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Fig. 1. Reshaping vector clip-art: (a) input image with proposed new locations of control handles (stationary handles in red, relocated in blue, arrows
correspond original to new locations); (b-d) Using existing planar deformation methods to satisfy the new handle locations (baseline Poisson deformation
(b); [Solomon et al. 2011] (c); Puppet Warp [Adobe Inc. 2019; Jacobson et al. 2012; Liu et al. 2014] (d)) destroys input structures and produces unintuitive
results. Our As-Locally-Uniform-As-Possible (ALUP) reshaping method (e) maximally preserves curve orientations and scales geometric details as uniformly as
possible, producing outputs that are consistent with user expectations. Please zoom in to see image details throughout the paper. Input image © dervish15 -
stock.adobe.com.

Vector clip-art images consist of regions bounded by a network of vector
curves. Users often wish to reshape, or rescale, existing clip-art images by
changing the locations, proportions, or scales of different image elements.
When reshaping images depicting synthetic content they seek to preserve
global and local structures. These structures are best preserved when the gra-
dient of the mapping between the original and the reshaped curve networks
is locally as close as possible to a uniform scale; mappings that satisfy this
property maximally preserve the input curve orientations and minimally
change the shape of the input’s geometric details, while allowing changes in
the relative scales of the different features. The expectation of approximate
scale uniformity is local; while reshaping operations are typically expected
to change the relative proportions of a subset of network regions, users ex-
pect the change to be minimal away from the directly impacted regions
and expect such changes to be gradual and distributed as evenly as possible.
Unfortunately, existing methods for editing 2D curve networks do not satisfy
these criteria. We propose a targeted As-Locally-Uniform-as-Possible (ALUP)
vector clip-art reshaping method that satisfies the properties above. We
formulate the computation of the desired output network as the solution
of a constrained variational optimization problem. We effectively compute
the desired solution by casting this continuous problem as a minimization
of a non-linear discrete energy function, and obtain the desired minimizer
by using a custom iterative solver. We validate our method via perceptual
studies comparing our results to those created via algorithmic alternatives
and manually generated ones. Participants preferred our results over the
closest alternative by a ratio of 6 to 1.
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1 INTRODUCTION
Vector format clip-art images, consisting of a collection of regions
bounded by a network of curves and often depicting synthetic or
human-made content, are ubiquitous in digital art (Fig 1a). To mod-
ify stock clip-art for specific applications, such as generating a new
look or satisfying new visual constraints, users often need to re-
shape existing clip-art visuals by changing the relative scales, sizes,
and proportions of different image elements or moving them with
respect to one another — for instance making the body of the crown
in Fig. 1a shorter while retaining the width and height of its rim.
Performing these reshaping tasks manually is time consuming and
requires significant expertise; it took an artist 45 minutes to per-
form the task above in Adobe Illustrator. Reshaping clip-art images
algorithmically in accordance with a user-specified compact set
of reshaping constraints (Fig 1a, red and blue dots) would lower
expertise barriers and save both professional and amateur users
significant time and effort. Unfortunately, existing shape deforma-
tion methods (Fig 1b-d) are unsuitable for this task, as the results
that they generate are poorly aligned with user expectations. We
propose a new targeted clip-art reshaping method that produces
outputs consistent with user preferences (Fig. 1e).

Reshaping clip-art in a manner consistent with user expectations
requires both identifying the geometric properties that users expect
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Fig. 2. Reshaping goals: (a) input shape and reshaping constraints; (b) over-
lay of desired reshaping outputs drawn by five study participants; (c-d)
traditional 2D deformation approaches (Poisson deformation (c), [Solomon
et al. 2011] (d), [Adobe Inc. 2019; Jacobson et al. 2012] (e)) produce results
which significantly differ from those generated by the study participants;
ALUP reshaping (f) outputs closely align with the participant drawn ones.

to be preserved under a reshaping operation, and developing a re-
shaping algorithm that satisfies these properties. Our analysis of
prior research (Sec. 2), confirmed by an observational user study
(Sec. 3.1, Fig 2), suggests that when users reshape clip-art imagery
they seek to produce outputs which satisfy two core criteria. First,
while any reshaping operation is expected to change the shape of
the region boundaries in the clip-art image, users expect the orienta-
tions of these boundary curves to be preserved as much as possible.
Second, while a reshaping operation is expected to change the rela-
tive proportions of a subset of elements in the image (e.g, in Fig 2,
changing the size of the ellipse on the top and making the middle
part taller), users expect the effect of the change to be minimal
away from the directly impacted regions and expect any change in
proportions to be gradual and distributed as evenly as possible. In
other words, users seek the reshaping operation to be As-Locally-
Uniform-As-Possible (ALUP), namely that the local gradient of the
mapping from the original to the reshaped boundary curves is as
close as possible to a uniform scale. These expectations — specifi-
cally the requirement that the orientations of region boundaries are
maximally preserved — drastically differ from the criteria used in
typical deformation settings (Sec. 2), where the optimal solutions
are expected to be as-rigid-as-possible, preserving local geometry
while allowing and even encouraging rotation (Figs. 1b-d, 2b-d).

Our ALUP reshaping method takes as input a vector clip-art im-
age, represented as a network of curves that are discretized into
polylines; a set of control handle points on these curves; and the
new target positions of these points. It then computes the corre-
sponding reshaped output network such that the mapping between
the input and output networks is as locally uniform as possible
and maps the input control handles to their new target locations
(Sec. 3). We formulate the computation of the desired mapping as a
variational problem, and seek for maps that minimize the sum of
two functionals which encode our twin goals of normal preservation
and local scale uniformity. Starting from this continuous formula-
tion, we cast the problem of finding a functional-minimizing curve
in the discrete setting as an energy minimization problem on uni-
formly sampled curves. We efficiently solve the resulting problem
using a custom iterative mechanism that alternates between solving
quadratic optimization problems on disjoint sets of variables.
We evaluate our method on 115 inputs and validate it via exten-

sive comparisons to prior art, potential alternatives, and manually
reshaped networks. Participants in our comparative study preferred
our results over the closest alternative by a ratio of 6 to 1.

