation. Our global classifier uses the
same set of features with the addition of a relative precision feature
that encodes the precision of the assessed pair of sub-strips relative
to the precision of the rest of the sketch, and is trained on sub-
strips similar to the ones encounter during the refinement step. For
additional details on the classifier training corpuses see Appx. C.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 7

Our classifier features are inspired by the analysis of cues ob-
servers employ when making consolidation decisions (Sec. 3, Fig. 2).

Computing robust features capturing these
cues requires point-to-point correspondences
between the assessed sub-strips (see inset). We
obtain these correspondences via StrokeStrip
parameterization [van Mossel et al. 2021]. The

parameterization isolines provide a reliable and intuitive pointwise
correspondence across all sub-strip strokes and the length of each
isoline provides an estimate of the strip widths. We define the pa-
rameter span shared between the two sub-strips as the common
side-by-side section. We measure all pairwise geometric features over
isolines in that interval only (orange in the inset). We normalize all
computed distance by the stroke thickness.

Angles and Distances.We measure the angles between tangents at
corresponding points, over all shared isolines and measure distances
between the closest corresponding points on the two sub-strips, pur-
ple in the inset below (for intertwined sub-strips this distance is
defined as zero). For each of these measurements, we compute aver-
ages and medians over all the relevant isolines (4 features overall).

Density.We encode density by measuring the distances
between closest points on different sub-strips (purple)

and normalizing those by the widths of the wider (red) and narrower
(blue) sub-strips and the width of the entire isoline (black). For each
of these measurements, we compute averages and medians over
all the relevant isolines. We also measure the ratios between the
90𝑡ℎ and 10𝑡ℎ percentile within strip distances and the inter-strip
distance (10 features overall).
Narrowness and Side-by-Side Extent. We capture how narrow a

strip is as the ratio of its length, measured as its full parameterization
span, to its average and median widths. We measure the minimum
and maximum of the two ratios computed for each sub-strip, as well
as the ratios for the combined strip (6 features). We measure the
side-by-side extent of the two sub-strips as the ratio of the length
of the shared parameter span to the full parameter span.

Evenness.We define the evenness of the combined strip as
the difference in width between the side-by-side segment of
the combined strip and the widths outside this segment. At
both ends of the side-by-side segment (red in the inset) we
compute the ratio of the width of the first isoline inside the
segment to that of the outside isoline just next to it, red to
black distance ratio in the inset (we use 1 as the value if no outside
isoline exists). We also compute the ratio between the average width
of the side-by-side section and the width of the sub-strips inside
the parameter intervals before and after it (we use 1 as the value if
there is no such interval); we store both sets of values ordered as
maximum and minimum.

1D Parameterization Distortion. Since viewer perceived strips are
expected to allow for a low-distortion parameterization [van Mossel
et al. 2021], the quality of this parameterization is in itself an indirect
indicator of whether a group can be interpreted as a strip or not. We
evaluate the parameterization quality using two properties proposed
by [van Mossel et al. 2021]: the deviation of the parameterization
tangent length (velocity) from 1, and tangent alignment. Here 𝑢 (𝑥)
is a parameterization, defined for every strip point,𝐶 (𝑡) is the isoline
for the parameter value 𝑡 , 𝜏 (𝑡) is an average tangent over the isoline,

and 𝑛(𝑡) is the average normal.

𝐸length =

∫ 𝐿

0

���� 1
𝑊 (𝑡)

∫
𝐶 (𝑡)

∇𝑢 (𝑥) · 𝜏 (𝑡)𝑑𝑥 − 1
����2 𝑑𝑡 (1)

𝐸align =

∫ 𝐿

0

∫
𝐶 (𝑡)

|∇𝑢 (𝑥) · 𝑛(𝑡) |2𝑑𝑥𝑑𝑡 (2)

Relative Precision. Our global classifier combines the features
above with a family of features which relate the distance between
the assessed sub-strips to the stroke density across all other strips
in the current consolidation. Specifically, we measure for all strips
the average and median inter-stroke distances along all isolines,
and record the median, average and 90th percentile results across
all strips. We similarly measure the median and average distance
between the assessed sub-strips. We record all ratios between these
values as features (6 features in total).

6 ALGORITHM DETAILS
Preprocessing. We evenly resample all strokes in the inputs, with

the sampling rate set to 1.2 times the stroke width, and the mini-
mal number of samples per stroke set to 5. As typical of methods
operating on raw vector sketches [Liu et al. 2018; Yin et al. 2022],
we remove hook artifacts resulting from the device continuing to
record pen motion after the user lifts it off the touch screen. We use
a hook-removal method that follows Liu et al. [2018] but remove
potential hook sub-strokes only when their length is below 8 times
the stroke width. We cut strokes at the points where the angle be-
tween consecutive tangents exceeds 90◦ or at 𝐶0 corners detected
by [Baran et al. 2010] if the tangents at these corners differ by more
than 25◦.

Postprocessing. Our postprocessing detects continuations between
strips and enforces those during fitting by merging the strips. We
first detect actual or intended strip end-end intersections, and treat
pairs of intersecting strips as continuations if the angle between the
tangents at their endpoints is under 20◦ [Bessmeltsev et al. 2016;
Hess and Field 1999] and the two local strip widths differ by less than
4 times. We detect highly-likely junctions (with probabilities > 90%)
using Yin et al. [2022] as intended junctions, and consider strips
as forming actual end-end junctions if they intersect immediately
next to their respective end-points (within 20% of the strip length
and three times the strip width from the endpoints). As noted by
Liu et al. [2018], artists often do not delete extreme outlier strokes
if these are essentially covered, or hidden, by other stroke strips.
Similarly to Liu et al., we detect and delete such outliers. We define
a single stroke strip as an outlier if more than 90% of its area is
covered by the envelope of another strip extended by 50% its width.
Lastly, we detect single stroke overdrawn ellipses and fit them as
closed strips [van Mossel et al. 2021] (see Appx. A for details).

