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Fig. 1. Free-hand sketches use clusters of strokes (a, each cluster colorized in different color) to depict intended aggregate curves. Existing methods that aim
to fit aggregate curves to vector stroke clusters (b,c) frequently produce outputs inconsistent with artist intent and viewer expectations (e.g. nose, mouth, left
eyebrow (b,c); insets show the point orderings they generate and use to compute fits, visualized using a red to blue color scheme). StrokeStrip jointly arc
length parameterizes each cluster (d, red to blue color scheme), facilitating aggregate curve fitting consistent with viewer expectations (e) and intuitive cluster
level editing operations (f; we deform the hair strands and the lips). Please zoom in to see image details throughout the paper. Drawing ©Enrique Rosales and
Sari Pagurek van Mossel.

When creating freeform drawings, artists routinely employ clusters of over-

drawn strokes to convey intended, aggregate curves. The ability to algorith-

mically fit these intended curves to their corresponding clusters is central to

many applications that use artist drawings as inputs. However, while human

observers effortlessly envision the intended curves given stroke clusters as

input, existing fitting algorithms lack robustness and frequently fail when

presented with input stroke clusters with non-trivial geometry or topology.

We present StrokeStrip, a new and robust method for fitting intended curves

to vector-format stroke clusters. Our method generates fitting outputs con-

sistent with viewer expectations across a vast range of input stroke cluster

configurations. We observe that viewers perceive stroke clusters as continu-

ous, varying-width strips whose paths are described by the intended curves.

An arc length parameterization of these strips defines a natural mapping

from a strip to its path. We recast the curve fitting problem as one of pa-

rameterizing the cluster strokes using a joint 1D parameterization that is

the restriction of the natural arc length parameterization of this strip to the

strokes in the cluster. We simultaneously compute the joint cluster parame-

terization and implicitly reconstruct the a priori unknown strip geometry
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by solving a variational problem using a discrete-continuous optimization

framework. We use this parameterization to compute parametric aggregate

curves whose shape reflects the geometric properties of the cluster strokes

at the corresponding isovalues. We demonstrate StrokeStrip outputs to be

significantly better aligned with observer preferences compared to those of

prior art; in a perceptual study, viewers preferred our fitting outputs by a

factor of 12:1 compared to alternatives. We further validate our algorithmic

choices via a range of ablation studies; extend our framework to raster data;

and illustrate applications that benefit from the parameterizations produced.
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1 INTRODUCTION
When creating freehand sketches, artists ubiquitously employ clus-

ters of nearby, roughly parallel strokes to communicate individual

intended, or aggregate, curves (Fig. 1a). They form such clusters by

repeatedly overdrawing strokes to refine the shape of the curves

they aim to convey, to emphasize or thicken these curves, or to add

interest and texture to the drawn content [Arora et al. 2017; Eissen

and Steur 2008]. When presented with overdrawn stroke clusters,

human observers effortlessly imagine the artist’s intended aggregate

curves [Liu et al. 2018; Yan et al. 2020]. To facilitate downstream

digital processing, artists increasingly use drawing tools that store

the created raw sketches in vector form (e.g. [Blender 2021]). Most

sketch processing applications target clean, overdrawing-free, vec-

tor drawings where each stroke is assumed to depict an intended

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459777
https://doi.org/10.1145/3450626.3459777


1:2 • Dave Pagurek van Mossel, Chenxi Liu, Nicholas Vining, Mikhail Bessmeltsev, and Alla Sheffer

meaningful curve (Fig. 1e, Sec. 2). To process raw freehand vector

sketches, these applications rely on sketch consolidation methods

which cluster strokes that jointly depict individual intended curves,

and then fit aggregate curves to each cluster [Liu et al. 2018, 2015;

Orbay and Kara 2011]. Previous fitting methods successfully pro-

cess clusters that depict relatively simple, low-curvature curves, but

often fail to produce results consistent with human expectations

on more complex inputs (Sec. 2, Fig. 1bc). We introduce StrokeStrip,
a new method for fitting intended curves to vector stroke clusters

capable of robustly generating aggregate curves consistent with

human expectations on arbitrarily complex inputs (Fig. 1e).

We achieve this goal by leveraging insights about human percep-

tion of stroke clusters (Fig. 2). We observe that viewers see stroke

clusters as narrow, varying-width aggregate strokes, or strips, whose
paths define the intended aggregate curves (Fig. 2b). Human ob-

servers mentally delineate the outlines of the strips depicted by each

cluster (Appendix A), distinguishing between points on the strokes

that are next to one another within the strip, or WTS adjacent, and

those adjacent only in Euclidean space (Fig. 3). Manually traced

aggregate curve data [Liu et al. 2018; Yan et al. 2020] indicates that

viewers expect aggregate curves to follow the direction of the raw

strokes, and to smoothly average the geometric properties of strokes

that viewers perceive as being WTS adjacent. The main algorithmic

challenge in computing such curves is therefore to identify the sets

of stroke points whose shape properties jointly define the geometry

of each point along the fitted aggregate curve. This problem can

naturally be cast as a computation of a 1D cluster parameterization

whose isolines define these sets of points (Fig. 2cd). Specifically, the

parameterization we look for is a restriction of the natural arc length

parameterization of the perceived strip (Fig. 2c) to the strokes in

the cluster (Fig. 2d). Given this joint newstroke parameterization

we can directly compute a parametric fitted curve whose shape at

each parameter value u is reflective of the average shape (positions,

tangents, and curvatures) of the cluster strokes at u (Fig. 2e, Sec. 6).

(a) (b) (c) (d) (e)

Fig. 2. Viewers perceive stroke clusters (a) as depictions of aggregate, vary-
ing width strips, (b) whose paths (b, black) depict the intended aggregate
curves and follow the average direction of the drawn strokes. The natural
arclength parameterization of each strip (c, blue to red) induces a joint
parameterization of both the cluster’s strokes (d) and the aggregate curve
(e). The isolines of the parameterizations (c, d) are orthogonal to this curve.

To produce fitted curves aligned with human perception, the

joint cluster parameterization must satisfy several requirements

that follow from the properties of the strip parameterizations we

seek (Sec. 3.1). To accurately capture the geometry of the cluster

strokes, we aim to compute arc length parameterized aggregate

curves; we thus aim to produce arc length preserving strip and clus-

ter parameterizations. The parameterizations must be continuous,

and therefore isovalues at WTS adjacent stroke points should be

similar. Aggregate curve tangents, and consequently the gradients

of the parameterizations that define them, should be aligned with

the stroke tangents; in other words, parameterization isolines need

✓ ✓
✓

✗
✗ ✗

Fig. 3. Viewers distinguish between pairs of stroke points they perceive as
adjacent within the aggregate strip, i.e. WTS adjacent (green), and those
they see as far apart within it (red), despite similar pairwise 2D distances.

to be approximately orthogonal to the strokes. The isolines should

cross the clusters forming cross-sections that extend from one side of

the strip to the other (Fig. 2d). Finally, since the arc length parameter-

ization of a strip along the gradient direction is strictly monotonic,

the restriction to the strokes must be strictly monotonic as well.
The core challenge in computing a parameterization that satisfies

these requirements is that we do not a priori know the strip geom-

etry; in other words, we do not know which points on different

strokes that are adjacent in Euclidean space are perceived as WTS

adjacent. Purely local analysis of point neighborhoods is insufficient

to distinguish between points which are WTS adjacent and ones ad-

jacent only in Euclidean space (Fig. 3). Thus, while human observers

can easily envision the aggregate strips and curves corresponding

to each cluster, and hence the isoline cross-sections orthogonal to

these curves (Fig. 2cd), our algorithm needs to compute these cross-

sections given only the raw strokes as input. We consequently face

two interconnected challenges: we must compute optimal isovalues

along each cluster cross-section while simultaneously computing

the cross-sections themselves.

We robustly address both challenges at once by casting the com-

putation of the parameterization and the underlying isoline cross-

sections as a constrained variational problem (Sec. 3.2). We then

solve it using a combined discrete-continuous optimization frame-

work (Sec. 3.3). We first determine the optimal orientations of

parameterization gradients along each stroke, converting mono-

tonicity constraints into more tractable inequality ones (Sec. 4). We

then jointly solve for cluster cross-sections and parameter values

along them using a variational optimization framework (Sec. 5). Our

method starts with an initial set of cross-sections that is expected

to approximate the final one, but that might contain outliers. It

narrows this set down using an iterated algorithm that solves for

a joint cluster parameterization whose isolines are closely aligned

with a subset of these initial cross-sections, and which satisfies a

relaxed variant of the properties above. Finally, it uses this relaxed

parameterization as a close initial guess for computing our desired

arc length cluster parameterization. The resulting method robustly

handles complex cluster configurations, including self-adjacent and

self-intersecting clusters (e.g. the nose or left eyebrow in Fig. 1).

Sec. 7 validates our design choices. We compare our parameteri-

zations and fitted curves to those produced by previous methods,

highlighting our method’s robustness in handling challenging in-

puts which cause prior methods to produce severely distorted results.

We conduct a perceptual study which shows that observers prefer

curves fitted by our method over those produced by the closest

competitor 60.6% of the time, judge them as on par 34.6% of the

time, and prefer the alternative just 4.8% of the time. We showcase

our method’s robustness by extending it to handle raster inputs
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(Sec. 7.1.1). We demonstrate the versatility of our parameterizations

by showcasing their suitability for a range of other applications.

These advancements are made possible by our novel approach

to cluster parameterization, which leverages observations about

human perception of such clusters and converts those into an ac-

tionable joint cluster parameterization method.

2 RELATED WORK
Sketch Processing. User demand has led to the emergence of nu-

merous methods and tools for processing of vector-format artist-

drawn sketches, including colorization [Adobe 2020; Orzan et al.

2008], shading [Finch et al. 2011; Shao et al. 2012], style trans-

fer [Freeman et al. 2003], and editing [Igarashi et al. 2005], and

has lead to increased use of free-hand vector sketches as inputs

for high-level tasks such as 3D modeling [Bessmeltsev et al. 2016;

Gryaditskaya et al. 2020; Lipson and Shpitalni 1996; Xu et al. 2014].

These methods typically target clean drawings where each stroke

corresponds to a complete meaningful geometric curve and can-

not be applied as-is to typical raw artist drawings which depict

such curves using clusters of overdrawn strokes [Liu et al. 2018,

2015; Yan et al. 2020]; thus processing overdrawn sketches requires

consolidating them first.