Fig. 3. Reshaping comparison: (a) input shape and reshaping constraints;
(b-d) traditional 2D deformation approaches (baseline Poisson deformation
(b), [Solomon et al. 2011] (c), [Adobe Inc. 2019; Jacobson et al. 2012] (d))
visibly shear the inputs ; ALUP reshaping (e) minimized changes in curve
orientation and locally minimizes changes in scale. Feeder image adapted
from dstarky - stock.adobe.com.

2 RELATED WORK
Vector Art Editing. Vector graphics images are made of curves

and segments that use control points to define their shape [Hoschek
and Lasser 1993; Yuksel 2020]. Commercial tools such as Adobe
Illustrator [2019] and Inkscape [2003] enable users to create and
manipulate vector imagery by creating and manipulating these geo-
metric primitives. Reshaping vector images by directly manipulating
primitive control points can be time consuming since most reshap-
ing operations impact multiple primitives: for instance performing
the suggested edit in Fig. 1 required an artist to manually edit over
two hundred curve primitives. Chugh et al. [2015] cast vector art
creation and editing as functional language programming. Their
proposed method requires programming expertise and is not suit-
able for non-expert users. Dragicevic et al. [2005] and Bernstein et
al. [2015] introduce interfaces for global resizing of vector icons
that reduce the amount of manual labor; users of their systems still
need to formulate the explicit structural constraints they wish to
enforce. Our method addresses a complementary problem of sup-
porting general vector art reshaping, and preserves structures that
can be maintained implicitly.

Shape Deformation. Shape deformation has been a problem of
interest for many years in computer graphics; see [Yuan et al. 2021]
for a recent survey. Most shape deformation frameworks in both two
and three dimensions aim to produce deformations that are shape
preserving, namely that are as close to rigid movement (rotation and
translation) as possible, with minimal scaling and shearing [Alexa
et al. 2000; Floater 2003; Igarashi et al. 2005; Joshi et al. 2007; Ju
et al. 2005; Lipman et al. 2008; Solomon et al. 2011; Sorkine and
Alexa 2007; Sorkine et al. 2004]. Our goal is nearly opposite: when
applying a reshaping operation users anticipate significant changes
in the relative scales of different parts of the input but seek to
preserve curve orientations. Conformal shape deformation methods
(e.g. [Lipman et al. 2008; Weber and Gotsman 2010]) address the
related problem of finding a shape deformation consisting solely
of rotation and locally uniform scaling, and penalize shear. While
these methods do allow locally uniform scaling, they also explicitly
allow for rotation which in our context is highly undesirable.
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We compare our reshaping results against three representative
methods: a baseline Poisson deformation approach described by
[Cohen-Or et al. 2015; Panozzo et al. 2013], the As-Killing-as-Possible
vector field method [Solomon et al. 2011], and Adobe Illustrator’s
Puppet Warp tool (which implements the Bézier spline skinning
method of Liu et al. [2014] using the bounded biharmonic weights of
Jacobson et al. [2011]) in Figs 1, 2, 7 and Sec. 4; the two latter meth-
ods are specifically designed for 2D inputs. The baseline Poisson
deformation we compare against limits the deformation degrees of
freedom, minimizing the amount of rotation along the input curves
and providing a highly relevant baseline for our method; see App.
B for details. Our comparisons show that in the context of clip-art
reshaping this baseline outperforms the more recent approaches;
our outputs are significantly better aligned with user expectations
than those produced by all three methods.

Structure-Preserving Deformation. Attempts to preserve global
structures during 2D or 3D edits date back to Sketchpad [Sutherland
1964]. Earlier systems [Gleicher 1992; Hsu et al. 1993; Sutherland
1964] required users to assign structural constraints manually. Such
systems require significant user expertise and do not allow quick,
high-level operations. iWires [Gal et al. 2009] detects and attempts
to explicitly preserve geometric constraints and relationships on an
input mesh under deformation. As they note, their method can easily
become over-constrained as it is not clear which of the observed geo-
metric relationships users may wish to preserve. Cabral et al. [2009]
employ a similar constraint-based strategy for structure-preserving
reshape of architectural scenes, clustering edges based on length
and directional similarity as a proxy for semantic information. Their
method is designed to be used in an interactive mode where users
can relax or introduce constraints when necessary. By promoting
orientation and local scale uniformity, our ALUP reshaping formula-
tion automatically and implicitly distinguishes between structures
that can be preserved and those that need to be relaxed (e.g. in Fig.
6 we keep the shape of the circular arc surrounding the light blue
region in the windmill, while minimally rotating the normals on
the bottom part to satisfy the constraints).

Resizing and Retargeting. Methods for resizing and retargeting of
raster images focus on changing the aspect ratio or boundary shape
of the input images [Artusi et al. 2016]. Reshaping encompasses a
much larger set of editing tasks, necessitating a finer level of control;
thus, as discussed below, modifying existing retargeting methods to
enable reshaping of vector data is not practical.
Both traditional [Avidan and Shamir 2007; Lefebvre et al. 2010;

Setlur et al. 2007; Simakov et al. 2008] and learning based image
resizing [Cho et al. 2017; Nam et al. 2019] methods leverage the
regular structure of raster imagery. It is not clear how to extend
either of these approaches to resizing vector curve networks, which
have arbitrary topology and geometry, and where topology must be
preserved under the reshaping operations. Li et al. [Li et al. 2020]
introduce a differentiable rasterizer for vector graphics; this work
has many potential applications, including interactive editing by
back-propagating image space edits of a rendered raster image to
the original vector art domain. However, currently, no raster space
reshaping methods exist.

(a) Input (b) Core Solve (c) Final Solve (d) Output
Last IterationIteration 3Iteration 0

Fig. 4. ALUP reshaping overview: (a) input curve network with control han-
dles highlighted (stationary in red, relocated in blue, dashed lines show
correspondence between before and after locations); (b) core solution iter-
ations and output; (c) final solve output, (d) output clip art image. Input
image adapted from bsd studio - stock.adobe.com.

Grid-based image retargeting methods [Gal et al. 2006; Wang
et al. 2008; Wolf et al. 2007; Zhang et al. 2009] overlay a grid over
the input image, and compute new locations for all grid vertices
subject to constraints along the grid boundaries. They employ shape
preserving deformation formulations, which as discussed above are
ill-suited for our needs.

