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(b) [Favreau et al. 2016]

(a) Vector line drawing (c) [Fourey et al. 2018]

Fig. 1. (a) Free-hand vector line drawings are often imprecise with strokes intended to intersect stopping short of doing so; loops formed by raw strokes
visualized on top left, each closed loop interior colorized with a different color, with the background left white. We successfully extract viewer perceived
intended stroke connectivity distinguishing between intended junctions (a, e.g. circled in blue) and intended gaps (a, e.g. circled in red) (e) outperforming prior
art (b, c). We arrive at this solution by combining local feature based predictions of the likelihood of pairs of strokes to form intended junctions (d) with global

perceptual cues (e). Please zoom in to see image details throughout the paper. Input image ©The “Hero” artist Team under CC BY 4.0.

Many sketch processing applications target precise vector drawings with
accurately specified stroke intersections, yet free-form artist drawn sketches
are typically inexact: strokes that are intended to intersect often stop short of
doing so. While human observers easily perceive the artist intended stroke
connectivity, manually, or even semi-manually, correcting drawings to gen-
erate correctly connected outputs is tedious and highly time consuming. We
propose a novel, robust algorithm that extracts viewer-perceived stroke con-
nectivity from inexact free-form vector drawings by leveraging observations
about local and global factors that impact human perception of inter-stroke
connectivity. We employ the identified local cues to train classifiers that as-
sess the likelihood that pairs of strokes are perceived as forming end-to-end
or T- junctions based on local context. We then use these classifiers within
an incremental framework that combines classifier provided likelihoods
with a more global, contextual and closure-based, analysis. We demonstrate
our method on over 95 diversely sourced inputs, and validate it via a se-
ries of perceptual studies; participants prefer our outputs over the closest
alternative by a factor of 9 to 1.
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1 INTRODUCTION

Free-form line drawings are ubiquitous, both as an art form and as
inputs to different computer applications. Thanks to the broad avail-
ability of touch pen and stylus devices, such drawings, especially
those that artists intend to process later with different algorithmic
tools, are increasingly recorded and stored in vector format [Blender
2022; Eitz et al. 2012; Gryaditskaya et al. 2020; Van Mossel et al. 2021].
Drawing processing applications typically require inputs with pre-
cisely identified stroke intersections (Fig. 1e). Unfortunately, artist
drawings are inherently imprecise [Johnson et al. 2009], and rou-
tinely contain unfinished strokes that artists intend to intersect other
strokes, but that stop short of doing so (Fig. 1a) [Parakkat et al. 2021;
Sykora et al. 2009; Yan et al. 2020; Yang et al. 2018]. While human ob-
servers easily mentally complete unfinished strokes [Kanizsa 1979;
Sykora et al. 2009] and identify the intersections they are intended to
form, extracting this intended connectivity algorithmically remains
an open challenge (Sec. 2). We propose a new perception-driven al-
gorithm for identifying intended intersections that produces outputs
well aligned with human perception and significantly outperforms
the state of the art.

Locating intended junctions algorithmically is highly challenging,
as little research exists on the cues that humans employ when men-
tally separating intended intersections from intended gaps. Observa-
tions of manual annotations of intended junctions and intentionally
dangling stroke endpoints (Fig. 2), suggest that viewers leverage
both local and contextual cues when making such decisions (e.g.
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Fig. 2. Human observers employ local and global cues to determine if a
dangling endpoint (red) is intentional, or is intended to be part of a junction.
As highlighed in (ab) and (ef), distance is a major factor in distinguishing
between intended junctions (af) and intended gaps (be). Different tangent
directions can impact the perception of junction intent for endpoint (cd) or
endpoint and stroke pairs (gh) at the same distance from one another. (i-n)
The presence of other strokes can change the perception of whether strokes
do or do not form junctions.

the relation between the strokes in Fig. 2m is not evident, but these
same strokes are seen as clearly forming an intended end-to-end
junction given the extra stroke in Fig. 2n). We use a combination
of perception literature review, observation of artist drawings, and
manually annotated junctions to identify the factors that determine
whether humans perceive dangling stroke endpoints as parts of in-
tended junctions or not (Sec. 3). We hypothesize that these decisions
are impacted by both local and global cues, and thus depend both on
the geometry of the strokes in question (Fig. 2a-h) , their immediate
surroundings (Fig. 2i-1) and on the more global drawing context
(Fig. 2mn).

A possible approach for addressing perception motivated tasks is
to learn the desired outcomes from human annotated data. Applying
this approach in our context raises two conflicting challenges. First,
the global nature of the human decisions noted above means that
a purely learning-based method would require a very large body
of fully annotated sketches to adequately perform the task at hand.
At the same time, typical drawings contain many dozens of strokes,
and manually separating all intended junctions from intended gaps
in a single drawing takes 20 minutes or more on even moderately
complex sketches using interfaces optimized for this task (Sec 6);
manually annotating large collections of drawings is thus impracti-
cal. We overcome these difficulties by developing a hybrid approach
which combines data-driven and perception-driven components,
and allows us to robustly compute outputs well aligned with human
perception from just 31 drawings with partial manual annotations.