Vector Sketch Simplification and Consolidation. Vector sketch sim-

plification methods, e.g. [Grabli et al. 2004; Nan et al. 2011], reduce

visual clutter in detailed drawings by either removing or combining

strokes. Vector sketch consolidation methods identify clusters of

strokes that jointly correspond to meaningful intended curves and

replace each cluster with its corresponding curve [Barla et al. 2005;

Chen et al. 2013; Liu et al. 2018, 2015; Noris et al. 2012; Orbay and

Kara 2011; Rosin 1994; Shesh and Chen 2008]. Recent research has

made significant advances in detecting clusters that jointly depict

intended curves. Once the strokes are clustered, these methods use

either generic point-based or dedicated stroke-based fittingmethods,

discussed below, to fit aggregate curves to each cluster. StrokeStrip

provides an alternative to these existing fitting methods. It makes

no assumptions on the structure or other properties of the input

clusters provided, and can be used in conjunction with any stroke

clustering method.

Vectorization and Raster-Space Consolidation. Raster space con-
solidation methods (e.g. [Simo-Serra et al. 2018, 2016]) generate

consolidated raster outputs from raster overdrawn images, and re-

quire a separate vectorization step to produce outputs suitable for

downstream processing. Most vectorization methods convert raster

inputs into vector form [Bao and Fu 2012; Bessmeltsev and Solomon

2019; Bo et al. 2016; Donati et al. 2017, 2019; Najgebauer and Scherer

2019; Noris et al. 2013; Parakkat et al. 2018b] with no attempt to

simplify output topology. Recent works [Bartolo et al. 2007; Favreau

et al. 2016; Stanko et al. 2020] aim to simultaneously consolidate

and vectorize overdrawn raster sketches; however even when given

individual clusters as input they frequently produce complex vec-

tor graph outputs (Sec. 7.1.1, supplementary material). While our

method is designed for vector data, it can be extended to fit single

curves to vectorized raster stroke clusters (Sec. 7.1.1).

(a) Input (b) [Liu et al. 2005]
(c) [De Goes et

al. 2011] (d) [Levin 2004] (e) Ours

Fig. 4. Given points densely sampled on input cluster strokes (a), methods
for spline curve fitting [Liu et al. 2005] (b), 2D shape reconstruction [De Goes
et al. 2011] (c), andMLS based fitting [Levin 2004] (d) fail to correctly recover
the geometry (b) or topology (c,d) of the intended aggregate curves. Our
method correctly recovers these intended curves (e).

Fig. 5. StrokeStrip (d) successfully parameterizes (parameter values visual-
ized using a blue to red color scheme) and fits complex stroke clusters (a)
on which prior methods ([Orbay and Kara 2011] (b) and [Liu et al. 2018]
(c)) fail to compute correct stroke point orderings (visualized using a blue to
red scheme) resulting in poor output fit quality. The ordering computed by
Liu et al. [2018] fails to include the points colored in gray.

1D Parameterization and Curve Fitting to Points. Fitting curves

to ordered or 1D parameterized points is a well understood prob-

lem [Farin 2014] amenable to many established methods (e.g. [Baran

et al. 2010; McCrae and Singh 2009]). Our problem is distinctly

different from this setting, as our input is only partially ordered.

Specifically, while we can trivially order or 1D parameterize points

sampled along an individual stroke, we have no predefined order-

ing between points sampled on different strokes. The isovalues of

our joint 1D cluster parameterization define a complete ordering of

points across all strokes, allowing for subsequent use of methods

that operate on ordered or parameterized points (Sec. 7). Existing

research on point ordering or 1D parameterization does so in the

context of curve fitting, discussed below.

Multiple methods aim to reconstruct 2D shapes given unordered
points, which are assumed to lie on or near these shapes (Fig. 4,b-d).

Traditional fitting methods deform initial 1D curves [Farin 2014],

represented explicitly [Liu et al. 2005; Wang et al. 2006] or implic-

itly [Yang et al. 2005], to best approximate the input points. The

output of these methods is highly dependent on the degree of simi-

larity between the initial and intended curves. Computing suitable

initial curves for fitting points sampled from highly bent or self-

intersecting shapes remains an open problem [Wang et al. 2006].

Thus, as noted byOrbay and Kara [2011], while thesemethods can be

applied for fitting points sampled from simple low-curvature stroke

clusters, they fail on inputs with high curvature or self-intersections

(Fig. 4b). Classical 2D or 3D reconstruction methods ([De Goes et al.

2011; Dey et al. 1999; Goshtasby 2000; Kazhdan and Hoppe 2013;

Kolluri et al. 2004; Lee 2000; Levin 2004; Parakkat et al. 2018a; Wang

et al. 2014]) do not constrain output topology; when presented
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with points sampled from our inputs, these methods often produce

outputs that contain multiple connected components (e.g. Fig. 4c,

bottom) and complex graph connectivity (Fig. 4cd). By arc length

parameterizing each input cluster in 1D, we successfully and fully

automatically fit each input, no matter how complex, using a single
curve that is consistent with viewer expectations (Figure 4e).

[Kara & Shimada’07]

Fitting Curves to Stroke Clusters. A num-

ber of methods specifically target curve fit-

ting for stroke clusters. In contexts where

live feedback can be provided to artists, fits

can be incrementally corrected as artists

add new strokes [Bae et al. 2008; Grimm and Joshi 2012]; however,

in offline contexts, drawing order cannot be relied upon. Kara and

Shimada [2007] and Orbay and Kara [2011] first order points sam-

pled along the stroke clusters and use the obtained full ordering

to fit polylines or smooth curves to these samples. Kara and Shi-

mada [2007] project the points to the dominant principal axis of

the cluster and use the order of these projections along the axis

as the point order. This approach fails even on relatively simple

inputs (see inset). Orbay and Kara [2011] use a Laplacian spectral

embedding to order the sampled points (Figs. 1c, 5b). Liu et al [2018]

propose a tangent aware Moving Least Squares (MLS) based ap-

proach for fitting curves to stroke clusters. To fit a single curve

to the MLS output points, they first connect the points using a di-

rected spanning tree, and then extract and smooth the longest path

in this tree (Figs. 1d, 5c, points not included in the paths in gray).

These methods often produce non-monotonic and counter-intuitive

point orderings on clusters with sharp turns and narrow bottlenecks,

leading to fitting outcomes inconsistent with viewer expectations

(Figs. 1bc, 5bc). Our comparisons (Figs. 1,5, Sec. 7) demonstrate that

StrokeStrip robustly computes the desired parameterizations and

corresponding fits in complex scenarios where all prior methods

fail.

3 OVERVIEW

3.1 Problem Statement
We aim to robustly compute the aggregate curves viewers per-

ceive when presented with input vector stroke clusters. Prior litera-

ture [Liu et al. 2018], observations of manually traced curves [Liu

et al. 2018; Yan et al. 2020], and our study (Appendix A), suggest that

viewers perceive clusters as varying width strips formed by sweep-

ing straight rulings, or cross-sections, along paths that follow these

aggregate curves. We speculate that observers mentally envision the

geometry of these curves by interpolating shape properties along

such strip cross-sections (Fig. 2). This observation suggests that our

fitting problem can be recast as one of computing a 1D parameteriza-

tion of the cluster whose isolines define these cross-sections. Given

this desired parameterization, we can express the shape of the fitted

curve at each parameter value u as a function of the shape proper-

ties of the stroke points along the u-isoline cross-section (Sec. 6).

In addition to facilitating fitting, our parameterizations provide a

natural mechanism for jointly manipulating the strokes within the

cluster (Fig. 1f, Sec. 7).

To formalize the desired properties of the parameterization we

seek, we first formalize the notion of a strip itself. A strip is well-

described by its centerline γ (t) ∈ R2, parameterized by its arclength

t ∈ [0, L], and widthW (t). Reminiscent of ruled surfaces in 3D,

the strip is then defined as the set of points swept by a moving

line segment of lengthW (t), centered at and perpendicular to the

centerline. The two sides of a strip are then the two curves at the

distance ofW (t)/2 from the centerline in the normal direction, or

more formally γ (t) ± W (t )
2

n(t).
While this definition addresses non-self-intersecting strips, in

general strips can and often do self-intersect. This technical diffi-

culty, however, is easy to overcome by considering the curvilinear

strip as an image of a locally injective map of an axis-aligned strip,

namely the parameterization domain. We omit this for brevity; this

reasoning, as well as our algorithm, admits self-intersecting strips.

u=const

This construction naturally defines the arc
length parameterization of a strip as the extension

of the arc length parameterization of the center-

line to the whole area of the strip via ‘extrusion’

in the normal direction (see inset). Simply put, it is

a function u(x) defined for all points in the strip, such that straight

line segments C(t) = {γ (t) + an(t)|a ∈ [−
W (t )
2
,
W (t )
2

]} are the pa-

rameterization’s isolines; that is, they share the same parameter

value t = u(x), x ∈ C(t).
The arc length parameterization of a given a strip defined by its

centerline and width can be explicitly computed (Appendix B). A

trivial, yet important, property of the arc length parameterization of

a strip is that, for any point on the isolineC(t), the parameterization

gradient is parallel to the centerline tangent τ (t). The norm of the

gradient, while unit at the centerline, changes depending on the

distance from the centerline and centerline curvature. The average

of parameterization gradients over each isoline has unit length and

thus coincides with the centerline tangent (see Appendix B for a

proof).

Returning to the problem of stroke cluster parameterization, given

the oriented strokes S = {si , i = 1, . . . ,N }, we are looking for a map

u(x) : ∪isi → [0;L], where L is unknown that is the restriction of

the arc length parameterization of the viewer-perceived strip.

An important subtlety in parameterizing stroke

clusters lies in correct generalization of the notion

of strip centerline. Prior sketch processing research

[Liu et al. 2018; Xu et al. 2014] repeatedly suggests

that viewers perceive the tangents of drawn strokes to be more ac-

curate than their exact locations. This suggests that viewers do not

expect the aggregate curves, or strip paths, to follow the cluster’s

centerline, i.e. to be strictly equidistant from the cluster’s outermost

side strokes (inset, red), but rather, expect them to align with the

stroke tangents (inset, green). Based on these observations, we pri-

oritize tangent alignment over centrality when computing the strip

parameterizations and paths.

Thus we look for a stroke cluster parameterization that is a re-

striction of the arc length parameterization of the aggregate strip.

While the strip itself is unknown, the observations above suggest

that its restriction to the strokes in the cluster should satisfy the

following properties:
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Tangent Alignment: The gradient of the arc length parameteri-

zation of a strip is parallel to the path tangent; the path tangent is, in

turn, expected to be closely aligned with the stroke tangents along

each isoline. We thus expect all pairs of WTS adjacent points p,p′

belonging to different strokes, where p,p′ is orthogonal to the path

tangent, to have the same iso-value u; in other words, we expect

the parameterization isolines to be approximately orthogonal to the

stroke tangents at stroke points along the isoline.

Arc Length Preservation: The gradient of the arc length pa-

rameterization of a strip, averaged over an isoline, has unit norm.

We expect the same property from the arc length parameterization

of a cluster.

Monotonicity: The arc length parameterization of a strip is, by

definition, strictly monotonic along its gradient direction. We thus

expect the parameter values u to strictly monotonically increase (or

decrease) along each individual stroke. We note that, combined with

tangent alignment, monotonicity implies that the gradients of u at

all stroke points along each isoline should have similar directions.