[Kraevoy'08]

[Kraevoy et al. 2008] resize 3D models by
embedding them in a voxel grid, using a
method that can be applied in 2D space
(see inset). They observe that when re-
sizing human-made shapes users expect

surface normals to be preserved as much as possible. They use a
variant of Poisson deformation and penalize non-uniform scaling
of grid cells containing surfaces whose normals are not aligned
with the major axes. [Xiao et al. 2014] resize 3D content using a
tetrahedral overlay grid and enforce user specified symmetries. As
pointed out by [Panozzo et al. 2012], and illustrated in the inset, all
these methods can easily produce grid foldovers; more importantly,
as the inset illustrates, the grid structure links the positions of input
points which are far apart along the curve network but close in Eu-
clidean space, introducing noticeable artifacts for even simple edits.
[Panozzo et al. 2012] prevent foldovers and grid rotation by forcing
all grid points that share the same 𝑥 or 𝑦 coordinate to continue to
do so; this constraint prevents many basic edits where users want to
move such points apart (e.g. raising one branch of the cactus above
the other (Fig 7). We avoid all these limitations by operating directly
on curve networks instead of an overlay grid.

3 METHOD
Our core reshaping method takes as input a connected vector curve
network, with a set of user specified control handle locations (points
or sections) on these curves, and the desired new locations of these
handles (Fig. 4a). It outputs a new reshaped network that satisfies
these handle locations (Fig 4d). We first discuss how our reshaping
formulation is motivated by prior research and our informal user
study, then propose a continuous problem formulation, and finally
discretize our continuous formulation and show how it may be
solved using an efficient optimization strategy.
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3.1 Perception of 2D Reshaping
Our reshaping formulation is motivated by prior research [Kraevoy
et al. 2008; Mehra et al. 2009; Panozzo et al. 2012] that highlights
the importance that humans place on avoiding rotation and shear-
ing and preserving straight lines when editing synthetic shapes.
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E F These observations do not address
reshaping-specific user preferences.
To understand how the general pref-
erences above apply to reshaping, we
performed a study (App. A) which
tasked participants with performing
different reshaping operations on 2D
icons using a tablet and stylus (inset,

middle and Figs. 2, 9). In line with prior research, study participants
consistently preferred solutions that avoided or minimized curve
rotation, and that locally scaled the icon’s curves as uniformly as
possible. Participant-drawn outputs strongly suggest that, when
presented with a task where some amount of shear or rotation is
inevitable, humans prioritize preserving curve orientations, when
possible, at the expense of introducing some non-uniform scale.
We similarly observed that participants strictly preserved straight
lines, even when doing so resulted in increased rotation across the
board (App. A). Our observations and participant debriefing also
suggest that when presented with reshaping constraints that do not
allow for perfect uniform scaling, humans typically expect some
parts of the network to noticeably stretch or shrink, and for there to
be smooth transitions in scale along curves connecting these parts
with other portions of the network which are expected to maintain
their original scale (Fig. 2, middle block). Lastly and notably, consis-
tent with observations made by Kraevoy et al. [2008], humans are
less sensitive to changes in scale across sharp discontinuities: for
instance, when asked to reshape the input in the inset, participants
preserved the orientations and length of all vertical edges and sim-
ply shrank the horizontal ones. We design our reshaping strategy
to reflect these preferences.

3.2 Continuous Problem Formulation
Motivated by the observations above, we formulate our problem
as one of reshaping input curve networks as locally uniformly as
possible: given an input vector curve network and a set of constraints
that the reshaped network needs to conformwith, we seek an output
network that (1) satisfies these constraints; (2) supports a pointwise
bijective continuous mapping from the input to the output that is
locally as similar as possible to a uniform scale; and (3) preserves
straightness asmuch as possible.We express our second requirement
via two conditions. First, we expect normals at the corresponding
points on the two networks to be maximally similar; second, we
expect the gradient of the tangent length at the corresponding points
on the two networks to be maximally similar. We can express these
two properties variationally: for a single, arc-length parameterized
smooth input curve 𝐶𝑖 (𝑢) : [0, 𝑠] → R2, with pointwise tangents
𝜏𝑖 (𝑢) and unit normals 𝑛𝑖 (𝑢), and a set of constraints that map
points 𝐶𝑖 (𝑢0), . . . ,𝐶𝑖 (𝑢𝑘 ) on the curve to positions 𝑝0, . . . , 𝑝𝑘 ∈ 𝑅2

respectively, we must find a function 𝐶𝑜 : [0, 𝑠] → R2 representing
the output curve, with pointwise tangents 𝜏𝑜 (𝑢) and unit normals

𝑛𝑜 (𝑢), that satisfies the positional constraints
𝐶𝑜 (𝑢𝑖 ) = 𝑝𝑖 , 𝑖 ∈ 0 . . . 𝑘, (1)

and minimizes the weighted sum of the following two functionals:

𝐸normal =

∫ 𝑠

𝑢=0
𝜔𝑛 (𝑢)∥𝑛𝑖 (𝑢) ·

𝜏𝑜 (𝑢)
∥𝜏𝑜𝑢∥

∥2𝑑𝑢 (2)

𝐸tangent =

∫ 𝑠

𝑢=0
𝜔𝑡 (𝑢) (

𝑑 ∥𝜏𝑜 (𝑢)∥
𝑑𝑢

− 𝑑 ∥𝜏𝑖 (𝑢)∥
𝑑𝑢

)2𝑑𝑢. (3)

The first functional, 𝐸normal, encourages normal similarity. The
second functional, 𝐸tangent, encourages the gradient of the lengths
of the output tangents 𝜏𝑜 (𝑢) to be maximally similar to that of the
input ones 𝜏𝑖 (𝑢), or equivalently encourages the mapping to have
constant speed (note that since𝐶𝑖 (𝑢) is arc-length parameterized, its
tangents have unit length and thus their gradient is zero).𝜔𝑛 (𝑢) and
𝜔𝑡 (𝑢) are weight functions encoding the degree to which normal
preservation and scale uniformity need to be maintained at different
points along the curve (Sec. 3.2.1). The two terms jointly express
our desire for the mapping from the input curve to the output curve
to be as locally close as possible to uniform scale.