We leverage the collected annotations to design two local clas-
sifiers. Our first classifier uses the local geometry and context of a
pair of dangling endpoints to predict how likely they are to form
an end-to-end junction. Our second classifier uses similarly local
information to predict the likelihood that a dangling endpoint and
a stroke form a T-junction. Both classifiers utilize geometric fea-
tures we expect to strongly correlate with human perception of
junctions, and are trained on our collected manual annotations. Our
classifiers achieve an accuracy of 99% in leave-one-drawing-out
cross-validation. We embed these classifiers in an incremental de-
cision making process that combines purely local considerations
with global properties. It first performs basic pairwise classification
across all pairs of valence two end-end and simple T-junction can-
didates, identifying primary junctions (Fig. 1d); it then leverages
these decisions to form high probability, more complex, secondary
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(b) Trivial closed loops

(a) Raw vector line drawing (c) Our result

Fig. 3. Typical free-hand drawings (a) contain jaggy, fragmented, and over-
drawn strokes (pointed and circled in green), unintentionally dangling end-
points (pointed and circled in blue) and strokes that extend past their
intended end-junctions (pointed and circled in purple). Directly extract-
ing closed stroke loops from such drawings (b) produces heavily under-
segmented outputs. By identifying unintentionally dangling endpoints and
forming intended junctions we form loops consistent with viewer expecta-
tions. Top input image ©Mathias Eitz, James Hays and Marc Alexa under
CC BY 4.0. Bottom input image ©The “Hero” artist Team under CC BY 4.0.

junctions, and finally uses all previously made decisions to analyze
global context and identify junction candidates whose likelihood
of forming junctions is strongly boosted by global perceptual cues
(Fig. 1e).

We design and test our method to operate on free-hand artist
drawings which exhibit a range of inaccuracies and drawing artifacts
(Fig. 3). We evaluate our method on 95 diversely sourced inputs, and
validate it via comparisons to manual annotations and a perceptual
study comparing our outputs against prior art. In our annotation
comparison our method achieves comparable accuracy to human an-
notators (92% versus 94%). Comparative study participants preferred
our results by a factor of 9 to 1 over the best performing competitor
(Sec. 7). These advancements are made possible by leveraging novel
insights about human perception of intended junctions and con-
verting those into an actionable robust algorithm for distinguishing
intended intersections form intended gaps. Our code and data are
at https://www.cs.ubc.ca/labs/imager/tr/2022/SketchConnectivity/.

2 RELATED WORK

Artistic Practices. Artist drawings are inherently imprecise [John-
son et al. 2009] and contain a range of inaccuracies. In particular,
artists routinely leave unintended gaps between strokes they intend
to intersect [Parakkat et al. 2021; Sykora et al. 2009; Yan et al. 2020;
Yang et al. 2018] and continue to do so even when explicitly asked to
draw as precisely as possible [Yan et al. 2020]. A potential explana-
tion for this behavior is that artists simply do not notice the errors
they introduce, since the human visual system naturally connects
weak edges [Kanizsa 1979].

Sketch Processing. A diverse range of tools assist users in process-
ing hand drawn sketches [Adobe Inc. 2021; Blender 2022], facilitat-
ing tasks such as colorization, editing, or sketch-based modeling.


https://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/
https://studio.blender.org/films/hero/pages/team/
https://www.cs.ubc.ca/labs/imager/tr/2022/SketchConnectivity/

(a) Vector line drawing  (b) [Favreau et al. 2016]  (c) [Fourey et al. 2018]  (d) [Parakkat et al. 2021]
600 px 600 px

(e) [Sasaki et al. 2017]

(f) [Simo-Serra et al. 2018a] (g) Our result

Fig. 4. Rasterizing vector sketches and then applying the methods of
[Favreau et al. 2016] (b), [Fourey et al. 2018] (c), [Parakkat et al. 2021] (d),
[Sasaki et al. 2017] (e), and [Simo-Serra et al. 2018a] (f) to compute closed
stroke loops produces sub-par outputs with both unintended junctions
(e.g. Fourey et al. [2018] over-segments character’s face) and unresolved
dangling endpoints (e.g. none of [Favreau et al. 2016; Parakkat et al. 2021;
Sasaki et al. 2017; Simo-Serra et al. 2018a] separates character’s face from
the background). Our outputs (g) correctly identify both intended junctions
and intended dangling endpoints. We show both high and low resolutions
(600px and 1000 px) for (b, c, e, f); and the authors’ automatically selected
resolution (600px) for (d). Light gray spots in the output of [Parakkat et al.
2021] correspond to pixels unassigned by their method. Input image ©Jiang
et al. [2020].

The majority of these tools are designed to operate on clean vec-
tor format inputs, and assume that the input stroke connectivity
reflects artist intent [Shao et al. 2012; Xu et al. 2014; Yan et al. 2020].
Our work facilitates conversion of raw artist sketches into clean
drawings ready to use by standard tools (Fig. 3).

Vector Sketch Consolidation and Beautification. Vector sketch con-
solidation methods [Barla et al. 2005; Liu et al. 2018, 2015; Orbay
and Kara 2011] take oversketched vector line drawings as input
and fit single curves to groups of strokes that viewers perceive as
jointly depicting such individual curves. Beautification methods
assist artists in creating more clean and aesthetic drawings [Baran
et al. 2010; Cheema et al. 2012; FiSer et al. 2016; Igarashi et al. 1997;
Murugappan et al. 2009; Pavlidis and Van Wyk 1985].

Most such methods either do not seek to recover the artist in-
tended stroke connectivity, or use simple distance or trapped-ball
radius-based thresholding to connect nearby strokes [Liu et al. 2018,
2015]. As pointed out by Company et al. [2019] and demonstrated
in Fig. 2 these criteria are not sufficient to robustly predict intended
connectivity. Some beautification methods [Cheema et al. 2012; Figer
et al. 2016; Igarashi et al. 1997; Murugappan et al. 2009] support
an interactive gap closure process, and have the user decide which
small gaps are intended and which are not. Our work targets the
setup where artists first create their drawings using their software
of choice and then seek to clean them after the fact. It complements
the methods above in its focus on robustly detecting intended con-
nectivity in consolidated or overdrawing-free inputs.