Isoline Span: We define pairs of points p,p′ on different strokes

as side-by-side if the line p,p′ is orthogonal to either τ (p) or τ (p′).
Perception and consolidation research [Liu et al. 2018] suggest that,

absent evidence to the contrary, viewers perceive side-by-side stroke

points with similar stroke tangents as WTS adjacent . Combined

with tangent alignment, the isoline span property suggests that,

absent a conflict with the properties above, we expect all side-by-

side pairs of points to be adjacent within the strip, and thus to have

similar u values in our parameterization.

We formally express these requirements as a combination of an

objective function and a set of constraints, described next, and refer

to a parameterization satisfying these requirements as joint.

3.2 Formulation
We formulate our objective using the following derivation. For a

non self-intersecting strip S ⊂ R2, its arc length parameterization

u : S → R is the minimizer of the following variational problem:

min

u

∫ L

0





 1

W (t)

∫
C(t )

∇u(x)dx − τ (t)





2 dt, (1)

where the outer integral is with respect to t , the arc length of the

strip centerline; the inner integration is over each straight line cross-

section C(t) with lengthW (t), crossing the strip perpendicular to

the centerline, as defined in Sec. 3.1 (see Appendix B for a proof).

However, applying this formulation as-is to strokes is problematic

since ∇u is not clearly defined. We recall that the arc length param-

eterization satisfies the following properties: its gradient is always

parallel to the centerline tangent, and its average over each gradient

orthogonal cross-section has unit length. Thus instead of minimiz-

ing Eq. (1) we can equivalently minimize the projections of the

expression inside the norm onto the centerline tangent and normal.

Since for the arc length strip parameterization ∇ u(x) · n(t) = 0

at every point x and its corresponding centerline parameter t , and
( 1

W (t )

∫
C(t ) ∇u(x)dx −τ ) ·τ =

1

W (t )

∫
C(t ) ∇u(x) ·τdx − 1, the expres-

sion for u in Eq. 1 has the same minimizer as the following:

∫ L

0

���� 1

W (t)

∫
C(t )

∇u(x) · τ (t)dx − 1

����2 dt+∫ L

0

∫
C(t )

|∇u(x)·n(t)|2dxdt

These terms are much more amenable to computation on stroke

clusters, since ∇u(x) · τ (t) can be well approximated by the direc-

tional derivative of u along each stroke, and ∇u(x) · n(t) can be

approximated using samples on different strokes that are WTS

adjacent along the normal direction.

This formulation relies on the notion of a path tangent τ and a

normal n, which are unknown. However, if we were given the cross-

sections C(t), we could approximate τ as the averages of stroke

tangents τ along each cross-section and replace the normal n with

the vector perpendicular to τ , denoted n. Our formulation then

becomes,

E
length

=

∫ L

0

���� 1

W (t)

∫
C(t )

∇u(x) · τ (t)dx − 1

����2 dt (2)

E
align
=

∫ L

0

∫
C(t )

|∇u(x) · n(t)|2dxdt (3)

min

u
Earc = min

u
(E

length
+ E

align
) (4)

Here E
length

promotes arc length preservation, while E
align

pro-

motes tangent alignment.

3.2.1 Discretization. We discretize the combined energy function

Earc and solve for the parameter values at densely sampled points

along the cluster strokes that jointly minimize it as follows.

Notation: We discretize input strokes as densely-sampled poly-

lines (Appendix F). A sample on an input stroke s then can be

described as {s, i}, where i refers to the sample index. We denote the

sample position as ps ,i , its unit tangent as τs ,i , and the unknown

parameter value as us ,i . For brevity, when referring to generic point

samples, we drop the indexing and use p to describe positions and

τ (p) to describe unit tangents. Finally, we encode a cross-section

C(u) as a sequence of point samples C = {a} = {(s, i)}.
We convert the integral formulation above into a finite summation

by using a finite set of isoline cross-sectionsC(u), defined for a dense
set of parameter values u. We define the cross-section tangent as:

τ (C) :=

∑
(s ,i)∈C ds ,i osτs ,i

∑
(s ,i)∈C ds ,i osτs ,i



 (5)

Here os ∈ {1,−1} is a per-stroke direction variable indicating

whether the parameterization gradient at stroke s is expected to

be ascending (os = 1) or descending (os = −1) with respect to the

original stroke orientation. Each tangent in this sum is weighted by

the size of the dual cell of the corresponding point along the cross-

section: If (s ′, i ′), (s, i), (s ′′, i ′′) are three consecutive points along
the cross-section, then ds ,i =

1

2
(


ps ′,i′ − ps ,i



 + 

ps ,i − ps ′′,i′′


).

The finite difference discretization of Eq. 2 then yields:

E
length

(u) =
∑
C

©­«
∑

(s ,i)∈C

ds ,i
DC

(us ,i − us ,i−1)τs ,i
ls ,i

· τ (C) − 1

ª®¬
2

, (6)
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(a) Input (e) Relaxed Parameterization (g) Curve Fitting(f) Final Parameterization
(b)

-1

1

1

-1

1

1
(d) Stroke-Othogonal 

Cross-Sections

Gradient Orientation Arc Length Cluster
Parameterization

(c)

Fig. 6. Overview: StrokeStrip first computes compatible parameterization gradient directions (c) for all cluster strokes (a) by formulating direction choice as a
binary labeling problem on a graph (b) whose nodes correspond to strokes, and whose positive and negative edge scores reflect the degree of affinity between
them. It then jointly parameterizes the cluster using a variational framework (d-f); starting with a initial set of stroke-orthogonal cross-sections (d) it gradually
obtains both a relaxed parameterization and pairwise likelihoods (green to red) for side-by-side points on these cross-sections of being WTS adjacent. It uses
this relaxed parameterization as a starting point to compute our final arc length parameterization (f), used to compute our fitted curves (g).

where we normalize the sum by the length of the cross-section

DC =
∑
(s ,i)∈C ds ,i , i.e. a discretization ofW (t), and ls ,i is the length

of a segment along the polyline: ls ,i =


ps ,i − ps ,i−1




.

The discretization of Eq. 3 yields:

E
align

(u) =
1

2

∑
C

∑
a,b ∈C

(ua − ub − τ (C) · (pa − pb ))
2

(7)

We solve for the u values that minimize

Earc = E
length

+ E
align

(8)

subject to monotonicity constraints, expressed as

(us ,i − us ,i−1)os ≥
ls ,i
2

∀ s, i . (9)

Our choice of a right-hand side value that reflects the local sam-

pling density along each stroke makes the constraints robust to

uneven sampling density, and encourages more uniform velocity.

We fix the parameter interval in place, by constraining the pa-

rameter value of a single stroke point u0,0 = 0.

3.3 Solution Overview
Computing the minimizer of the constrained optimization problem

above requires solving for three sets of variables: the parameter

values at all stroke points, the gradient orientations along strokes,

and the sets of stroke points on each isoline cross-section. Account-

ing for the two latter sets of discrete variables while computing the

parameterization gives rise to a difficult mixed discrete-continuous

optimization problem which cannot be addressed using standard

optimization strategies. We obtain the desired minimizer by em-

ploying a tailored solution mechanism that leverages the unique

properties of our problem.

We recall that tangent alignment requires stroke gradient orien-

tations along each isoline to be similar, and that the isoline span

property suggests that most side-by-side points on adjacent strokes

should have similar isovalues. Since stroke tangents are expected

to change gradually, these properties suggest that the oriented tan-

gents at most side-by-side points should point in the same direction

(Figs. 6b, 7). We use these observations to compute gradient ori-

entations os along all strokes as a first step toward computing the

parameterization (Sec. 4, Fig. 6b). We obtain the orientation choices

that optimize directed tangent similarity across all pairs of side-by-

side points, and are therefore likely to allow for maximally wide

isoline span. We formulate the computation of the desired orienta-

tions as a binary graph labeling problem, where the edge weights

reflect the likelihood of pairs of strokes to share side-by-side WTS

adjacent points . With the orientations computed, our monotonicity

constraints (Eq. (9)) become simple inequalities, simplifying the rest

of the processing.

Our core parameterization step computes the desired arc length

cluster parameterization by solving for the cross-section isolines

C(u) and the isovalues along them (Sec 5). Specifically, we first

identify an initial set of side-by-side points likely to be WTS adja-

cent by forming stroke-orthogonal cross-sections (Fig. 6d, Sec. 5.1).
These cross-sections join together points that are largely expected

to have similar isovalues in our target parameterization, but that

may not satisfy tangent alignment. We solve for a relaxed joint

parameterization that is arc length preserving and assigns similar

values to WTS adjacent points on these cross-sections, subject to

monotonicity constraints (Sec. 5.2). Specifically, we associate WTS

adjacency likelihood variables with each pair of points along the

cross-sections and simultaneously solve for parameter values and

likelihoods. The minimizers of our relaxed formulation closely ap-

proximate the optimal solutions we seek, and we therefore use them

as initial guesses for a local optimization step that generates our

desired final parameterizations (Sec. 5.3).

4 GRADIENT ORIENTATION
The first stage of our algorithm assigns a gradient orientation oi ∈
{−1, 1} to each stroke i in the cluster. Intuitively, we seek orienta-

tions that maximize tangent alignment, i.e. result in similar tangent

directions oiτ (pi ) and ojτ (pj ) at side-by-side points pi and pj on
strokes i and j that viewers perceive as WTS adjacent (Fig. 7). While

we do not a priori knowwhich side-by-side points areWTS adjacent,

we aim to maximize isoline span by maximizing the overall number

of side-by-side points with similar tangent directions. Maximizing

tangent direction similarity at such points increases the likelihood of

these points having similar isovalues in the output parameterization

(Figs. 7, 8).

We note that any strip allows for two equal quality parameteri-

zations with inversely oriented gradients. We address this degree
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(a) (b) (c) (d) (e) (f)

0

L

Fig. 7. Gradient orientations along individual strokes drastically impact the
properties of the resulting parameterization: Forcing the parameterization
gradients to align with arbitrary input stroke orientations (indicated by
arrows) (a) leads to parameterizations with distinctly different u values at
points viewers perceive as WTS adjacent (b) , and leads to fitting outcomes
inconsistent with viewer expectations (c). Our joint orientation method
consistently orients strokes perceived as WTS adjacent (d), leading to better
parameterization (e) and fits (f).

of freedom by arbitrarily setting o0 = 1. Our problem can now be

recast as one of solving for o1, . . . ,oN that, jointly with o0, best
satisfy the requirements above. In the following, we first consider

the optimal choice of orientations for a cluster consisting of a single

stroke pair (Sec. 4.1, Fig 8), then generalize the problem formulation

and solution method to clusters with multiple strokes (Sec. 4.2).