Preserving straightness along a straight section of the input curve
[𝑢𝑠 , 𝑢𝑒 ] can be formulated as an additional per-section functional:

𝐸straight =

∫ 𝑢𝑒

𝑢=𝑢𝑠

𝑑2𝐶𝑜 (𝑢)
𝑑𝑢2

𝑑𝑢. (4)

With these definitions in place, and treating the positional con-
straints at handle points 𝐶𝑜 (𝑢𝑖 ) (Eqn. 1) as soft, we can formulate
our goal as finding a new function that minimizes the sum of func-
tionals:

𝐸ALUP = 𝐸normal+𝐸tangent+𝑤𝑠

∑︁
𝑆

𝐸straight (𝑆)+𝑤𝑐

𝑘∑︁
𝑖=0

∥𝐶𝑜 (𝑢𝑖 )−𝑝𝑖 ∥2

(5)
The first two terms are computed over all network curves; 𝑆 is the
set of straight line segments along all of these curves (identified as
discussed in Sec. 3.4). To strictly enforce straightness whenever fea-
sible we set𝑤𝑠 = 10, 000. We set𝑤𝑐 = 100, 000 so that it outweighs
all other terms.

3.2.1 Balancing Normal Preservation versus Tangent Length Unifor-
mity. Given the formulation above our remaining challenge is to
properly balance normal preservation versus tangent length unifor-
mity, by appropriately defining 𝜔𝑛 (𝑢) and 𝜔𝑡 (𝑢). While some con-
straints and curves may allow for a zero distortion mapping which
satisfies 𝐸ALUP = 0 (for instance, when the constraints enforced
allow for strictly uniform scaling), other curves and constraints
may require change in normals or ∇ ∥𝜏𝑜 ∥ relative to the input. This
raises the question: which of the two terms should be prioritized and
where? The observations in Sec. 3.1 suggest that while users aim to
minimize changes in normals and tangent length gradients overall,
they often expect reshaping to introduce significant changes in the
scale of different input elements; therefore, users are much more
tolerant of changes in ∇ ∥𝜏𝑜 ∥ in some parts of the output than others.
Unfortunately, our algorithm does not know the user’s expected
distribution of these changes in advance, we thus cannot directly
specify 𝜔𝑡 (𝑢) at each point along the curve network so as to match
user expectations of change in ∇ ∥𝜏𝑜 ∥.
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We address this challenge by leveraging the following observa-
tions. We first note that human observers are less tolerant of large
increases in tangent length gradients if these can be avoided or
significantly reduced at the expense of a small decrease in normal
preservation. However they prioritize normal preservation if and
when normals can be strictly preserved at the expense of a small
increase in ∇ ∥𝜏𝑜 ∥ distortion.
Following the first observations we define 𝜔𝑛 so as to penalize

normal deviation more when it coincides with larger than average
stretch,

𝜔𝑛 (𝑢) = max(1, ∥𝜏𝑜 (𝑢)∥
𝜏𝑎𝑣𝑔

)2 (6)

where 𝜏𝑎𝑣𝑔 is the average tangent length along the input curve. This
weight prevents solutions where normal orientation is satisfied at
the expense of much higher ∇ ∥𝜏𝑜 ∥.
We leverage the second observation by introducing a two step

solution process (Fig. 4). We first obtain a solution that distributes
both normal and ∇ ∥𝜏𝑜 ∥ errors as evenly as possible. The local tan-
gent length gradients in this solution reflect unavoidable ∇ ∥𝜏𝑜 ∥
distortion. We then use these distorted local tangent length gradi-
ents as the target gradients in a final solution round that balances
normal preservation against minimal increase in ∇ ∥𝜏𝑜 ∥ beyond
this unavoidable distortion. In both rounds we set 𝜔𝑡 (𝑢) ∈ [𝜖𝑟 , 1]
to reflect the degree of visual discontinuity at 𝐶 (𝑢) (measured as
described in Sec 3.3, Eq. 11); 𝜔𝑡 (𝑢) = 1 when the curve is viewed as
continuous at 𝑢 and drops to 𝜖𝑟 = 1𝑒−3 when it is discontinuous.

Core Solution Round. More formally, our core solution step (Fig 4b)
finds a network that minimizes 𝐸ALUP (Eq. 13). At this stage of
the method we do not enforce straightness at network corners
(vertices with valence higher than two), nor at control handles.
Relaxing the constraints at handles and corners leads to a solution
that better preserves both normals and ∇ ∥𝜏𝑜 ∥, providing a better
overall approximation of the desired output. We refer to the network
that minimizes Eq. 13 as 𝐶updated, and the tangents of the curves
inside this network as 𝜏updated (𝑢). When computing the minimizer
of 𝐸ALUP we use identity as the initial mapping function guess,
promoting solutions that retain ∇ ∥𝜏𝑜 (𝑢)∥ as much as possible for
all 𝑢.

Final Solution Round. We use the output of the distortion estima-
tion stage to obtain accurate targets for the user-anticipated ∇ ∥𝜏𝑜 ∥.
To this end we replace 𝜏𝑖 (𝑢) in our tangent energy term 𝐸tangent

(Eq. 3) with 𝜏updated (𝑢),

𝐸tangent =

∫ 𝑠

𝑢=0
𝜔𝑡 (𝑢) (

𝑑 ∥𝜏𝑜 (𝑢)∥
𝑑𝑢

− 𝑑 ∥𝜏updated (𝑢)∥
𝑑𝑢

)2𝑑𝑢. (7)

We then compute the output network curves that minimize the
updated overall energy function 𝐸ALUP using the positions of the
intermediate network curves 𝐶updated as the initial guess (Fig 4bc).
This choice promotes solutions that retain the initial tangent lengths
∥𝜏 (𝑢)∥ as much as possible. We include corner and handle straight
line points in the straightness energy term, if they remain approxi-
mately straight in the core solution output. As Fig. 4 illustrates this
step allows the method to strictly satisfy normal preservation on
inputs where the core solution almost satisfies them.

3.3 Discrete Formulation
Data Discretization. We first discretize all input vector curves as

densely and evenly sampled polylines. When discretizing, we mark
vertices that lie in the interior of straight lines in the original vector
input as straight-line, and use this information during subsequent
processing. After reshaping the polyline network, we convert the
output back into vector form (Sec. 3.4).