Compatibility Criteria. During our local temporal consolidation,
sub-strips are considered non-compatible if they fail any of the
conditions in this order below, the sub-strips are highly unlikely to
belong to the same strip and there is no need to call the classifier to
evaluate them:

(1) We check if the shortest pointwise distance between the two
sub-strips is below 10 times stroke thickness. If not, the strips

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

8 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

are not compatible. If yes, we proceed with additional evalua-
tions using the already computed fitting curves of each sub-
strip. Given these two fitting curves, we compute the shared
parameterization of them for the faster pre-filter checks (note
that such parameterization is much faster to compute than
a parameterization of all strokes in the sub-strips which is
required to compute the classifier features).

(2) We compute the angle difference between the combined fit
curves along the side-by-side sections and check if the average
angle is below 35◦.

(3) We check if the joint parameterization has excessive distor-
tion (the maximum magnitude of the alignment term [2021]
in Equation 2 is greater than 2).

(4) We check that in the common parameterization the side-by-
side section of the fitted curves is longer than six times the
stroke width and is at least 20% of the length of the shorter
sub-strip. A pair that fails one of these tests is deemed incom-
patible. All threshold values above were determined based on
cross-validation dataset statistics.

Strip Reevaluation Speed-Up. To speed up our strip reevaluation
step, during the entire strip refinement process, we use the param-
eterization of the preliminary strips to compute the local features
used by the classifier. Only if at the end of the reevaluation the strip
is deemed in need of a split, we reparameterize the sub-strips and
reevaluate the split decision.

Random Forest. Our classifiers have 150 trees with maximal tree
depth capped at 20. Our average tree depth for the local classifier is
13.7, and the mean number of leaves is 129. We use the scikit-learn
library [2011] implementation of random forest and Gini impurity
criterion for fitting the training data.

7 RESULTS AND VALIDATION
We tested our method on 191 previously unseen sketches, including
107 sketches from sketch processing benchmarks [Gryaditskaya et al.
2019; Yan et al. 2020] as well as 82 sketches we commissioned from
12 different artists. 16 of these are shown in the paper. The input
sourcing and acquisition are detailed in Appendix D. A complete set
of inputs and outputs is included in the supplementary materials.
Note that for some of the inputs sourced from previous papers, there
exist more than one version - in the supplementary we list the source
for each of our inputs. These sketches span a vast range of styles
and content, and varying degrees of precision form highly sketchy
ones such as the hand in Fig. 7 to much more precise ones, e.g. the
printer in Fig. 6. Visual inspection confirms that our consolidation
results are well aligned with viewer expectations.

We further validate our method via the evaluations and compar-
isons below.

Cross-Validation. We evaluate both of our classifiers in isolation,
via a round-robin leave one out cross-validation on the 66 sketches
in our training set. We leave one sketch out, train the classifier on
the remaining sketches and then compare our classifier results to
the ground truth annotations. Both classifiers achieve 99% accuracy
(the local classifier fails on 118 sub-strip pairs out of 15959 and the
global fails on 51 sub-strip pairs out of 6280).

Table 1. Average 𝐿1 and 𝐿max distances to consolidations generated using
manual labelings. Result on our cross-validation set (left); results on unseen
annotation set (middle); results on manual consolidations collected by [Yan
et al. 2020] (right). Our method achieves the best performance among all
algorithms tested, approaching human performance.

Cross
Validation

Human
Annotation

Human
Consolidation
[Yan et al. 2020]

𝐿1 𝐿max 𝐿1 𝐿max 𝐿1 𝐿max
Human - 0.548 12.924 1.957 30.538
Stanko’20 2.252 11.668 1.574 19.075 2.257 42.017
Xu’19 1.106 10.293 1.201 11.617 2.448 42.528
Liu’18 0.287 5.629 0.920 14.477 2.844 44.164

Our temporal
consolidation 0.179 3.409 0.708 11.598 2.511 41.862

Our final 0.149 3.141 0.645 10.353 2.167 41.358

Our consolidation pippeline calls the classifiers dozens or even
hundreds of times on each sketch. In theory, a single classifier failure
can cause a chain reaction of errors. We confirm that this is not the
case by measuring the distance between our consolidation outputs
and those produced using manual ground-truth annotations. To per-
form this experiment we similarly left one sketch out, trained both
classifiers on the remaining sketches and then used those within
our algorithm pipeline to consolidate the left-out sketch. We then
measured the image space (𝐿1 and 𝐿max) distance between our fitted
outputs and those produced using ground truth annotations (Tab. 1,
left). Our average 𝐿1 distance, normalized by stroke width is less
than 0.15, indicating very high degree of agreement. This number
is significantly lower than the error obtained after applying only
our temporal step (0.179). Using distances to assess consolidation
quality enables us to evaluate diverse methods via the same metric
and is motivated by [Yan et al. 2020].

Additional Comparisons to Manual Consolidation. We compare
our consolidation outputs to manual consolidations on additional
unseen sketches from two different sources. We first collected man-
ual consolidation annotations for 20 complete sketches from 12
participants. Each sketch was annotated by two participants. We
evaluate agreement between participants by measuring the distance
between the consolidated sketches produced using their annota-
tions. As expected, while participant agreement is high, they are not
100% aligned (Tab. 1, middle). We measure the degree to which our
algorithm agrees with human choices by using the smaller between
per-sketch distances (𝐿1 and 𝐿max) between our and manually fit-
ted results for each input sketch and report the averages of these
measurements. Our error of 0.645 is just 0.1 higher than the one
between different human annotations, suggesting that our method
is nearing human performance.
We also compare our results against pre-existing manually con-

solidated outputs collected by [Yan et al. 2020] (Tab. 1, right). In
their dataset three artists directly sketched what they perceived
as clean versions of each input raw sketch. As shown in the table
and illustrated in Fig. 5 participant agreement on this data is much
lower as different artists often introduce different additional clean-
ing operations such as removing strokes they perceive as redundant,

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 9

(a) Input Sketch (b) Manual Consolidation 1 (d) Our Consolidation(c) Manual Consolidation 2

Fig. 5. Comparison against manually cleaned sketch (a) from [Yan et al.
2020] dataset. Notably when cleaning sketches artists go beyond replac-
ing strips with corresponding curves and often delete what they see as
redundant strokes and trim or extend strokes to produce clean junctions
(b-d). Our method produces visually similar consolidations (e) but does not
perform these additional tasks. Input image from [Favreau et al. 2016].

or trimming and extending strokes to form clean junctions. Nev-
ertheless the distances between our results and closest artist ones
are similar to those between artists. More importantly, as discussed
below our results are numerically closer to artist ones than those
produced by all alternative methods.