4.1 Optimal Pairwise Orientation.
Given a pair of strokes si and sj , we keep oi fixed and cast the

problem of computing oj as one of finding the pairwise orienta-

tion compatibility oi j ∈ {−1, 1} (where 1 indicates similar and -1

indicates opposite) such that the j-th stroke orientation oj = oi joi
maximizes the quality of the parameterization of a cluster that con-

sists of only these two strokes . We choose the optimal solution by

evaluating the properties of the parameterizations that each of the

two choices induces, accounting for the following considerations,

illustrated in Fig. 8:

TangentCompatibility: We consider a parameterizationwhose

isoline cross-sections include points on both si and sj to be compati-
ble if the angle between the oriented tangents oiτi (p) and oi joiτj (p′)
along all cross-sections C = (p,p′), where p ∈ si and p

′ ∈ sj , is be-
low 90

◦
(Fig. 8ac). This requirement follows from the combination

of our monotonicity and tangent alignment properties.

Isoline Span: To best satisfy the isoline span property, we prior-

itize tangent-compatible parameterizations with isolines that span

both strokes over those that do not (Fig. 8a).

Narrowness: Given two tangent compatible pa-

rameterizations induced by the two choices of oi j
that include cross-sections that span both strokes

(see inset), we prioritize the parameterization with

the shortest cross-section. This preference is mo-

tivated by the expectation that human observers

interpret clusters as narrow strips [Liu et al. 2018];

thus, given two alternatives, they prefer a more nar-

row interpretation (Fig. 8b).

As we prefer parameterizations that satisfy the isoline span re-

quirement, we first assess if each orientation choice oi j allows for
a tangent compatible parameterization whose cross-sections span

✗ ✗ ✗✓ ✓ ✓

(a) (b) (c)

Fig. 8. Stroke pair configurations with preferred (right) and sub-optimal
(left) orientation choices (arrows show orientation). Coloring visualizes the
joint parameterization imposed by each order. (a) the preferred orientation
results in a parameterization that is tangent compatible and better satisfies
isoline span; (b) the preferred orientation induces a more narrow strip; (c)
the preferred orientation results in a tangent compatible parameterization.

both strokes. If both allow for compatible parameterizations, we

choose the orientation that induces more narrow strips (Fig 8b). If

only one orientation allows a compatible parameterization that satis-

fies the isoline span property, we use this orientation choice (Fig 8a).

If no orientation choice allows for a parameterization

that satisfies both properties, we locate the closest pair

of endpoints on the two strokes i and j, and compute

oi j that minimizes the difference between the oriented tangents at

these endpoints (see inset). This choice induces a strip geometry in

which one stroke is the continuation of the other (Fig 8c).

Proxy Parameterization. A possible approach to evaluate the im-

pact of each choice of oi j is to directly compute the parameterization

it induces (Sec. 5), and then assess the result with respect to the

properties above. Such a computation is time consuming, and can

be replaced by a much faster proxy parameterization computation

that is sufficient for our needs. Specifically, we note that the cri-

teria above are based only on cross-section width and span, and

tangent similarity at cross-section endpoints. Accordingly, instead

of computing a full parameterization, we form a set of tentative

cross-sections and use them for assessing both properties.

For each choice of oj , we first compute tangent compatible, stroke-

tangent-aligned cross-sections.We then extend the proxy parameter-

ization they induce along the rest of the strokes by introducing addi-

tional well-spaced cross-sections. Since tangent alignment advocates

for cross-sections to be orthogonal to the strokes, we form our first

set of cross-sections by shooting orthogonal left and right rays from

evenly sampled points p on each stroke s ∈ si , sj and recording the

intersections

p′ of these rays with the other stroke. We add p,p′ to
the set of cross-sections if the following is satisfied:

(1) the oriented tangents at the two points p and p′

satisfy tangent compatibility, and (2) the orthogonal

to the second stroke atp′ intersects the stroke s . If this
test fails (see inset,p,p′ in blue),p is not viewed by ob-
servers as being next to p′. If the set of cross-sections
computed this way is empty, the assessed orientation

does not allow for a tangent-compatible parameterization.

⋮⋮

Given a non-empty set of stroke-orthogonal

cross-sections (inset, blue and red) we lever-

age the expectation that output parameterization

should be arc length preserving to introduce cross-

sections through all points p on the two strokes than are not cur-

rently part of a cross-section (orange and cyan in the inset). For each

such point p, we locate the nearest cross-section endpoint p along

its underlying stroke s . We use the cross-section p,p′ to pair the

point p with a point p′ located at the same signed arclength distance
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from p′ as p is from p (see inset, green and orange,right). If cross-

sections added this way violate tangent compatibility, the assessed

orientation does not allow for a compatible parameterization.

4.2 Global Solution
A brute force approach for obtaining the orientations resulting in the

best parameterization for larger clusters would be to compute proxy

parameterizations for each possible orientation combination and

to select the best combination using similar criteria to ones above.

However, this approach is clearly too computationally expensive.We

compute a set of orientations that leads to high quality parameteriza-

tions by noting that, given a cluster with more than two strokes, pair-

wise preferences, computed independently for each pair of strokes

in the cluster, are strongly suggestive of the globally optimal orien-

tation choice. More specifically, when all pairwise preferences are

s1

s0

s2

o0,2=1o1,2=1

o0,1=1

o1,2=1
s0

o0,1=1

o0,2=-1

s1

s2

compatible (inset, top), using these preferences

as-is leads to the desired outcome; however, when

the preferences are globally contradictory (inset,

bottom), we can still reliably predict which pair-

wise choices are more likely to impact the global

outcome by assessing the geometry of each pair

as detailed below. These observations motivate

our solution approach: we first compute compat-

ible orientations for each pair of strokes in the

cluster (Sec. 4.1). We then use these pairwise choices and their pre-

dicted impact on the overall parameterization quality to compute

the orientation choices across the entire cluster.

Formulation. For each pair of strokes, we compute pairwise ori-

entation compatibilities oi j ∈ {−1, 1} as described in Sec. 4.1. We

associate with each pair an impact scorewi j , indicating how critical

satisfying orientation compatibility for this pair is for optimizing

the quality of the overall output parameterization. Using these val-

ues, the optimal set of orientations is given by the solution to the

following mixed-integer quadratic programming (MIQP) problem:

min

oi ∈{−1,1}

n−1∑
i=1

n∑
j=i+1

oi jwi j (oi − oj )
2

(10)

We compute the optimal variables oi using the integer programming

solver provided by the Gurobi optimization toolbox [2020]. For

simplicity, instead of keeping track of the per-stroke orientations in

the rest of the computation, for each stroke with oi = −1, we flip

the stroke orientation. In the rest of the computation, we use the

directed stroke tangent as-is for all computations and require the

gradient of u to be positive along all strokes.

Pairwise Impact Scores. When determining the importance of each

individual pair satisfying the pairwise orientation relation computed

in Sec. 4.1 within the global parameterization, we consider similar

factors to those used in consolidation literature when assessing how

likely strokes are to belong to the same cluster [Liu et al. 2018]:

tangent similarity, distance, and the relative length of their side-

by-side sections compared to their overall length. As we aim for

a globally tangent-aligned parameterization, we prioritize pairs

which demonstrate stronger tangent alignment along shared cross-

sections; since we aim for narrow clusters, we prioritize pairs with

Fig. 9. Arc Length Cluster Parameterization: (a) Initial stroke-orthogonal
cross-sections (green), sub-sampled for visual clarity; red and orange cross-
sections filtered out due to violating tangent similarity and inter-stroke
spacing respectively; (b) relaxed parameterizations and pairwise WTS adja-
cency likelihoods (red low, green high) across solution iterations; (c) final
isolines and parameterization.

shorter cross-sections; and lastly, we prioritize pairs which have a

larger percentage of points on shared cross-sections. Given all cross-

sections computed in Sec. 4.1, which we denote by Ω, we compute

the average angle between cross-section endpoint tangents as

ϕi j =
1

|Ω |

∑
(a,b)∈Ω

arccos

(
oi jτi ,a · τj ,b

)
.

We set the alignment score w̃i , j as,

w̃i , j =


1, ϕ < αmin

e
−(ϕ−αmin )2

2σ 2 , αmin ≤ ϕ < αmax

0, αmax ≤ ϕ

(11)

Following perception studies that indicate that observers see lines

as parallel when the angle between them is under 20
◦
[Hess and

Field 1999], we set αmin = 10
◦
and αmax = 20

◦
, and use the three

sigma rule to set σ = (αmax − αmin )/3 to allow a smooth fall off. If

|Ω | = 0, we set w̃i , j = 0.

We define the impact scorewi j as

wi j =
w̃i , j + ε

1 +min(a,b)∈Ω ∥a − b∥2
max

{
|Ω |

min(Ni ,Nj )
,
1

2

}
where ε = 10

−2
and Ni ,Nj are the total numbers of samples on the

respective strokes used in our parameterization computation above.

5 ARC LENGTH CLUSTER PARAMETERIZATION
The energy function we aim to minimize (Eq. 8) is non-linear and,

in the general case, non-convex. Most importantly, this function is

defined via the cross sections which are a priori unknown; conse-
quently, minimizing it — or even assessing it — requires identifying

points on different strokes that belong to the same cross-section.

To identify cross sections, we face two chicken and egg problems.

First, we expect the cross-sections to be orthogonal to the parame-

terization gradient, but we need a parameterization to compute this

gradient. Second, we expect our cross-sections to lie entirely inside

the envisioned strips; however, we do not a priori know the strip

geometry, and thus the strip outlines.

We address these challenges with a three-step process. We first

note that tangent alignment suggests that stroke tangents can of-

ten serve as a plausible proxy for parameterization gradients. To

this end, we initialize our parameterization computation using

stroke-orthogonal cross-sections, rather than gradient orthogonal
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ones (Sec. 5.1, Fig. 9a). To maximize isoline span, we form max-

imally long cross-sections, absent evidence of them connecting

points which are highly unlikely to be WTS adjacent (Fig 9a). We

expect most, if not all, points on these cross-sections to be WTS

adjacent, and thus aim for them to have similar isovalues; we do

not, however, expect these cross-sections to be strictly gradient or-

thogonal. Motivated by these observations, we introduce a relaxed,
outlier-robust parameterization formulation that aims to jointly

minimize both the arc length distortion along the cluster strokes

and a relaxed alignment term, which seeks to assign similar values

to a maximal subset of point pairs on common cross-sections which

are deemed as likely to be WTS adjacent (Fig. 9b, Sec. 5.2). The

parameterization that minimizes this relaxed energy serves as a suit-

able initial guess for computing our target joint parameterization

which strictly satisfies tangent alignment (Sec. 5.3, Fig. 9c).

We extend the method to detect and parameterize clusters that

jointly depict closed curves in Appendix D.

5.1 Stroke-Orthogonal Cross-Sections

p

To form stroke-orthogonal cross-sections, we

densely sample points p along each stroke (black

in the inset, gray arrows indicate tangent direc-

tions), shoot stroke-orthogonal left and right rays

from each sampled point, and compute the intersections of these

rays with all cluster strokes. Notably, some of these intersections

may not be WTS adjacent to the source point p . We filter such

points out using a combination of local and contextual filters.

