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Fig. 1. Slippage-Preserving 3D Reshaping: (a) An input model and a reshaping gesture specified via new handle vertex positions (fixed handle locations in red,
relocated in orange with arrows showing direction of change). (b) Reshaping output created by an artist based on the gesture. Given this input, state-of-the-art
3D deformation methods (c, As-Rigid-As-Possible [Chao et al. 2010]), conformal (d, [Vaxman et al. 2015]) and baseline Poisson deformation (e) produce
unintuitive results. The outputs of our 3D extension of 2D ALUP reshaping [Araújo et al. 2022] (f) are closer to what viewers expect than all these alternatives,
but exhibit undesirable scaling and orientation changes. Our slippage-preserving reshaping method (g) produces outputs well aligned with user expectations.
Perceptual study participants unanimously preferred our result (g) over all algorithmic alternatives and judged it as on par with artist created one (b). The
"chair" model is provided courtesy of Lun et al. [2015].

Artists often need to reshape 3D models of human-made objects by changing
the relative proportions or scales of different model parts or elements while
preserving the look and structure of the inputs. Manually reshaping inputs
to satisfy these criteria is highly time-consuming; the edit in our teaser
took an artist 5 hours to complete. However, existing methods for 3D shape
editing are largely designed for other tasks and produce undesirable outputs
when repurposed for reshaping. Prior work on 2D curve network reshaping
suggests that in 2D settings the user-expected outcome is achieved when
the reshaping edit keeps the orientations of the different model elements and
when these elements scale as-locally-uniformly-as-possible (ALUP). However,
our observations suggest that in 3D viewers are tolerant of non-uniform
tangential scaling if and when this scaling preserves slippage and reduces
changes in element size, or scale, relative to the input. Slippage preservation
requires surfaces which are locally slippable with respect to a given rigid
motion to retain this property post-reshaping (a motion is slippable if when
applied to the surface, it slides the surface along itself without gaps). We
build on these observations by first extending the 2D ALUP framework to
3D and then modifying it to allow non-uniform scaling while promoting
slippage and scale preservation. Our 3D ALUP extension produces reshaped
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outputs better aligned with viewer expectations than prior alternatives; our
slippage-aware method further improves the outcome producing results on
par with manual reshaping ones. Our method does not require any user
input beyond specifying control handles and their target locations. We
validate our method by applying it to over one hundred diverse inputs and
by comparing our results to those generated by alternative approaches and
manually. Comparative study participants preferred our outputs over the
best performing traditional deformation method by a 65% margin and over
our 3D ALUP extension by a 61% margin; they judged our outputs as at least
on par with manually produced ones.
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1 INTRODUCTION
3D models of human-made objects (Figs. 1, 2) are ubiquitous in
virtual environments and digital worlds. Creating such content
from scratch is time consuming, and while large repositories of
commercially licenseable content (e.g. [Ske 2023; Tur 2023]) exist,
artists often need to modify this existing content for their needs
[Araújo et al. 2022; Kraevoy et al. 2008]. In particular, our discussions
with digital artists and designers suggest that they often want to
reshape, or rescale, the inputs by changing the proportions, scale, or
relative locations of different model parts, features, and geometric
elements. See Figures 1-3 for typical examples, such as making the
lighthouse stairs taller or the phone handle shorter. When manually
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reshaping content, they seek to preserve local and global surface
structures [Araújo et al. 2022; Kraevoy et al. 2008]. Existingmodeling
packages do not provide tools specifically for reshaping, forcing
artists to rely on repetitive basic modeling operations. This makes
reshaping a complex task, requiring significant time and expertise
- lowering the chair back (Fig. 1b) took an expert modeler over
five hours. We propose an algorithmic reshaping approach that is
capable of producing comparable outputs fully automatically and
with minimal user guidance (Fig 1g, Fig 2g).

While shape deformation and editing has been extensively re-
searched, existing methods are ill-suited for reshaping human-made
content (Sec 2). Surface deformation methods typically target pos-
ing or animation of natural or organic objects, and are designed
to be shape preserving. Repurposing these methods for reshaping
human-made content produces outputs that are not aligned with
user expectations (Figs. 1c-e, 2c-e). Kraevoy et al. [2008] support
global axis-aligned resizing of human-made content; however, their
framework does not generalize to local reshaping operations where
users want to change the relative proportions of different object
parts. Part-based editing methods are limited in the operations they
support, and do not allow for global propagation of reshaping ac-
tions, such as the impact of raising the stairs on the overall structure
of the lighthouse in Fig 2,top.
Araújo et al [Araújo et al. 2022] propose a targeted method for

reshaping 2D curve networks. Their research suggests that viewers
expect reshaping of such networks to preserve the orientation of
input curves as much as possible, and to scale these curves as-locally-
uniformly-as-possible (ALUP). As the authors indicate, extending
their 2D reshaping method to 3D surfaces is a non-trivial task. We
achieve this goal by first reformulating the ALUP criteria in the
context of 3D surface reshaping, and then developing a method for
computing 3D reshaping outputs that satisfy these criteria (Sec 3).
We observe that, in the 3D setting, the expectation that surfaces
scale as uniformly as possible is equivalent to optimizing for the
mapping from the input to the reshaped surfaces to be as conformal
as possible. We formulate 3D ALUP reshaping as a computation of
3D-to-3D surface mappings that satisfy the user specified reshaping
gesture (specified via positional constraints), and that are as orienta-
tion preserving and as conformal as possible. We then discretize this
formulation using triangle meshes as the input and output surface
representation, and solve for the desired mapping and correspond-
ing reshaping outputs using a custom solver (Fig. 1f). The results
obtained using this approach are notably better aligned with viewer
expectations than those produced by traditional ARAP [Chao et al.
2010], conformal [Vaxman et al. 2015], or Poisson deformation ap-
proaches (Fig. 1c-e). However, as confirmed by our user studies
(Sec. 5), they frequently exhibit undesirable uniform scaling and
other artifacts diverging from user expectations (see Fig. 1f versus
Fig. 1b). Araújo et al. [2022] acknowledge such undesirable scaling
as a possible, yet rare, drawback of their method; while rare in 2D,
our experiments show such divergence from human expectations is
significantly more frequent in 3D.
We avoid this undesirable scaling and related artifacts by re-

examining the properties that 3D reshaping needs to satisfy in order
to be well aligned with human expectations. Our analysis suggests

that viewers neither expect, nor desire, 3D reshaping to be con-
formal everywhere. Instead, viewer expectations are impacted by
slippage and scale related considerations. Following [Gelfand and
Guibas 2004], we define a surface as locally slippable if it is locally
invariant under translational or rotational motion. Formally, a rigid
motion𝑀 is a slippable motion of a surface 𝑆 if the velocity vector
of each point 𝑥 ∈ 𝑆 under 𝑀 is tangential to 𝑆 . Our observations
suggest that viewers expect surfaces which are locally slippablewith
respect to a given rigid motion to retain this property after reshap-
ing, and prefer reshaping outputs that keep the original element
scale, or dimensions, as much as possible when doing so does not
impact orientation or slippage preservation. As discussed in Sec. 4,
slippage is strongly correlated with surface principal curvatures: on
spherical surfaces slippage is preserved only under uniform scaling,
but slippable anisotropic surfaces remain slippable when tangen-
tially scaled by constant, but potentially different, factors along their
principal curvature directions (for instance, reducing the radius of
a cylinder while preserving its length). Critical to our setting, our
observations suggest that in 3D viewers tolerate such a slippage
preserving non-uniform tangential scaling. In particular, users pre-
fer the outputs to locally keep their scale closer to the original one
when doing so does not violate slippage or orientation; e.g. keeping
the original thickness of the phone handle in Fig. 3 while making it
shorter rather than shrinking it uniformly.
We use these observations to refine our reshaping formulation.

First, we relax the conformality requirement in non-spherical sur-
face areas; second, we complement the prior expectation of across-
the-board orientation preservation with the need for across-the-
board slippage preservation. Finally, we incorporate an incentive to
preserve original scale when doing so does not negatively impact
slippage or orientation. We formulate the computation of the out-
puts we seek as a variational optimization problem. We discretize
this formulation by casting it as an optimization problem whose
variables are the per-triangle reshaping transformations and the out-
put mesh vertex positions (Sec 4), and find the transformations and
positions that satisfy these properties using a custom alternating
least-squares solver.
Our contribution is thus two-fold: we first extend the ALUP 2D

curve reshaping framework to operate on 3D meshes, achieving bet-
ter reshaping outputs than prior alternatives; we then further refine
this extended framework to accurately capture human expectations
of 3D reshaping.

We demonstrate our method’s robustness and versatility by gen-
erating 128 different reshaping outputs, starting from diverse inputs
and reshaping task specifications. We validate our approach by com-
paring our results to those created by artists and via algorithmic
alternatives (Sec 5). In a perceptual study, participants preferred
our slippage-aware results over the best performing algorithmic
alternative by a margin of 65% (ours 75%, alternative 9%, equally
good 11%, equally bad 5%) and judged them as on par with manual
reshaping outputs. In comparisons against our 3D ALUP extension,
our slippage-preserving method was preferred by a margin of 61%
(our 67%, ALUP 6%, equally good 22%, equally bad 5%).
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(a) Input (d) ARAP (e) Conformal (g) Ours(b) Artist (c) Poisson (f) Our 3D ALUP

Fig. 2. Given the input models and gesture specifications (a) an expert modeler created the pink reshaped outputs (b). It took them three hours to edit the
lighthouse and 70min to edit the chair. Given the editing gestures in (a), Poisson (c), state of the art ARAP [Chao et al. 2010; Sorkine and Alexa 2007] (d) and
conformal [Vaxman et al. 2015] (e) deformation methods visibly shear the inputs and change surface orientation. Our 3D extension of 2D ALUP reshaping
[Araújo et al. 2022] (f) has less pronounced artifacts, but still notably diverges from viewer expectations. Our new slippage-preserving reshaping method (g)
preserves both orientation and slippage, and produces results of similar quality to those created by the expert modeler (b). Our method took 2.5 minutes to
generate results for the lighthouse; 32 seconds for the chair. Lighthouse model © tivsol - sketchfab.com. The "chair" model is provided courtesy of Lun et al.
[2015].

(a) Input (b) Artist (c) Surface ARAP (e) Conformal (f) Our 3D ALUP (g) Ours(d) Volumetric ARAP

Fig. 3. Given the input models and gesture specifications (a) an expert
modeler created the reshaped output in (b). It took him 75min to generate.
Our algorithmic results (g) took 7 seconds to generate, are visually almost
identical to the artist generated ones, and required the user to perform a
handful of mouse click-and-drag operations. Our results are notably better
aligned with artist ones than those created using surface (c) and volumetric
(d) ARAP methods [Chao et al. 2010; Sorkine and Alexa 2007], conformal
deformation [Vaxman et al. 2015] (e), and our 3D extension of 2D ALUP
reshaping [Araújo et al. 2022] (f). The "phone" model is provided courtesy
of Gori et al. [2017].