Comparison Against Prior Art. We compare our method against
prior art in three related categories: raster-space consolidation, si-
multaneous consolidation and vectorization, and vector-space con-
solidation. We focus our comparisons on the latest or best perform-
ing automatic methods in each category [Liu et al. 2018; Stanko
et al. 2020; Xu et al. 2019] (Figs. 1, 3, 6, 7). Comparisons to additional
methods [Favreau et al. 2016; Liu et al. 2015; Mo et al. 2021; Parakkat
et al. 2021; Simo-Serra et al. 2018a] are shown in Figs. 9 and 10. To
apply the raster space methods to our data we rasterize our inputs
as discussed in Appx. D.1. As these figures and additional compar-
isons shown in the supplementary demonstrate, our method visibly
significantly outperforms all earlier approaches.
We measure mean and maximal distances between the outputs

of these methods and our three ground truth corpuses as discussed
above (to eliminate any misalignment we apply an ICP alignment
step to all pairs of algorithmically generated and ground truth con-
solidations). This metric allows us to meaningfully compare per-
formance across both vector and raster space methods. To enable
the most fair comparison we re-fit the strips produces by [Liu et al.
2018] using our fitting method (see Appx. D.1 for details). As re-
ported in Tab. 1 on both the cross-validation and manual annotation
datasets the distances for all the methods we compare to are at
least 30% higher than those achieved by StripMaker. StripMaker
outperforms the previous methods when compared to the manually
cleaned sketches of Yan et al. [2020], however as discussed above
and illustrated in Fig. 5 the numbers in this case are impacted by
additional cleaning tasks artists may have chosen to perform.
We compare the perceptual accuracy of our method against the

prior approaches of [Liu et al. 2018; Stanko et al. 2020; Xu et al.
2019] via a comparative study (Appx. D). Study participants were
shown an input sketch and two consolidations of this sketch, one
obtained using StripMaker and one generated using an alternative
and were asked to evaluate which of the two was a cleaner and
accurate version of the input. Overall we collected answers to 90
questions (30 per method), 6 answers per question (540 answers in

total). Fig. 8 summarizes the study results. In comparisons against
the best performing alternative, participants preferred our results
67% of the time, preferred the alternative just 14% of the time, judged
both results as equally good 14% percent of the time, and as equally
bad 5% of the time. The measured preference was highly statistically
significant (𝑝 < 0.001 for all methods). These numbers convincingly
demonstrate that our consolidation method provides a significant
improvement over the state of the art. Fig. 12 shows three inputs
where viewers preferred the alternative over StripMaker (alternative
methods were preferred on 6 out of 90 inputs shown).

Consolidation Applications. The consolidated results produced
by our method can be directly processed by downstream applica-
tions as illustrated in Fig. 11. In particular, while applying topology
cleanup [Yin et al. 2022] directly to a typical input (Fig. 11a) pro-
duces numerous undesirable tiny regions (55% regions on this input)
(Fig. 11b), consolidating the input using StipMaker and then apply-
ing the method of Yin et al. [2022] produces the viewer expected
topology. Thus combining these two methods can facilitate coloriza-
tion of the consolidated sketches (Fig. 11d). Our output (Fig. 11f)
can be used to facilitate strip-level sketch manipulations, such as
recoloring with gradient based shading (Fig. 11g).

7.1 Ablations
Runtimes. Our median runtime across all inputs in our test set

is 50 seconds per sketch, measured on MacBook Pro (2020), Apple
M1 chip (8-core CPU), 8 GB memory. The code is parallelized with
8 threads. The time bottleneck in our method, as expected, is the
parameterization of sub-strip pairs.

Performance with Different Sets of Features. We experiment with
removing different subsets of features from the classifiers. In all
instances, performance declined or remained on par. Among the
features of our classifiers, angle, narrowness, and density categories,
in this order, have the most impact: removing them decrease the
accuracy in the cross-validation experiment by 0.93%, 0.31%, and
0.06% respectively. The full Gini coefficients of our classifiers are in-
cluded in Appx. B. We also experimented with adding the temporal
distance between sub-strips as a classifier feature, performance did
not improve.

Classifier Choice. We experimented with replacing random forest
classifiers with multilayer perceptron (MLP) classifiers. We deter-
mined their hyper-parameters via a grid-search, and used the same
cross-validation as above. The difference of cross-validation accu-
racy between MLP and Random Forest is under 1%. We choose to
use Random Forest, because it is both simpler and reveals feature
importance as a by-product.

Temporal Persistence. Temporal persistence is one of the impor-
tant components of our method. The first stage of our method
follows the temporal drawing order of the sketch and applies a spe-
cially designed strategy to reduce the number of classifier calls as
described in Sec. 4.1. We validate this design choice by conducting
two experiments on our cross-validation set. First, we compare the
number of classifier calls with and without the proposed speedup
strategy. Using our strategy reduces the number of calls by a factor

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

10 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

Our strips

(a) Input sketch (d) Our output(b) [Stanko et al. 2020]

Our strips

Raster
input

Raster input

[Xu et al. 2019]
raster output

[Xu et al. 2019]
raster output

(c) [Xu et al. 2019]
[Puhachov et al. 2021]

Fig. 6. Consolidating typical inputs (a) using raster-space methods (b) [Stanko et al. 2020] (c) [Xu et al. 2019] (vectorized using the method of [Puhachov et al.
2021]) often results in both loss of details and under-consolidation (raster consolidation outputs shown as insets). Our method (d) produces viewer expected
consolidations on these inputs. Top input image © Akshay Sharma under CC-BY-SA. Bottom input image © Rami Alsafadi.

(a) Input sketch (e) Our output(b) [Liu et al. 2018] strips (c) [Liu et al. 2018] (d) Our strips

Preferred: 0/6 Preferred: 6/6

Preferred: 1/6 Preferred: 5/6

Fig. 7. Our method (d,e) consistently produces consolidations better aligned with viewer expectations than those produced by the state of the art vector
consolidation approach of [Liu et al. 2018] (b,c) on diverse overdrawn inputs (a). Stroke grouping is shown with each strip rendered in a different color (b,d).
Top input image from [Gryaditskaya et al. 2019]. Bottom input image © Tina Nowarre.