Specifically, we form initial stroke-orthogonal cross-sectionsC(p)
comprised of the sample p and all ray-stroke intersections p′ that
satisfy the following three criteria (green in the inset):

Tangent Compatibility: As in Sec. 4.1, we only include ray-

stroke intersections p′ in C(p) if the angle between the oriented

stroke tangents at p and p′ is smaller than 90
◦
(in the insets, the red

intersections do not satisfy this property).

p'
p

40°

Tangent Similarity: Perceptual literature [Hess
and Field 1999] and consolidation research [Liu et al.

2018] indicate that human observers are unlikely to

see lines as parallel if the angle between them exceeds

20
◦
. We therefore only include ray-stroke intersec-

tions p′ in C(p) if the angle between the oriented

stroke tangents at consecutive points p′ and p′′ is below this thresh-

old (in the inset, the blue intersection does not satisfy this property).

Connectedness: We expect strips and hence cross-sections to

be continuous. Thus, given three consecutive points a,b, c along the
ray, if a and b are notWTS adjacent, then neither are a and c . We

therefore only include intersections p′ in C if all ray-stroke inter-

sections along the segmentpp′ satisfy both alignment and similarity.

p

Spacing: This local filtering resolves the most com-

mon scenarios of cross-sections extending outside the

intended strip, but does not address cases where a ray

intersects two or more separate similarly oriented sec-

tions of an intended strip (see inset). We require a prin-

cipled way to identify and resolve such configurations. We note

that human observers are likely to separate parallel stroke groups

from one another when the distance between these groups along

the stroke orthogonal direction is significantly bigger than the inter-

stroke distances within the groups [Liu et al. 2018; Wagemans et al.

2012].

In our context, this observation argues for separating distinct

side-by-side strip sections by assessing distances between pairs of

consecutive intersections {p′,p′′} along the rays; if the distance

dp′,p′′ = ∥p′ − p′′∥ between one pair of points is much larger than

the distances between other consecutive pairs in its vicinity, this

suggests that the segment p′,p′′ is likely to be outside the strip.

We employ a conservative version of this criterion, and compare

the distance between consecutive ray intersections to the widths

of entire adjacent cross-sections. We define the neighborhood of

a cross-section C of widthW as the set of all cross-sections with

points at a distance less thanW from any c ∈ C . We compute the

median cross-section widthWc within this neighborhood. For each

pair of consecutive intersections {p′,p′}′ in C where p′ is closer
to the ray origin p, if dp′,p′′ >Wc (1 + Smax ) we remove p′′ (pink
in the inset) from the cross-section (we set Smax = .2). We satisfy

connectedness by removing from C all points along the ray that are

further away from the origin than p′′.

5.2 Relaxed Joint Parameterization
Our initial set of stroke-orthogonal cross-sections defines, for each

stroke point, a set of side-by-side potentially WTS adjacent points

on neighboring strokes. We use these sets to compute a relaxed joint
parameterization, which promotes arc length preservation along

each strokes and minimizes parameter value differences between

side-by-side points on different strokes which are likely to be ad-

jacent. This then serves as a good initial guess for our target joint

parameterization (Sec. 5.3).

We formulate the goal of our relaxed joint parameterization u as:

min

u
E
relaxed

= E
length

(u) + E
similar

(u) (12)

E
similar

(u) =
1

2

∑
C

∑
a,b ∈C

L(a,b)(ua − ub )
2, (13)

where E
length

is defined by Eq. 6, L(a,b) measures the likelihood

of the points a,b to be WTS adjacent, and E
similar

(u) promotes

assigning similar isovalues to side-by-side points which are likely

to be WTS adjacent.

Our formulation of L(a,b) is motivated by the following obser-

vations. Since strips allow for a strictly arc length preserving pa-

rameterization, we expect the values of both our target and relaxed

energies to evaluate to near zero given the optimal parameter values

u. Thus, given either the target or relaxed parameterizations, we

expect the parameter space distance between nearby WTS adjacent

points to be close to zero; ergo the farther apart such points are

in parameter space, the less likely they are to be WTS adjacent

. Thus, the difference between u values at points along the same

stroke-orthogonal cross-section can be used as a predictor of WTS

adjacency between them. Based on this observation, given a pair of

points a and b along a common stroke-orthogonal cross-section C ,
we define the likelihood that these points are WTS adjacent as:

L(xa, xb ) = e
−(ua−ub )

2

2σ 2 . (14)
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We set σ = L/30, using the three-sigma rule: we consider points

with u values more that 1/10th of the entire parameter space length

apart as unlikely to be adjacent.

Solution. We compute τ (C) on the initial cross-sections and keep

it fixed throughout the iterations. We then find the parameterization

u that minimizes E
relaxed

by using alternating local-global optimiza-

tion iterations. Our local step computes the likelihoods L(a,b) for
every pair of points (a,b) ∈ C based on the current parameter val-

ues u. Our global step keeps these likelihoods fixed, and uses them

to compute the parameter values u that minimize E
relaxed

(Eq. 12).

With τ (C) and L(a,b) fixed, the energy function minimized in each

global iteration becomes a simple quadratic function, which needs

to be minimized subject to linear inequality constraints. We solve

the QP problems posed by each iteration using the interior-point

method implementation in the CVX optimization toolkit [Grant and

Boyd 2008, 2014].

The steps are iterated until convergence; specif-

ically, we terminate once the largest change in pa-

rameter values u, across all participating stroke

points, drops below 1/2 of the stroke’s width. Our

method typically takes at most seven iterations to

converge. The average per-cross-section energy in

each step for the cluster in Fig. 9b is shown in the inset.

Initialization. To obtain an initial outlier-robust guess for u, we
minimizeE

relaxed
using a set of fixed small likelihood valuesL(a,b) =

L0 = 10
−5
, and rewriting E

similar
(Eq. 7) to use the L1-norm, which

is known to be less sensitive to outliers:

E
similar

(u) =
1

2

∑
C

∑
a,b ∈C

L0 |ua − ub |

This formulation strongly prioritizes arc length preservation (Figs 6e,

9b). Notably since the minimizer of E
relaxed

is expected to minimize

both E
length

and E
similar

independently, we expect the valuesua and

ub in the output to only diverge in the vicinity of stroke-orthogonal

cross-sections that join points which are not WTS adjacent.

5.3 Final Parameterization
We use the relaxed joint parameterization computed in the pre-

vious step as an initial guess for minimizing Earc (Eq. 8) subject
to monotonicity. At each iteration, we form cross-sections C(u)
by evenly sampling the current parameterization u and grouping

all stroke points with the corresponding isovalues. We solve the

resulting QP problems using the mechanism described in Sec. 5.2.

We require at most two iterations to converge to

a desired solution, using the same convergence

criterion as in Sec. 5.2 (Figs 6c, 9, 10). The aver-

age per-cross-section energy for the cluster in

Fig. 9c is shown in the inset, with the result of

Sec. 5.2 as iteration 0.

6 AGGREGATE CURVE FITTING
We aim to fit aggregate curves X̃ (u), u ∈ [0, L] to input clusters

such that the curve shape at a parameter value u is reflective of the

average shape of the cluster’s strokes at the u iso-value. Prior litera-

ture [Liu et al. 2018; Xu et al. 2014] suggests that viewers perceive

Input
Final 

Parameterization(a) (b) (c) (d)

Fig. 10. Starting with a near-optimal parameterization, (a) we minimize Earc
reducing arc length distortion and producing straight, gradient orthogonal
isolines (c), leading to improved fitting outcomes (b,d).

(a) Input (b) Positions (c) + Tangents (d) + Curvatures

Fig. 11. Fitting alternatives: accounting for curvature, positions and tan-
gents (d) produces fits more consistent with viewer expectations than when
accounting for only positions (b) or positions and tangents (c).

the tangents of artist drawn strokes as more accurate than their

exact location, motivating us to explicitly account for tangents in

our framework, and to prioritize tangent alignment over average po-

sition preservation. Our observations further indicate that viewers

expect the curvature of the fitted curve to be reflective of that of the

underlying strokes. In particular, while the average tangent orienta-

tion can change abruptly near stroke endpoints (Fig. 11a), human

observers expect the change in the tangent of the fitted curve (its

curvature) to be more gradual when the curvature of these strokes

is low (Fig. 11d).

We consequently formulate curve fitting as an optimization bal-

ancing three terms: curvature preservation, tangent alignment, and

average position preservation (Fig. 11d). In other words, we seek a

curve X̃ (u) that minimizes

X̃ (u) = argmin

X̃

∫ L

0

( 


X̃ (u) − p(u)



2 + λ1 


T̃ (u) − τ (u)




2
+λ2




K̃(u) − k(u)



2 )du (15)

Here, T̃ (u) and K̃(u) are the unit length tangent and curvature of

the curve X̃ (u) at u, λ1 and λ2 are weights controlling the relative
impact of the different terms, τ (u) is the average of the tangents of
stroke samples along the u isoline C(u), computed per Eq. (5), p(u)
is the average of the positions of stroke samples along the u isoline,

p(u) =
1

|C(u)|

∑
(s ,i)∈C(u)

ps ,i ,

and k(u) is the average of the curvature values at these samples,

k(u) =
1

|C(u)|

∑
(s ,i)∈C(u)

(τs ,i+1 − τs ,i−1) · τ
⊥
s ,i

ps ,i − ps ,i−1



 + 

ps ,i+1 − ps ,i




where ps ,i are sample positions, and τs ,i are the unit tangents at
these samples.
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We discretize X̃ (u) by using a finite set of parameter values uj ∈

[0, L] and represent it as a polyline with edges {X̃ (uj ), X̃ (uj+1)}:

X̃ (uj ) = argmin

X̃

∑
j




X̃ (uj ) − x(uj )



2 + λ1 


T̃ (uj ) − τ (uj )




2
+λ2




K̃(uj ) − k(uj )



2 . (16)

Unit length tangents and curvatures are non-linear functions of

point positions, and therefore directly solving for X̃ is computation-

ally expensive. We solve for the position X̃ (uj ) by approximating

the minimization above via two linear solves. Instead of directly

computing the positions X̃ (uj ), we first compute the joint tangents
τ̃j that balance curvature preservation and tangent alignment. We

then use these tangents to compute the positions.

Assuming arc length parameterization of the input strokes, we

apply the Frenet-Serret formulas to get τ ′(u,p) = k(u,p)n(u,px),
where n(u,p) is the unit normal and k(u,p) is the curvature at a

point, to solve for tangents at uj :

min

τ̃

∑
j



̃τj − τ (Cj )


2 + λC







 τ̃j − τ̃j−1


τ (Cj ) · (p j − p j−1)



 − kjτ

⊥(Cj )








2

(17)

We then normalize the computed joint tangents to have unit length,

and compute the point positions X̃ (uj ) as the minimizers of

min

X̃ (uj )

∑
j

(X̃ (u)j − p j )
2 + λT







 X̃ (u)j − X̃ (u)j−1


τ (Cj ) · (p j − p j−1)



 − τ̃j








2

. (18)

We set λC = 10
3
and λT = 10

4
, prioritizing curvature preservation

over tangent alignment and deemphasizing position preservation.