Detecting Viewer-Perceived Intended Vector Sketch Connectivity + 1:3

Sketch Vectorization. Vectorization methods convert raster sketches
into vector form and typically do not attempt to recover intended
stroke connectivity [Bessmeltsev and Solomon 2019; Chen et al.
2018, 2015; Donati et al. 2019; Guo et al. 2019; Kim et al. 2018; Mo
et al. 2021; Noris et al. 2013; Puhachov et al. 2021; Stanko et al. 2020].
Several methods aim to simultaneously vectorize and consolidate
the inputs, and to identify and close unintended gaps along artist in-
tended stroke loops [Favreau et al. 2016; Parakkat et al. 2021; Zhang
et al. 2009]. They detect such gaps using a mixture of methods
described next.

Closing Unintended Gaps. Existing methods for gap closure are
designed to be used in a semi-automatic setup and can be roughly
grouped into two categories: methods that first collect user input,
then use this input to apply the core algorithm; and methods that
first perform automatic gap closure and then have the user improve
this initial result interactively.

Sketching systems such as [Adobe Inc. 2021; Asente et al. 2007;
Gangnet et al. 1994] belong to the first category, and support closing
gaps between groups of dangling endpoints or dangling endpoints
and their closest strokes that are smaller than a user specified thresh-
old. Other methods in this category focus on identifying stroke loops
that segment raster drawings into artist-intended regions [Noris
et al. 2012; Qu et al. 2006; Sykora et al. 2009]; these methods are
designed to be used in a fully interactive setting where each step of
the method is guided by human input. As discussed by [Parakkat
et al. 2020] such methods tend to be very sensitive to properties
of the initial inputs, requiring trial-and-error to produce a desired
outcome. Our method detects unintended gaps fully automatically
and does not require user input as a starting point.

The second category of methods attempts to first detect unin-
tended gaps automatically and resort to user input only when neces-
sary. Gryaditskaya et al. [2020] close gaps in design drawings using
a distance threshold defined as a function of stroke width. While
we use distance normalized by stroke width as one of our classifier
features, our experiments and prior research (e.g. [Company et al.
2019; Parakkat et al. 2021]) suggest that proximity based features
alone are far from sufficient to distinguish between intended and
unintended gaps (Fig. 2).

Sasaki et al. [2017] close unintended gaps in raster drawings using
learned in-painting. Simo-Serra et al. [2018a,b, 2016] implicitly close
unintended gaps in raster sketches by learning the relationships
between raw and clean drawings. As Fig. 4 shows, both types of
methods often fail to distinguish between intended and unintended
gaps.

Methods for detection of intended end-to-end junctions in wire-
frame drawings of polyhedra [Company et al. 2019; Wang and Yu
2009; Wang et al. 2020] leverage the fact that by construction these
drawings contain only straight lines and do not contain intentionally
dangling endpoints. We address a much more general setup where
drawings frequently contain intentionally dangling endpoints and
where strokes are often not straight and can form both end-to-end
and T-junctions. Our more general method can be applied as-is to
drawings of polyhedra (see Fig. 1 in our supplemental document).

Several methods [Favreau et al. 2016; Zhang et al. 2009] use a com-
bination of trapped-ball initialization and subsequent diffusion to
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locate closed regions in raster line drawings. While fully automatic,
the authors acknowledge that when using their default parameters
the method may often fail to produce results aligned with user expec-
tations (Figs. 1, 4). Many methods for detecting such closed regions
operate in a semi-interactive mode [Fourey et al. 2018; Parakkat
et al. 2021, 2020; Zhang et al. 2009] but support a fully automatic
workflow as well. In all cases, the authors acknowledge that these
methods tend to be sensitive to properties of the initial inputs and
using them without manual intervention is likely to lead to no-
table artifacts (Fig. 4). We leverage information provided by vector
data to address a more general problem of locating and closing
unintended gaps, including both gaps along region bound-

aries and between strokes internal to such regions (in the

inset, the blue strokes delineate an intended region, while \
the black strokes are internal to the region). Comparing /
results automatically generated by these methods on raster-

ized vector data and our results on the original vector input (Figs. 1, 4
and Sec. 7) demonstrates that our outputs are significantly better
aligned with human expectations.

Jiang et al. [2021] close gaps in clean vector drawings traced
using a custom interface. They operate under the assumption that
the vast majority of dangling endpoints are unintended, leading
their method to often close gaps that viewers perceive as intentional
(Fig. 13 in their paper). Thus, like prior works, they propose a semi-
manual interface that enables users to correct such undesirable
connections. We aim to process raw artist drawings present in the
wild and seek a much higher degree of automation than all prior
approaches. Similar to methods in the latter category, our method
can be integrated into a workflow where on challenging inputs users
first perform automatic gap closure and then interactively correct
any remaining issues (Sec. 7).

3 PERCEPTION OF INTENDED SKETCH
CONNECTIVITY

The goal of our algorithm is to identify intended junctions and gaps
as perceived by human observers. Like prior work [Shao et al. 2012;
Xu et al. 2014] we operate under the assumption that artists aim for
their drawings to be well understood, and that viewer understanding
of the drawings is in general consistent with artist intent. As in many
similar problem settings, one of the big challenges in detecting the
intended connectivity is that the exact mechanism observers use
to mentally perform this task is unknown. At the same time, our
review of related literature points to a number of cues observers are
likely to use when identifying intended junctions (Fig. 2).

