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Appendix A: Implementation Details

Dataset.

We assemble a dataset of 145 vector images by collecting vector
clip-art from online repositories. These consist of a variety of com-
plex shapes comprising single or multiple objects; different color
palette sizes and different complexity (some with as few as 4 re-
gions, others with over a hundred). We split this dataset into dis-
joint train/test subsets, with training composed of 68 and testing of
77 images.

We rasterize vector images at different n × n resolutions in
[Ado17] using the supersampling anti-aliasing setting designed for
artwork (we explore the font hinted setting in Appendix B as an ab-
lation). Additionally, we rasterize each input at double resolution
2n× 2n with no anti-aliasing. Following the cross-resolution con-
sistency principle, on training data we use these double-resolution
inputs as ground truth, and use them for quantitative evaluation for
test data.

Data Augmentation. In order to augment the training data, we
transform each image pair by rotations, reflections and switching of
RGB color channels. As a result, each distinct image in our training
dataset has 72 variations in training data. Each distinct test image
also has 72 variations, which we use for denoising pix2pix outputs
(as described in more detail in Section 4 of our paper).

Preprocessing. We add two rows of background colored pixels
around each input prior to processing; we define the background
color as the most common color along the image perimeter. This
process makes the background a single region. We remove this
padding from the final inputs. In our experiments adding padding
improved the performance of both steps of our method.

Architecture Details.

We inherit architectural design and corresponding inductive biases
from pix2pix. This includes U-Net architecture for the generator
(see Fig. 8), that preserves pixel correspondence and locality, and a
default patch discriminator (see Fig. 9) with an additional L1 loss.
Our own inductive biases for architecture design focused on per-
ceptual color space (LAB) for the loss function computation and
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Figure 1: Our U-Net architecture adopted from [IZZE17].
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Figure 2: Our patch discriminator adopted from [LW16].

gradient prediction (as opposed to direct prediction) of high reso-
lution content (illustrated in both Figs. 8 and 9).

Training Details.

We train separate models for different resolutions setting n equal
to 16px, 32px, 64px and 128px. In order to upsample n× n anti-
aliased images to the pix2pix input resolution of 2n× 2n we use
nearest-neighbour upsampling, copying one pixel in the n× n in-
put image to four pixels in the 2n × 2n counterpart. This simple
upsampling is motivated by our desire to keep the original anti-
aliasing and not to introduce additional interpolations into the in-
put. If needed, such interpolations can be learned by the pix2pix
network itself.

We use a ResNet backbone, with 6 residual blocks, for pix2pix
itself (the predictor) and leverage PatchGAN [LW16] as a discrim-
inator. We optimize networks for 300 epochs with batch size of 16
using the Adam optimizer [KB14]. We tune the learning rate for
each resolution, as it is resolution dependent, and employ a learn-
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(a) Input (b) Before regularization (c) After regularization (d) Output 

Figure 3: Our regularization step removes redundant pixel-wide
protrusions along region boundaries (b,c).

ing schedule where this rate is fixed for the first 150 epochs and
then linearly reduced to 0 over the remaining 150.

Color Space Distances

Measuring color-space distances in a manner consistent with hu-
man perception remains an open problem [SASS14]. In our col-
orization step we use a combination of established space metrics
and heuristics based on observations of our training data. Specifi-
cally, unless stated otherwise, we use OkLab [Ott21] distance for
all measurements. We overcome minute variations in pixel color
by defining two colors as the same if the distance between them
in RGB space is less than or equal to ∥(2,2,2)∥. While in our ex-
periments OkLab distances are generally well aligned with viewer
perception for colors which are farther apart, we found them too
sensitive for dark colors. Accordingly, if two colors both have RGB
space values between (0,0,0) and (20,20,20) and the RGB space
norm of their difference is below ∥(20,20,20∥, we set the distance
between them to zero.

We define pixels as outliers if their color is at least ε = ∥(5,5,5)∥
apart from the closest affine combination of its neighbor colors in
RGB space.

Boundary Regularization

As noted in Sec. 5.2, our simplicity enforcement step removes
non-simple regions but can undesirably elongate region boundaries,
and can in particular introduce single-pixel-wide protrusions. Since
viewers are unlikely to hallucinate such protrusions, we seek to re-
move them by merging them with a neighboring region. We iden-
tify protrusions which are one pixel wide and two or more pix-
els long, ignoring ones which are part of constant slope lines. We
merge the protrusion with the neighboring region of the most simi-
lar color if doing so does not introduce longer protrusions.