7 RESULTS AND VALIDATION
Throughout the paper we demonstrate our fitting and underlying

parameterization methods on 9 vector format drawings containing

214 clusters, and 31 additional single-cluster inputs. An additional

71 drawings totaling 1,618 clusters are included in the supplemen-

tary material. In multi-cluster drawings, clusters were labeled semi-

manually using the clustering of [Liu et al. 2018] as a starting point,

but without employing their preprocessing step which cuts strokes

into smaller clusters for easier fitting. These examples include self-

intersecting clusters (e.g. Figs. 1, 17), narrow U-shapes (e.g. Fig. 14,

col 3 and Fig. 15, right) spirals (e.g. Figs 14, right; 6), clusters with

sudden curvature changes (e.g. eyebrows in Figs. 1), and ones with

large gaps and tangent differences between participating strokes

(Fig 18). In all cases we successfully compute arc length parame-

terizations that satisfy our core criteria (Sec 3.1), leading to fitting

outputs well aligned with viewer expectations.

Comparison to Prior Art. As Sec. 2 and Fig. 4 demonstrate, methods

that target fitting to 2D point clouds are poorly suited for the task

of fitting intended curves to stroke clusters. We thus focus our

comparisons on recent approaches specifically designed for this

task [Liu et al. 2018; Orbay and Kara 2011]. Figs. 1, 5, 12-15 compare

the fitted curves produced by StrokeStrip to those produced by these

earlier approaches. The comparisons use the fitting output of Liu

et al.’s code as-is. Orbay and Kara provided us their point-sample

ordering code, but were unable to locate the original code they used

for fitting curves to these ordered samples. To visually compare the

fits, we therefore fit curves to their output ordered samples using

the tangent-aware fitting of Liu et al., which we expect to provide

results on par or superior to the B-spline fitting described in the

original Orbay and Kara paper.

As these figures demonstrate, prior methods perform well on

simple, low-curvature inputs, but frequently fail on more complex

data. Both methods rely on point ordering as a precursor to fitting,

and as the ordering visualizations in these figures demonstrate,

the key reason for their fitting failures is incorrect ordering. The

orderings they produce frequently violate monotonicity and other

key properties identified in Sec. 3.1; our fitting leverages quality

parameterizations which avoid these pitfalls.

Qualitative Comparison. We validate the quality of our results by

comparing them to these alternatives via a comparative perceptual

study. Study participants were shown input drawings, together with

our fitting result and an alternative fitting result, using the following

layout (Appendix C). We include 38 inputs sourced from earlier

papers [Barla et al. 2005; Liu et al. 2018, 2015; Orbay and Kara 2011;

Pusch et al. 2007], and 26 drawings commissioned from 4 artists.

As Orbay and Kara [2011] and Liu et al. [2018] each commissioned

drawings from at least two artists, our inputs include drawings from

at least 11 artists. The input was shown at the top and marked as ‘A’,

and the two fitting results were placed at the bottom in random order

and marked as ‘B’ and ‘C’ . Participants were then asked: “Which of

the clean drawings below, B or C, more accurately depicts the rough

drawing A on top? If both are equally accurate then select ‘Both’. If

neither select ‘Neither’ ”. The answer options were “B”, “C”, “Both”,

and “Neither”. We included 80 questions comparing our results

against Orbay and Kara [2011] and 76 against Liu et al [2018]; we

collected answers for each query from 6 different participants using

the protocol described in Appendix C. The study had a total of 36

participants, with each answering at most 32 questions. Participants

included 1 artist; 8 participants familiar with vector drawing; and

27 participants with no art or graphics experience. All study data is

provided in the supplementary.

Fig. 16 summarizes the study results. Participants preferred our

method over the one of Liu et al [2018] 77% of the time, and preferred

the alternative only 3% of the time. They preferred our method over

the closest alternative [Orbay and Kara 2011] 61% of the time, ranked

the methods as on par 29% of the time, and preferred the alternative

only 5% of the time. Our t-test on the study data indicated that both

results are highly significant; this study convincingly demonstrates

that the curve fitting outputs we produce are more consistent with

viewer expectations than those produced by prior approaches.

We note that on 5 of 156 prior-art comparisons a plurality of

respondents answered ‘Neither’; these occurred on synthetic wide

single clusters used to stress test fitting methods. We believe that

users perceived the input as multiple distinct clusters, and hence

wanted a solution that contains multiple strokes. We fitted these ex-

amples as a single cluster, and suspect users ranked their preference
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(a) Input (e) Input(b) [Orbay and 

Kara 2011]
(f) [Orbay and 

Kara 2011](c) [Liu et al. 2018] (g) [Liu et al. 2018](d) Ours (h) Ours

Fig. 12. Our method successfully fits aggregate curves (d,h) to inputs (a,e) that prior methods of Orbay and Kara [2011] (b,f) and Liu et al. [2018] (c,g) fail on.
Input clusters highlighted in insets (a,e); visibly differently fitted clusters and curves highlighted in orange. Drawings, clockwise from top left, ©Silver Burla,
Enrique Rosales, [Barla et al. 2005], Akshay Sharma (CC-BY-SA).

(a) Input (b) [Liu et al. 2018] (c) Ours

(d) Input (e) [Orbay and Kara 2011] (f) Ours

Fig. 13. Additional comparisons on complete drawings from the Yan et
al. [2020] dataset against Liu et al. [2018] (top) and Orbay and Kara [2011]
(bottom). Insets show ordered points for prior work and cluster parame-
terization for ours rendered using a rainbow color palette. Drawings, top
to bottom, ©Anton Gulic, Patrick Murphy, [Favreau et al. 2016], Akshay
Sharma (CC-BY-SA).

as ‘Neither’, as the final clean drawings from both methods did not

contain the number of fitted strokes they expected.

On 3 of 156 comparisons against prior art, a plurality of respon-

dents preferred the other method to our outputs (Questionnaire 4

#13; Questionnaire 6 #15; Questionnaire 5 #25). The fits on the first

Fig. 14. While the method of Orbay and Kara [2011] fails to produce a
correct order (b) on the input clusters (a) resulting in poorly fitted curves
(c), our framework parameterizes (d) and fits (e) these clusters consistently
with viewer expectations.

two look nearly identical – we speculate that different viewers bal-

ance fit smoothness vs accuracy differently. For Q5 #25, we speculate

viewers perceive the bumps on the bee’s body as pairs of separate

curves, rather than single curves, and thus prefer the hooked fit of

Orbay and Kara [2011]. While viewers may have varying attention

to detail between inputs, and may differ in their preferred balance

of smoothness and accuracy, having multiple participants evaluate

each input and having many inputs helps compensate for this noise.
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(a)
Input

(b)
[Liu et al.

2018] Ordering

(c)
[Liu et al.
2018] Fit

(d)
Our 

Parameterization

(e)
Our Fit

Fig. 15. While the method of Liu et al. [2018] fails to produce a correct
order (b) on the input clusters (a) resulting in poor fitted curves (c), our
framework parameterizes (d) and fits (e) these clusters consistently with
viewer expectations.

[Orbay and
Kara 2011]

[Liu et al. 2018]

Vote Percentage Ours Both Other Neither
0% 20% 40% 60% 80% 100%

Fig. 16. Summary of comparative preferences in our perceptual study. Par-
ticipants strongly preferred our results over algorithmic alternatives.

Comparison to Manual Fitting. Manually fitting curves to stroke

clusters is highly time consuming [Liu et al. 2018; Yan et al. 2020].

We compare the curves fitted by our method to those produced by

manual fitting using a comparative qualitative study that follows

the same protocol as above. Specifically, we collected 27 overdrawn

sketches with corresponding manually traced aggregate strokes

(five from the dataset of [Liu et al. 2018] and the rest from [Yan et al.

2020]). Participants preferred our results 28% of the time, ranked

both our and manual results as equally good 35% of the time, and

preferred the manually traced outputs 37% of the time. Overall, these

results indicate that observer view our results as having comparable

quality to manual outputs. We note that comparisons against human

consolidations are impacted by factors beyond fitting – artists may

modify, suppress or add details during the clustering process, or may

make different clustering choices than our annotator. Observations

of inputs where one result was more strongly preferred suggests that

viewer preferences may originate in such external factors, outside

the scope of our work.

Stress Tests. Figs 17 and 18 show stress-test inputs we tested our

method on. Fig 17 demonstrates our ability to fit intended curve to

highly complex clusters which include multiple intersections and

Fig. 17. (Top) Overdrawn letters of the alphabet and single clusters with
multiple self-intersections, (bottom) correctly fitted by our method.

Input Parameterization Fit Input Parameterization Fit

Fig. 18. Our outputs on clusters with complex branching structures.

turns. We expect our method to be most frequently used on input

clusters that viewers perceive as conveying single intended curves;

however, our framework makes no explicit assumptions about the

cluster structure and, as demonstrated in Fig. 18, can be applied as-is

to general clusters containing strokes which are neither proximate

nor even roughly parallel. Another such example is included in the

supplementary material and the aforementioned comparative study.

Implementation and Runtime. We implemented our parameteriza-

tion method using MATLAB. StrokeStrip takes a median time of 1.6

seconds to fit an aggregate curve per cluster. The runtime increases

as a function of the number of samples and overall cluster com-

plexity. The latter impacts the rate of convergence of our iterative

topology refinement step (Section 5.2). Additional implementation

details are provided in Appendix F.

(a) Raster Input
(b) Adobe Illustrator


Vectorization
(c) [Favreau et 

al. 2016]
(d) Our Fit

Fig. 19. Both vectorization [Adobe 2020] (b) and joint vectorization and
simplification [Favreau et al. 2016] (c) methods frequently fail to generate
clean curves when presented with single raster stroke clusters (a). Using
the basic vectorizations in (b) as input, we successfully fit single intended
curves to this data.

7.1.1 Extensions and Applications.

Raster Data. Our framework targets artist drawn vector stroke

clusters. However, it can typically be successfully applied to vector-

ized raster stroke clusters (Fig 19) with the following minor changes

that account for the differences between the two data sources. Specif-

ically, vectorization methods break strokes at cluster intersections

and vectorized raster strokes have more noisy tangents than human-

drawn inputs. We account for these artifacts as follows. During
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(b) Colorization

(a)

(c) Width Scaling (d) Displacement

Fig. 20. Our parameterization (a) enables cluster level stroke manipulation
tasks such as color interpolation (b), width scaling (c), and deformation (d).
Drawing ©Enrique Rosales.

gradient direction computation (Sec. 4), given pairs of strokes with

no common cross-sections we set the alignment score w̃i , j to be

a function of the angle between the stroke tangents at the closest

stroke endpoints using Eq. 11. This change promotes assigning com-

patible gradient orientations for such pairs. Second, when solving

for a parameterization, we force the parameter values across such

pairs of endpoints to satisfy monotonicity constraints. Finally, dur-

ing fitting, we compensate for unreliable tangents and curvatures

by setting the expected curvature kj to 0 in Eq. 17.