Stroke-Pair Properties. Prior research [Company et al. ’
2019; Fourey et al. 2018; Parakkat et al. 2021, 2020]
convincingly demonstrates that distances between po- “
tentially connected strokes play a large role in the per- \/)
ception of intended junctions. Notably, the perception
of inter-stroke distance is relative rather than absolute: \ K
wider strokes are perceived as closer to one another
than thin strokes located at the same distance, and
same distance longer strokes are seen as closer than
shorter ones. Prior research [Company et al. 2019] fur- \
ther suggests that stroke directions at the evaluated
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potential junction locations serve as a similarly strong cue (e.g. the
distance between the pairs of strokes in in Fig. 2cd is identical but
due to different endpoint directions we view the strokes in Fig. 2d
as intended to connect, and the ones in Fig. 2c as not). Lastly we
note that strokes are perceived as more likely to form an end to
end junction if their nearest points are at or near their endpoints
and a T-junction if the endpoint of one is close to the middle of the
other; notably this distinction suggests that the type of intended
junction formed by the strokes depends on the relative location of
the projection of the endpoints of one stroke onto the other.

Local Context. We note that perception of intended junctions is
impacted not just by the geometry of the participating strokes but
by both local and global context. Specifically the presence of other
strokes in the immediate vicinity of the assessed pair can impact
the perception of junctions (Fig. 2i-1), providing local context. In
particular the presence of nearby intersections between the assessed
and other strokes impacts the perception of whether an endpoint is
dangling or not, and thus the expectation of its stroke being part of
any additional junctions.

Closure. Lastly, and critically, we note that the closure principle
of Gestalt psychology [Koffka 1955; Wagemans et al. 2012] is highly
relevant when analyzing perceived sketch connectivity, as it sug-
gest that viewers are highly likely to mentally close gaps between
strokes if doing so results in formation of closed loops, or regions.
Liu et al. [2015] utilize this principle for sketch cleanup, merging
together overdrawn strokes perceived to bound the same region.
They suggest that to evaluate whether a sequence of
strokes (or stroke segments) is forming a perceived loop
one can consider the ratio between the diameter D of
the biggest circle inscribed inside the loop and the length of the
largest gap L between consecutive strokes in the sequence,

Rec=—. (1)

The larger this gap ratio is the more likely viewers are to perceive
the strokes as forming a loop. We observe that conversely, when the
ratio is sufficiently small, viewers are unlikely to perceive strokes
as forming a loop even if other cues suggest otherwise. In particular
our analysis of manually annotated sketches ( Sec. 7) suggests that
viewers do not mentally close gaps between strokes when doing
so results in loops with the ratio Rc being below 1. We refer to
this property as minimal cycle ratio. This property is connected
to topological persistence in the curve and surface reconstruction
literature [Dey 2006; Sadri and Singh 2014].

4 ALGORITHM

Our method takes as input raw, free-hand sketches collected in
the wild ( Sec. 7). We process drawings with both constant and
variable width strokes. We pre-process these drawings removing
hooks, merging overdrawn strokes, and detecting all trivial stroke
intersections (locations where pairs of strokes overlap) as discussed
in Sup. Sec. 2.2. The output of our method is a set of intended
junctions between pairs of locations on these strokes, where these
strokes do not overlap a priori in the drawings. We specifically focus
on junctions formed by connecting stroke endpoints with either
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I’& (b) Trivial junctions

Fig. 5. Method Overview. Given a vector line drawing (a), we first detect trivial stroke-wise intersections forming closed stroke loops (b, right). We then
identify likely end-to-end (red) and T- (blue) junctions (b, left zoom-ins). With these pairs and their predictions, we constructs primary junctions, supporting
arbitrary valence (c, see left zoom-ins for examples). We proceed to identify secondary T-junctions formed by the remaining dangling endpoints and composite
strokes (d, see left zoom-ins for example connections). In the final closure integrated step, we close remaining undesirable gaps by jointly evaluating classifier
predictions and gap ratios along the boundaries of potential cycles (e, see the zoom-in for a connection classified as marginally negative in our primary step
and accepted in this step). Input image ©The “Hero” artist Team under CC BY 4.0.

(a) Vector line drawing

other endpoints (end-to-end junctions) or with locations along other
strokes (T-junctions). Our last closure-aware step (Sec. 6) considers
both junctions involving endpoints and those involving pairs of
nearest mid-stroke locations on adjacent strokes.

We identify these intended junctions by leveraging a combination
of the perceptual cues listed above and ground-truth data. While
access to ground truth data is highly beneficial for producing results
consistent with human perception, a core challenge we face is data
scarcity: as noted in Sec. 1 annotating intended junctions is a time
consuming and mentally non-trivial task. Typical artist drawings
(e.g. Fig. 1) have over a hundred strokes ; and take 20 minutes or
more to annotate. Thus we require an approach capable of correctly
detecting intended intersections using limited data.

We achieve these goals using a method that relies on a combina-
tion of four key elements.

Pairwise Junction Classifiers. We utilize the collected annotations
to train two classifiers, one for predicting how likely a pair of stroke
endpoints is to form an end-to-end junction and one for predict-
ing how likely an endpoint and a stroke are to form a T-junction
(Sec. 5). Our classifiers utilize a compact set of features encoding
the properties of the evaluated pairs and their local context.