Notations. We define 𝐸 as the set of input polyline network edges,
𝑉 as the complete set of vertices, and 𝐻 ⊂ 𝑉 as the set of control
handle vertices. We denote the output vertex positions we solve for
in each round as 𝑣 𝑗 for all 𝑗 ∈ 𝑉 and denote the vertex positions at
the start of this round as 𝑣0

𝑗
. We denote the initial normal of each

edge ⟨𝑖, 𝑗⟩ as 𝑛𝑖
𝑖 𝑗
(normals remain fixed across both rounds), and the

set of straight-line vertices detected during discretization as 𝑆 .

3.3.1 Discrete Formulation. We replace our continuous energy terms
with corresponding discrete ones as follows. In the discrete setting
we encode 𝐸normal as:

𝐸𝑑normal =
∑︁

⟨𝑖, 𝑗 ⟩∈𝐸
max

(
1,

( ∥𝑣 𝑗 − 𝑣𝑖 ∥
𝐿𝑎𝑣𝑔

)2) (
𝑛𝑖𝑖 𝑗 ·

𝑣 𝑗 − 𝑣𝑖

∥𝑣 𝑗 − 𝑣𝑖 ∥

)2
(8)

where the first term is the discretization of 𝜔𝑛 (𝑢) and 𝐿𝑎𝑣𝑔 denotes
the average length of the curve network edges at the start of the
current solution round.
Since our initial discretization samples curve points uniformly,

the lengths of the output network edges approximate the tangent
lengths of themapped curves.We therefore recast the tangent length
gradient as the difference between the lengths of adjacent output
edges, and can consequently reformulate 𝐸tangent as preserving the
ratios between the lengths of consecutive edges along network
curves (edges are defined as consecutive if they share common end
vertices):

𝐸𝑑tangent =
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

𝜔𝑑
𝑡 (𝑖 𝑗𝑘)

1

𝐿𝑎𝑣𝑔

(
∥𝑣 𝑗 − 𝑣𝑖 ∥ − 𝑟0

𝑖 𝑗𝑘
∥𝑣𝑘 − 𝑣𝑖 ∥

)2
(9)

We set 𝑟0
𝑖 𝑗𝑘

to the ratios between the lengths of the edges ⟨𝑖, 𝑗⟩
and ⟨𝑖, 𝑘⟩ at the start of the current solution round.

𝑟0
𝑖 𝑗𝑘

= ∥𝑣0𝑗 − 𝑣0𝑖 ∥/∥𝑣
0
𝑘
− 𝑣0𝑖 ∥ (10)

We define the weights 𝜔𝑑
𝑡 (𝑖 𝑗𝑘) to reflect the visual smoothness

at the center vertices 𝑗 in the input curve network. For the purposes
of our computation, we approximate the detection of visible dis-
continuities by using the angle at each vertex as a proxy for the
likelihood of the vertex being a visible discontinuity:

𝜔𝑑
𝑡 (𝑖 𝑗𝑘) =

𝑒
(
−(𝜃𝑖 𝑗𝑘−𝜋 )2

2𝜎2

)
𝜃𝑖 𝑗𝑘 > 𝜋 95

180

𝜖𝑟 𝜃𝑖 𝑗𝑘 < 𝜋 95
180

(11)

where 𝜎 = 𝜋
6 . We set this weight to 𝜖𝑟 at high-valence network

vertices, since the network is visually discontinuous at corners.

ACM Trans. Graph., Vol. 41, No. 4, Article 160. Publication date: July 2022.



160:6 • Chrystiano Araújo, Nicholas Vining, Enrique Rosales, Giorgio Gori, and Alla Sheffer

We discretize the straightness energy 𝐸straight as

𝐸𝑑straight =
∑︁
𝑖∈𝑆

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

 (𝑣 𝑗 − 𝑣𝑖 )
∥𝑣 𝑗 − 𝑣𝑖 ∥

− (𝑣𝑖 − 𝑣𝑘 )
∥𝑣𝑘 − 𝑣𝑖 ∥

2 . (12)

The set 𝑆 includes all vertices that are interior to the straight lines
in the original curve network.

We now canminimize the discretized nonlinear energy 𝐸𝑑
𝐴𝐿𝑈𝑃

(𝑣),

𝐸𝑑ALUP = 𝐸𝑑normal+𝐸
𝑑
tangent+𝑤𝑠

∑︁
𝑆

𝐸𝑑straight (𝑆)+𝑤𝑐

𝑘∑︁
𝑖=0

∥𝐶𝑜 (𝑢𝑖 )−𝑝𝑖 ∥2

(13)
using the tailored iterative solution method described below.

3.3.2 Discrete Energy Minimization. In both stages of our method
we seek to compute the vertex positions 𝑣 𝑗 ∈ 𝑉 that minimize the
energy function 𝐸𝑑

𝐴𝐿𝑈𝑃
, starting from the current stage input vertex

positions 𝑣0
𝑗
∈ 𝑉 (where𝑉 are either the initial or updated positions

depending on the current stage). Our nonlinear energy function in-
cludes fractional terms whose denominators contain square roots of
intra-vertex distances. Optimizing such functions using brute force
approaches is highly time consuming, with off the shelf optimizers
failing to reach a local minimum within a reasonable timeframe. We
compute the desired minimum using a tailored efficient optimization
strategy that combines three core technical elements. First, we intro-
duce auxiliary variables 𝑙𝑖 𝑗 designed to capture the desired lengths
of the network edges ⟨𝑖, 𝑗⟩. We then rewrite the energy function so
that once either the values of these auxiliary variables or the vertex
positions are fixed, we may compute the energy-minimizing values
of the other set of variables by solving a standard least squares
problem. We then use an alternating least-squares minimization
process to obtain the desired minimum.