Parameterization-Guided Cluster Manipulation. The benefits of
computing joint stroke cluster parameterizations extend beyond

aggregate curve fitting. Our parameterization can be used for jointly

manipulating different properties of the individual strokes in the

cluster (Fig. 20, Fig. 1f). To manipulate the strokes jointly we first

extend our 1D parameterization to a 2D (u,v) one by arc-length

parameterizing each isoline across the interval [−W /2,W /2] where

W is the isoline width; we setv = 0 for isolines consisting of a single

point. We use this parameterization to propagate user specified

property values at a sparse set of stroke samples across all cluster

strokes by minimizing either Dirichlet or Laplacian energy (finding

harmonic or biharmonic interpolating functions respectively) along

the u and v parameter intervals. We demonstrate this approach by

shading strokes via biharmonic color interpolation starting from

fixed user specified colors at selected points (Fig. 20b). Using our

arc length parameterization produces smooth color change along

and across the clusters. We use the same framework to modify

cluster width - scaling thev isolines by a user given factor (Fig. 20c).

✓

✗
[Orbay and 
Kara 2011]

Ours

Finally, we use biharmonic interpola-

tion to intuitively deform stroke clus-

ters (Fig. 20d, Fig. 1f); we compute

per-point displacements as a function

of user-specified anchor displacements,

and then solve for new point positions

consistent with these changes. The same

framework can be used to compute anchor tangent or normal ro-

tations, in line with Poisson deformation schemes. As the inset

demonstrates, the quality of the parameterization is critical to the

success of the editing task — using the parameterization induced by

the sample ordering of Orbay and Kara [2011] (top) leads to visible

artifacts during deformation.

Input Parameterization Fit

Fig. 21. Our method produces meaningful results on ambiguous inputs, but
these may diverge from viewer expected ones.

The inset demonstrates the use of our (u,v) pa-
rameterization to transfer the style of an exemplar

cluster to a target cluster, generalizing the notion

of a decorative brush [Lu et al. 2014]. Here we first

map the path of the exemplar cluster to the target

curve using arc-length parameterization. We then

use this path as a deformation handle, to which

all other strokes are ‘rigged’.

7.1.2 Limitations. As demonstrated, our framework robustly han-

dles a large and diverse set of inputs. However, given inherently

ambiguous inputs (Fig. 21) it lacks the higher-order reasoning that

may guide viewers when interpreting such data. In these exam-

ples observers may perceive the input on the top as a convoluted

spiral, or the one on the bottom as a messy approximation of a low-

curvature curve. Instead, our framework chooses interpretations

more consistent with tangent alignment and maximal isoline span.

Input

Fit

Parameterization

Our parameterization may converge on a

local minimum instead of the global minimum.

In the left most inset (a cluster from the Yan

et al. [2020] dataset), stroke-orthogonal con-

nections between two sides of a spiral are not

filtered out in Sec. 5.2. As such cases are un-

common, we leave their detection and resolution to future work.

Our ability to fit raster inputs is de-

pendent on the topology of the interme-

diate vector representation; we cannot

correct cluster self-intersections incor-

rectly resolved by the vectorization (see inset). An interesting area

for future work would be to either improve this intermediate data or

develop a parameterization method that selectively relaxes mono-

tonicity to overcome such input imperfections. Finally, our current

MATLAB implementation does not allow for real-time parameteri-

zation; however we expect performance to be improved once the

method is re-implemented using a language geared toward real-time

performance.

8 CONCLUSION
We presented a robust method for fitting and parameterizing stroke

clusters that dramatically outperforms prior art.We achieve this goal

by casting stroke cluster parameterization as the computation of the

restriction to the strokes of the natural arclength parameterization

of the intended strips these clusters depict.

Our method has potential applications outside sketch processing,

such as reconstructing road maps from GPS traces and processing
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of astronomical data, where image processing techniques extract

multiple approximately parallel and nearby paths which need to

be jointly fitted by singe curves [Bo et al. 2016; Chai et al. 2013;

Türetken et al. 2013].

ACKNOWLEDGMENTS
We would like to thank Enrique Rosales, Sari Pagurek van Mossel,

and Silver Burla for creating new art assets, Jerry Yin and Enrique

Rosales for their assistance, and the reviewers for their editing and

suggestions. We acknowledge the support of the Natural Sciences

and Engineering Research Council of Canada (NSERC) grant RGPIN-

2019-05097 (“Creating Virtual Shapes via Intuitive Input”), NSERC

grant RGPIN-2018-03944 (“Broad-Based Computational Shape De-

sign”), NSERC Canada Graduate Scholarship - Master’s, and the

Fonds de recherche du Québec - Nature et technologies (FRQNT)

grant 2020-NC-270087.

REFERENCES
Adobe. 2020. Illustrator. https://www.adobe.com/ca/products/illustrator.html

Rahul Arora, Ishan Darolia, Vinay P. Namboodiri, Karan Singh, and Adrien Bousseau.

2017. SketchSoup: Exploratory Ideation Using Design Sketches. Computer Graphics
Forum (2017).

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: As-Natural-

as-Possible Sketching System for Creating 3d Curve Models. In Proc. UIST. 151–160.
Bin Bao and Hongbo Fu. 2012. Vectorizing line drawings with near-constant line width.

In Proc. International Conference on Image Processing. 805–808.
Ilya Baran, Jaakko Lehtinen, and Jovan Popović. 2010. Sketching clothoid splines using

shortest paths. In Computer Graphics Forum, Vol. 29. 655–664.

Pascal Barla, Joëlle Thollot, and François Sillion. 2005. Geometric Clustering for Line

Drawing Simplification. In Proc. EGSR.
A. Bartolo, K. P. Camilleri, S. G. Fabri, J. C. Borg, and P. J. Farrugia. 2007. Scribbles to

Vectors: Preparation of Scribble Drawings for CAD Interpretation. In Proc. SBIM.

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of Line Drawings via

Polyvector Fields. ACM Trans. Graph. 38, 1, Article 9 (Jan. 2019), 12 pages.
Mikhail Bessmeltsev, Nicholas Vining, and Alla Sheffer. 2016. Gesture3D: Posing 3D

Characters via Gesture Drawings. ACM Trans. Graph. 35, 6 (2016).
Blender. 2021. Grease Pencil. https://www.blender.org/features/grease-pencil/.

Pengbo Bo, Gongning Luo, and Kuanquan Wang. 2016. A graph-based method for

fitting planar B-spline curves with intersections. Journal of Computational Design
and Engineering 3, 1 (2016), 14 – 23.

Dengfeng Chai, Wolfgang Förstner, and Florent Lafarge. 2013. Recovering Line-

Networks in Images by Junction-Point Processes. In Proc. CVPR. 1894–1901.
Jiazhou Chen, Gael Guennebaud, Pascal Barla, and Xavier Granier. 2013. Non-Oriented

MLS Gradient Fields. In Computer Graphics Forum, Vol. 32. 98–109.

Fernando De Goes, David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2011. An

Optimal Transport Approach to Robust Reconstruction and Simplification of 2D

Shapes. Computer Graphics Forum 30, 5 (2011), 1593–1602.

T. Dey, K. Mehlhorn, and E. Ramos. 1999. Curve reconstruction: connecting dots with

good reason. In SCG ’99.
Luca Donati, Simone Cesano, and Andrea Prati. 2017. An Accurate System for Fashion

Hand-drawn Sketches Vectorization. Proc. ICCV (2017).

Luca Donati, Simone Cesano, and Andrea Prati. 2019. A complete hand-drawn sketch

vectorization framework. Multimedia Tools and Applications (2019), 1–31.
Koos Eissen and Roselien Steur. 2008. Sketching: Drawing Techniques for Product

Designers. Bis Publishers.
Gerald Farin. 2014. Curves and surfaces for computer-aided geometric design: a practical

guide.
Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.

simplicity: a global approach to line drawing vectorization. ACM Trans. Graph. 35,
4 (2016), 120.

Mark Finch, John Snyder, and Hugues Hoppe. 2011. Freeform Vector Graphics with

Controlled Thin-plate Splines. ACM Trans. Graph. 30, 6 (2011), 166:1–166:10.
William T Freeman, Joshua B Tenenbaum, and Egon C Pasztor. 2003. Learning style

translation for the lines of a drawing. ACM Trans. Graph. 22, 1 (2003), 33–46.
A. Goshtasby. 2000. Grouping and Parameterizing Irregularly Spaced Points for Curve

Fitting. ACM Trans. Graph. 19, 3 (2000), 185–203.
Stéphane Grabli, Frédo Durand, and François Sillion. 2004. Density Measure for Line-

Drawing Simplification. In Proc. Pacific Graphics.
Michael Grant and Stephen Boyd. 2008. Graph implementations for nonsmooth convex

programs. In Recent Advances in Learning and Control. 95–110.

Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex

Programming, version 2.1. http://cvxr.com/cvx.

Cindy Grimm and Pushkar Joshi. 2012. Just DrawIt: A 3D Sketching System. In Proceed-
ings of the International Symposium on Sketch-Based Interfaces and Modeling (SBIM
’12). Eurographics Association, Goslar, DEU, 121–130.

Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla Sheffer, and Adrien Bousseau.

2020. Lifting Freehand Concept Sketches into 3D. ACM Trans. Graph. 39, 6, Article
167 (2020).

LLC Gurobi Optimization. 2020. Gurobi Optimizer Reference Manual. http://www.

gurobi.com

Robert Hess and David Field. 1999. Integration of contours: new insights. Trends in
Cognitive Sciences 3, 12 (1999), 480–486.

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-rigid-as-possible

Shape Manipulation. ACM Trans. Graph. 24, 3 (2005), 1134–1141.
L. B. Kara and K. Shimada. 2007. Sketch-Based 3D-Shape Creation for Industrial Styling

Design. IEEE Computer Graphics and Applications 27, 1 (2007), 60–71.
Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.

ACM Trans. Graph. 32, 3, Article 29 (2013).
Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O’Brien. 2004. Spectral

Surface Reconstruction from Noisy Point Clouds. In Proc. SGP. 11–21.
In-Kwon Lee. 2000. Curve reconstruction from unorganized points. Computer aided

geometric design 17, 2 (2000), 161–177.

David Levin. 2004. Mesh-independent surface interpolation. In Geometric modeling for
scientific visualization. 37–49.

H Lipson and M Shpitalni. 1996. Optimization-based reconstruction of a 3D object from

a single freehand line drawing. Computer-Aided Design 28, 8 (1996), 651 – 663.

Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: consolidating

raw sketches into artist-intended curve drawings. ACM Trans. Graph. 37, 4, Article
97 (2018).

Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2015. Closure-aware sketch

simplification. ACM Trans. Graph. 34, 6 (2015), 168.
Y. Liu, H. Yang, andW.Wang. 2005. Reconstructing B-spline Curves from Point Clouds–

A Tangential Flow Approach Using Least Squares Minimization. In Proc. Shape
Modeling and Applications. 4–12.

Jingwan Lu, Connelly Barnes, Connie Wan, Paul Asente, Radomir Mech, and Adam

Finkelstein. 2014. DecoBrush: Drawing Structured Decorative Patterns by Example.

In ACM Trans. Graph (Proc. SIGGRAPH).
James McCrae and Karan Singh. 2009. Sketching piecewise clothoid curves. Computers

& Graphics 33, 4 (2009), 452–461.
Patryk Najgebauer and Rafał Scherer. 2019. Inertia-based Fast Vectorization of Line

Drawings. (Proc. Pacific Graphics) 38, 7 (2019), 203–213.
Liangliang Nan, Andrei Sharf, Ke Xie, Tien-Tsin Wong, Oliver Deussen, Daniel Cohen-

Or, and Baoquan Chen. 2011. Conjoining Gestalt Rules for Abstraction of Architec-

tural Drawings. ACM Trans. Graph. 30, 6 (2011). 185:1-185:10.
Gioacchino Noris, Alexander Hornung, Robert W Sumner, Maryann Simmons, and

Markus Gross. 2013. Topology-driven vectorization of clean line drawings. ACM
Trans. Graph. 32, 1 (2013), 4.
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Fig. 22. Top: stroke clusters, bottom: Overlay of aggregate strips partic-
ipants traced for each cluster in our WTS adjacency study. Participants
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A STUDY OF PERCEIVED WTS ADJACENCY
We performed a small scale perceptual study to validate our in-

tuition that human observers are consistent in their perception of

cluster outlines, or sides, and thus consistently differentiate between

pairs of points that are WTS adjacent and those that are not (ones

separated by outlines). Participants were shown individual stroke

clusters (Fig. 22, top) and asked to ”Please trace the sides of the

stroke that is jointly conveyed by the curves below”. The study

included 5 participants and 7 representative clusters of varying

complexity. As the overlays of the traced outputs (Fig. 22,bottom)

show, participants traced the same sets of sides, which satisfied

both the tangent alignment and the isoline span properties. These

findings confirm our key hypotheses: that viewers are consistent in

perceiving stroke clusters as strips, and that the strips they perceive

satisfy the key properties we identified (Sec. 3.1).

B STRIP GEOMETRY
We first note that for a strip with an arc length parameterized cen-

terline γ (t) and variable widthW (t), to avoid local self-intersections,
the centerline’s curvature k(t) has an upper bound as a function

of strip width (a straightforward computation shows that |k(t)| <
1/W (t)). Here we assume strips do not have local self-intersections.

For such a strip, we formally define its arc length parameterization

u(x) as coinciding with the arc length parameterization at the

centerline, and constant along each normal cross-section C(t) =

{γ (t) + an(t)|a ∈ [−
W (t )
2
,
W (t )
2

]}. Hence, for some point x = γ (t) +
an(t) at the distance of a from the centerline, the gradient of its

arc length parameterization is tangent to τ (t) = γ ′(t) and is simply

Fig. 23. Question layout in our comparative study.

∇u(x) = (γ (t) + an(t))′ = τ (t)(1 − ak(t)). (Here we used the Frenet-

Serret formula n′(t) = −k(t)τ (t)). We now prove:

Lemma B.1. For a strip as defined above, the average of the arc
length parameterization gradients along each normal cross-section
C(t) is the centerline unit tangent; i.e.:

1

W (t)

∫
x ∈C

∇u(x)dx = τ (t).

Proof. Direct computation shows (denotingW =W (t),C = C(t)
for brevity):

1

W

∫
x ∈C

∇u(x)dx =
1

W

∫ W /2

−W /2

τ (t)(1 − k(t)a)da

= (1/W ) (τa −
k(t)τ (t)a2

2

)

����W /2

−W /2

= τ (t).

□

C COMPARATIVE STUDY SETUP DETAILS
The questions (Sec. 7) comparing our results to prior art and man-

ually consolidated images were randomly split into six question-

naires, randomly ordered; the two alternative outputs were placed

in random order with the question layout shown in Fig. 23. Each

questionnaire consisted of at most 32 questions. We collected six

answers for each questionnaire. Participants received no training

of any kind, and were provided PDF questionnaires remotely via

email; this allowed them to zoom in to see fine details. All questions

are included in the supplementary material.

D PERIODIC PARAMETERIZATION
The framework described so far produces open curve parameteri-

zations, whose parameter extrema are typically located far apart.

While individual strokes drawn by artists in standard drawing soft-

ware are usually open, clusters of strokes can and do frequently

depict closed intended curves (e.g. eye pupils in Fig. 1). We sup-

port optional periodic parameterization of such clusters by first
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Fig. 24. (a) Initial non-periodic parameterizations of closed-curve clusters;
(b) fitting using these parameterizations; (c) periodic parameterizations;
(d) fitting using periodic parameterizations.

identifying them, and then by reparameterizing each such closed
curve cluster by enforcing periodicity and selectively relaxing mono-

tonicity requirements. The benefit of such a parameterization for

aggregate curve fitting is illustrated in Figure 24.

Closed-Curve Clusters. In detecting closed-curve clusters, we lever-
age the observation that, for a directed graph with closed cycles,

one can reach any cycle vertex from any other by following the

edge directions. Extending this logic to clusters, if a cluster depicts a

closed curve, then once the periodic parameterization is computed,

we expect to be able to reach each stroke point from another by fol-

lowing the parameterization gradient. In practical terms, this means

that given a graph that consists of directed edges connecting points

with consecutive isovalues along the same stroke, and connecting

points on different strokes that share the same isovalue, a cluster

is a closed curve if, and only if, we can compute a directed path

in this graph from each point sample to another. Notably, given a

nonperiodic parameterization, such paths only exist from samples

with a lower parameter value to those with a higher one.

We assess the potential for a parameterized cluster to be a closed-

curve cluster by looking for paths in a graph that, in addition to the

edges above, contains orthogonal edges: edges that connect immedi-

ately adjacent points p and p′ that have similar parameterization

gradients but different parameter values and where the line p,p′

is approximately orthogonal to the gradients at both points. We

note that this property is well satisfied by edges connecting ray

seed points on our initial set of cross-sections and their immediate

neighbors within these cross-sections (Sec. 5.1). We thus add these

edges to the graph.

We classify a cluster as closed-curve if the resulting graph allows

for a directed path from a point with the maximal parameter value

to one with the minimal one. Note that once this is the case, this

property will hold for all other pairs of points.

Periodic Reparameterization. If a cluster is deemed closed, we

parameterize it once more (Sec. 5.3) with the following adjustments.

We estimate the parameterization period P as the biggest differ-

ence in parameter values between the end-points of the computed

orthogonal edges. We then recompute a set of isolines such that for

each valueu they contain all points with this isovalue modulo P . We

locate the isoline with the largest u value, and relax the monotonic-

ity constraints between points on this isoline and the consecutive

(5.1)
Stroke-Orthogonal 

Cross-Sections

Input

(5.2)
Relaxed

(5.3)
Parameterization Fit

(a) No 
Filtering

(b) No 
Relaxed Step

N/A

(c) Full 
Algorithm

Fig. 25. Parameterization and fitting output generated by (a) skipping the
initial cross-section filtering step (Sec. 5.1), (b) using the stroke-orthogonal
cross-sections (Sec. 5.1) to initialize our final solve (Sec. 5.3), and (c) our
method. These results demonstrate the necessity of the core steps of our
method.

Input λ  = 102
T λ  = 104

Tλ  = 103
Cλ  = 101

C λ  = 105
C λ  = 106

T

Fig. 26. Impact of changing fitting weights λC (left) and λT (right). In each
example the central result is generated with the default values and the left
and right are lower and higher respectively.

sample points on the strokes they are on. We then perform one iter-

ation of minimizing Earc (Eq. 8). All subsequent iterations proceed
as described in Sec. 5.3.

E ABLATION STUDIES
We demonstrate the impact of our design decisions on the output

parameterizations and fits throughout the paper (Figs. 6,7, 9, 10, 24,

and 11). Fig. 25 further demonstrates the importance and impact of

our initial stroke-orthogonal cross-section filtering (Fig. 25a) and

our relaxed parameterization (Fig. 25a). Skipping either one of those

results in poor quality parameterizations and fits.

Our parameterization method has just two empirical parameters:

the distance ratio threshold Smax (Sec. 5.1) and the σ in Eq. 14 used

to set adjacency likelihoods (Sec 5.2). Running our algorithm on all

the letters in Fig. 17, we observed no change in fitting output when

doubling or halving either parameter; the impact on runtime was

under 10% in all cases. Our fittingmethod uses two additional weight

parameters: one for curvature λC and one for tangents λT . Fig. 26
demonstrates the impact of decreasing or increasing each by a factor

of 100 on our fitted outputs; predictably, reducing these weights

makes the fitted curves more centered with respect to the clusters

but less smooth, while increasing them increases smoothness.

Impact of Clustering. We run our fitting method on different clus-

terings for the same inputs, provided by different people (Fig. 27).

Despite differing levels of cluster granularity, the resulting curves

for each set of clusters are consistent with viewer expectations.
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Fig. 27. Impact of alternative clusterings on fitting results. Inputs are from
the Yan et al. [2020] dataset. Drawings ©[Liu et al. 2015] (left), Cristina
Arciniega (right).

F IMPLEMENTATION DETAILS
Initial Sampling. We pre-process all strokes by resampling them

using curvature-aware sampling: we add samples along strokes so

that the distance between each pair of consecutive samples is at

most one input stroke width, and the angle difference between the

tangents at the sample is at most 4
◦
. This process ensures adequate

sampling density next to sharp stroke turns.

Parameter Space Sampling for Curve Fitting. Using evenly sampled

isovalues uj in our fitting formulation (Sec. 6) distributes approxi-

mation error evenly. In the interior of the cluster this error may be

barely noticeable. However, drift in aggregate curve endpoint loca-

tions can change viewer perceived inter-cluster interaction, either

removing perceived intersections or adding new ones, an outcome

we wish to avoid. We minimize drift near aggregate curve endpoints

by using higher isovalue sampling density next to them. With n

samples, and parameter values in the range [0, L], the jth sample uj
is chosen as follows:

uj =


L
2

(
2
j−1
n−1

)
9/4
,

j−1
n−1 < 0.5

L − L
2

(
2 − 2

j−1
n−1

)
9/4
,

j−1
n−1 ≥ 0.5

(19)
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