2 BACKGROUND AND RELATED WORK
Our work leverages slippage analysis and is related to methods for
editing 2D and 3D content.

Slippage. The concept of slippage was introduced by Gelfand and
Guibas [2004]. They define surfaces as locally slippable if they are
locally invariant under translational or rotational motion (Fig 4).
For example, spheres are invariant under rotation around any axis,
planes are invariant under translation and rotation around the nor-
mal, and cylinders are translationally slippable along their axis and
rotationally slippable around it. Gelfand and Guibas [2004] and
follow-up works use slippage analysis to segment meshes into re-
gions with different slippage properties for reverse engineering pur-
poses. Kraevoy et al. [2008] suggest that viewer tolerance to surfaces
being scaled non-uniformly along an axis during editing operations
is a function of the degree to which the surface is translationally

- translation

- rotation

- rotation axis

(d) (e) (f) (g)

(c)(b)(a)

Fig. 4. Types of slippable surfaces and motions: (a) planar (translation and
rotation around normal); (b) spherical (rotation around normal and around
any sphere axis); (c) parabolic (translation) (d) elliptic (rotation around
axis); (e) and (f) surfaces of revolution (rotation around axis); (g) helical -
(approximate) rotation around two axes.

slippable along this axis. They utilize this property in the context
of grid-based global resizing, as described below. Kurz et al. [2014]
and Bokeloh et al. [2011] employ slippage analysis solely for the de-
tection of translational symmetries; they do not attempt to preserve
slippage during deformation. Nieser et al. [2012] locally classify sur-
face regions as cylindrical, spherical, or hyperbolic, and employ this
classification to guide directional constraints in a parametrization
problem; they also do not address structure-preserving deformation.
We speculate that, in the context of reshaping, viewers expect sur-
faces that are slippable with respect to a rigid motion to retain this
property as much as possible post reshaping. We leverage this ob-
servation in our reshaping method (Sec. 4) and validate our results
to be well-aligned with human expectation via perceptual studies
(Sec. 5).

Shape-Preserving Deformation. Deforming shapes to conform to
user specifications is a well researched computer graphics prob-
lem (see [Cohen-Or et al. 2015; Gain and Bechmann 2008; Yuan
et al. 2021] for surveys.) The vast majority of deformation methods
are designed for posing or animating natural shapes, and target
local shape preservation. As-rigid-as-possible (ARAP) deformation
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methods seek to introduce a minimal amount of shear and scaling,
thus preserving the local geometry, while allowing for rotation and
translation [Alexa 2003; Chao et al. 2010; Igarashi et al. 2005; Ja-
cobson et al. 2012; Joshi et al. 2007; Solomon et al. 2011; Sorkine
and Alexa 2007; Yu et al. 2004]. Conformal deformation methods
relax these requirements, allowing for uniform scaling in addition
to rotation and translation [Crane et al. 2011; Vaxman et al. 2015;
Weber and Gotsman 2010]. Reshaping, by definition, aims to change
the absolute or relative scale and proportions of different elements
in human-made objects while preserving their implicit and explicit
structures. Unlike the shape-preserving setup, reshaping must there-
fore maintain surface orientation as much as possible. Rather than
heavily penalizing non-uniform scaling as all above methods do,
we allow such scaling if and when it preserves slippage and when
doing so allows for better orientation and local scale preservation.

We compare our method against representative shape-preserving
baselines: basic Poisson deformation, as described in [Cohen-Or et al.
2015]; ARAP deformation [Chao et al. 2010; Sorkine and Alexa 2007]
as implemented in [Jacobson et al. 2018]; and conformal deformation
[Vaxman et al. 2015] (e.g. Figs. 2, 3), Basic Poisson deformation
penalizes any deviation from the original shape (including rotation),
and was shown to outperform other alternatives for 2D reshaping
[Araújo et al. 2022]. It thus provides an important baseline for our
comparisons. Our outputs are significantly better aligned with user
expectations than all alternatives (Sec. 5).

Cage-Based and Volumetric Deformation. Cage-based deformation
methods [Li and Hu 2012; Lipman et al. 2008; Sumner et al. 2007;
Thiery and Boubekeur 2022; Thiery et al. 2018; Zhang et al. 2014] use
closed, low-polygon count polyhedral cages as a control mechanism
for deforming 3Dmeshes; see [Nieto and Susín 2013] for a survey. Ja-
cobson et al. [2011] propose the use of bounded biharmonic weights
for deformation using a linear blending scheme. However, as ac-
knowledged by the authors (see Fig. 17 in [Jacobson et al. 2011]),
using their method for cage-based deformation can lead to orienta-
tion distortion in the underlying shape, violating a key requirement
for reshaping tasks. Volumetric deformation methods [Chao et al.
2010; Shi et al. 2006; Zhou et al. 2005] operate on polyhedral meshes,
which provide greater rigidity and help prevent self-intersections
during deformation. Like the surface-based methods above, both
cage and volumetric techniques are primarily designed for posing
and animation and thus focus on locally shape-preserving defor-
mations. Figs. 3 and 13 compare our outputs against a standard
volumetric ARAP formulation applied to tetrahedral meshes of our
input surfaces [Chao et al. 2010]; the outputs of this method exhibit
similar characteristics to those of the surface based ARAP methods,
and as such are ill-suited for reshaping needs.

Grid-Based Resizing and Retargeting. Global resizing or retarget-
ing methods encase 2D or 3D shapes in bounding boxes, meshed
using regular grids, resize or deform these boxes, and propagate the
box’s grid deformation to the enclosed shape [Artusi et al. 2016].
Most such methods [Gal et al. 2006; Wang et al. 2008; Wolf et al.
2007; Zhang et al. 2009] employ local shape preserving or ARAP for-
mulations, similar to those discussed above and thus exhibit similar
artifacts on our data. Xiao et al. [2014] utilize a tetrahedral mesh in-
stead of a grid and allow enforcement of user-specified symmetries.

Their method uses mean-value coordinates to deform the tet mesh
and consequently does not preserve any of the properties we seek.
Kraevoy et al. [2008] address resizing of 3D human-made ob-

jects and identify orientation and slippage as key properties that
need preservation when editing such content. They embed the in-
puts in hexahedral grids and estimate slippage relative to the grid
directions; they then resize the inputs by deforming this grid us-
ing a variant of Poisson deformation that seeks to scale grid cells
uniformly when they contain surface patches which are not transla-
tionally slippable along the resizing axis, while allowing cells that
only contain patches slippable along the axis to scale non-uniformly.

[Kraevoy'08]

Grid-based resizing methods such as
[Kraevoy et al. 2008] can produce grids
with inverted elements, resulting in severe
artifacts on the resized outputs [Panozzo
et al. 2012]. As demonstrated by Araújo et
al.[2022], using such methods for local re-

shaping instead of global resizing can result in inverted elements
and corresponding catastrophic edit outputs even for simple ges-
tures (see inset). Our method is inspired by the work of Kraevoy et
al., but targets the much more challenging and general problem of
reshaping, which requires support for fine grained localized edits.
It operates directly on the input meshes and can robustly perform
diverse local reshaping edits (Figs. 1, 2) as well as global resizing
(Fig. 3).

Panozzo et al. [2012] prevent foldovers in grid-based 2D deforma-
tion by constraining all points that share a common 𝑥 or 𝑦 value to
continue to do so; this approach dramatically constrains the user’s
degrees of freedom and as such cannot be used for the vast majority
of edits shown in this paper.

Neural Deformation. Neural deformation methods use loss func-
tions that encode the properties of the desired deformation op-
eration, or alternatively learn these properties from deformation
examples. Methods that fall into the first category include Hertz
et al. [2022a], who deform source meshes using a progressive po-
sitional encoding that aims for as-rigid-as-possible deformation
throughout the training process; and Yifan et el. [2020] who extend
the cage-based approaches above to learned weights and share the
same local shape preservation goals. Thus, the outputs of these
methods exhibit similar characteristics to those of traditional shape
preserving methods, making them unsuitable for our needs. We are
not aware of any learning-based methods that use loss functions
suitable for reshaping. In the second category, Jiang et al. [2020]
learn deformation spaces on classes of 3D shapes from deformation
examples, and demonstrate both traditional shape-preserving de-
formation and deformation of CAD models via explicit parametric
controllers. Tang et al. [2022] deform meshes using neural shape
deformation priors which they take from character animation se-
quences. Applying these approaches to reshaping would require
manually creating enough diverse, and thus sufficiently represen-
tative, examples. Given the effort it takes to create a single exam-
ple (Fig 1), this task would be prohibitively time consuming. Our
learning-free method does not require such examples. Neuform [Lin
et al. 2022] simultaneously learns both a latent shape space for a
class of objects and an overfitted model of a specific input, then
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uses both representations simultaneously for limited reshaping op-
erations. This approach requires both large shape databases and
significant runtimes: to reshape one chair, Neuform requires a latent
shape space trained on 7800 chairs, 33 hours of training to learn the
general shape space, and 25 minutes to learn the specific chair being
reshaped. We require no training data, and our median runtimes
are under 30 seconds.

Part Based Editing. Part-based editing methods leverage a par-
tition of models into separable parts, and support deformation of
individual parts, either via simple axial scaling or shape preserving
methods similar to those discussed above (e.g. [Chaudhuri et al.
2011; Funkhouser et al. 2004; Lun et al. 2015; Ma et al. 2014]). As dis-
cussed by [Kraevoy et al. 2008] axial scaling is ill-suited for editing
of human-made content as it changes the orientation of surfaces
not orthogonal to one of the axes, see Fig 14e for a typical outcome.
Shape-preserving deformation is similarly ill-suited for reshaping,
as discussed above. More importantly, many reshaping operations
are inherently non-local - scaling the stairs on the lighthouse (Fig 2)
requires adjusting feature locations and sizes across the rest of the
building. Part-based methods are not designed to support such re-
shaping propagation. Part-based neural deformation methods like
SPAGHETTI [Hertz et al. 2022b] operate on neural implicits, learn-
ing partwise decompositions directly on them. Their framework
implicitly encourages changes in surface orientation, which we
show is undesirable in a reshaping setting. DeformSyncNet [Sung
et al. 2020] performs part-based deformation transfer across a latent
shape space, targeting different models in a class of objects. The
problem it solves is orthogonal to our direct editing method.

Structure-Preserving Deformation. Early methods for structure-
preserving shape editing [Gleicher 1992; Hsu et al. 1993; Sutherland
1964] required users to explicitly manually specify all structural
constraints, necessitating significant time and expertise to oper-
ate. Interfaces for semi-manual global resizing of 2D vector icons
[Bernstein and Li 2015; Dragicevic et al. 2005] similarly require
users to formulate the explicit structural constraints they want to
enforce. Cabral et al. [2009] target structure-preserving reshaping
of textured architectural models; they identify planar surfaces and
preserve their orientations during editing. Gal et al. [2009] detect
geometric relationships on 3D shapes and attempt to explicitly pre-
serve them. They acknowledge that the method can easily become
over-constrained, and has no built in mechanisms for automatically
relaxing constraints users do not wish to enforce. Wu et al. [2014]
preserve automatically detected or manually annotated symmetries
during deformation, but do not target orientation or slippage preser-
vation.