Filters. We utilize the perceptual cues above to narrow down the
set of endpoint and endpoint-stroke pairs that the classifiers are
applied to by automatically discarding impossible pairs, i.e. ones
that humans are virtually guaranteed to not see as forming intended
junctions. This filtering allows us to dramatically reduce the number
of negative (perceived as not forming a junction) training examples
we need to collect (naive classifier would otherwise need to evaluate
all pairs of strokes and endpoints in a drawing against one another).
It also allows us to reduce the number of features that the classifiers
operate on and thus further reduce the amount of negative and
positive training data they require to achieve robust performance.
Our pre-filtering considers both the properties and the local context
of the classified pairs.

Intended High-Valence Junctions. Freehand sketches can /
contain junctions with arbitrary high valence; including ~"=—
both complex end-to-end junctions and ones connecting
multiple endpoints to a shared T-junction point (see inset). Q
Notably, while many drawings contain such junctions, they each
contain only a handful of them. This sparsity means that while in
theory one could train separate classifiers for different high-valence
junction topologies, collecting enough data to train such classifiers

(c) Primary junctions

Detecting Viewer-Perceived Intended Vector Sketch Connectivity + 1:5

3

(d) Secondary junctions

(e) Our final result

would require annotating a very large number of drawings. We over-
come this challenge by developing a junction processing workflow
where we successfully utilize the pairwise junction classifiers to
predict the likelihood of higher valence junctions (Sec. 4.0.1, 4.0.2).

Closure-Aware Classification. While the perception of closure
plays an important role in human perception of stroke connectivity,
closure evaluation is inherently global in that it involves considering
multiple strokes and multiple potential intended junctions at once.
As such it is hard to account for using only pairwise or other purely
local classifiers; learning closure based choices directly would there-
fore require a dramatic increase in the amount of training data. We
address closure in a data efficient manner by using a delayed deci-
sion process where in the first rounds of our computation. closure,
and specifically, minimal cycle ratio, is only used as a hard negative
constraint preventing us from forming junctions that would create
loops violating this constraint. Once all local decisions are made
we efficiently compute potential loops induced by these decisions
and revisit all prior negative classification decisions. incorporating
closure as a positive cue (Sec. 4.0.3).

Armed with these tools we formulate our intended intersection
detection as the following gradual decision process (Fig. 5).

4.0.1 Primary Junctions Classification.
Our primary junctions classification step
first identifies pairs of endpoints or end-
points and strokes that have the potential
to form intended junctions and then uses
our two classifiers to compute the proba-
bility of each pair forming such a junction
(Sec. 5). It uses this information to form 0.6

likely binary and high-valence junctions Before  After
when doing so does not violate our minimal cycle ratio constraint.
Specifically, when the classifier deems two or more pairs containing
one or more same endpoints as each being likely to form an intended
junction we form the subset of these interconnected junctions that
maximizes the joint probability across them (see inset, top). After
making these decisions, we evaluate the gap ratio (Eq. 1) for each
newly formed cycle; if a cycle violates the minimal cycle ratio con-
straint (Rc < 1), we break it by removing the lowest probability
junction along its perimeter (see inset, bottom).

Probabilities !

Formed
Junctions

0.9 0.9

4.0.2 Secondary Junctions Classification. Our secondary classifica-
tion step addresses the formation of intended high-valence junc-
tions. Specifically, it analyzes remaining dangling endpoints and
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nearby previously identified junctions and evaluated whether the
dangling strokes should be extended to connect to these junctions.
The previous junctions considered include both triv-

ial junctions (inset, two top rows) and previously /
detected intended junctions (inset, bottom). Our

evaluation leverages two observations: we first note

that two strokes whose endpoints are part of a com-

mon junction can be conceptually seen as a single > —
composite stroke (pairs of black strokes on the left

of each inset), thus for our purposes we can evalu-

ate if a dangling endpoint should be connected to \

such a junction utilizing our T-junction classifier =
and applying it to the dangling endpoints and such /
composite strokes. While at a high-valence junctions one can poten-
tially composite multiple strokes (inset, middle), given a dangling
endpoint, humans are likely to only consider the composite stroke
(black in this inset) formed by the two strokes that are immediately
next to the assessed endpoint (with respect to a circular ordering
around the junction location) and ignore those occluded by these
two (blue in the inset). This observation again suggests that we
can evaluate if a dangling endpoint should be connected to such a
high-valence junction utilizing our T-junction classifier by applying
it to the dangling endpoint and temporary composite strokes formed
by the strokes (or portions of strokes) that are part of the junction
and are immediately next to the endpoint. We process all classifier
decisions utilizing such composite strokes using a process identical
to the one in Sec. 4.0.1.

4.0.3 Global Closure-Aware Classification. Our final, closure inte-
grated step forms potential stroke cycles containing remaining dan-
gling endpoints or pairs of nearest points on adjacent strokes and
uses a combination of previously computed classifier probabilities at
these endpoints and the gap ratios along these cycles to determine
whether the remaining gaps along these cycles should be closed or
remain open (Sec. 6).