67%

69%

82%

14%

9%

5%

5%

11%

9%

14%

12%

4%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Liu’18

Xu’19

Stanko’20

Ours Both Neither OtherVote Percentage

Fig. 8. Comparative study summary: Participants preferred our results over
all alternatives by a significant margin.

five. Second, we randomly order the strokes in the input and apply
our algorithm. This change increases runtime by 50% and increases
distance to manually annotated ground truth on cross-validation
set by 43% (𝐿1: 0.214; 𝐿max: 4.833). Notably, these numbers are still
better than those obtained via alternative methods (Tab. 1).

7.2 Limitations
Our performance is constrained by data scarcity which prevents
greater reliance on context, due to overfitting concerns. Conse-
quently our method primarily relies on local geometric cues and is
based around pairwise sub-strip classifiers which do not directly
account for input sub-strip interaction with other strokes. Thus, it
works best on inputs where local cues are highly predictive of the
consolidation outcomes, which is the case for typical drawings. At
the same time, as exemplified in Fig. 12, our method can fail to refine
the preliminary results when there are only few strips in the sketch
and the majority of them are incorrectly consolidated in the prelim-
inary step. Overall, across all inputs in our perception study, such
examples were exceedingly rare. Viewers preferred the alternative
method’s results over ours on only 4 out of 30 inputs in compar-
isons against [Liu et al. 2018], 3 out of 30 in comparisons against
[Xu et al. 2019], and 1 out of 30 in comparisons against [Stanko et al.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 11

R
as

te
riz

ed
 in

pu
t

[S
im

o-
Se

rr
a

et
 a

l.
20

18
a]

ra
st

er
 o

ut
pu

t

O
ur

 s
tr

ip
s

[L
iu

 e
t a

l.
20

15
]

st
rip

s

O
ur

 s
tr

ip
s

(e) [Simo-Serra et al. 2018a]
 [Puhachov et al. 2021]

(a) Input sketch (d) Input sketch (f) Our output(c) Our output(b) [Liu et al. 2015]

Fig. 9. Earlier sketch consolidation methods, such as [Liu et al. 2015] (left) and [Simo-Serra et al. 2018a] (right) often fail to adequately consolidate typical
sketches (a,d) that our method succeeds on (c,f). On the left we used classifiers trained excluding the input shown (we have some results of [Liu et al. 2015]
but no access to their code). Left input image © Enrique Rosales. Right input image from [Gryaditskaya et al. 2019].

Our strips

Our strips

(a) Input sketch (d) [Mo et al. 2021] (e) Our output(c) [Parakkat et al. 2018](b) [Favreau et al. 2016]

Fig. 10. Comparison to simultaneous consolidation and vectorization methods: (b) [Favreau et al. 2016], (c) [Parakkat et al. 2018], (d) [Mo et al. 2021]. These
methods fail to generate viewer-expected outputs when applied to rasterizations of typical overdrawn vector sketches (a). Our method (e) produces viewer
expected results on this data. Top input image © Val Novikov. Bottom input image © Rami Alsafadi.

(e) Input sketch (f) Our strips (g) Our strips recolored

(c) Our output

(d) Recolored regions from
topology cleanup

(a) Input sketch

(b) Tiny regions formed by
direct topology cleanup

Fig. 11. Consolidation applications: Applying topology cleanup [Yin et al. 2022] directly to a typical input (a) produces numerous undesirable tiny regions (55%
regions on this input) (b). Consolidating the input with our method produces the viewer expected topology facilitating colorization (d). Our output strips
(f) facilitate per-strip manipulations, such as gradient-based recolorization with gradient (g). Left input image © Rami Alsafadi. Right input image ©Maria
Fiddler (aka Maria Hegedus) under CC-BY-NC-SA-4.0.

2020]. Incorporating more contextual cues and detecting similarities
between strips within the same input sketch could potentially solve
this issue and is an important future research avenue.

8 CONCLUSIONS
We presented a novel vector sketch consolidation method that no-
tably outperforms existing alternatives. Our method is the first to
use a principled classification-based approach to vector sketch con-
solidation. We identified and modeled a variety of perceptual cues

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

12 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

(g) Input sketch

(i) Our output

(h) [Liu et al. 2018]

Preferred: 6/6

Preferred: 0/6

(a) Input sketch (c) Our output(b) [Stanko et al. 2020] (d) Input sketch (f) Our output
(e) [Xu et al. 2019]
[Puhachov et al. 2021]

[X
u

et
 a

l.
20

19
]

ra
st

er
 o

ut
pu

t

R
as

te
r i

np
ut

R
as

te
r i

np
ut

Preferred: 3/6 Preferred: 2/6Preferred: 4/6 Preferred: 0/6Neither: 2/6 Neither: 1/6

O
ur

 s
tri

ps

O
ur

 s
tri

ps

Our strips

[Liu et al. 2018]
strips

Fig. 12. Limitations: While significantly outperforming other methods overall, study participants prefered the outputs of the alternative methods over
StripMaker outputs on the inputs shown. Left input image © Val Novikov. Middle input image © Champ Semalulu. Right input image from [Gryaditskaya et al.
2019].

that are novel for this task, such as evenness and temporal persis-
tence.We leveraged these cues to design perception aware classifiers
that reliably predict whether a pair of sub-strips belongs to the same
intended strip. Our results can likely be further improved via more
tight integration with topological cleanup. An interesting avenue for
future work is to incorporate our method into an online sketching
system designed to unobtrusively correct overdrawing on the fly
as users add new strokes. Our identified perceptual cues are essen-
tial to consolidation and can be used by future sketch processing
methods.

ACKNOWLEDGMENTS
We thank the study participants, the artists, Chuan Yan, Yulia Grya-
ditskaya and other previous work authors for making their data
available, Silver Burla and Dave Pagurek van Mossel for helping
with data collection, Nicholas Vining for paper editing, and the re-
viewers for their helpful suggestions. We acknowledge the support
of the Natural Sciences and Engineering Research Council of Canada
(NSERC) grant RGPIN-2019-05097 (“Creating Virtual Shapes via In-
tuitive Input”), NSERC grant RGPIN-2018-03944 (“Broad-Based Com-
putational Shape Design”), and the NSERC - the Fonds de recherche
du Québec - Nature et technologies (FRQNT) NOVA Grant No.
314090.