Optimization With Auxiliary Variables. Rewriting our main en-
ergy terms using the auxiliary variables 𝑙𝑖 𝑗 , we have:

𝐸 ′normal =
∑︁

(𝑖, 𝑗) ∈𝐸
max

(
1,

(
𝑙𝑖 𝑗

𝐿𝑎𝑣𝑔

)2) (
𝑛𝑖𝑖 𝑗 ·

𝑣 𝑗 − 𝑣𝑖

𝑙𝑖 𝑗

)2
(14)

𝐸 ′tangents =
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

𝜔𝑑
𝑡 (𝑖 𝑗𝑘)

𝐿𝑎𝑣𝑔

∥𝑣 𝑗 − 𝑣𝑖 ∥

(
𝑙𝑖 𝑗 − 𝑟𝑖 𝑗𝑘𝑙𝑖𝑘

)2
(15)

𝐸 ′straight =
∑︁
𝑖∈𝑆

∑︁
𝑗,𝑘∈𝑁𝑖 ;𝑗≠𝑘

 (𝑣 𝑗 − 𝑣𝑖 )
𝑙𝑖 𝑗

− (𝑣𝑖 − 𝑣𝑘 )
𝑙𝑖𝑘

2 . (16)

We seek for the values of the auxiliary variables 𝑙𝑖 𝑗 to equal the
lengths of the edges ⟨𝑖, 𝑗⟩. Instead of enforcing this relationship
via hard constraints, we introduce an additional energy term that
articulates this relationship:

𝐸 ′edge =
∑︁

⟨𝑖, 𝑗 ⟩∈𝐸
max

(
1,

(
𝑙𝑖 𝑗

𝐿𝑎𝑣𝑔

)2) 𝑣𝑖 − 𝑣 𝑗

𝑙𝑖 𝑗
−
𝑣0
𝑖
− 𝑣0

𝑗

𝑙0
𝑖 𝑗

2 (17)

where 𝑙0
𝑖 𝑗

= ∥𝑣0
𝑖
−𝑣0

𝑗
∥. This term is minimized when the output edges

have similar directions to the original, and satisfy ∥𝑣𝑖 − 𝑣 𝑗 ∥ = 𝑙𝑖 𝑗 .
Notably the first of these properties is a reinforcement of our desire
to avoid rotations.

With this term added we approximate minimizing 𝐸𝑑ALUP as mini-
mizing

𝐸 ′ALUP = 𝐸 ′normal+𝐸
′
edge+𝐸

′
tangent+𝑤𝑠𝐸

′
straight+𝑤𝑐

𝑘∑︁
𝑖=0

∥𝐶𝑜 (𝑢𝑖 )−𝑝𝑖 ∥2

(18)
While this function remains nonlinear with respect to the aug-

mented set of variables, it can now be robustly optimized using an
alternating least squares strategy. We initialize both sets of variables
as 𝑣𝑖 = 𝑣0

𝑖
and 𝑙𝑖 𝑗 = 𝑙0

𝑖 𝑗
. At each iteration we first keep the target

lengths 𝑙𝑖 𝑗 fixed and solve for positions that minimize the energy
function given these fixed lengths. We then keep the positions fixed
and update the target lengths 𝑙𝑖 𝑗 . Each iteration reduces the overall
energy 𝐸𝑑

𝐴𝐿𝑈𝑃
. The process terminates once we reach a minimum

(Sec. 3.4).

Solving for Positions. When the lengths of the desired edges 𝑙𝑖 𝑗
are fixed, minimizing 𝐸 ′ALUP is equivalent to minimizing

𝐸 ′vertex = 𝐸 ′normal + 𝐸
′
edge +𝑤𝑠𝐸

′
straight +𝑤𝑐

𝑘∑︁
𝑖=0

∥𝐶𝑜 (𝑢𝑖 ) − 𝑝𝑖 ∥2 (19)

as the other terms do not depend on vertex positions. This energy
is quadratic with respect to the vertex positions, and finding the
positions that minimize it amounts to a simple linear solve.

Solving for Desired Edge Lengths. We now fix the newly computed
positions and update the desired edge lengths. Several of the terms
in 𝐸 ′ALUP use edge lengths in their denominator, making direct op-
timization with respect to lengths challenging. We observe that
our auxiliary term 𝐸 ′edge encodes both edge directions and lengths
and as such serves as a suitable proxy for the non-linear normal
term 𝐸 ′normal. We linearize the optimized function by dropping the
normal term 𝐸 ′normal and rewriting 𝐸 ′edge as a quadratic function of
edge lengths. Specifically, as the quadratic function 𝑓 (𝑥) = 𝑥2 is
strictly monotonically increasing over the nonnegative reals, we
may rewrite 𝐸 ′edge to square the edge lengths without changing the
minimizer:

𝐸linearizededge =
1

𝐿𝑎𝑣𝑔

∑︁
⟨𝑖, 𝑗 ⟩∈𝐸

(𝑙𝑖 𝑗 − ∥𝑣𝑖 − 𝑣 𝑗 ∥)2) (20)

The function we minimize then becomes:

min
𝑙𝑖

𝐸𝑙 (𝑙𝑖 ) = 𝐸linearizededge + 𝐸
′
tangents (21)

We compute the minimizer of this quadratic function using the
same solver as for positions.

3.4 Implementation Details
Discretization. Weuniformly sample each input curve in the curve

network, with a spacing between samples of 0.5% of the length
of the largest side of the network’s bounding box. To enforce po-
sitional constraints our polygon vertices include all user specified
point handles and includes at least two vertices on each user speci-
fied curve handle. We mark polyline segments as straight if their
originating vector segments were either straight lines or curves
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with colinear control points. Converting from polylines to curve
networks is a well-researched problem; we use the built-in tools in
Adobe Illustrator.

Termination. Our alternating least-squares iterations terminate
when one of the following conditions is satisfied: (1) The decrease
in the value of 𝐸𝑑

𝐴𝐿𝑈𝑃
from one iteration to the next drops below

𝜖 = 10−4; (2) The largest change in a vertex position from one
iteration to the next drops below 𝜖 · 𝐿𝑎𝑣𝑔); (3) The value of 𝐸𝑑ALUP
increases from one iteration to the next. In this case we return the
set of positions, lengths and ratios that resulted in the smallest
value of 𝐸𝑑ALUP. (4) The maximum allowed number of iterations
(𝑖𝑡𝑒𝑟max = 100) is reached.