5 JUNCTION CLASSIFIER

End-end classifier. Given endpoints p; and py on strokes Sy and Sz,

we construct four sets of features, motivated by the perceptual cues
in Sec. 3. In the description below, each asymmetric feature, reported
for p1, is computed for both endpoints; the minimum and maximum
over both values are used to make the classifier commutative by de-
sign.
Distance. We use three features to encode the dis- P, W,
tance between the stroke endpoints. We measure 7
the distance between the stroke envelopes df =
llp1 —p2ll — %(wl + wz) (see inset). We convert this
distance into three viewer-perceived scale-invariant
features by normalizing it by (1) the mean of the maximum width of
each stroke (Wj, W3), and by the (2) min and (3) max of the stroke
lengths (L3, Ly).

Directions. We use four types of features to encode the interaction
between the directions of the two strokes at the endpoints of interest
overcoming drawing inaccuracies. We codify the type of the junction,
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characterizing it as belonging to one of the three
categories in the inset, by counting whether two,
one, or zero of the endpoints project onto the oppos-
ing stroke endpoints. We include the angles 61, 0,
between the stroke tangents and the line connecting
the two endpoints (see inset); we compute the tan-
gent 11 by stepping back from the endpoint along
the stroke by the distance d = ||p; — pz||. We also
include two ratios that are even less susceptible to
noise than the tangents: the step-away ratio, mea-
sured as the distance dg from the step-away point to Sz divided by

dC, and the projection ratio, the distance from p; to Sy divided by
dc.
Relative Location. We encode the distance between the projection
of p1 on Sy and its closest endpoint along Sy, normalized by Lj.
Local Context. We encode local context as the distance from p; to
the closest stroke in the drawing other than S; and Sz, normalized
by gap size d°.

T-junction classifier. We use similar features for the T-junction
classifier, modifying them to account for its asymmetric nature. To
this end, we compute distance measures between endpoint p; on
S1 and the closest point p2 on stroke Sy, the directional features are
computed only from the endpoint to the other stroke, and we skip
the projection ratio since the projection and py are the same for
T-junctions. When computing local context, points that are occluded
by Sz are excluded. We incorporate larger context for T-junction
decisions than for end-end ones by using an additional endpoint
density feature, defined as a function of the distances from this
endpoint to all endpoints,

_l(i \IP1—PeH)2
b = e 2\ o We .
pe €{endpoints}

The contribution of each endpoint is a Gaussian of the distance to it
normalized by we, the average of the widths along its stroke. We use
o = 1, which ensures that endpoints fall to a negligible contribution
when they are 3 stroke widths away.

Training. We implement both the endpoint-endpoint and T-junction
classifiers as random forests that are trained on either endpoint or
endpoint and stroke pairs that are labelled as intended or unintended
junctions.

6 ALGORITHM DETAILS

Filtering Junction Candidates. The number of possible junctions
grows quadratically with the number of endpoints, and the vast
majority of end-end or end-stroke pairs are not intended to con-
nect. Our filtering avoids a massive imbalance between positive and
negative examples during training, reduces the runtime cost of our
method, and drastically reduces the number of negative ™ ey
annotations we need to collect for training. Following the \ /
observation about the impact of local context, for each | /
endpoint, we only consider connections with the closest ><
three endpoints and strokes, respectively. We further filter
those that are too far, lack a line of sight, or have diverging directions
(inset). We similarly prevent end-to-end junctions between parallel



strokes. The closest-three filter reduces the number of pairs from
quadratic to linear, and the later filters further reduce the number
of pairs passed to the classifier by a factor of 2 or more on a typical
input. See our supplementary materials for additional details.

Global Closure-Aware Classification. At this point of the process,
we expect the vast majority of intended intersections to be appro-
priately classified, enabling us to compute meaningful stroke cycles
containing only a handful of unintended gaps.

We first locate all pairs of closest points on immediately adjacent
strokes; for each pair we compute the cycles formed by connecting
the pair; we mark the pair as forming an intended junction if the
distance between its points is smaller than the length of the largest
previously closed gap along these cycles and Rc > 20 for both
cycles.

Our closure-aware step then leverages the probabilities computed
by the classifier and combines those with the evaluation of the
closure ratio Rc (Eq. 1) to identify pairs of strokes that are likely
to form junctions once closure is accounted for. Our analysis of
training data suggests that the closure ratio can be viewed as a
boost signal, increasing the likelihood of a gap being intended by
approximately a linear factor. In other words, given a ground truth
probability P of the end-points of a gap forming a junction, the gap
ratio boosts this probability to P’ = P+ C(R¢ — 1). In practice, the
probabilities provided by our classifier are approximate. We thus use
a conservative step-function approximation of the formula above
with C = 0.025. Using a step size of 0.05 and starting at P = 0.45 for
each gap with classifier probability of P and above we close the gap
if P’ > 0.5.

Specifically, at each step value of P we order all junction candidate
pairs with probability P or more; for each pair we compute the cycles
formed by connecting the pair. We mark the junction as intended
if P’ > 0.5 for both cycles. We repeat this process considering two
candidate pairs at once. We have not encountered cases for which
evaluating three or more pairs was necessary.

Random Forest. Our random forest classifiers have 100 trees each.
We limit the maximum depth to 10 for the endpoint-endpoint clas-
sifier and 12 for the T-junction classifier. We use the scikit-learn
library [2011] for all training.

Training Set. We trained our method using 31 sparsely annotated
drawings. In assembling this set we aimed for a diverse set of sources
spanning different styles, content and levels of expertise. Our train-
ing set consists of 13 drawings from the Blender Art Gallery [2021],
5 from Quick, Draw! [2018], 2 design sketches from OpenSketch
[2019] and 11 original drawings. All drawings are provided in the
supplementary material. In total, we have 290 positive endpoint-
endpoint examples, 1778 negative endpoint-endpoint examples, 460
positive T-junction examples, and 2817 negative T-junction exam-
ples. The annotatins were created using an in-house interface that
incrementally colorizes regions based on user annotations.