REFERENCES
Adobe Inc. 2021. Adobe Illustrator. https://adobe.com/products/illustrator
Rahul Arora, Ishan Darolia, Vinay P. Namboodiri, Karan Singh, and Adrien Bousseau.

2017. SketchSoup: Exploratory Ideation Using Design Sketches. Computer Graphics
Forum (2017).

Paul Asente, Mike Schuster, and Teri Pettit. 2007. Dynamic Planar Map Illustration.
ACM Trans. Graph. 26, 3 (2007), 10 pages.

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: As-natural-
as-possible Sketching System for Creating 3D Curve Models. In Proc. UIST. 151–160.

B. Bao and H. Fu. 2012. Vectorizing Line Drawings with Near-Constant Line Width. In
2012 19th IEEE International Conference on Image Processing. 805–808.

Ilya Baran, Jaakko Lehtinen, and Jovan Popović. 2010. Sketching Clothoid Splines Using
Shortest Paths. Comput. Graph. Forum 29, 2 (2010), 655–664.

Pascal Barla, Joëlle Thollot, and François X. Sillion. 2005. Geometric Clustering for
Line Drawing Simplification. In ACM SIGGRAPH 2005 Sketches (SIGGRAPH ’05).
Association for Computing Machinery, 96–es.

Thomas Baudel. 1994. A Mark-based Interaction Paradigm for Free-hand Drawing. In
Proc. UIST. 185–192.

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of Line Drawings via
Polyvector Fields. ACM Trans. Graph. 38, 1 (Jan. 2019), 9:1–9:12.

Mikhail Bessmeltsev, Nicholas Vining, and Alla Sheffer. 2016. Gesture3D: Posing 3D
Characters via Gesture Drawings. ACM Trans. Graph. 35, 6 (2016).

Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Yongxin Yang, Timothy M Hospedales,
Tao Xiang, and Yi-Zhe Song. 2021. Vectorization and rasterization: Self-supervised

learning for sketch and handwriting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 5672–5681.

Blender. 2022. Grease Pencil. https://www.blender.org/features/grease-pencil/
Salman Cheema, Sumit Gulwani, and Joseph LaViola. 2012. QuickDraw: Improving

Drawing Experience for Geometric Diagrams. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. 1037–1064.

Jiazhou Chen, Mengqi Du, Xujia Qin, and Yongwei Miao. 2018. An Improved Topology
Extraction Approach for Vectorization of Sketchy Line Drawings. Vis Comput 34,
12 (Dec. 2018), 1633–1644.

Jiazhou Chen, Gael Guennebaud, Pascal Barla, and Xavier Granier. 2013. Non-Oriented
MLS Gradient Fields. Comput. Graph. Forum 32, 8 (Aug. 2013), 98.

Ayan Das, Yongxin Yang, Timothy M Hospedales, Tao Xiang, and Yi-Zhe Song. 2021.
Cloud2curve: Generation and vectorization of parametric sketches. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7088–7097.

L. Donati, S. Cesano, and A. Prati. 2017. An Accurate System for Fashion Hand-Drawn
Sketches Vectorization. In 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW). 2280–2286.

Luca Donati, Simone Cesano, and Andrea Prati. 2019. A Complete Hand-Drawn Sketch
Vectorization Framework. Multimed Tools Appl 78, 14 (July 2019), 19083–19113.

Vage Egiazarian, Oleg Voynov, Alexey Artemov, Denis Volkhonskiy, Aleksandr Safin,
Maria Taktasheva, Denis Zorin, and Evgeny Burnaev. 2020. Deep vectorization of
technical drawings. In European Conference on Computer Vision. Springer, 582–598.

Koos Eissen and Roselien Steur. 2008. Sketching: Drawing Techniques for Product
Designers. Bis Publishers.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
Simplicity: A Global Approach to Line Drawing Vectorization. ACM Trans. Graph.
35, 4 (July 2016), 120:1–120:10.

Mark Finch, John Snyder, and Hugues Hoppe. 2011. Freeform Vector Graphics with
Controlled Thin-plate Splines. ACM Trans. Graph. 30, 6 (2011), 166:1–166:10.

Jakub Fišer, Paul Asente, Stephen Schiller, and Daniel Sýkora. 2016. Advanced Drawing
Beautification with ShipShape. Computers & Graphics 56 (May 2016), 46–58.

Sébastien Fourey, David Tschumperlé, and David Revoy. 2018. A Fast and Efficient
Semi-Guided Algorithm for Flat Coloring Line-Arts. The Eurographics Association.

Cindy Grimm and Pushkar Joshi. 2012. Just DrawIt: A 3D Sketching System. In Proc.
Symp. on Sketch-Based Interfaces and Modeling. 121–130.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. 2022. Why do tree-based models
still outperform deep learning on typical tabular data?. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track.

Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla Sheffer, and Adrien Bousseau.
2020. Lifting Freehand Concept Sketches into 3D. ACM Trans. Graph. 39, 6 (2020),
167:1–167:16.

Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Frédo Durand,
and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Trans. Graph. 38, 6 (2019), 232:1–232:16.

Yi Guo, Zhuming Zhang, Chu Han, Wenbo Hu, Chengze Li, and Tien-Tsin Wong. 2019.
Deep Line Drawing Vectorization via Line Subdivision and Topology Reconstruction.
Computer Graphics Forum 38, 7 (Oct. 2019), 81–90.

Robert Hess and David Field. 1999. Integration of contours: new insights. Trends in
Cognitive Sciences 3, 12 (1999), 480–486.

Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition, Vol. 1. 278–282.

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-rigid-as-possible
Shape Manipulation. ACM Trans. Graph. 24, 3 (2005), 1134–1141.

Jie Jiang, Hock Soon Seah, and Hong Ze Liew. 2021. Handling Gaps for Vector Graphics
Coloring. Vis Comput 37, 9 (Sept. 2021), 2473–2484.