We target free-form shapes, for which preserving orientations
alone without considering other properties can produce undesirable
outputs (see e.g. Fig. 6), and support reshaping edits for which
orientation preservation is not always achievable (e.g. the reshaping
gesture on the bike in Fig 10 can only be satisfied by rotating the
diagonal bar). Our framework preserves structures implicitly and
relaxes orientation and slippage preservation when these cannot be
strictly satisfied. This both prevents overconstraining and avoids
the need for users to explicitly annotate features or relations they
wish to preserve. By not relying on explicit detection of slippable

areas (beyond approximately detecting spherical regions), we avoid
the issues inherent in using fuzzy and fragile thresholds [Gelfand
and Guibas 2004].

Reshaping Parametric Models. A large body of research addresses
representation and editing of parametrically described CAD models
[Cascaval et al. 2022; Kelly et al. 2015; Michel and Boubekeur 2021;
Schulz et al. 2017]. Editing operations on such models preserve
their structures by design. We operate on free-form meshes for
which no structural information is available. Convertingmeshes into
parametric models via reverse engineering is itself a long standing
research problem [Buonamici et al. 2018].

2D Reshaping. As-Locally-Uniformly-as-Possible (ALUP) reshap-
ing [Araújo et al. 2022] operates on 2D curve networks, and aims
to preserve curve orientation and penalize non-uniform curve scal-
ing. We extend their method to surfaces in 3D in Sec. 3. As with
most geometry processing tasks, and specifically shape deformation
[Cohen-Or et al. 2015], extending a 2D curve-based formulation to
3D surfaces requires both a different, more refined, formulation and
a different corresponding solution mechanism. While this approach
visibly outperforms traditional methods, its outputs significantly di-
verge from user expected ones (e.g. Fig 1f versus Fig 1b). Specifically,
as noted above, unlike the 2D setting where users expect content to
scale as-uniformly-as-possible in response to reshaping gestures, in
3D uniform scaling is often undesirable, see e.g. Fig 3. Consequently,
as our comparisons show our novel slippage-preserving formulation
(Sec. 4) significantly outperforms this 3D ALUP baseline.

3 3D ALUP
Before describing our slippage-preserving 3D reshaping method
(Sec 4), we briefly review the 2D ALUP reshaping formulation of
Araújo et al [2022] (Sec 3.1) and propose an extension of this formu-
lation to 3D (Sec. 3.2).

3.1 2D ALUP
Araújo et al. [2022] formulate 2D reshaping as a computation of a
mapping from input to output curve networks that satisfies a set of
user-defined positional and optional straightness constraints. They
seek a mapping that is locally as similar as possible to a uniform
scale, and express this property via two conditions: first, they expect
normals at the corresponding points on the input and output curves
to be maximally similar; second, they expect the gradient of the tan-
gent length at the corresponding points on the curves to be similar
as well. They express these two properties variationally. Given an
arc-length parameterized smooth input curve 𝐶𝑖 (𝑢) : [0, 𝑠] → R2,
with pointwise tangents 𝜏𝑖 (𝑢) and unit normals 𝑛𝑖 (𝑢), they find
a function 𝐶𝑜 : [0, 𝑠] → R2 representing the output curve, with
pointwise tangents 𝜏𝑜 (𝑢) and unit normals 𝑛𝑜 (𝑢), that minimizes
the sum of the following two functionals:

𝐸normal =

∫ 𝑠

𝑢=0
𝜔𝑛 (𝑢) (𝑛𝑖 (𝑢) ·

𝜏𝑜 (𝑢)
∥𝜏𝑜𝑢∥

)2𝑑𝑢 (1)

𝐸tangent =

∫ 𝑠

𝑢=0
𝜔𝑡 (𝑢) (

𝑑 ∥𝜏𝑜 (𝑢)∥
𝑑𝑢

− 𝑑 ∥𝜏𝑖 (𝑢)∥
𝑑𝑢

)2𝑑𝑢. (2)

subject to the aforementioned constraints. The first functional,
𝐸normal, encourages normal preservation. The second functional,
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𝐸tangent, encourages the gradient of the lengths of the output tan-
gents 𝜏𝑜 (𝑢) to be maximally similar to that of the input ones 𝜏𝑖 (𝑢).
Here 𝜔𝑛 (𝑢) and 𝜔𝑡 (𝑢) are weight functions encoding the degree to
which normal preservation and scale uniformity need to be main-
tained at different points along the curve.
For efficiency, and to allow processing of inputs where their

constraints may not be strictly satisfiable, they enforce them softly
by incorporating corresponding energy terms into the minimized
functional, assigning these terms a very high weight 𝑤𝑐𝑜𝑛𝑠𝑡𝑟 =

105. They express positional constraints that stipulate that points
𝐶𝑖 (𝑢0), . . . ,𝐶𝑖 (𝑢𝑘 ) on the curve should map to positions 𝑝0, . . . , 𝑝𝑘
as

𝐸pos =

𝑘∑︁
𝑖=0

∥𝐶𝑜 (𝑢𝑖 ) − 𝑝𝑖 ∥2 (3)

and express straightness preservation along a priori straight sections
𝑠 ∈ 𝑆 of the input curve [𝑢𝑠 , 𝑢𝑒 ] as:

𝐸straight =
∑︁
𝑠∈𝑆

∫ 𝑢𝑒

𝑢=𝑢𝑠

𝑑2𝐶𝑜 (𝑢)
𝑑𝑢2

𝑑𝑢. (4)

They then formulate reshaping goals as minimizing:

𝐸2𝐷
ALUP = 𝐸normal + 𝐸tangent +𝑤𝑐𝑜𝑛𝑠𝑡𝑟 (𝐸pos + 𝐸straight) . (5)

They proceed to discretize this formulation by approximating
each input curve by a densely sampled polyline < 𝑉 , 𝐸 > where 𝑉
are polyline vertices and 𝐸 polyline edges. They reformulate the
different terms (where 𝐸𝑑 denotes discretized energy terms) as func-
tions of the input shape vertex positions 𝑣0

𝑖
and their corresponding

output positions 𝑣𝑖 , aiming for a formulation that allows for an
efficient minimization strategy:

𝐸𝑑normal =
∑︁

⟨𝑖, 𝑗 ⟩∈𝐸
𝜔 (𝑣 𝑗 , 𝑣𝑖 )

(
𝑛𝑖𝑖 𝑗 ·

𝑣 𝑗 − 𝑣𝑖
∥𝑣 𝑗 − 𝑣𝑖 ∥

)2

𝐸𝑑tangent =
∑︁
𝑖∈𝑉

∑︁
𝑗≠𝑘∈𝑁𝑖

𝜔𝑑
𝑡 (𝑖 𝑗𝑘)
𝐿𝑎𝑣𝑔

(
∥𝑣 𝑗 − 𝑣𝑖 ∥ −

∥𝑣0
𝑗
− 𝑣0

𝑖
∥

∥𝑣0
𝑘
− 𝑣0

𝑖
∥
∥𝑣𝑘 − 𝑣𝑖 ∥

)2

𝐸𝑑straight =
∑︁
𝑖∈𝑆

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

 (𝑣 𝑗 − 𝑣𝑖 )∥𝑣 𝑗 − 𝑣𝑖 ∥
− (𝑣𝑖 − 𝑣𝑘 )

∥𝑣𝑘 − 𝑣𝑖 ∥

2
.

Here, 𝜔 (𝑣 𝑗 , 𝑣𝑖 ) is a discretization of 𝜔𝑛 (𝑢) and is defined as

𝜔 (𝑣 𝑗 , 𝑣𝑖 ) = max
(
1,

(𝑣 𝑗 − 𝑣𝑖/𝐿𝑎𝑣𝑔 )2
)

(6)

where 𝐿𝑎𝑣𝑔 denotes the average length of the input polyline edges.
These weights are designed penalize deviation more along longer

edges. The weight 𝜔𝑑
𝑡 (𝑖 𝑗𝑘 )
𝐿𝑎𝑣𝑔

is the discretizations of 𝜔𝑡 (𝑢), where
𝜔𝑑
𝑡 (𝑖 𝑗𝑘) reflect the visual smoothness at the center vertices 𝑗 in the

input curve network (see [Araújo et al. 2022] for details). The set
𝑆 includes all vertices that are interior to the straight lines in the
original curve network.
They minimize the discretized nonlinear energy 𝐸𝑑

𝐴𝐿𝑈𝑃
(𝑣):

𝐸𝑑ALUP = 𝐸𝑑normal + 𝐸
𝑑
tangent +𝑤𝑐𝑜𝑛𝑠𝑡𝑟 (𝐸pos + 𝐸𝑑straight) (7)

using an iterative least-squares solver which uses target output edge
lengths 𝑙𝑖 𝑗 as auxiliary variables. Key to their method is the obser-
vation that using these auxiliary variables lets normal preservation

be expressed as preserving the directions of the polyline edges:

𝐸′edge =
∑︁

⟨𝑖, 𝑗 ⟩∈𝐸
𝜔𝑙 (𝑣𝑖 , 𝑣 𝑗 )

𝑣𝑖 − 𝑣 𝑗𝑙𝑖 𝑗
−
𝑣0
𝑖
− 𝑣0

𝑗

𝑙0
𝑖 𝑗

2

(8)

where 𝑙0
𝑖 𝑗

= ∥𝑣0
𝑖
− 𝑣0

𝑗
∥, and 𝜔𝑙 (𝑣 𝑗 , 𝑣𝑖 ) = max

(
1,

(
𝑙𝑖 𝑗/𝐿𝑎𝑣𝑔

)2
)
.

This term is minimized when the output edges have similar direc-
tions to the original, and satisfy ∥𝑣𝑖 − 𝑣 𝑗 ∥ = 𝑙𝑖 𝑗 . They then rewrite
the main energy terms as

𝐸′normal =
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝜔𝑙 (𝑣𝑖 , 𝑣 𝑗 )

(
𝑛𝑖𝑖 𝑗 ·

𝑣 𝑗 − 𝑣𝑖
𝑙𝑖 𝑗

)2
(9)

𝐸′tangents =
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

𝜔𝑑
𝑡 (𝑖 𝑗𝑘)

𝐿𝑎𝑣𝑔

∥𝑣 𝑗 − 𝑣𝑖 ∥

(
𝑙𝑖 𝑗 − 𝑟𝑖 𝑗𝑘𝑙𝑖𝑘

)2
(10)

𝐸′straight =
∑︁
𝑖∈𝑆

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

 (𝑣 𝑗 − 𝑣𝑖 )𝑙𝑖 𝑗
− (𝑣𝑖 − 𝑣𝑘 )

𝑙𝑖𝑘

2
. (11)

and approximate minimizing 𝐸𝑑ALUP as minimizing

𝐸′ALUP = 𝐸′normal + 𝐸
′
edge + 𝐸

′
tangent +𝑤𝑐𝑜𝑛𝑠𝑡𝑟 (𝐸pos + 𝐸′straight) (12)

This formulation allows for a solution using least squares iterations
which alternate between solving for positions while keeping the
lengths fixed, and solving for lengths with fixed positions.

