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Fig. 1. (a) Drawing 3D strokes using a VR brush. (b) Completed 3D brush-stroke drawing with central stroke polylines drawn in black and ribbon color
reflecting normal orientation (green for front, turquoise for back, inset shows poylines alone). (c) triangle mesh strips connecting adjacent stroke polylines
(multicolor), and gray triangle strips that complete the surface connecting differently directed stroke groups. (d) Final output. (e) Fabricated model. Input
drawing: © Jafet Rodriguez.

Popular Virtual Reality (VR) tools allow users to draw varying-width, ribbon-
like 3D brush strokes by moving a hand-held controller in 3D space. Artists
frequently use dense collections of such strokes to draw virtual 3D shapes.
We propose SurfaceBrush, a surfacing method that converts such VR draw-
ings into user-intended manifold free-form 3D surfaces, providing a novel
approach for modeling 3D shapes. The inputs to our method consist of
dense collections of artist-drawn stroke ribbons described by the positions
and normals of their central polylines, and ribbon widths. These inputs are
highly distinct from those handled by existing surfacing frameworks and
exhibit different sparsity and error patterns, necessitating a novel surfacing
approach. We surface the input stroke drawings by identifying and leverag-
ing local coherence between nearby artist strokes. In particular, we observe
that strokes intended to be adjacent on the artist imagined surface often
have similar tangent directions along their respective polylines. We leverage
this local stroke direction consistency by casting the computation of the
user-intended manifold surface as a constrained matching problem on stroke
polyline vertices and edges. We first detect and smoothly connect adjacent
similarly-directed sequences of stroke edges producing one or more mani-
fold partial surfaces. We then complete the surfacing process by identifying
and connecting adjacent similarly directed edges along the borders of these
partial surfaces. We confirm the usability of the SurfaceBrush interface and
the validity of our drawing analysis via an observational study. We validate
our stroke surfacing algorithm by demonstrating an array of manifold sur-
faces computed by our framework starting from a range of inputs of varying
complexity, and by comparing our outputs to reconstructions computed
using alternative means.
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1 INTRODUCTION
Humans frequently communicate 3D shapes via 2D sketches or
drawings, inspiring the development of modeling interfaces that
employ such drawings as inputs [Olsen et al. 2009]. Virtual Reality
(VR) systems support real-time capture and visualization of human
3D gestures enabling users to draw surfaces directly in 3D space (Fig-
ure 1a). Using such drawings as input for 3D modeling can sidestep
the main algorithmic challenge of 2D sketch-based modeling meth-
ods – the need to derive 3D information from a 2D input. Effectively
leveraging the opportunity provided by VR interfaces requires mod-
eling frameworks capable of processing the types of 3D drawings
users can comfortably provide using these tools. Our observations
show that artists using the VR medium frequently depict complex
free-form 3D geometries using collections of dense, ruled surface
brush strokes traced in 3D space (Figure 1b) [Sketchfab 2018]. Our
SurfaceBrush framework algorithmically converts VR brush stroke
drawings into manifold surface meshes describing the user-intended
geometry (Figure 1d), enabling downstream applications such as 3D
printing (Figure 1e).
Users of VR systems, such as TiltBrush [2018] or Drawing on

Air [Keefe et al. 2007], trace strokes using a handheld controller.
These systems then automatically translate controller locations into
polyline stroke vertex positions and controller orientations into
stroke normals. They subsequently render the captured input as
virtual ribbons, or ruled surface strips, of user-specified width (Fig-
ure 1a). The rendered ribbons are centered around the captured
stroke polyline positions and their orientation reflects the captured
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Fig. 2. Brush stroke drawings are characterized by strokes with partially
overlapping ribbons, and locally similar stroke tangent directions (b,d,f).
These directions change abruptly between different surface regions (e);
stroke normal orientations are often inconsistent (front facing ribbons ren-
dered in green, back facing in purple) (b,d,f), inexact and sometimes erro-
neous (g); stroke groups frequently intersect “inside” the model (see cutout
view) (a); and drawings occasionally contain isolated strokes (c). Teapot and
horse: © Jafet Rodriguez, chicken: © Elinor Palomares.

stroke normals. Our experiments show that both artists and non-
experts can easily, quickly, and effectively communicate their en-
visioned 3D surfaces using this interface by drawing dense brush
strokes that cover the surface of the intended shapes (Section 7).