Byungsoo Kim, Oliver Wang, A. Cengiz Öztireli, and Markus Gross. 2018. Semantic
Segmentation for Line Drawing Vectorization Using Neural Networks. Comput.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

https://adobe.com/products/illustrator
https://www.blender.org/features/grease-pencil/

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 13

Graph. Forum 37, 2 (2018), 329–338.
K. Koffka. 1955. Principles of Gestalt Psychology. Routledge & K. Paul.
H Lipson and M Shpitalni. 1996. Optimization-based reconstruction of a 3D object from

a single freehand line drawing. Computer-Aided Design 28, 8 (1996), 651 – 663.
Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: Consolidating

Raw Sketches into Artist-Intended Curve Drawings. ACM Trans. Graph. 37, 4 (July
2018), 97:1–97:15.

Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2015. Closure-Aware Sketch
Simplification. ACM Trans. Graph. 34, 6 (Oct. 2015), 168:1–168:10.

Bharadwaj Manda, Prasad Pralhad Kendre, Subhrajit Dey, and Ramanathan Muthugana-
pathy. 2022. SketchCleanNet—A deep learning approach to the enhancement and
correction of query sketches for a 3D CAD model retrieval system. Computers &
Graphics 107 (2022), 73–83.

Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang.
2021. General Virtual Sketching Framework for Vector Line Art. ACM Trans. Graph.
40, 4 (July 2021), 51:1–51:14.

Liangliang Nan, Andrei Sharf, Ke Xie, Tien-Tsin Wong, Oliver Deussen, Daniel Cohen-
Or, and Baoquan Chen. 2011. Conjoining gestalt rules for abstraction of architectural
drawings. ACM Transactions on Graphics (TOG) 30, 6 (2011), 1–10.

G. Noris, D. Sýkora, A. Shamir, S. Coros, B. Whited, M. Simmons, A. Hornung, M. Gross,
and R. Sumner. 2012. Smart Scribbles for Sketch Segmentation. Comput. Graph.
Forum 31, 8 (Dec. 2012), 2516–2527.

G. Orbay and L. B. Kara. 2011. Beautification of Design Sketches Using Trainable Stroke
Clustering and Curve Fitting. IEEE Trans. Vis. Comput. Graph. 17, 5 (May 2011),
694–708.

Amal Dev Parakkat, Marie-Paule Cani, and Karan Singh. 2021. Color by numbers:
Interactive structuring and vectorization of sketch imagery. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–11.

Amal Dev Parakkat, Uday Bondi Pundarikaksha, and Ramanathan Muthuganapathy.
2018. A Delaunay triangulation based approach for cleaning rough sketches. Com-
puters and Graphics 74 (2018), 171–181.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-Learn: Machine Learning in
Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

Ivan Puhachov,WilliamNeveu, Edward Chien, andMikhail Bessmeltsev. 2021. Keypoint-
Driven Line Drawing Vectorization via PolyVector Flow. ACM Trans. on Graph.
(Proc. of SIGGRAPH Asia) 40, 6 (12 2021).

Paul Rosin. 1994. Grouping Curved Lines. (1994).
Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2012. CrossShade: shading

concept sketches using cross-section curves. ACM Trans. Graph. 31, 4 (2012), 45:1–
45:11.

Amit Shesh and Baoquan Chen. 2008. Efficient and Dynamic Simplification of Line
Drawings. Comput. Graph. Forum 27, 2 (2008), 537–545.

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018a. Mastering Sketching:
Adversarial Augmentation for Structured Prediction. ACM Trans. Graph. 37, 1 (2018),
11:1–11:13.

Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. 2018b. Real-Time Data-Driven
Interactive Rough Sketch Inking. ACM Trans. Graph. 37, 4 (2018), 98:1–98:14.

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learning
to Simplify: Fully Convolutional Networks for Rough Sketch Cleanup. ACM Trans.
Graph. 35, 4 (2016), 121:1–121:11.

Tibor Stanko, Mikhail Bessmeltsev, David Bommes, and Adrien Bousseau. 2020. Integer-
Grid Sketch Simplification and Vectorization. Computer Graphics Forum (Proc. SGP)
39, 5 (7 2020).

Dave Pagurek van Mossel, Chenxi Liu, Nicholas Vining, Mikhail Bessmeltsev, and Alla
Sheffer. 2021. StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters.
ACM Trans. Graph. 40, 4 (July 2021), 50:1–50:18.

J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R
von der Heydt. 2012. A Century of Gestalt Psychology in Visual Perception I.
Perceptual Grouping and Figure-Ground Organization. Psychological Bulletin 138, 6
(2012), 1172–1217.

ShuxiaWang, Qian Zhang, ShouxiaWang, Xiaoke Jing, andMantun Gao. 2020. Endpoint
Fusing Method of Online Freehand-Sketched Polyhedrons. Vis Comput 36, 2 (Feb.
2020), 291–303.

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D Curve Networks from 2D Sketches via Selective Regu-
larization. ACM Trans. Graph. 33, 4 (July 2014), 131:1–131:13.

Peng Xu, Timothy M Hospedales, Qiyue Yin, Yi-Zhe Song, Tao Xiang, and Liang Wang.
2022. Deep learning for free-hand sketch: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022).

Xuemiao Xu, Minshan Xie, Peiqi Miao, Wei Qu, Wenpeng Xiao, Huaidong Zhang,
Xueting Liu, and Tien-Tsin Wong. 2019. Perceptual-aware sketch simplification
based on integrated VGG layers. IEEE transactions on visualization and computer
graphics 27, 1 (2019), 178–189.

Table 2. Gini importances of local classifier features.

average angle 0.072
median angle 0.075
average distance 0.162
median distance 0.105
density avg distance to Max Width 0.058
density median distance2LocalMaxWidth 0.062
density avg distance2LocalMinWidth 0.146
density median distance2LocalMinWidth 0.073
density avg distance2width combined 0.066
densitymedian distance2width combined 0.053
density max 90th LocalMedianGap2width 0.002
density min 90th LocalMedianGap2width < 0.001
density max 10th LocalMedianGap2width 0.002
density min 10th LocalMedianGap2width < 0.001
side-by-side length to combined length 0.004
max avg narrowness 0.011
max median narrowness 0.012
min avg narrowness 0.004
min median narrowness 0.005
avg combined narrowness 0.003
median narrowness combined 0.002
max non-side-by-side to side-by-side 0.002
min non-side-by-side to side-by-side 0.041
max Avg non-side-by-side to Avg side-by-side 0.028
min Avg non-side-by-side to Avg side-by-side 0.007
parameterization velocity 0.003
parameterization alignment 0.001

Chuan Yan, David Vanderhaeghe, and Yotam Gingold. 2020. A Benchmark for Rough
Sketch Cleanup. ACM Trans. Graph. 39, 6 (Nov. 2020).