3.2 Extending ALUP to 3D
Our 3D equivalent of ALUP looks for a mapping 𝜏 from an input
surface 𝑆𝑖 to an output surface 𝑆𝑜 that similarly satisfies a set of
positional and optional straightness constraints, and is locally as-
close-as-possible to a uniform scaling. For simplicity, we assume 𝑆𝑖
and 𝑆𝑜 are smooth and oriented and that 𝜏 is a diffeomorphism.

Our positional constraints, similar to 2D, stipulate that points 𝐶𝑘
on the surface should map to positions 𝑝0, . . . , 𝑝𝑘 ∈ R3; thus 𝐸pos in
3D is a straightforward extension of its 2D counterpart. Assuming
that each straight line on the surface can be parameterized as a
function of a single parameter 𝑢 ∈ [𝑢𝑠 , 𝑢𝑒 ], the straightness energy
formulation 𝐸straight can be extended basically as-is from 2D to 3D.
Straightness preservation remains a desired property in 3D as planar
or non-planar surface patches can meet along straight sections.
To formulate our ALUP goals in 3D, we therefore only need

to define 3D equivalents to 𝐸normal and 𝐸tangent. Given a point 𝑝
on 𝑆𝑖 , let 𝑛𝑖 (𝑝) be the unit normal vector at point 𝑝 ∈ 𝑆𝑖 , and
let 𝜑 = (𝑢, 𝑣) be a local coordinate chart from a neighbourhood
of 𝑝 to Ω ⊂ R2. The tangent plane at 𝜏 (𝑢, 𝑣) is then spanned by
𝜕
𝜕𝑢 𝜏 (𝑢, 𝑣) and

𝜕
𝜕𝑣 𝜏 (𝑢, 𝑣). We can therefore express our desire for

normal preservation as:

𝐸3𝐷
normal =

∫
Ω
𝜔𝑛 (𝑢, 𝑣)

(
(𝑛𝑖 (𝑢, 𝑣) ·

𝜕
𝜕𝑢 𝜏 (𝑢, 𝑣)

∥ 𝜕
𝜕𝑢 𝜏 (𝑢, 𝑣)∥

)2

+(𝑛𝑖 (𝑢, 𝑣) ·
𝜕
𝜕𝑣 𝜏 (𝑢, 𝑣)

∥ 𝜕
𝜕𝑣 𝜏 (𝑢, 𝑣)∥

)2
)
𝑑𝑢𝑑𝑣

(13)

In other words, 𝐸3𝐷
normal is minimized when the input normals

remain orthogonal to the tangent plane at the output surface. Here
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𝜔𝑛 (𝑢, 𝑣) = max(1, ∥∇𝜏 (𝑢,𝑣) ∥∇avg
), where ∇avg is the average length of

the gradient of 𝜏 over all 𝑆𝑖 .
We observe that, in the 3D context, requiring local uniformity is

equivalent to requiring that 𝜏 is a conformal transformation. The
conformality property can be expressed in terms of the conformal
energy of the map 𝜏 , or the difference between the Dirichlet energy
of 𝜏 and the area of the output surface 𝑆𝑜 , given by integrating the
Jacobian of 𝜏 over 𝑆𝑖 :

𝐸conformal =

∫
𝑆𝑖

( 1
2
|∇𝜏 |2 − Jac(𝜏))𝑑𝐴 (14)

where 𝑑𝐴 is the area form on 𝑆𝑖 . This energy is always nonnegative,
and is known to be zero exactly when 𝜏 is conformal [Pinkall and
Polthier 1993]. With these in place we formulate 3D ALUP reshaping
as the minimization of

𝐸3𝐷
𝐴𝐿𝑈𝑃

= 𝐸3𝐷
normal + 𝐸conformal +𝑤constr (𝐸pos + 𝐸straight) . (15)

3.2.1 3D ALUP Discretization. Our next task is to apply this frame-
work to typical 3D models we want to reshape, which are most
commonly represented as triangular meshes. We denote the trian-
gles of the input mesh as 𝑡 ∈ 𝑇 , and the input normals on these
triangles as 𝑛𝑡 . We refer to the output mesh vertex positions as
𝑣 ∈ 𝑉 , and their corresponding input positions as 𝑣 ∈ 𝑉 . We denote
the input positions of the vertices of a triangle 𝑡 as 𝑣0

𝑡 , 𝑣
1
𝑡 , 𝑣

2
𝑡 , and the

corresponding output positions as 𝑣0
𝑡 , 𝑣

1
𝑡 , 𝑣

2
𝑡 . We formulate our goal

of obtaining a desired reshaping as computing a piecewise linear
mapping 𝜏 from the input mesh ⟨𝑉 ,𝑇 ⟩ to the unknown output mesh
⟨𝑉 ,𝑇 ⟩. For simplicity, we assume without loss of generality that the
handle points 𝐶𝑘 form a subset of the mesh vertices 𝑉 .
Normal Preservation. We encode 𝐸3𝐷

normal in discrete form as

𝐸𝐷normal =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜔 (𝑣𝑖+1
𝑡 , 𝑣𝑖𝑡 )

(
𝑛𝑡 ·

𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


)2

. (16)

Conformality.The conformal energy𝐸3𝐷
conformal requires non-trivial

and typically indirect machinery to optimize [Crane et al. 2011;
Mullen et al. 2008; Vaxman et al. 2015]. We formulate our expecta-
tion of conformality in a much simpler quadratic form by implicitly
reinforcing our goal of normal preservation and recasting confor-
mality as the expectation that the input and output triangles have
the same normals and are similar, or have the same corner angles.

nt

vi+2t

vit
vi+1t

α i
t

Let 𝑅𝑖𝑡 be a rotation matrix encoding a counterclock-
wise rotation around the input triangle normal 𝑛𝑡
by the input triangle’s angle𝛼𝑖𝑡 at the corresponding
corner vertex 𝑣𝑖𝑡 . The triangle 𝑡 is scaled uniformly

while preserving its normal if, and only if, for any of its corners
𝑖 ∈ 0, 1, 2 (where 𝑖3 = 𝑖0, etc.; see inset):

(𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡

 − 𝑅𝑖𝑡
(𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡

 = 0. (17)

With this relation in place, we define the discrete conformal
energy as:

𝐸𝐷conformal =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

 (𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡

 − 𝑅𝑖𝑡
(𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


2

(18)

This formulation builds on the LSCM parametrization (see Eq. 3.3
in [Sheffer et al. 2006]), extending it to the case where conformality
needs to be preserved while keeping 3D triangle normals fixed.

Straightness. For each detected straight line, expressed as a vertex
sequence 𝑆 = {𝑣𝑠0, . . . 𝑣

𝑠
𝑛 (𝑆 ) } ∈ 𝑆 , we encode the expectation of

straightness preservation as

𝐸𝐷straight =
∑︁
𝑆∈𝑆

𝑛 (𝑆 )−1∑︁
𝑖=1

 𝑣𝑠
𝑖+1 − 𝑣

𝑠
𝑖𝑣𝑠

𝑖+1 − 𝑣
𝑠
𝑖

 −
𝑣𝑠
𝑖
− 𝑣𝑠

𝑖−1𝑣𝑠
𝑖
− 𝑣𝑠

𝑖−1

2

(19)

Replacing the continuous terms in 𝐸3𝐷
𝐴𝐿𝑈𝑃

with their discrete
counterparts to form a new energy 𝐸𝐷

𝐴𝐿𝑈𝑃
results in a nonlinear

optimization problem. Unfortunately, this problem cannot be solved
with the strategy used for 2D ALUP, as the 3D framework requires
supporting additional degrees of freedom. In particular, and in con-
trast to the 2D case, preserving normals in 3D space does not require
preserving input edge directions. Constraining the solution to pre-
serve edge directions unnecessarily constrains the outputs. This
means that the relationship implied by Eq. 8 no longer holds for
the solutions we seek. Since this relationship is central to the solu-
tion method of [Araújo et al. 2022], we require a different approach
that does not penalize changes in output edge directions as long as
these edges remain orthogonal to the input normal, and as long as
conformality is maximally preserved.

3.3 3D ALUP Solver.
We recast the optimization of 𝐸3𝐷

𝐴𝐿𝑈𝑃
in a solver-amenable form

by explicitly considering the transformations from the input to
output mesh triangles as additional variables in our formulation.
We note that the mapping from the input to the output mesh is, by
definition, linear on each triangle. Consequently, it can be thought
of as a combination of per-triangle linear transformations 𝜏𝑡 (3 × 3
matrices), defined on the triangle’s edges, 𝑣𝑖+1

𝑡 − 𝑣𝑖𝑡 = 𝜏𝑡 (𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 )

and translations. Since we seek to preserve surface orientation, an
inherently global property, our linear transformations are defined
using axis directions aligned with the global coordinate system.
This choice differs from traditional deformation transfer [Sumner
and Popović 2004] and similar setups, which use local per-triangle
coordinate systems whose axes are dictated by triangle normal and
edge directions.

We relate vertex positions and triangle transformations by stating
the relationship between them along the mesh edges:

𝐸transform =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜔 (𝑣𝑖+1
𝑡 , 𝑣𝑖𝑡 )

𝜏−1
𝑡

𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡

 −
𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


2

Applying the inverse of our mapping 𝜏−1
𝑡 to the output edges,

rather than applying the mapping 𝜏𝑡 to the input ones, prevents
error reduction through the decrease of ∥𝜏𝑡 ∥, and hence discourages
undesirable edge shrinkage. We use the same weights 𝜔𝑡𝑖 as the
normal preservation energy to penalize deviation more along longer
edges, while still penalizing it along shorter ones. We normalize
the edge vectors to make this term independent of the input mesh
resolution.
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With these variables in place, our solver alternates between min-
imizing two quadratic energies approximating 𝐸3𝐷

𝐴𝐿𝑈𝑃
, where one

uses positions as unknowns and the other uses transformations as
unknowns. At each iteration, we solve for vertex positions while
keeping the transformationmatrices fixed, then solve for transforma-
tions while keeping the positions fixed. Formulating our alternating
steps requires addressing two challenges: first, we desire that the
problems solved at each step are quadratic, allowing for straightfor-
ward minimization; second, we want the two alternating steps to
share a common minimum to avoid oscillation.

