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1 ADDITIONAL RESULTS
Five additional representative results and comparisons are shown
in Fig. 1. All comparison methods produce noticeable artifacts on
these inputs (highlighted in Fig. 1), while our method generates
artist-intended results. These results demonstrate that our method
outperforms existing methods and can be successfully applied both
to realistic vector line drawings in thewild, and to sketches produced
by upstream sketch processing methods.

2 IMPLEMENTATION DETAILS

2.1 List of Features
A list of the classifier features we use and their Gini importance
values are listed in Table 1.

2.2 Preprocessing
Hook Removal. When finishing a stroke, if the artist rapidly switch-

es direction before the pen raise is registered by the drawing device,
an unintentional hook can appear. These can interfere with tangent
and distance computations. Handling hooks robustly remains an
open problem and is not a contribution of our paper. Let vertices
that remain after applying the Ramer-Douglas-Peucker algorithm
be corners. We use a simple heuristic: the section from the end-
point to the first corner is a hook if the distance from the endpoint
p1 to the line segment between its two nearest corners is shorter
than𝑊1 𝑓 , where 𝑓 is a parameter, and the hook is shorter than
min(1.5𝑊1 𝑓 , 12𝐿1). We use 𝑓 = 3 for Company et al. [2019]; Gryadit-
skaya et al. [2019]; Ha and Eck [2018]; Qi et al. [2021] and 𝑓 = 1 for
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all other sources. We preserve near-connections by only de-hooking
an endpoint if it would not increase the envelope distance to its
nearest stroke by more than a factor of 2. Across all processed inputs,
we further manually removed 10 hooks not found by the criteria
above.

Consolidation. Most of the inputs we process were not consoli-
dated previously, and thus may contain overdrawing. To align stroke
length and local context feature computations to human percep-
tion, we weakly consolidate our inputs using a simple heuristic that
accounts for the presence of varying stroke widths and light overs-
ketching in our data. We locate all pairs of partially side-by-side
strokes and densely sample their side-by-side sections using orthog-
onal cross-sections. If the sections have roughly similar lengths
(ratio ∈ [1/1.2, 1.2]), have similar tangent directions at correspond-
ing cross-section points (< 20°) that are themselves close enough (all
< 3

2 max(𝑊1,𝑊2)), the endpoints are close enough (< max(𝑊1,𝑊2)),
and if either the endpoints both overlap with the other stroke or
the substrokes are both longer than their pen widths, we replace
the two strokes with a single stroke fitted to both. We repeat this
on all pairs until no more strokes can be merged. Finally, we chain
strokes by merging them into a single stroke when their endpoints
overlap and the endpoint tangents align within 20°.

Dangling Endpoints. A subset of stroke endpoints in our draw-
ings already overlap other strokes, and can be connected without
consulting our classifier. These endpoints are non-dangling. In the
case of an overshot connection, where the two stroke centerlines
intersect, we define the intersection diameter 𝑑 as the largest stroke
width at the intersection. An endpoint is non-dangling if the length
of the overshot portion is shorter than 15% of the larger of the stroke
length and 𝑑 , and the Euclidean distance from the intersection to
the edge of the endpoint cap is less than 1.5𝑑 .

Self-Connections. We define a connection between points p1, p2
on the same stroke to be valid if they form a loop—if max(3∥p1 −
p2∥, 𝜋𝑊1) is less than the distance between p1, p2 along the stroke.
We then define the projection of an endpoint onto its own stroke as
the closest valid point, if it exists. From there, feature computations
work as described in the main paper.

3 STUDY DESIGN
Junction Annotation Study. To validate our final connection deci-

sions, we collected additional manual annotations of 91 potential
end-to-end and T-junctions across 10 drawings (see our supplemen-
tary materials for the full question set). In this study (Fig. 2), for a
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(a) Vector line drawing (e) [Sasaki et al. 2017] (g) Our result(b) [Favreau et al. 2016] (c) [Fourey et al. 2018] (d) [Parakkat et al. 2021] (f) [Simo-Serra et al. 2018a]

(a) Vector line drawing (e) [Sasaki et al. 2017] (g) Our result(b) [Favreau et al. 2016] (c) [Fourey et al. 2018] (d) [Parakkat et al. 2021] (f) [Simo-Serra et al. 2018a]

(a) Vector line drawing (e) [Sasaki et al. 2017] (g) Our result(b) [Favreau et al. 2016] (c) [Fourey et al. 2018] (d) [Parakkat et al. 2021] (f) [Simo-Serra et al. 2018a]

Fig. 1. Additional results and comparisons. Insets on the left show loops formed by raw intersecting strokes. These inputs are from different data sources
(from top to bottom: two Blender Art Gallery drawings [2021] by different artists, and a consolidated StrokeStrip sketch [2021] ), showing our method’s ability
to support different styles and stroke widths. Light gray spots in the outputs of [Parakkat et al. 2021] correspond to pixels unassigned by their method. Input
drawings (shown with modifications in this work) from top to bottom ©Lien-ze Tsao under CC BY 4.0; ©The “Hero” artist Team under CC BY 4.0; ©Elinor
Palomares.