Closing gaps. We visualize closed gaps by using shortest straight
lines connecting participating endpoints and strokes. To close gaps
in a geometrically-pleasing manner, one can use the method of [Jiang
et al. 2021] or modify a curve-fitting method (e.g. [Van Mossel et al.
2021]) to enforce junctions.
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7 RESULTS AND VALIDATION

We tested our method on 95 previously unseen inputs from a di-
verse set of sources spanning different styles, content and levels
of expertise. To this end we include 30 professional drawings of
characters and organic shapes created using the Blender Grease
Pencil Tool and provided in the Blender Art Gallery [2021]; rough
amateur sketches, including five each from [Ha and Eck 2018], [Eitz
et al. 2012] and Ge et al. [2020], and 10 each from [Sangkloy et al.
2016] and [Qi et al. 2021]. We also included 11 drawings of poly-
hedra from [Company et al. 2019], and one input from Jiang et al.
[2021]. In addition to these raw inputs, we applied our methods to
pre-consolidated sketches: 8 from StrokeStrip [2021] and 3 from
OpenSketch (using the ground truth consolidations for the former,
and the StrokeAggregator [2018] consolidations for the latter), as
well as algorithmic vectorizations of 7 raster drawings from Parakkat
et al. [2021, 2020]. Representative examples are shown in the paper;
the rest are included in the supplementary.

We validate the key aspects of our method in a number of ways:
we evaluate our classifiers using leave-one-drawing out cross-valida-
tion, evaluate our methods final classification decisions by compar-
ing them against manual annotation, and compare our method to
algorithmic alternatives via a comparative user study.

Classifier Cross-Validation. We evaluate our classifiers using a
round-robin cross-validation process where we leave one drawing
out, train on the remaining drawings, and then test on the ground
truth labels in the left-out drawing. Under cross-validation, we
achieve an accuracy of 99%, a precision of 97%, and a recall of 96%.
As expected, visual analysis of the few failure cases points to global
cues discussed above as the main reason for failure.

Perceptual Validation. While assessing artist intent requires di-
rect access to the artist, sketch processing literature [Gryaditskaya
et al. 2020; Shao et al. 2012; Xu et al. 2014] strongly suggests that
artist intent is well correlated with viewer perception. We thus fo-
cus our evaluations on compariosn against viewer expectations. In
addition to the ground truth labels used for training the classifiers,
we collected manual annotations of 91 potential end-to-end and
T-junctions across 10 drawings from the test set, with each potential
junction annotated by 8 non-expert study participants. Across all
junctions, participants agreed with the majority response 94% of the
time, and were evenly split on 1 junction. The final classification
decisions made by our algorithm agree with the majority response
92% of the time, nearly identical to the human agreement level—the
most we can expect from an algorithm. This agreement number
suggests that for a typical drawing with approximately 100 dan-
gling tips after running our method users are unlikely to require
more than 2-3 corrections to obtain an output consistent with their
expectations.

Comparisons Against Prior Art. We compare our method against
prior interactive and automatic methods. When comparing against
the former, we seek to assess the time it takes a user to generate
a desired drawing connectivity using ours versus alternative ap-
proached. We focus this comparison on the LazyBrush [Sykora et al.
2009] method, as it has been implemented in a commercial software
package [Krita 2021]. On a representative input (Fig. 7a) it took an
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[Simo-Serra et al. 2018a] 77% |
[Parakkat et al. 2021] 69% |
[Sasaki et al. 2017] 67%

[Favreau et al. 2016] 65%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Vote Percentage mOurs ™ Both ® Neither ® Other

Fig. 6. Study summary: participants preferred our method over all alterna-

tives by a factor of 9 to 1 or more.

Y

(@) Vector line drawing (b) User input for [Sykora et al. 2009] (c) Our result and corrections

d) Final colorization
Fig. 7. Comparison against interactive region detection. Given an input (a),
the interactive LazyBrush tool [Sykora et al. 2009] required 31 minutes (70
strokes, one erased) (b); starting from our automatically computed output
(c) users required 2 minutes (7 corrections) to obtain the same final output
(d). Input image ©The “Hero” artist Team under CC BY 4.0.

artist 31 minutes to achieve the desired output (Fig. 7c). To achieve
this result, they used 70 scribble of different widths (including one
erased in the process), Fig. 7b. Starting from our automatically gen-
erated output (Fig. 7c) the user required 2 minutes to generate the
same output, using 7 corrections.

2.6x 2.7x 2.8x

C=0.0125

Fig. 8. Impact of increasing the top left gap size (top) and the closure factor
C (bottom) during our final, global closure-aware classification step. Top
input image ©Company et al. [2019]. Bottom input image ©The “Hero” artist
Team under CC BY 4.0.

We also compare our method to five state of the art automatic
gap closure methods, whose code we were able to access [Favreau
et al. 2016; Fourey et al. 2018; Parakkat et al. 2021; Sasaki et al. 2017;
Simo-Serra et al. 2018a]. As discussed in Sec. 2 these methods detect
closed cycles in raster data. To compare against these methods
we rasterize our inputs and run them on the raster data, We use
the output colorizations of [Favreau et al. 2016; Fourey et al. 2018;
Parakkat et al. 2021]. We colorize the outputs of [Sasaki et al. 2017;
Simo-Serra et al. 2018a] using flood-fill. We render the vector strokes
on top of both colorizations and use a consistent raster resolution
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for all drawings (600px for shorter image side); as shown in the
supplementary material, this resolution produces the best result on
average across these methods.