Adopting this interface for surface modeling necessitates algorith-
mically reconstructing the user-intended 3D surfaces from the dense
set of brush strokes drawn by the users. Each stroke is defined by the
vertex positions and normals along its central polyline and has an
associated width. This input format is distinctly different from those
processed by existing surface reconstruction methodologies, and ex-
hibits different error and sparsity patterns (Section 3). In particular,
artist drawings (see e.g. Figure 2) have inconsistent stroke normal
orientations and partially overlapping strokes; they frequently con-
tain intersecting stroke groups and may exhibit isolated outlier
strokes. Due to these artifacts, existing surfacing methods are inade-
quate for our needs (Section 2). In particular, using polyline vertices
or densely sampled points on the ribbons as input to methods for re-
construction from point clouds fails to produce the desired surfaces
(Figure 3).

SurfaceBrush reconstructs an intended surface from the input
brush strokes by interpolating sequences of edges along the stroke
polylines. It determines the edges to include and the connectivity
between them by leveraging local consistency between the drawn
strokes (Section 3). The key observation it utilizes is that, when de-
picting 3D shapes using a VR brush, users typically adopt a strategy
that resembles the action sequence commonly used when applying
top paint to 3D objects using a paint brush. Specifically, users often
draw contiguous patches on the target surface using side-by-side
strokes with similar tangent directions and change stroke directions
when switching between different parts of the drawing (Figure 2).
These observations argue for a surfacing strategy that prioritizes
connections between side-by-side strokes with similar tangents.
Following this argument, SurfaceBrush computes the output sur-
face using a two-step process (Section 4). First, it forms inter-stroke
mesh strips, by detecting and connecting side-by-side stroke sec-
tions, or sequences of edges (Figure 1c, multicolor, Section 5). Then,
it closes the gaps between the partial surfaces consisting of a union
of such strips by connecting adjacent sections along their bound-
aries (Figure 1c, gray, Section 6). The core challenge in employing
this strip-based surfacing approach is to identify, or to match, the

best stroke sections to connect in the first stage of the process and
the best boundary sections to connect in the second. This challenge
is augmented by our goal of producing manifold output surfaces
while overcoming artifacts present in the data (Figure 2).

We formulate bothmatching problems using a discrete constrained
optimization framework (Section 5). We efficiently solve them by
first relaxing the manifoldness constraints, obtaining locally optimal
(but not necessarily globally compatible) vertex-to-vertex matches
(Sections 5.1, 5.2). We use the obtained vertex-to-vertex matches
to identify corresponding stroke sections and to connect these sec-
tions using triangle strips (Sections 5.3). We eliminate non-manifold
artifacts in this mesh using a correlation clustering framework that
determines which triangles should remain in the mesh and which
should be removed (Section 5.4). This process robustly reconstructs
user-intended, manifold surfaces from complex drawings, such as
the horse (Figure 1, 298 strokes, 20K vertices) in under a minute.

We validate the SurfaceBrush modeling framework by evaluating
both our choice of inputs and the method we propose for processing
those. We conduct a user study which confirms that experts and
non-experts alike can effectively use brush strokes to visually com-
municate free-form surfaces in a VR environment, and validates our
observation about users preference for depicting surfaces using a
set of patches drawn using similarly directed strokes (Section 7). We
confirm the robustness of the SurfaceBrush surfacing algorithm by
demonstrating a range of reconstructed surfaces created from inputs
of different complexity produced by artist and amateur users and
compare the results to those produced by state of the art alternatives
(Section 8). These experiments confirm that, while our outputs are
consistent with the artist-intended surface geometry, the results of
alternative methods are not.
Our overall contribution is a new VR drawing-based modeling

framework that allows experts and amateurs alike to create complex
free-form 3Dmodels via an easy-to-use interface. The technical core
of our system is a new surfacing algorithm specifically designed
to reconstruct user-intended manifold surfaces from dense ribbon-
format 3D brush strokes. This contribution is made possible by our
detailed analysis of brush drawing characteristics.