Table 1. Gini importances of junction classifier features.

Endpoint-endpoint features Gini importance

Envelope distance 𝑑𝐸/(0.5(𝑊1 +𝑊2)) 0.246
Envelope distance 𝑑𝐸/max(𝐿1, 𝐿2) 0.171
Envelope distance 𝑑𝐸/min(𝐿1, 𝐿2) 0.160
Junction type 0.001
max(𝜃1, 𝜃2) 0.015
min(𝜃1, 𝜃2) 0.011
Larger step-away ratiomax(𝑑𝑆1 /𝑑

𝐶 , 𝑑𝑆2 /𝑑
𝐶 ) 0.031

Smaller step-away ratiomin(𝑑𝑆1 /𝑑
𝐶 , 𝑑𝑆2 /𝑑

𝐶 ) 0.027
Larger projection ratio 0.001
Smaller projection ratio 0.009
Larger relative location 0.009
Smaller relative location 0.0004
Larger distance to nearest other 0.190
Smaller distance to nearest other 0.128
T-junction feature Gini importance
Envelope distance 𝑑𝐸/(0.5(𝑊1 +𝑊2)) 0.250
Envelope distance 𝑑𝐸/𝐿1 0.174
Envelope distance 𝑑𝐸/𝐿2 0.270
𝜃1 0.067
Step-away ratio 𝑑𝑆1 /𝑑

𝐶 0.077
Relative location 0.012
Distance to nearest other 0.136
Endpoint density 𝑏 0.015

given question, participants were shown a full line drawing with col-
ors indicating potential endpoint-endpoint connections (endpoints
coloured pink and green with gradients) and T-junctions (the end-
point coloured orange with a gradient and the other stroke flatly
painted in blue), as well as a zoomed-in view around the potential
junction in question. Participants were shown “a series of magni-
fied views where one or two strokes are highlighted at the region
of interest.” Participants were then asked to “identify whether the

strokes were intended by the artist to form a junction at the high-
lighted region of interest” and to answer the question “Did the artist
intend for the two highlighted endpoints (pink and green) to form
a junction?” or “Did the artist intend for the highlighted endpoint
(orange) and the highlighted stroke (blue) to form a T-junction, with
the highlighted stroke as the top of the ‘T’?”, depending on the
shown junction type. We recruited 16 non-expert participants (nine
males and seven females, split between two sessions with 43 and 48
questions respectively), resulting in each potential junction labelled
by eight participants. Two examples of the study question are shown
in Fig. 2; the full instructions and annotation questions are included
in our supplementary materials.

(a) End-end junction question example (b) T-junction question example

Fig. 2. Junction annotation study example questions and interface. The
full line drawing is shown on the left, the zoomed-in view of the potential
junction in question and the corresponding question is shown on the right.
In both views, we use color gradients to indicate endpoints (pink and green
in (a) and orange in (b)) and a solid blue to indicate the non-endpoint stroke
of a T-junction (b). Images left and right ©Nahu under CC BY 4.0; [Ge et al.
2020].
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Comparative Study. We conducted a comparative study to evalu-
ate human perceptual preference between our method and existing
gap closure methods. Participants were shown an input line draw-
ing on top (A), and colorizations of this drawing obtained using
our method and an alternative method, randomly assigned to (B)
and (C) below. Participants were asked to “envision which strokes
in [the input] drawings are intended by the artist to form closed
loops,” to “Identify the differences between the two [shown] col-
orings (ignore small color bleedings),” and then to answer “Which
of the images on the bottom. (B) or (C), better corresponds to the
partition you envisioned?” by selecting from “(B),” “(C),” “Both,” and
“Neither.” We recruited 30 participants (19 male, 11 female), resulting
in six responses per question for 27 inputs from 11 data sources
with diverse authors and styles. We used the same 27 inputs for all
five comparison methods and ensured that no drawing was shown
more than once in the same questionnaire. The questionnaires and
response counts per question are included in our supplementary
materials.
We generated results for comparison methods by providing par-

ticipants with inputs rasterized at 600px for Favreau et al. [2016],
Fourey et al. [2018], Sasaki et al. [2017], and Simo-Serra et al. [2018]
and Parakkat et al. [2021]. The full set of results is included in our
supplementary materials. We generated the colorizations of result-
ing closed loops by recoloring the output colorizations from Fourey
et al. [2018] and Parakkat et al. [2021] (setting their “unassigned”
pixels to light gray); by identifying and coloring closed loops in the
vector outputs of Favreau et al. [2016]; and by first binarizing the
output grayscale raster images with a threshold of 0.5 (for pixel
intensities in [0, 1]) and then flood-filling with a size of 1 px for
Sasaki et al. [2017] and Simo-Serra et al. [2018]. We chose colors for
each result pair in a question such that the corresponding closed
loops between the two results were assigned the same color, and
different closed loops within a partition were given different colors.
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