Solver Implementation and Runtimes. We use the simplicial 𝐿𝐷𝐿𝑇
solver from the Eigen linear algebra library to solve both least
squares problems. As the curve network topology does not change
between iterations, we precompute the 𝐿𝐷𝐿𝑇 decomposition once
at the start of each solution round; each iteration then consists only
of forwards and backwards substitution. Our runtimes range from
16 msec to 2.2 sec, with the median runtime being 0.3 seconds. Per-
formance was measured on an Intel I7-7700 2.80GHz, with 32GB
RAM, running Windows 10.

3.5 Extensions.
We augment our core method with support for multiple components
and intersection avoidance.

Multiple Connected Components. Vector clip-art images frequently
contain multiple connected components (e.g. the crown in Figure 1
in our paper). While users can apply our core method independently
to each component, it is often advantageous to adjust components
in tandem — for instance moving all the details in the crown to-
gether with the outline. We support this tandem motion by com-
puting a constrained Delaunay triangulation scaffold connecting
all user-specified components of interest. Our approach is similar
to [Kraevoy et al. 2003] amongst other methods: we construct a
constrained Delaunay triangulation of the points of the input curve
network and the vertices of the clip-art’s axis-aligned bounding
box, and with the edges of the curve network as required edge con-
straints, using the Triangle software library [Shewchuk 1996]. We
then augment our energy function 𝐸 ′ALUP with a weak term that pre-
serves edges in this triangulation belonging to different components,
mirroring 𝐸 ′

𝑒𝑑𝑔𝑒
:

𝐸 ′comp =
∑︁

(𝑖, 𝑗) ∈𝑇

𝑣𝑖 − 𝑣 𝑗

𝑙0
𝑖 𝑗

−
𝑣0
𝑖
− 𝑣0

𝑗

𝑙0
𝑖 𝑗

2 . (22)

Here𝑇 are the triangulation edges connecting different components
of interest, 𝑣0

𝑖
, 𝑣0

𝑗
are the original locations of their vertices, and

𝑙0
𝑖 𝑗

are the original edge lengths. We add this term to our overall
energy 𝐸 ′ALUP, and incorporate it into the position solve (Sec. 3.3.2)
by adding this term to 𝐸 ′vertex (Eq. 19). To ensure that this term only
minimally impacts the shape of the network curves, we assign it a
weight of𝑤𝑐𝑜𝑚𝑝 = 0.01/|𝑇 |.

Fig. 5. Given the input in (a), our unconstrained solution (b) introduces
some self-intersections along the stem of the wine glass; (c) we resolve these
intersections using a second solution iteration.

Self-Intersections. Our core formulation does not explicitly pre-
vent self-intersections. While rare, these can and do happen when
narrow features are compressed (Fig 5). We resolve intersections
using a mechanism similar to the one for handling multiple com-
ponents. We first compute a solution using our standard method
and check for self-intersections in the output. If and when a self-
intersection is detected, we compute a Delaunay triangulation of
the input network, identify the boundaries of the overlapped region
and identify the Delaunay triangulation edges 𝑆 connecting differ-
ent sections along these overlapped boundaries. We then add these
edges into the set𝑇 above, including them in the component energy
term 𝐸 ′comp, and recompute the reshaping solution. We use the same
weight𝑤𝑐𝑜𝑚𝑝 as before. Out of all 115 inputs we tested, only two
inputs (the wine glass shown in Fig. 5, and the N shape in the sup-
plementary) required intersection resolution. In our experiments,
this process was sufficient to resolve all intersections encountered.

4 RESULTS AND VALIDATION
Throughout the paper we demonstrate our ALUP reshaping method
on 18 examples, including 3 individual closed contours and 15 curve
networks. An additional 97 examples are included in the supple-
mentary material. These examples include both inputs where the
changes in the control handle locations allows for solutions where
the orientation of the input network curves can be largely preserved
(e.g windmill and lotion bottle Fig 6) as well as changes that can-
not be satisfied without significantly altering curve orientation (e.g.
car in Fig. 6) In all cases our method produces results consistent
with human expectations. Please see the Appendix for ablations and
details.
Comparison to Prior Art. As discussed in Sec 2, our method’s

goals are conceptually different from those of most prior shape
deformation approaches. Figs. 1, 2, and 7 highlight the differences
in the outputs produced by ALUP reshaping, a baseline Poisson
deformation approach [Cohen-Or et al. 2015], the state of the art 2D
deformationmethod of [Solomon et al. 2011], and Adobe Illustrator’s
Puppet Warp tool, which implements [Liu et al. 2014] with the
biharmonic weights of [Jacobson et al. 2012].
We validate our improvement over prior art via comparative

evaluation and a qualitative study. In our comparative study, par-
ticipants were shown input clip-art visuals with specified control
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Input Poisson[Solomon'11] Puppet Warp ALUP Input Poisson[Solomon'11] Puppet Warp ALUP Input Poisson[Solomon'11] Puppet Warp ALUP Input Poisson[Solomon'11] Puppet Warp ALUP

Fig. 6. Additional comparisons with prior methods. Input images adapted from: Bottle © dstarky, Shampoo © Svitlana - stock.adobe.com. Wind-turbine ©
DinosoftLabs - www.flaticon.com.

Input Poisson ALUP Input Poisson ALUP Input Poisson ALUP

Fig. 7. Additional comparisons with Poisson deformation. Input images adapted from: Carriage © Freepik - www.flaticon.com. Coffee grinder © bsd studio,
Cleaning bottle © Svitlana, Santoku © bsd studio, Pig © Nataliia, Milk box © dstarky - stock.adobe.com.

ours

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[Solomon'11]

PuppetWarp

Vote percentage

Poisson

both other neither

94.38%

90%

70.33%

Fig. 8. Comparative study summary. Participants consistently preferred our
results over all alternatives.

handle displacements and pairs of outputs, one generated using
ALUP reshaping and one generated using an alternative method.
Fig 8 summarizes the responses. In comparisons against Poisson
deformation ALUP reshaping was preferred 70% of the time, the
results were judged on par 14% of the time, with the alternative
preferred only 11% of the time. It was preferred by much higher
margins against the other two methods, confirming that in the con-
text of reshaping ALUP outputs are drastically better aligned with
human expectations than prior art. Our t-test confirmed that these
results were highly statistically significant (𝑝 < 0.001).