Fig. 4 and Fig. 9 compare our results against those generated by
these methods. A complete set of comparisons is provided in the
supplementary material. To compare the perceptual accuracy of our
method against these prior approaches we conducted a comparative
study (Sup. Sec. 3). Participants were shown an input line drawing,
and colorizations of this drawing obtained using our method and an
alternative method. They were asked to “envision which strokes in
[the input] drawings are intended by the artist to form closed loops,”
to “Identify the differences between the two [shown] colorings (ig-
nore small color bleedings),” and then answer “Which of the images
on the bottom. (B) or (C), better corresponds to the partition you
envisioned?” Overall we had collected answers to 135 comparative
questions, 6 answers per question. The study findings are summa-
rized in Fig. 6. Participant debriefings suggest that viewers looked
for both under- and over-segmentations when evaluating alterna-
tive colorizations. When both colorizations were imperfect, they
preferred the colorization with fewer or less visually disruptive er-
rors. In a comparison with the best alternative [Favreau et al. 2016]
our method was preferred 65% of the time, and judged equally good
12% of the time; the method of Favreau et al. [2016] was preferred
just 8% of the time, and neither result was judged as corresponding
to the participant envisioned one 15% of the time. The demonstrated
preferences were highly statistically significant (p < 0.001 for all
methods). These numbers convincingly demonstrate our significant
improvement over the state of the art, in the context of detecting
intended junctions in vector drawings.

Closure Ablation. We conducted a geometry variation and a pa-
rameter variation ablation experiment on the closure cue. Fig. 8
(top) demonstrates how the closing of gaps is robust to the gap size.
For this specific input, the closure step continues to connect the gap
until the distance becomes 2.8 times larger than the original. Fig. 8
(bottom) shows the impact of changing the value of the closure
factor C during our final, global closure-aware classification step
(Sec. 6). If C is too low, the gap ratio Rc does not have sufficient
influence in this stage, and major regions such as the face are not
captured. If C is too high, however, the global step may yield unde-
sirable false positives, such as the front of the tunic in the example
figure. This both validates the importance of incorporating the gap
ratio during this final stage, and our choice of closure factor. An
interesting area for future work could be to learn an adaptive closure
factor based on local or global drawing properties

Incremental Processing. As an
alternative to our approach, we
also experimented with an incre-
mental workflow based on draw- \/ \/
ing order. Unfortunately, when
presented with an incomplete Intermediate Final
drawing (inset images ©The “Hero” artist Team under CC BY 4.0)
both our method and human observers perceive some intended
gaps as unintended; automatically closing such intended gaps mid-
drawing is highly disruptive to the artist. Processing complete draw-
ings provides our method with more complete decision-making
context, leading to outputs better reflecting artist intent.

J‘G


https://studio.blender.org/films/hero/pages/team/
https://studio.blender.org/films/hero/pages/team/
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Fig. 9. Additional results and comparisons. Input images from top to bottom ©Company et al. [2019]; ©Lien-ze Tsao under CC BY 4.0; ©Enrique Rosales.

FJunction Statistics. Across the 95 inputs in our test set, our method
forms 1584 junctions in total: 638 (40.3%) junctions are binary end-
end junctions, 855 (54.0%) junctions are binary T-junctions, and
only 91 (5.7%) junctions are high-valence junctions. We note that
the sparsity of high-valence junctions (fewer than 1 per input on
average) validates our design choice to use the pairwise junction
classifiers to predict the likelihood of higher valence junctions.

Junction Formation Counts per Step. Across the 95 inputs in our
test set, 1452 (91.7%) junctions are formed during our primary step,
58 (3.7%) are formed during our secondary step, and 74 (4.7%) are
formed during our closure-aware step. This confirms that our pri-
mary step forms most of the junctions, whereas the secondary and
closure-aware steps form fewer, yet visually critical, junctions (as
demonstrated in Fig. 1 and Fig. 5.)

8 CONCLUSION

We presented a new method for detecting intended junctions in
raw free-hand vector drawings and demonstrated it to significantly
outperform the state of the art. At the core of our method are binary
classifiers that reliably predict the likelihood of pairs of endpoints or
endpoints and strokes forming intended junctions. They are trained
on features motivated by observations about human perception
of such junctions. We address high-valence junctions by applying
the T-junction classifier to composite strokes assembled based on
observations of human perception and improve classification accu-
racy at test time by accounting for global closure cues. Our method
successfully processes drawings in the wild and has been validated
across inputs with different accuracy levels (e.g. Fig. 1 vs Fig. 3).
Limitations. While as demonstrated above our method signifi-
cantly outperforms all state-of-the-art alternatives, a non-negligible

number of comparative study participants selected the “neither” op-
tion when faced with our and alternative inputs. This suggests that
while we significantly advance the state of the art, additional effort
is necessary to detect intended junctions in free-hand drawings fully
automatically. Furthermore, while our pre-processing is capable of
detecting and consolidating sketches which contain some amount
of overdrawing, our core method is designed to operate on inputs
with no or minimal overdrawing. Using our method on sketchy
inputs with large amount of overdrawing or hatching requires a
more robust consolidation pre-process; while the methods reviewed
in Sec. 2 for this task can often be used for such pre-processing,
robust consolidation remains an open research problem.
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