3.3.1 Vertex Solve. In our first solve, we approximate 𝐸𝐷
𝐴𝐿𝑈𝑃

by
an energy which is quadratic with respect to vertex positions by
keeping the transformations 𝜏𝑡 fixed, and by using fixed values 𝑙𝑖𝑡
for edge lengths in lieu of the mesh edge length terms

𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


within the energy function. We write:

𝑙𝑖𝑡 =
𝜏𝑡 (𝑣𝑖+1

𝑡 − 𝑣𝑖𝑡 )


and define 𝜔𝑡𝑖 = max
(
1,

(
𝑙𝑖𝑡/𝐿𝑎𝑣𝑔

)2
)
. We substitute 𝑙𝑖𝑡 for the norms𝑣𝑖+1

𝑡 − 𝑣𝑖𝑡
 throughout 𝐸𝐷ALUP. With this substitution, our approxi-

mating quadratic energy terms (denoted by 𝐸𝐿) become:

𝐸𝐿transform =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜔𝑡𝑖

𝜏−1
𝑡

𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡
𝑙𝑖𝑡

−
𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


2

, (20)

𝐸𝐿normal =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜔𝑡𝑖 (𝑛𝑡 ·
𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡
𝑙𝑖𝑡

)2, (21)

𝐸𝐿straight =
∑︁
𝑆∈𝑆

𝑛 (𝑆 )−1∑︁
𝑖=1

𝑣𝑠𝑖+1 − 𝑣
𝑠
𝑖

𝑙
𝑖,𝑖+1
𝑠

−
𝑣𝑠
𝑖
− 𝑣𝑠

𝑖−1

𝑙
𝑖,𝑖−1
𝑠

2

(22)

Since 𝐸𝐷conformal is already quadratic in the vertex positions, we use
it as is. Our the overall reshaping energy thus becomes,

𝐸LALUP = 𝐸𝐿transform + 𝐸𝐷conformal + 𝐸
𝐿
normal +𝑤constr (𝐸pos + 𝐸𝐿straight) (23)

Weminimize this energy, and obtain updated output vertex positions
using a standard least squares solver in the Eigen linear algebra
package [Guennebaud et al. 2010].

3.3.2 Transformation Solve. In our second solve, we keep positions
fixed and solve for the transformations that best satisfy our overall
energy. We linearize 𝐸transform with respect to transformations by
multiplying each term in the sum by 𝜏𝑡 ,

𝐸𝑇𝐿transform =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜔𝑡𝑖

 𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡

 − 𝜏𝑡
𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


2

(24)

While the mesh connectivity is explicitly accounted for in posi-
tion space, this is not the case for transformations. We explicitly
require transformations for adjacent faces to agree on common
edges by adding a connectivity preservation term for pairs of adja-
cent triangles:

𝐸𝑇𝐿connect =
∑︁

𝑡 ∈𝑇,𝑠∈𝑁 (𝑡 )

𝜏𝑡 𝑣1
𝑡 − 𝑣0

𝑡𝑣1
𝑡 − 𝑣0

𝑡

 − 𝜏𝑠
𝑣1
𝑡 − 𝑣0

𝑡𝑣1
𝑡 − 𝑣0

𝑡


2

(25)

where, without loss of generality, we assume that 𝑣0
𝑡 = 𝑣1

𝑠 , 𝑣
1
𝑡 =

𝑣0
𝑠 . We formulate our normal and conformality requirements in
terms of transformations, ensuring that both steps in our solve have
maximally overlapping minima:

𝐸𝑇𝐿normal =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜔𝑡𝑖

((
𝜏𝑡

𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


)
· 𝑛𝑡

)2

(26)

𝐸𝑇𝐿conformal =
∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

𝜏𝑡 (𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+2

𝑡 − 𝑣𝑖𝑡
 − 𝑅𝑖𝑡

𝜏𝑡 (𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+1

𝑡 − 𝑣𝑖𝑡


2

(27)

Three of our terms 𝐸𝑇𝐿connect, 𝐸
𝑇𝐿
normal and 𝐸

𝑇𝐿
conformal are minimized

when 𝜏𝑡 = 0, leading the linear system we solve to be poorly con-
ditioned. To stabilize the solution, we add a regularizer which pro-
motes identity transformations

𝐸𝑇𝐿regularizer =
∑︁
𝑡

∥𝜏𝑡 − 𝐼 ∥2
𝐹 (28)

where 𝐼 is a 3 × 3 identity matrix and 𝐹 is the Frobenius norm,
assigning it a tiny weight𝑤reg = 10−4 .

With these elements in place, our quadratic approximate reshap-
ing energy, expressed in terms of transformations, is:

𝐸𝑇𝐿ALUP = 𝐸𝑇𝐿transform + 𝐸𝑇𝐿connect + 𝐸𝑇𝐿normal + 𝐸
𝑇𝐿
conformal +𝑤reg𝐸

𝑇𝐿
regularizer

Note that the straightness term is omitted from 𝐸𝑇𝐿ALUP as the
edge length terms in the denominator would be non-quadratic with
respect to 𝜏𝑡 . We minimize this energy using the same solver as
above. See App. A for initialization and termination criteria.

Finalizing Outputs. Once the optimization converges, we apply
an optional finalization step whose goals are to improve ALUP er-
ror distribution and degree of constraint satisfaction, App. A. This
step addresses a common problem to surface deformation methods
[Sorkine et al. 2004]: when the constraints cannot be satisfied with-
out significant increase in the optimized energy, solutions tend to
concentrate the error immediately next to the handles. Our finaliza-
tion redistributes the error away from the handles.
Fig. 5 shows representative results generated using this frame-

work. For some inputs (such as the sphere Fig. 5b), the results are
consistent with human expectations; in many cases, however, this
approach results in unexpected uniform scaling (Fig. 5e) and unde-
sirable orientation changes (Fig. 5h). In particular, since many inputs
do not allow simultaneous normal and local scale preservation, the
ALUP output balances the two properties, sacrificing normal preser-
vation to better preserve scale uniformity.

Input ALUP

As acknowledged by Araújo et
al. [2022], their goal of promoting
uniformity everywhere potentially
results in undesirable uniform scal-
ing (see inset). While rare in 2D, un-

desirable uniform scaling becomes a larger issue in 3D. In [Araújo
et al. 2022], uniform scaling propagation is avoided across the entire
curve network by effectively segmenting the network at handles,
and at sharp/high-valence corners. In 3D, handles and sharp features
do not provide a natural segmentation. Consequently, to produce
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(g) Input

(h) Our 3D ALUP

(i) Ours

(b) Our 3D ALUP (c) Ours

(e) Our 3D ALUP (f) Ours

(a) Input

(d) Input

Fig. 5. Our 3D ALUP baseline produces acceptable results on simple inputs
such as the sphere (a-b), but does not preserve input scale on anisotropic
inputs (e), and sacrifices orientation to better preserve scale uniformity (h).
Our slippage aware method does not exhibit such artifacts and generates
results consistent with user expectation on all inputs. The "column" model
is provided courtesy of Lun et al. [2015].

outputs consistent with user expectations we relax scale uniformity
and refine this formulation as discussed in Sec. 4.

4 SLIPPAGE-PRESERVING RESHAPING
We seek to replace the enforcement of conformality used in the
ALUP formulation with a weaker requirement of preserving slip-
page, and to use the extra degree of freedom this relaxation provides
to better preserve the original input scale (when compatible with ori-
entation and slippage preservation). To this end, we need to address
two challenges: defining and enforcing the geometric requirements
on our reshaping mapping 𝜏 that will promote slippage preservation,
and detecting the slippable surfaces where these requirements need
to be enforced. We note that slippable motion can be grouped into
three distinct groups (Fig 4): translational motion along a straight
path (parabolic and planar surfaces, e.g. Fig 4ac), rotational motion
around an axis (cylindrical, conical, elliptic or helical surfaces, e.g.
Fig 4d-f), and rotation around the surface normal (planar and spher-
ical surfaces, e.g. Fig 4ab). Notably, while all slippable motions are
preserved under conformal mappings. our key observation is that
the first two motions are maintained under more relaxed condi-
tions. Specifically, we observe that planar surface regions, by defini-
tion, remain planar under orientation preserving transformations.
When analyzing nonplanar surface regions we distinguish between
isotropic and anisotropic ones: a surface region is isotropic if, for
all points 𝑝 in the region, 𝜅1 (𝑝) = 𝜅2 (𝑝); such a region is known
to either be part of a sphere (𝜅𝑖 (𝑝) ≠ 0) or a plane (𝜅𝑖 (𝑝) = 0)
[do Carmo 1976]; a surface region is anisotropic if 𝜅1 (𝑝) ≠ 𝜅2 (𝑝).
Surfaces slippable around the normal are by definition isotropic.
Notably, the translational motion direction on anisotropic surfaces
by definition coincides with the zero principal curvature direction
(where one of 𝜅𝑖 (𝑝) is zero); similarly, for surfaces slippable around
an axis, the rotation direction coincides with one of the principal
curvature directions. These observations jointly suggest that slip-
pable anisotropic surface regions remain slippable under a mapping
that (1) preserves the surface Frenet frame (normal, and principal

curvature directions); and (2) scales the surface uniformly along
each principal curvature direction (e.g. scaling a cylinder’s diameter
and length by different scale factors). In other words, these surface
regions remain slippable under tangential non-uniform scale, as
long as the same amount of tangential scaling is applied at all points
and as long as the transformation does not exhibit shear (while
sufficient, this condition may not be always necessary). We refer to
this property as similarity.

In contrast to planar or anisotropic areas, spherical surface regions
remain slippable around the normal only under conformal mapping.
Thus, to retain slippage across spherical surface regions, we look for
a mapping that is conformal in these areas. We refer to this property
as sphericity.
With these definitions in place, our second challenge is to iden-

tify slippable surface regions. Detecting approximately planar or
spherical regions is relatively straightforward, as methods for ro-
bustly computing principal curvatures onmeshes (e.g. [Panozzo et al.
2010]) are readily available. However, identifying which anisotropic
surface regions are locally slippable is highly non-trivial [Gelfand
and Guibas 2004; Kraevoy et al. 2008] and the distinction between
anisotropic and isotropic surface regions on real data can often be
fuzzy. Therefore, for practical purposes, we simply promote sim-
ilarity across the entire output surface, and enforce conformality
in approximately spherical regions; in our experiments, this ap-
proach produced outputs well-aligned with viewer expectations.
Fig 6 shows the impact of slippage enforcement, demonstrating the
impact of relaxing similarity or sphericity.

4.1 Slippage-Preserving Formulation
We support slippage-preserving reshaping by replacing the con-
formality functional 𝐸conformal with two terms, one that strongly
promotes slippage preservation and one that encourages preserva-
tion of the input scale.