2 PREVIOUS WORK
Our work builds upon prior research across multiple domains.

2D-Sketch-Based Modeling. 2D-sketch-based modeling methods
infer depth information from collections of sparse 2D artist strokes,
which are assumed to employ a specific drawing style and cap-
ture key properties of the artist-intended shape [Olsen et al. 2009].
SurfaceBrush recovers surface geometry from dense 3D strokes, an
input that exhibits very different properties. Algorithms that process
2D drawings frequently leverage established drawing conventions
and observations about human perception of 2D imagery [Bae et al.
2008; Li et al. 2017; Nealen et al. 2007; Schmidt et al. 2009; Shao et al.
2012; Xu et al. 2014]. Such resources are essentially non-existent for
3D drawings, since until recently there had been few opportunities
for artists to use 3D strokes to depict shape. We derive the charac-
teristics of the inputs we seek to process via examination of publicly
available VR artwork databases [Poly 2018; Sketchfab 2018] and an
observational study of VR 3D shape drawing (Sections 3, 7).
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Fig. 3. Treating strokes’ (a) polyline vertices as unorganized points with normals (b) and using those as input to state of the art reconstruction from point-clouds
methods (d,f) produces inadequate results with multiple artifacts, such as high percentages of non-manifold edges [Edelsbrunner and Mücke 1994] (d),
unnecessarily high genus, and arbitrary deviation from the input [Kazhdan and Hoppe 2013] (f). Densely sampling points along the ruled ribbons (c) and using
these samples plus normals as reconstruction input produces surfaces which exhibit similar artifacts (e,g). Our output (h) accurately captures user’s intent.
Input drawing: © Jafet Rodriguez.

Sketch Consolidation. Our work has conceptual similarities to
sketch consolidation [Fu et al. 2011; Liu et al. 2018, 2015; Noris
et al. 2012; Stahovich et al. 2014; Xing et al. 2014]. However, in 2D
each stroke vertex has unique nearest left/right neighbors along the
stroke’s orthogonal. This property no longer holds in 3D, making
determination of best pairwise vertex matches a lot more challeng-
ing.

3D Curve Drawing. Researchers have proposed a range of tools
for creating, rendering, and manipulating curves directly in 3D
space [Amores and Lanier 2017; Diehl et al. 2004; Grossman et al.
2002; Israel et al. 2009; Jackson and Keefe 2016; Kim et al. 2018;
Tano et al. 2003]. Recent systems render captured curves in real
time using head-mounted displays, depicting them as ruled sur-
face ribbons [Keefe et al. 2007, 2001; TiltBrush 2018] or as tubular
shapes with cylindrical profiles [Keefe et al. 2007; PaintLab 2018].
Utilizing the content artists produce using such systems for shape
modeling requires converting raw curve drawings into 3D surface
models. SurfaceBrush achieves this goal using as input oriented
ribbon strokes created with the widely available TiltBrush system; it
can also be employed in conjunction with other VR systems which
support such strokes.

VR Modeling Interfaces. Researchers have explored a range of VR
modeling interfaces. VR sculpting tools [Kodon 2018; OculusMedium
2016; ShapeLab 2018] allow expert users to create sophisticated
shapes. VR interfaces that support Boolean operations over a fixed
set of primitives [DesignSpace 2018; Diehl et al. 2004; GoogleBlocks
2018; Tano et al. 2013] provide a promising avenue for modeling
CAD geometries but are not well suited for free-form shapes. Others
enable users to draw a range of swept surfaces in 3D space [Gravi-
tySketch 2018; Keefe et al. 2001; Schkolne et al. 2001; Schkolne and
Schroeder 1999]. To model complex shapes using this approach,
users need to mentally break them into coarse, non-overlapping,
sweepable patches, and separately draw each patch: a task that
requires modeling expertise and is especially challenging for or-
ganic shapes. Several VR systems facilitate editing of existing 3D
surfaces [GravitySketch 2018; Kwon et al. 2005; Wesche and Sei-
del 2001]. Our work complements all those systems in its focus
on providing experts and amateurs alike with the means to author
free-form manifold geometries which they can later edit.