In the qualitative study, we visually compare our outputs, as well
as those produced by the three methods above, against 15 manual
reshaping outputs drawn by the participants in our baseline study
(App. A). As the comparisons show, our results are significantly
better aligned with those traced by the participants. With one ex-
ception, discussed below, our results are visually very similar to
those sketched by the participants.

Comparison toManual Reshaping.Weevaluated our outputs against
manual reshaping via a comparative study with a similar layout to
the above one. Participants were shown three inputs with specified
control handle displacements and pairs of outputs, one generated
using ALUP reshaping and one manually reshaped by a professional
artist to conform to the specified displacements while preserving
shape as much as possible. Participants preferred our outputs 60%
of the time over the artist-created results, judged us as on par 27%

(c) Poisson(b) Tracing overlay(a) Input (d) ALUP (e) ALUP (extra constraint)

Fig. 9. Limitation: given the input image and constraints in (a), the ALUP
method scales the buckle uniformly and in contrast to Poisson deforma-
tion (c) strictly preserves curve orientations. (b) Notably, similar to us the
study participants preserved curve orientations, but scaled the buckle non-
uniformly preserving its original height. We speculate that in doing so they
relied on global context or semantics. (c). Adding one additional anchor
handle (e) allows ALUP to capture the human solution.

of the time, and preferred the artist results only 13% of the time,
confirming that our results are well aligned with viewer expecta-
tions.

See the Appendix for discussion of study methodology.

Ablations and Stress Tests. We demonstrate the robustness of our
method via ablative studies of the main weight settings used by
our method, and by evaluating its ability to perform reshaping that
requires extreme compression.
We ablate the three main weight settings used by our method.

Fig 10 compares our scheme, which weights 𝐸normal and 𝐸tangent
equally in our overall energy 𝐸ALUP (Eqn. 13), against schemeswhich
weigh them by a ratio of 100:1 or 1:100. Fig 11 compares our scheme
of setting 𝜔𝑛 (𝑢) (Eq. 6) against using uniform weights; and Fig 12
compares our scheme of setting𝜔𝑡 (𝑢) (Eq. 11) against using uniform
weights. Notably our formulation is sufficiently stable that for many
inputs alternative weighing schemes make little to no difference;
however for the subset they impact the changes they introduce are
clearly undesirable.
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(c) 1:100(b) 100:1 (d) ALUP(a) Input

Fig. 10. Emphasizing normal (b) or ∇ ∥𝜏𝑜 ∥ (c) preservation by a factor of 100
produces results less aligned with viewer expectations than those produced
by our method, which weighs them equally.

Input Our

Fig. 11. Setting 𝜔𝑛 (𝑢) = 1 concentrates normal distortion along a small
subset of network edges, and leads to significant increase in ∇ ∥𝜏𝑜 ∥ error.
Our method avoids this behavior.

Input Our

Fig. 12. Setting 𝜔𝑡 (𝑢) = 0.5 everywhere causes the solver to distribute
changes in scale uniformly, including across corners and handles, resulting
in unexpected changes in parts of the network viewers expect to retain
the original scale. Our output is consistent with viewer expectations. Input
image adapted from dstarky - stock.adobe.com.

ALUPInput

Robustness to Extreme Deformation.
We tested our method on several exam-
ples where achieving the user’s target
deformation requires extreme compres-
sion of edge lengths (inset), and were
unable to trigger failure cases or numer-

ical instability. We hypothesize that our choice to maximize tangent
gradient similarity, combined with division by tangent length (Eqns.
2 and 14 through 17) and the explicit lower bound on weights (Eqn.
6) explicitly discourages the formation of zero-length edges. In our
early experiments we explicitly prevented the length of any edge
from shrinking below 1% of its original edge length, but we found
that this condition was never activated and removed it.

Limitations. Humans often impose semantic constraints which
are not articulated when manually reshaping clip-art, based on
contextual or aesthetic properties of the input, which our method is

Fig. 13. Reshaping versus Reposing. Humans observers interpret the control
point repositioning (left) as reposing the tusk on the elephant; such tasks are
well addressed by existing methods (center). Our method (right) is designed
for reshaping rather than reposing. Input image adapted from Nataliia -
stock.adobe.com.
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Convergence

Fig. 14. Convergence of the energy 𝐸𝐴𝐿𝑈𝑃 (Eqn. 13). Note the rapid con-
vergence of the final solution.

not aware of (Fig. 9). Thus if these constraints are not articulated it
will not necessarily respect them. In this example, our result can be
made identical to the participant traced one by adding one additional
anchor handle.
Our method operates on curve networks by discretizing them

into polylines. While this is a standard technique for deforming and
processing curve networks, conversion and reconversion from a
curve network to polylines may cause undesirable changes in curve
network topology or curve type. Developing an ALUP reshaping
algorithm that operates directly on curves, similar to the work of
[Liu et al. 2014], is an interesting area for future work.

Reshaping versus Reposing. Our ALUP reshaping method is in-
tended as a complement to existing deformation methods. Previous
work focuses on deformation that mimics either articulated posing,
or physically plausible deformation of shapes (i.e. bending and twist-
ing an iron bar.) These use cases assume that the local geometry of
the inputs must be preserved, while the orientation of the geometry
can change; they are not designed to address the use case where
an artist or designer wishes to reshape the object by changing the
relative or absolute scale of its parts. Our method targets this second
use case, but does not replace existing methods when it comes to
their target use case (Fig. 13).

5 CONCLUSIONS
We presented As-Locally-Uniform-as-Possible (ALUP) reshaping,
the first robust method for reshaping vector clip-art images. ALUP
is inspired by observations about human expectations of reshaping
outcomes, and is demonstrated to be significantly better aligned
with user preferences than alternative approaches. Our key technical
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contribution is a rigorously formulated discretization of a continu-
ous variational optimization problem, which can be iteratively and
efficiently solved with alternating least squares linear solves. The
resulting method is simple to implement and suitable for adoption
in commercial software packages.
Our work proposes a number of avenues for future research;

the first and foremost of these is an extension of our technique
to reshaping of human-made 3D content. Our work also raises
interesting questions about human perception and expectations
when it comes to editing of both 2D and 3D human-made content,
specifically the balance humans seek between conflicting structure-
preservation preferences when these cannot be jointly preserved.
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