Slippage. We encode slippage as a combination of similarity and
sphericity. We express our preference for similarity as:

𝐸similarity =

∫
Ω

(∇𝑆𝑜 | |
𝜕𝜏

𝜕𝑢
| | − ∇𝑆𝑖 | |

𝜕

𝜕𝑢
| |
2

+
∇𝑆𝑜 | |

𝜕𝜏

𝜕𝑣
| | − ∇𝑆𝑖 | |

𝜕

𝜕𝑣
| |
2

)
𝑑𝑢𝑑𝑣

(29)

To retain slippage across spherical surface regions, we look for a
mapping that is conformal in these areas.We formulate this property
as:

𝐸sphericity =

∫
𝑆𝑖

Γ(𝜅1 (𝑝), 𝜅2 (𝑝))
(

1
2
|∇𝜏 |2 − Jac(𝜏)

)
𝑑𝐴 (30)

Γ(𝜅1, 𝜅2) serves as an indicator function which is 1 on spherical
surfaces, and 0 elsewhere. On real life data, the distinction between
spherical and non-spherical surfaces is never precise. Thus in prac-
tice, we define Γ(𝜅1, 𝜅2) to smoothly vary between 0 and 1 based on
the magnitude of the two curvature values and degree of similarity
between them:

𝑓iso (𝜅1, 𝜅2) = (𝜅1 − 𝜅2)/(max( |𝜅1 |, |𝜅2 |) + 𝜖)
𝑓sph (𝜅1, 𝜅2) = 1 − min ( |𝜅1 |, |𝜅2 |, 𝑘𝑚𝑎𝑥 )/𝑘𝑚𝑎𝑥
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(d) Input (e) Without sphericity (f) Ours

(c) Ours(a) Input (b) Without similarity

Fig. 6. Slippage preservation: (top) Preserving surface orientation only, with-
out optimizing for similarity (b), results in a surface that is correctly oriented
but is no longer rotationally slippable around the input cylinder’s axis; our
similarity preserving reshaping (c) maintains this property. (bottom) Absent
sphericity preservation (e), the middle part of the output surface does not
preserve the slippable motion around the surface normal. Our result (f)
maintains this property.

Γ(𝜅1, 𝜅2) = 𝑒
−©«
𝑓iso (𝜅1, 𝜅2)2

2𝜎2
1

ª®¬𝑒−©«
𝑓sph (𝜅1, 𝜅2)2

2𝜎2
2

ª®¬
Normalizing the input surface (and the corresponding curvature
values) to the unit bounding box, we set 𝑘𝑚𝑎𝑥 = 2, 𝜎1 = 0.2, 𝜎2 = 0.3
and 𝜖 = 10−3 .
Our slippage functional then becomes

𝐸slippage = 𝐸similarity + 𝐸sphericity (31)

Scale. We express our expectation of scale preservation while
reinforcing orientation preservation by asking that the derivative
of the mapping 𝜏 at each point 𝑝 ∈ 𝑆𝑖 be as close as possible to the
identity map 𝐼 :

𝐸scale =

∫
𝑆𝑖

∥∇𝜏 − 𝐼 ∥2
𝐹 𝑑𝐴 (32)

Our combined slippage preserving reshaping energy then be-
comes:

𝐸3𝐷
𝑟𝑒𝑠ℎ𝑎𝑝𝑒

=𝑤normal𝐸
3𝐷
normal + 𝐸slippage +𝑤scale𝐸scale

+𝑤constr (𝐸pos + 𝐸straight) .
(33)

Our slippage formulation implicitly relies on normal preservation,
leading us to prioritize it as a prerequisite by setting𝑤normal = 10.
We set 𝑤scale = 10−4 to deprioritize scale compared to the other
two properties. These weights are internal to the method and fixed
across all inputs shown.

Discretization. We discretize our new terms, expressing them in
terms of the input and output mesh vertex positions, as follows.
Sphericity. We replace the point-wise principal curvature values

𝜅1 (𝑢, 𝑣) and𝜅2 (𝑢, 𝑣) in the continuous formulation with per-triangle
ones, 𝜅1 (𝑡) and 𝜅2 (𝑡), computed using an off-the-shelf framework
[Jacobson et al. 2018], and define the sphericity energy as:

𝐸𝐷sphericity =
∑︁
𝑡 ∈𝑇

Γ(𝜅1 (𝑡), 𝜅2 (𝑡))
2∑︁

𝑖=0

 (𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡

 − 𝑅𝑖𝑡
(𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡


2

Similarity. To encode similarity, we consider a pair of adjacent
triangles 𝑡 and 𝑠 which, without loss of generality, share the vertices
𝑣0
𝑡 = 𝑣1

𝑠 and 𝑣1
𝑡 = 𝑣0

𝑠 . Similarity is best preserved when the two trian-
gles undergo similar non-uniform scaling in their respective tangent

planes. By definition the scale is the same along their common edges,
but absent any constraints triangles can scale differently orthogo-
nally to the common edge. Directly operating on vectors orthogo-
nal to the edges leads to a complex, hard to optimize formulation.

v2
t

v2
s

Instead, we approximate the impact of the per-
triangle transformations 𝜏𝑡 and 𝜏𝑠 on the orthog-
onal stretch of the two triangles by considering
their impact on the vector connecting the non-shared vertices 𝑣2

𝑡

and 𝑣2
𝑠 of the two triangles (dashed red line in the inset). If the

transformed vectors 𝜏𝑡 (𝑣2
𝑡 − 𝑣2

𝑠 ) and 𝜏𝑠 (𝑣2
𝑡 − 𝑣2

𝑠 ) do not coincide,
that suggests that one triangle is transformed differently than the
other along the orthogonal direction, contrary to our goal of having
both triangles exhibit similar tangent plane transformations along
the orthogonal direction. Based on this observation, we define our
similarity term as:

𝐸𝐷similarity =
∑︁

𝑡 ∈𝑇,𝑠∈𝑁 (𝑡 )
𝜔feature (𝑡, 𝑠)

𝜏𝑡 𝑣2
𝑡 − 𝑣2

𝑠𝑣2
𝑡 − 𝑣2

𝑠

 − 𝜏𝑠
𝑣2
𝑡 − 𝑣2

𝑠𝑣2
𝑡 − 𝑣2

𝑠


2

where 𝑁 (𝑡) are the triangles sharing edges with 𝑡 . We define
𝜔feature to be 0 if the edge < 𝑣0

𝑡 , 𝑣
1
𝑡 > shared by the two triangles

is a feature edge, and define it as 1 otherwise. This allows surfaces
connected via sharp features to scale independently. Feature edges
can bemanually annotated or automatically identified using a simple
normal difference threshold.

Scale. We encode scale preservation as a desire to maintain the
original lengths and directions of all mesh edges:

𝐸𝐷scale =
1

𝐿𝑎𝑣𝑔

∑︁
𝑡 ∈𝑇

2∑︁
𝑖=0

(𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 ) − (𝑣𝑖+1

𝑡 − 𝑣𝑖𝑡 )
2
. (34)

4.2 Solving for Slippage-Preserving Reshaping
We modify the solver in Sec 3.3 to support the new formulation as
follows.

Vertex Solve. Our scale 𝐸𝐷
𝑠𝑐𝑎𝑙𝑒

and sphericity 𝐸𝐷sphericity terms are
both quadratic in the vertex positions and can be therefore used
as-is during the vertex solve. Plugging these terms into the overall
reshaping energy, expressed in terms of output vertex positions,
yields:

𝐸𝐿reshape =𝐸
𝐿
transform +𝑤constr (𝐸pos + 𝐸𝐿straight) +𝑤normal𝐸

𝐿
normal

+ 𝐸𝐷sphericity +𝑤scale𝐸
𝐷
scale

We do not include the 𝐸similarity term as it does not depend on
output vertex positions. While it may be advantageous to formulate
similarity in terms of positions and include it in the optimized energy
to promote better alignment between the vertex and transformation
solves, we expect such a formulation to be highly non-linear and
thus harder to optimize, and so we avoid it. We minimize this energy,
and obtain updated output vertex positions using the same least
squares solver [Guennebaud et al. 2010] as for 3D ALUP.
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(a) Input (b) Poisson (c) ARAP (d) Conformal (e) Our 3D ALUP (f) Ours

Fig. 7. Additional comparison of slippage-preserving reshaping (f) against (b) Poisson deformation, (c) ARAP deformation [Chao et al. 2010], (d) conformal
deformation [Vaxman et al. 2015], and our 3D ALUP (e). While all alternative outputs exhibit visible artifacts, ours (f) are well aligned with viewer expectations.
The "table" model is provided courtesy of Lun et al. [2015].
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Fig. 8. Study summary. Participants preferred our slippage-preserving
method’s results over both pre-existing alternatives and our 3D ALUP ex-
tension by a large margin.

Transformation Solve. We formulate sphericity in terms of trans-
formations as:

𝐸𝑇𝐿sphericity =
∑︁
𝑡 ∈𝑇

Γ(𝜅1 (𝑡), 𝜅2 (𝑡))
2∑︁

𝑖=0

𝜏𝑡 (𝑣𝑖+2
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+2

𝑡 − 𝑣𝑖𝑡
 − 𝑅𝑖𝑡

𝜏𝑡 (𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡 )𝑣𝑖+1

𝑡 − 𝑣𝑖𝑡


2

We note that our regularizer term 𝐸𝑇𝐿regularizer (Eq. 28) already
promotes scale preservation, and thus no other term needs to be
added. Similarity is already defined in terms of transformations.

With these elements in place, our quadratic approximate reshap-
ing energy expressed in terms of transformations is:

𝐸𝑇𝐿reshape =𝐸
𝑇𝐿
transform + 𝐸𝑇𝐿connect +𝑤normal𝐸

𝑇𝐿
normal

+ 𝐸𝑇𝐿sphericity + 𝐸
𝐷
similarity +𝑤scale𝐸

𝑇𝐿
regularizer

(35)

We minimize this energy using the same solver as above.

5 RESULTS AND VALIDATION
We evaluate our slippage-aware 3D reshaping method on 128 ges-
tures across 59 input objects. Our input choices were motivated by
interviews with artists and designers, and span the type of edits they
expect to need. 37 reshaping edits are demonstrated in the paper,

and the rest are shown in the supplementary material. Our examples
include diverse household items, architectural structures, abstract
shapes, furniture, and other human-made content. The edits demon-
strated include both gestures that can be supported with subtle or
minimal orientation changes (e.g. Fig. 1, 3), as well as ones where
some rotation is unavoidable and thus expected (e.g. bicycle Fig. 10).
Our framework supports reshaping of both closed and open (see
sphere in Fig 10,top-right) surfaces, as well as non-manifold (Fig 18)
and multi-component (Fig 19) geometries. In all cases our results are
consistent with viewer expectations. Please see the supplementary
materials for additional examples and details. Our code and data is
available at (to be included in the non-anonymized version).