Jerry Yin, Chenxi Liu, Rebecca Lin, Nicholas Vining, Helge Rhodin, and Alla Sheffer.
2022. Detecting Viewer-Perceived Intended Vector Sketch Connectivity. ACM
Transactions on Graphics 41 (2022). Issue 4.

A ELLIPSE FITTING
We consider an input stroke as potentially an overdrawn ellipse if its
total signed curvature magnitude, |^ | > 2𝜋 . In this case, we compute

Simo-Serra + Puhachov Mo Stanko SA full Prediction
px longer axis, 20 px padding) (500 px longer axis, 20 px padding, padding to square) (500 px longer axis, 20 px padding)

(missing) (missing) (missing) (missing)

NA NA NA NA 0.0474615565004529 NA

NA NA NA NA

0 10 20 30 40 50 60 70

stroke strip 1115/Giraffe03 SA cluster.scap (missing) (missing) (missing) (missing)

Measured on stroke-stroke pairs:
SA full:

Sample count 217
Failure count 68
— True positives 35
— False positives 13
— True negatives 114
— False negatives 55
Balanced accuracy 0.643263
True negative rate 0.897638
F1 score 0.507246
Precision 0.729167
Recall 0.388889

Ours:
Sample count 217
Failure count 0
— True positives 90
— False positives 0
— True negatives 127
— False negatives 0
Balanced accuracy 1
True negative rate 1
F1 score 1
Precision 1
Recall 1

Measured on training example pairs:
SA full:

Sample count 43
Failure count 20
— True positives 16
— False positives 8
— True negatives 7
— False negatives 12
Balanced accuracy 0.519048
True negative rate 0.466667
F1 score 0.615385
Precision 0.666667
Recall 0.571429

Ours:
Sample count 43
Failure count 0
— True positives 28
— False positives 0
— True negatives 15
— False negatives 0
Balanced accuracy 1
True negative rate 1
F1 score 1
Precision 1
Recall 1

11

the substrokes, corresponding to the loops with |^ | ≤
𝜋 . We distinguish between actual overdrawn ellipses
(inset, top) and intentional spirals (inset, bottom) us-
ing the following heuristic. We find the barycenter of
each loop and set 𝑑mass to the maximal Euclidean dis-
tance between those. We parameterize the substroke
as a closed strip using the method of van Mossel et al.
[2021]. We measure the maximal distance between
adjacent points along parameterization isolines 𝑔 and

compute the strip radius 𝑟 = 𝐿/2𝜋 where 𝐿 is the strip length. Given
the stroke width𝑤 , we consider the stroke to be an ellipse if𝑔 < 50𝑤
and one of the following holds 𝑑mass/𝑟 < 0.25 or 𝑑mass/𝑟 < 0.45
and 𝑔 < 3𝑤 .

B GINI COEFFICIENTS
Tab. 2 and 3 report the Gini coefficients of our classifiers.

C DATA COLLECTION

C.1 Training data corpus
We use 66 manually annotated sketches generated by the authors
of van Mossel et al. [2021] for testing curve fitting to strips, as
our training data. These sketches are sourced from multiple prior
publications, including [Liu et al. 2018, 2015; Orbay and Kara 2011]
and different artists.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

14 • Chenxi Liu, Toshiki Aoki, Mikhail Bessmeltsev, and Alla Sheffer

Table 3. Gini importances of global classifier features.

average angle 0.065
median angle 0.075
average distance 0.146
median distance 0.067
density avg distance to Max Width 0.036
density median distance2LocalMaxWidth 0.031
density avg distance2LocalMinWidth 0.081
density median distance2LocalMinWidth 0.027
density avg distance2width combined 0.059
densitymedian distance2width combined 0.014
density max 90th LocalMedianGap2width 0.001
density min 90th LocalMedianGap2width < 0.001
density max 10th LocalMedianGap2width 0.001
density min 10th LocalMedianGap2width 0.001
side-by-side length to combined length 0.011
max avg narrowness 0.006
max median narrowness 0.006
min avg narrowness 0.004
min median narrowness 0.003
avg combined narrowness 0.002
median narrowness combined 0.001
max non-side-by-side to side-by-side 0.004
min non-side-by-side to side-by-side 0.01
max Avg non-side-by-side to Avg side-by-side 0.012
min Avg non-side-by-side to Avg side-by-side 0.002
parameterization velocity 0.002
parameterization alignment 0.004
average distance2global average average distance 0.111
median distance2global average median distance 0.04
average distance2global median average distance 0.013
median distance2global median median distance 0.015
average distance2global p90th average distance 0.111
median distance2global p90th median distance 0.037

Local Classifier. We generate both positive and negative train-
ing examples using the dataset above. In generating the training
examples, we recall that our classifier is designed to match viewer
perception, namely given two groups of strokes that viewers per-
ceive as strips, it assesses if the combined group of strokes is also
perceived as a strip. As such, for all the positive examples in the
training data we want the combined group of strokes to be also
perceived as strip, and for the negative ones we want the combined
group to not be perceived as a strip. Notably, a random subset of
strokes taken from a human annotated strip may or may not be
perceived as a strip on its own (e.g., in isolation the farthest apart
strokes in a wide strip may be too far from one another to be per-
ceived as belonging together).
We first generate negative training examples that satisfy the

criteria above by forming pairs of complete ground truth strips
paired with either any other stroke in the drawing, or with another
complete ground truth strip. In both cases both elements of such
pairs are by definition perceived as strips, but are not perceived as
being part of the same strip.
To generate the positive examples we recall that each strip is a

time-ordered sequence of strokes. We therefore take manually la-
beled strips, randomly pick a moment in time splitting the sequence
into the parts before and after that moment. The union of these
parts forms a ground truth strip, and both parts are likely to be
perceived as sub-strips due to temporal persistence. We identify and
discard examples where this is not the case.