16×16 Inputs

Extremely low resolutions pose unique challenges, both for learn-
ing low-blur magnifications and for detecting patch seeds. The first
challenge arises since the pix2pix network uses a kernel size of 3x3
and a fixed number of kernels per residual block. As an artifact the
receptive field is fairly large and with extremely low resolution in-
puts the convolutional nature of the operations is effectively lost.
We address this challenge when training our network on 16px data
by first magnifying our inputs using nearest neighbor sampling to
32px and our outputs to 64px accordingly. At run-time, after run-
ning our approach we then sub-sample the 64px outputs back to
32px to produce the final result by using the median of each block

of 4 neighboring pixels. Aside from this input/output magnifica-
tion, we used the same data augmentation process, and train the
network with the same hyperparameters as for other resolutions.

Using our default patch seed detection on 16px inputs is sim-
ilarly problematic, as the number of pixels occupied by original
regions drops dramatically (Fig. ??, top); keeping our default crite-
rion leads to a loss of information encoded in long one-pixel wide
regions (e.g. the princess’s eyes in Fig. ??). Accordingly, for 16px
inputs we redefine the patch seeds to include all pairs of adjacent
same-color pixels. The rest of the processing remains the same.

Runtimes

Our training times are resolution dependent. Training the 16px and
32px networks took around 2.5 hours; training the 64px network
took around 6 hours, and training the 128px network took around
24 hours. Our models were trained on a GeForce RTX 2080.

Our method’s run-time is dominated by the coloring step (Sec.
??). Our median run-times are 0.6 seconds for 16px inputs, 3.5 sec-
onds for 32px inputs, 33 seconds for 64px inputs, and 6.8 minutes
for 128px inputs. Timings were measured on a Intel Core I7-8700k
running at 3.70GHz with 32GB of system memory.

Appendix B: Ablations

Invariance to Rasterization For the experiments in the paper so
far, we used inputs rasterized using standard supersampling based
anti-aliasing; supersampling is the default method used for rasteriz-
ing clip-art images [FVVD∗96]. Our blur-free magnification tech-
nique does not, however, assume any specific rasterization scheme
and can adapt to differences in rasterization within pix2pix learn-
ing. To illustrate this, we also conduct experiments with font hint-
ing as the rasterization mode. The results can be seen in Figure 11
and were produced with no pix2pix retraining. Despite the clear
differences in the inputs induced by the two different rasterization
techniques, our approach successfully produces anti-aliasing free
outputs that are sharp and structurally consistent in both cases.

(c) Supersampling 
Input

(d) Supersampling 
Output

(a) Font Hinting 
Input

(b) Font Hinting 
Output

Figure 4: Results on inputs rasterized using different schemes: (a)
input produced using supersampling based anti-aliasing (b) input
produced using font hinting based anti-aliasing (c) output for (a);
(d) output for (b).

Colorization Energy Our colorization energy E(Io) combines
four terms measuring color distinction Ed , compactness EC, cross-
resolution consistency Ea, and seed anchoring Es; we use the
weights wa = 10 and wb = 0.5 to balance these terms. In our ex-
periment (Fig. 12) we increased or decreased each of these weights
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(a) Input (c) wa =1, wb=0.5 (e) wa =100, wb=0.5

(d) wa =10, wb=0.05 (f) wa =10, wb=5 (g) Our Method(b) low-blur magnification

Figure 5: Results of increasing and decreasing the weights wa,wb
by a factor 10.

(a) Input (b) learned low-blur 
magnification in RGB space

(c) Output using (b) (d) learned low-blur 
magnification in LAB space

(e) Our Output

Figure 6: Color space impact: (left) RGB space magnification;
(right) OkLab pace magnification; while our method recovers the
top part of the vertical line on ladybug’s back, it gets removed by
the RGB space method.

by a factor of 10. Decreasing wa or increasing wc increases the im-
portance of the compactness term, decreasing the number of out-
put regions, while the inverse changes results in the preservation
of redundant details. Our output balances the conflicting cues in a
manner consistent with viewer expectations.