Comparison to Prior Art. We compare our slippage-aware reshap-
ing outputs against those of representative state-of-the-art 3D sur-
face deformation methods. We compare to representative surface
and volumetric As-Rigid-As-Possible (ARAP) methods [Chao et al.
2010] implemented in [Jacobson et al. 2018]. Notably, both methods
produce nearly identical results on our data (Fig 3, 13). To apply the
volumetric method we tetrahedralize the inputs using [Si 2015]. We
compare against the conformal deformation method of [Vaxman
et al. 2015]. Both their and our methods share the goal of preserving
conformality, albeit in our case only on spherical surfaces. However,
in contrast to their approach we seek to also minimize changes
in surface orientation and to preserve slippage rather than confor-
mality on anisotropic surfaces. These differences lead to drastically
different reshaping outputs (e.g. Fig 11, 1). We compare our approach
to baseline Poisson deformation [Cohen-Or et al. 2015] which aims
to keep the output mesh edges as close as possible to the input ones
(see Appendix for exact formulation). On simpler anisotropic inputs,
this approach often preserves normals and slippage, providing an
important baseline for our needs. Last, but not least we compare our
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OursPoisson OursPoisson

OursPoissonOursPoisson

Input

Input Input

Input

Fig. 9. Additional comparisons against Poisson deformation. The "table" and "lamp" models are provided courtesy of Lun et al. [2015].

ARAP

ARAP Ours ARAP OursARAP Ours

Ours

ARAP Ours

Input InputInput

Input

Input
ARAP OursInput

Fig. 10. Additional comparisons against ARAP [Chao et al. 2010] deformation. The "row boat" and "cleaning bottle" models are provided courtesy of Gori et
al. [2017], and "fork" of Lun et al. [2015]. Bottle model © 3Diamante - turbosquid.com.

OursConformal

OursConformal

OursConformal

OursConformal

Input

Input
Input

Input

Fig. 11. Additional comparisons against conformal deformation [Vaxman et al. 2015]. The "wineglass" model is provided courtesy of Gori et al. [2017], and
"table" of Lun et al. [2015]. Truck model © Polygon.by - sketchfab.com. Crown model © Javidan - turbosquid.com.

slippage-preserving method to our 3D extension of the 2D ALUP
formulation of [Araújo et al. 2022] (e.g. Figs 1, 2, 12). Additional
comparisons are in the supplementary.
We validate our improvement over these key alternatives via a

perceptual comparative study. Study participants were shown in-
put models together with reshaping gestures, our corresponding

reshaping outputs, and reshaping outputs produced by alternative
methods. The input was shown on top and marked as ‘A’, and the
two reshaping results were placed at the bottom in random order
and marked as ‘B’ and ‘C’. To better visualize the gesture, the in-
put was rendered twice: once as a solid and once as a wireframe
(see Fig 20). Participants were then asked: "The images on the top
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Our 3D ALUP OursOur 3D ALUP Ours

Ours

Input

Input

Input Our 3D ALUP OursInput

Our 3D ALUP

Fig. 12. Additional comparisons against our 3D ALUP extension. Truck model © Polygon.by - sketchfab.com. Chair model © PrettySmallThings - Thingi10K.
Wineglass model © EnragedOstrich - turbosquid.com. Screwdriver model ©Moox - turbosquid.com.

(a) Input (b) Surface ARAP (d) Ours(c) Volumetric ARAP

Fig. 13. Given the input in (a), both surface-based (b) and volumetric (c)
ARAP deformation methods [Chao et al. 2010] produce outputs with un-
desirable changes in surface orientation. Our slippage-aware method (d)
produces results consistent with user expectations. The "espresso" model is
provided courtesy of Gori et al. [2017].

(a) Input (c) Ours

(d) Input (f) Ours

(b) wnormal = 0

(e) wscale = 100

Fig. 14. Reshaping ablations: (a-c) Normal preservation. When normals are
not preserved (𝑤normal = 0) the output exhibits undesirable rotation (b).
(d-e) Allowing the scale term to dominate by increasing 𝑤scale by a factor of
1000 (e) produces outputs more similar to those of Poisson deformation, and
does not preserve normals or slippage. Our method produces the viewer
expected results on these inputs (c,f).

(A) include an object and a suggested resizing/rescaling/proportion
change edit indicated via handle displacement gestures. The orange
points are moved as suggested by the arrows, while the red points
are held in place. The wireframe rendering is provided to better
visualize partially occluded displacements when present. Mentally
perform the suggested resizing/rescaling/proportion change. Which
of the objects on the bottom (B) or (C) comes closer to the edit

you envisioned?" The answer options were “B”, “C”, “Both”, and
“Neither”. To avoid expertise bias, our study was conducted with
a diverse set of participants from various backgrounds, ages, and
genders. Participants had no prior knowledge of our research or tool,
and were only provided with the information on the study question-
naires. Additional protocol details are listed in the Appendix. All
study data is provided in the supplemental material.
We included 29 questions comparing our results against each of

basic Poisson deformation [Cohen-Or et al. 2015], surface ARAP
deformation [Chao et al. 2010], conformal deformation [Vaxman
et al. 2015], and our 3D ALUP baseline. We also include 4 questions
comparing our results to manually created ones as discussed below
(120 questions total). Questions were randomly distributed into 4
questionnaires, so that each includes 30 comparisons. Study inputs
were selected at random, with the constraint that a questionnaire
does not contain the same reshaping gesture twice. The study had
a total of 40 valid participants (26 male, 14 female). In total we
collected 10 answers to each question.
Fig. 8 summarizes the study results. Participants preferred our

slippage-aware reshapings over all alternatives. In comparisons
to the closest pre-existing alternative, basic Poisson deformation,
participants preferred our results 75% of the time and preferred the
alternative 11% of the time, judging them on par the rest of the
time. In comparison against our 3D ALUP extension they preferred
our outputs 67% of the time, and judged the results as on-par 27%
of the time. We conducted 𝑡-tests on the study results and found
that the results were highly statistically significant (two-tailed t-
tests; 𝑝 < 0.005 for comparisons vs. all methods). These results
indicate that our reshaping algorithm produces outputs that are
more consistent with participant expectations than those produced
by existing alternatives. Fig 15 shows the only two gestures out of
116 included in our study where a plurality of participants preferred
a result produced by an alternative algorithm over ours. In both
cases, the alternative chosen was computed using basic Poisson
deformation, and in both the results are visually very close. This
suggests that our method does not just outperform the alternatives
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(a) Input

(d) Input

(b) Poisson

(e) Poisson (f) Ours

(c) Ours

Ours: 1
Poisson: 4
Both: 4
Neither: 1

Ours: 3
Poisson: 5
Both: 2
Neither: 0

Fig. 15. The only two examples in our study where participants preferred
the alternative result over ours. The "knife" model is provided courtesy of
Lun et al. [2015].

on average but does so across a wide range of inputs. Following
[Yin et al. 2022], we use the frequency of the "neither" option to
serve as a proxy for measuring absolute alignment. Participants
choose "neither" when neither result aligns with their expectations.
We note that the number of neither responses in the study was
extremely low (under 5%), suggesting that our outputs are not just
better than the alternatives but are indeed well aligned with viewer
expectations.

Comparison to Manual Reshaping. We asked a professional com-
puter artist, with over ten years of experience, to reshape four 3D
models (armchair in Fig 1, chair and lighthouse in Fig 2, and phone
in Fig. 3) based on gestures provided. It took the artist 70 minutes to
reshape the modern chair, 75min to reshape the phone, 180 minutes
to reshape the lighthouse, and 330min (five and a half hours) to
reshape the antique chair. Our results are visually very similar to
the artist generated ones. They were generated using just a few
mouse clicks and took on average under a minute to compute, with
the antique chair taking the longest (3 minutes).
The artist had no beforehand knowledge of our tool. After he

completed the manual reshapings, we showed him our results and
tool. He judged our results on the armchair, and phone to be better
than his, and judged the others as of equal quality. For the phone
he commented that “the result of the algorithm is way better than
mine.” For the armchair, he stated “With all the pain in my heart,
I have to admit that yours [algorithm] is better!” For the chair in
Fig 2, bottom, he said that “In regards to the hole, I believe my result
is better. But, in regards to both the legs and the curvature of the
chair, yours [algorithm] is better”. For the lighthouse he commented
“It is [artist and algorithm outputs] very similar!”

We asked the artist about our methods’ usefulness. We quote their
responses verbatim: “I think this will be very very useful, especially
for attacking new ideas and conceptualizing.”; “With this kind of
tools, we would spend more time on the creative side and even
making more use of the assets”; and “With this tool, we know that
we can bring this type of assets back to life because we can do
lots of changes without working everything from the ground up.”
This feedback confirms that our results are well aligned with artist
expectations, and that our tool has immediate real-life applications.

To further evaluate our results against artist generated ones, we
incorporated queries comparing our and artist results into the com-
parative perceptual study above. We included a query for each artist
generated output and our corresponding result, and collected 10

answers for each query. Participants preferred our reshaping out-
puts over the artist efforts 55% of the time, judged them as on par
27% of the time, and preferred the artist result only 18% of the time.
We confirm the statistical significance of our results by running a
paired two-tailed t-test, which found that our results were statisti-
cally significant (𝑝 < 0.005). We therefore conclude that our method
produces outputs that are at least on par with those created by a
professional artist, and in this case even visibly better. All study
data is provided in the additional supplemental material.

Input Meshes. Our core method is designed to operate on suffi-
ciently fine connected triangle meshes, with well-shaped triangles
and roughly uniform mesh density. We remesh inputs that do not
conform to this assumption using an off-the-shelf remeshing tool
[Hu et al. 2018]. Our input mesh sizes range from 1K to 82K triangles
with a median of 8.5K triangles. We extend the method to general
meshes as discussed in Sec. 5.1.

Compute and User Time. Our median runtime is 27 seconds, and
depends on both the mesh resolution and the number of iterations
required to converge to the desired reshaping output. Our most
time consuming input is the gate (Fig 7) which has 84K triangles
and takes 25 minutes to reshape; 90% of our inputs converge in
3 minutes or less. Performance was measured on an Intel I7-7700
2.80GHz, with 32GB RAM, running Windows 10.
Using our UI it typically takes a user 5 to 10 minutes to specify

the control handles and their desired displacements. Our combined
user and compute times are negligable compared to typical manual
editing times. To confirm that our runtimes are acceptable, we inter-
viewed the artist who performed the manual reshaping and asked
their opinion. When told about the user and compute times for the
armchair (Fig. 1, 3 min runtime) his response was “You are kidding
me! It is super fast; 3 minutes against what it took me [5.5 hours]?!”