We exclude positive examples from our training data if themedian
distance between the sub-strips (measured along parameterization
isolines) is twice as large as the median of these distance measured

on the entire training set. We exclude positive examples if the pa-
rameterization of the two sub-strips alone is not consistent with the
parameterization of the strip they originate from (i.e., there is no
monotone mapping from one to the other).
We remove training examples on which feature computation

fails, including the ones where the parameterization method we
use produces highly distorted results. Lastly, to better reflect the
distribution of classifier inputs, we pre-filter the examples using
the criteria in Sec. 4.1, and manually remove additional ambiguous
examples.

Global Classifier. We form positive training examples by splitting
ground truth strips spatially, starting from farthest apart side-by-side
strokes and randomly growing either one the other seed by adding
the closest side-by-side stroke, until the strip is fully partitioned.
We use pairs of ground truth strips as negative training examples.

C.2 Test Set
We assembled our test set so that it includes drawings we source
directly from 12 artists (82 sketches), as well as inputs from two
vector sketch benchmarks, from the “Benchmark for Rough Sketch
Cleanup” [Yan et al. 2020] (46 sketches) and OpenSketch [Gryadit-
skaya et al. 2019] (63 sketches). In the latter, sketches of a small
number of CAD objects drawn by different designers from different
angles. As noted by Yan et al. [2020], their “vectorized data has
been normalized to have uniform line width”. Consequently, “as-is”
their data is unrepresentative of artist sketches, since as Liu et al.
[2018] note, stroke width plays a major role in viewer perception
of sketches. We manually adjusted the width of all strokes in the
inputs sourced from Yan et al. [2020] to match their provided raster
references. For temporal information, we use the stroke order in
files as the drawing order since experimentally the two typically
correlate.

Fig. 13. Our strip annotation interface. Input image © Rami Alsafadi.

C.3 Additional Manually Consolidated Inputs
To validate our consolidation decisions and evaluate ours and al-
ternative methods on unseen data we collected additional manual
annotations of 20 complete sketches from 12 different arms-length
annotators (see our supplementary materials for the full set). The

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

StripMaker: Perception-driven Learned Vector Sketch Consolidation • 15

annotated sketches included one from OpenSketch [Gryaditskaya
et al. 2019], 3 from Yan et al. [2020], and the rest were sourced by
us from artists. The sketches were selected as to allow for com-
plete individual sketch annotation in 20 minutes or less. Annotators
used the same interface as used for data collection. Annotators took
on average 12-15 minutes to annotate each sketch, with up to 30
minutes for larger sketches in the set.

D COMPARATIVE STUDY

D.1 Comparison and Measurement Setup
Rasterization. To compare our method to raster space approaches

we rasterize our inputs using the settings recommended by [Yan et al.
2020; Yin et al. 2022], setting the raster resoluton to be 500px along
the longest image size and then adding 20px padding to resolve
boundary artifacts that otherwise show up in [Simo-Serra et al.
2018a; Xu et al. 2019]. We use inkscape with the parameter settings
of [Yan et al. 2020]. We noticed that the method of Stanko et al.
[2020] sometimes dramatically fails with this anti-aliased setting,
and performs better on black and white aliased raster inputs; to
accommodate we generated both types of rasterizations and used the
better of the two outputs of Stanko et al. throughout all comparisons.

Fitting Curves for [Liu et al. 2018]. Liu et al. propose both methods
for stroke clustering into strips and for fitting curves to these strips.
Van Mossel et al. [2021] had demonstrated that their new fitting
method StrokeStrip outperforms the fitting of [Liu et al. 2018]. Thus
in our comparisons we fit curves to the strips produced by Liu et al.
using StrokeStrip. In our experiments StrokeStrip indeed performs
better for most inputs; using it to fit both our and Liu’s strips al-
lows our quantitative and qualitative comparisons to focus on the
differences between our and Liu’s stroke clustering approaches.

D.2 Study Design
We conducted a comparative study to evaluate human perceptual
preference between our method and representative alternatives [Liu
et al. 2018; Stanko et al. 2020; Xu et al. 2019].
Each query in this study included an input drawing on top and

two consolidated outputs below it, presented side-by-side and in
random order: one generated by our algorithm, and one generated
by an alternative method. The layout of the questions is shown in
Fig, 14. We asked “Which of the drawings below, (B) (left) or (C)
(right), is a cleaner and more accurate version of the drawing on
top (A)? If both are equally clean and accurate, please select “Both”;
if neither select “Neither”.” The answer options were “(B),” “(C),”
“Both,” and “Neither.” We used different inputs for each question.
We recruited 24 participants (16 male, 8 female), resulting in six
responses per question for 90 inputs with diverse authors and styles.
32 inputs were from [Yan et al. 2020], 22 from [Gryaditskaya et al.
2019], and the remaining 36 were inputs commissioned directly
from artists.
We followed the study protocol of Liu et al. [2018]. Participants

were provided a task description and shown a simple reshaping
example, both taken from Liu et al. [2018]; no other explanation
was provided. We use the question from Liu et al. [2018] to discard
answers from participants who did not read the task description.

All participants correctly answered this question. The collated ques-
tionnaires, including instructions, the filter question, and response
counts per question are included in our supplementary materials.

Which of the drawings below, (B) (left) or (C) (right), is a cleaner and more
accurate version of the drawing on top (A)? If both are equally clean and accurate,
please select “Both”; if neither select “Neither”.

(A)

(B) (C)

Both

Neither

10

Fig. 14. Study question layout. Input image © Rami Alsafadi.

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Analysis of Overdrawn Sketches
	4 Algorithm
	4.1 Local Temporal Consolidation
	4.2 Refinement

	5 Classifier Design
	6 Algorithm Details
	7 Results and Validation
	7.1 Ablations
	7.2 Limitations

	8 Conclusions
	Acknowledgments
	References
	A Ellipse Fitting
	B Gini Coefficients
	C Data Collection
	C.1 Training data corpus
	C.2 Test Set
	C.3 Additional Manually Consolidated Inputs

	D Comparative Study
	D.1 Comparison and Measurement Setup
	D.2 Study Design