Impact of Color Space Our pix2pix network is trained using the
LAB color space [FVVD∗96]. Fig. 13 compares our results to those
produced using a network trained in RGB space. The differences,
while minor overall, can impact the recovery of fine details when
the color difference between fine details and adjacent regions is not
very large.

Comparison vs Real-ESRGAN. Fig. 14 shows the impact of re-
placing our first step, based on pix2pix, with nearest-neighbour up-
sampling and then deblurring based on the Real-ESRGAN model,
retrained on our inputs. As the image shows, the blur and large
color variation in their outputs means that we are no longer to reli-
ably detect outliers and patches in the outputs of the learning step.
Consequently, our palette computation is unable to extract a mean-
ingful palette from this data.

Appendix C: Study Setup

We detail below the protocols used for the three studies reported on
in the paper. All study data is provided in the supplementary.

(a) Input (16x16) (b) Retrained Real-ESRGAN
 (32x32)

(c) Output from Retrained Real-ESRGAN
 (32x32)

(d) Our Intermediate Solution
 (32x32)

(e) Our Output
 (32x32)

Figure 7: Replacing our pix2pix network with Real-ESRGAN re-
trained on our inputs.

Perception of Anti-Aliased Images

Color Palette Study

Our first informal study aimed to understand how human observers
perceive the size of the artist-intended color palettes in anti-aliased
clip-art. Participants in this study were presented with 10 anti-
aliased, low resolution images and were asked the question "Men-
tally remove the anti-aliasing blur. How many distinct colors does
the deblurred image have?" They were presented with two basic
examples (two diagonally placed rectangles, with three colors to-
tal in the image; and one single color "O" shape with two colors
total in the image); no other instructions were provided. The study
included six participants, 3 male and 3 female.

In all cases, participants perceived input images as having small
palette sizes, with answers that were largely consistent across all
inputs and closely matching the number of colors in the originat-
ing vector images. When participants did not correctly identify the
number of colors in the originating vector image, they tended to
slightly underestimate, rather than overestimate, the number of col-
ors used. This study confirms our focus on compact color palettes
as a key property of the mental images viewers conjure when pre-
sented with anti-aliased clip-art. The survey and participant an-
swers are included in the supplementary material.

Segmentation Study

Our second informal study aimed to understand how human ob-
servers mentally segment anti-aliased clip-art images. (Fig. 2, in
paper.) Participants in this study were presented with 6 images and
were asked to ”Mentally deblur and magnify this image. Trace the
outlines of the single color regions in the blur-free output you envi-
sioned. Please pay attention to details.” They were presented with
two basic tracing examples (single color ”O” shapes and two diag-
onally placed rectangles); no other instructions were provided. The
study included five participants, four male and one female.

Participants’ traced outputs were largely consistent, with some
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variation in details, and were largely closely aligned with the re-
gion boundaries in the blur-free double resolution rasterizations of
the underlying inputs. Participants did not hallucinate regions that
were not evident in the input. The outputs were therefore consistent
with our hypothesis of cross-resolution consistency and simplicity
as major factors in perception of anti-aliased clip art imagery. Our
outputs on the inputs traced by the participants are included in the
supplementary, and are well aligned with the manual tracing out-
puts.

Comparative Study

In our comparative study, participants were shown input images,
together with our result and an alternative result using the follow-
ing layout. The input was shown at the top and marked as ‘A’, and
the two magnified outputs were placed at the bottom and marked
as ‘B’ and ‘C’. The order of the magnified outputs on the bottom
was randomized. Participants were then asked to “Mentally deblur
and magnify the anti-aliased raster image on the top (A). Which of
the images on the bottom (B or C) comes closest to the blur-free
image you mentally assembled? Please zoom in to see the differ-
ences.” The possible answer options were “B”, “C”, “Both”, and
“Neither”. They were shown two ground truth examples: in one op-
tion, participants were shown the ground truth output and an anti-
aliased double resolution rasterization of the originating image; in
the other they were shown the ground truth image and a nearest
neighbor magnification of the input. Participants were shown the
answers to those. For VectorMagic we used the setting of “artwork
with blended edges”, “high quality” and “unlimited color’ which
is recommended for anti-aliased clip art and which produced the
best results. We used default parameters for all other methods. The
study included 70 participants, 53 male and 17 female. The com-
plete list of questions and answer breakdowns are included in the
supplementary.
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