Ablations. The weights in our reshaping energy differ by orders of
magnitude and are chosen to prioritize constraint satisfaction first,
then normal preservation, then slippage, and then finally to deprior-
itize scale relative to all other properties. We use the same weights
for all results generated in the paper; control over the weights of the
different terms is not exposed to the user. We evaluate the impact of
disabling the different energy terms we use in Figs 6 and 14. Notably,
disabling scale preservation leads the the energy 𝐸𝑇𝐿

𝑟𝑒𝑠ℎ𝑎𝑝𝑒
minimized

during the transformation solve to become ill-posed, a clearly un-
desirable outcome. In our experiments, changing the weights for
normal, slippage, and scale preservation made negligible differences
to the results as long as the relative weight order was maintained.
Decreasing the weight for constraints predictably reduces the de-
gree to which they are satisfied. Extreme weight changes, such as
weighing scale preservation an order of magnitude above normal
and slippage preservation (Fig 14e), predictably degrades the visual
quality of the outputs.

Limitations. Humans often implicitly expect reshaping outputs to
satisfy semantic constraints based on functional or aesthetic prop-
erties of the input. Our framework is purely geometric, and is not
designed to account for such constraints. Despite this, we demon-
strate our outputs to be well aligned with human expectations. Our
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(b) Ours(a) Input

Fig. 16. Our method is not designed to explicitly preserve symmetries in
the input shape: (a) input mesh containing structural symmetry and edit
operation modifying a single part, (b) reshaped output where the modified
part corresponds to the input gesture - the input symmetry is not preserved.
The "lamp" model is provided courtesy of Lun et al. [2015].

(d) Input (f) Ours(a) Input
Posing Task Reshaping Task
(b) ARAP (c) Ours (e) ARAP

Fig. 17. Reshaping vs. Posing. Existing deformation methods are suitable
for edit operations where surface orientation is required to change (a-c).
Our method specifically targets reshaping (d), an operation unsuitable for
existing deformation methods (e-f). The "cactus" model is provided courtesy
of Sorkine and Alexa [2007].

(a) Input Mesh (b) Remeshed (c) Reshaped Remeshed (d) Reshaping Transferred

Fig. 18. Connectivity preserving reshaping: (a) input mesh and gesture, (b)
remeshed input (non-manifold edges highlighted in green in the inset), (c)
reshaped remeshed model, (d) reshaping transferred to original mesh. The
"airplane" model is provided by ShapeNet [Chang et al. 2015].

method does not detect or explicitly enforce high order regularities
such as symmetries (see e.g. Fig. 16) or planarity. Our outputs typi-
cally preserve these properties when consistent with user gestures.
Our method can potentially be be extended to explicitly account for
these and other regularities.
Our method is specifically designed to address reshaping tasks

(e.g. Fig. 17d), where users desire to edit an input shape by chang-
ing the proportions, scale, or relative location of different model
parts while preserving surface structures. There exist other editing
tasks where existing deformation methods (e.g. ARAP [Chao et al.
2010]) are the appropriate choice. For instance, posing-like tasks
(e.g. Fig. 17a) require surface orientation to be changed while pre-
serving input details. This violates a key requirement in reshaping,
making our method unsuitable for this task (Fig. 17bc). Our slippage-
preserving algorithm complements the space of shape editing tools
by allowing users to perform reshaping, an operation unsuitable for
existing deformation methods (Fig. 17d-f).

5.1 Extensions
Connectivity Preserving Reshaping. There may be cases where

evenwhen the input meshes are not well shaped where users wish to
retain the input mesh connectivity as-is. We support this preference
facilitating connectivity preserving reshaping as illustrated in Fig 18.

(a) Input Mesh (b) Volumetric Mesh (c) Reshaped Volumetric Mesh (d) Reshaping Output

Fig. 19. Reshaping multi-component models: (a) input mesh and gesture,
(b) volumetric mesh, (c) reshaped volumetric mesh, (d) reshaping output.
The "minivan" model is provided by ShapeNet [Chang et al. 2015].

We first remesh the input using TetWild [Hu et al. 2018], then,
for each vertex of the original mesh, we find its location on the
remeshedmodel by casting rays in a uniform sphere centered around
each vertex and finding the nearest ray-triangle intersection. This
assigns a triangle and barycentric coordinates to each vertex on the
input mesh. We then perform reshaping on the remeshed model,
and find new positions for each vertex of the original input mesh
by barycentrically interpolating the vertices of its corresponding
reshaped triangle on the remeshed model. Fig. 18 demonstrates the
application of our method in this scenario.

Multi-Component Models. We extend our method to support mod-
els with multiple connected components by applying a 3D variant of
the scaffolding method presented in [Araújo et al. 2022]. We create
a constrained Delaunay tetrahedralization scaffold connecting all
mesh components, in which the input surface and vertices of an
axis-aligned bounding box are included as additional constraints,
and where the creation of Steiner points on internal surfaces is disal-
lowed. We then deform this scaffold by augmenting our vertex-solve

energy with an extra edge energy term 𝐸
𝑒𝑑𝑔𝑒

𝑖 𝑗
= ∥ 𝑣𝑖−𝑣𝑗

𝑙0
𝑖 𝑗

−
𝑣0
𝑖
−𝑣0

𝑗

𝑙0
𝑖 𝑗

∥2

for edges connecting different components, with a weak weight of
𝑤𝑒𝑑𝑔𝑒 = 10−2. See Fig. 19 for an example.

6 CONCLUSIONS
Wepresented a novelmethod for reshaping human-made 3D content,
which produces outputs significantly better aligned with human
expectation than state of the art alternatives. We achieved this
goal by identifying the properties of surfaces that viewers expect
to be preserved under a typical reshaping edit, formulating those
in mathematical terms, and developing an effective and efficient
method that produces outputs that satisfy these properties.

Our work offers several avenues for future work. Our outputs can
be used as ground truth data for potential learning based reshaping
approach that could potentially facilitate real-time reshaping as well
as reshaping of implicit or neural models. Another interesting line of
inquiry is to explore alternative control and interaction mechanisms
for reshaping.
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The images on the top (A) include an object and a suggested resizing/
rescaling/proportion change edit indicated via handle displacement
gestures. The orange points are moved as suggested by the arrows,
while the red points are held in place. The wireframe rendering is
provided to better visualize partially occluded displacements when
present. Mentally perform the suggested resiz-ing/rescaling/
proportion change. Which of the objects on the bottom (B) or (C)
comes closer to the edit you envisioned?

(A)

(B) (C)

⃝      (B) ⃝       (C) ⃝      Both are equally close ⃝       Neither is close

Fig. 20. Example study question.
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Fig. 21. Finalizing the output: (a) input (b) ALUP solver output (c) finalized
output with normal error redistributed away from control handles and
constraints well satisfied (note the improved satisfaction at the top orange
handle). (d-e) finalization applied to our slippage-aware method (notably
constraints are better satisfied from the start).

A ADDITIONAL IMPLEMENTATION DETAILS
Initialization and Termination. We initialize the vertex positions

𝑣 ∈ 𝑉 using the locations of the input vertices, and initialize the
transformations as 𝜏𝑡 = 𝐼 . Our first iteration solves for vertex po-
sitions using the initial transformations. Our method terminates
on one of four conditions: if the maximal change in vertex posi-
tions between consecutive iterations drops below 𝐿𝑎𝑣𝑔/100; if the
improvement in the energy 𝐸𝑟𝑒𝑠ℎ𝑎𝑝𝑒 between consecutive iterations
drops below 1/(100|𝐸 |); if the energy 𝐸reshape increases instead of
decreases across consecutive iterations (in this case we return the
solution with the lower energy); and finally, if the number of alter-
nating least squares iterations exceeds our fixed maximum of 100
iterations.

Finalizing Outputs. Once the optimization converges, we apply an
optional step whose goals are to improve normal error distribution
and degree of constraint satisfaction (Fig. 21). We note that when the
constraints cannot be satisfied without significant increase in other
components of the minimized energy, our solution method tends to
concentrate error immediately next to the handles (Fig. 21b). Similar
behavior had been observed by authors of other surface deformation
methods with handle-based positional constraints [Sorkine et al.
2004]. We automatically detect instances where this behavior hap-
pens and re-distribute the error using a process inspired by [Sorkine
et al. 2004].
We consider the region around a handle as exhibiting error con-

centration if the normal error in one of the triangles next to the
handle is above 10◦ and is at least twice higher than two trian-
gle rings away. To resolve a discontinuity, for all edges outside a
𝐾 = 4 ring circle, we use the solution edges and normals as the
target edges and normals. For edges within the 𝐾-rings, we com-
pute the target normals as the weighted average of the original and
the current ones (assigning a weight of one to original normals for
triangles immediately next to handles, and smoothly averaging for
further away rings, so that the weight is zero 𝐾 rings away). We
define all vertices 𝐾 rings or more away as additional handles and
set 𝑤𝑐𝑜𝑛𝑠𝑡𝑟 = 1000. We set 𝜏𝑡 = 𝐼 for all triangles and compute
a new minimizer of 𝐸𝐿

𝑟𝑒𝑠ℎ𝑎𝑝𝑒
. We use this minimizer as the final

output. Discontinuities only occur when there is no solution that
satisfies orientation preservation well, which is rare. Overall handle
discontinuities were present in less than 10% of gesture outputs in
our data. Since we use soft rather than hard positional constraints
our initial solution may not precisely satisfy them when doing so
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requires significantly increasing other components of the reshaping
energy. To achieve better constraint satisfaction, if the deviation
is above a threshold (0.5% of the bounding box diagonal in all our
examples) we repeat the optimization step using the output of the
initial solution as the input and using the same handle positions.

Gestures. In the examples in the paper we use handle vertex dis-
placements to communicate the desired edits - users first mark the
handle vertices, and then specify the displacements for vertices
they want to move. Our interface supports specifying the same
displacement for multiple vertices, allowing gesture replication for
symmetric features or other related vertex groups. Similar to other
editing setups users can select entire groups of vertices as handles,
e.g. by selecting all vertices on a shared feature curve section, or by
using a lasso tool.

Solver Implementation. We use the simplicial 𝐿𝐷𝐿𝑇 solver from
the Eigen linear algebra library to solve the least squares problems
in our alternating solver. As the mesh topology does not change

between iterations, we perform symbolic factorization once, and
then re-use it within each solution iteration.

B COMPARATIVE STUDIES
Protocol Details. Participants were provided a task description

and shown two simple reshaping examples; no other explanation
was provided. Similar to other perception studies (e.g. [Araújo et al.
2022]) we used a screening question to discard all answers from
participants who did not read the task description. The screening
question used the second example in the task description. Three
participants failed the screening question; additional participants
were invited till the target number of 40 valid participants was
reached. The task description is in the supplementary material.
Figure 20 shows the layout of our study questions.

Poisson Deformation. Our implementation of the baseline Pois-
son deformation approach follows [Cohen-Or et al. 2015]: we de-
form the input mesh by finding new vertex positions that minimize
1/𝐿𝑎𝑣𝑔

∑
𝑡 ∈𝑇

∑2
𝑖=0

𝑣𝑖+1
𝑡 − 𝑣𝑖𝑡

2 with appropriate handle constraints
held in place with weight𝑤constr.
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