Several VR interfaces allow users to connect 3D curves into cycles
or curve networks [Fiorentino et al. 2002; Jackson and Keefe 2016;
Kwon et al. 2005; Wesche and Seidel 2001] and provide them with

the option to surface those inputs using traditional cycle and net-
work surfacing techniques, such as Coons patches or NURBs. The
obtained surfaces are highly dependent on the choice of the surfac-
ing method. Grossman [2002] and Sachs [1991] facilitate tracing of
characteristic surface curves such as flow lines in a VR environment.
Networks consisting of such curves can be surfaced using designated
algorithms [Bessmeltsev et al. 2012; Pan et al. 2015]. Employing any
of these systems users need to understand the underlying surfacing
method in order to draw the curves that would form their desired
output. Our approach does not require such understanding and does
not constrain users to modeling particular surface families. As such
we add another tool to the VR modeling palette, one specifically
suited for non-expert users and generic free-form geometries.
Our choice of using dense ribbon strokes as modeling input is

inspired by the method of Schkolne et al. [2001; 1999] which forms
free-form surfaces by merging adjacent swept surfaces drawn by
artists. Schkolne et al. generate the merged surface using a method
that is designed to provide a real-time approximation of point-cloud
reconstruction techniques such as Alpha-Shapes [Edelsbrunner and
Mücke 1994], Figure 3. As the authors acknowledge, even on the
relatively clean data they tested, the method frequently produces
non-manifold geometries.

Surface Reconstruction from Curves, Point Clouds, and Triangle
Soups. Research on surface reconstruction from curves targets spe-
cific input sources and leverages their distinct properties. Many
methods address reconstruction from closed, planar cross-section
curves, e.g [Huang et al. 2017; Sharma and Agarwal 2016; Zou
et al. 2015]. Others address lofting, or surfacing of closed curve
cycles [Finch and Hoppe 2011; Gao and Rockwood 2005; Nasri et al.
2009; Schaefer et al. 2004; Várady et al. 2011] and networks [Ab-
basinejad et al. 2012; Bessmeltsev et al. 2012; Grimm and Joshi 2012;
Pan et al. 2015; Wang et al. 2016]. Our inputs do not conform to
the assumptions employed by any of these methods: the strokes
are not closed, are frequently non-planar, and do not form cycles
or networks. They thus require a different set of priors for success-
ful surfacing. Usumezbas et al. [2017] use curves on the surface
of the output models while utilizing image data to filter out poor
surfacing choices based on occlusions; we must process curves that
extend inside the intended shapes, making occlusion a problematic
criterion.
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Fig. 5. Artists use different stroke patterns with locally similar tangents to
cover, or paint, different surface regions: (a-c) frequent schematic patterns,
(d) portion of a typical drawing where all three patterns are used. Piggy
bank: © Elinor Palomares.

Methods for surface reconstruction frompoint clouds [Berger et al.
2017] can potentially be applied as-is to stroke polyline vertices or to
a dense set of points sampled along the stroke ribbons (Figure 3 (b,c)).

Fig. 4. Close-up of ribbons and rib-
bon samples on the teapot

However sampling brush stroke
drawings (Figure 2) produces point
clouds with inconsistent normal
orientation, multiple samples in the
interior of the intended shape, and
other artifacts inconsistent with the
assumptions made by typical recon-
struction techniques [Berger et al.
2017]. Moreover, while stroke ver-

tex locations are typically reflective of the intended surface location,
due to the inaccuracy in the stroke normals, points sampled along
the ribbons are often misplaced with respect to this surface (Fig-
ure 4). These artifacts cause traditional reconstruction methods,
such as [Avron et al. 2010; Bernardini et al. 1999; Edelsbrunner and
Mücke 1994; Kazhdan and Hoppe 2013; Wang et al. 2016; Xiong et al.
2014] to fail dramatically (Figure 3, Section 8).
One could potentially treat the brush strokes as triangle strips,

and use methods for triangle soup surfacing and repair to attempt
to recover the 3D shapes from them. However, voxel based methods,
e.g. [Ju 2004; Shen et al. 2004], are only applicable to inputs one
expects to be closed. Roughly one quarter of our inputs have some
open surface elements (e.g. ground on the bonsai or feet on the
chicken). Even on closed surfaces, these methods fail drastically
in terms of the topology and geometry of the results produced
(Section 8). Winding-number based approaches [Barill et al. 2018]
produce similar artifacts (Section 8).

3 INPUT DRAWING CHARACTERISTICS
Analysis of publicly available VR artwork [Poly 2018; Sketchfab
2018] and observation of VR 3D shape drawings created by our
study participants (Section 7) point to a number of core common
characteristics of 3D brush-stroke drawings.

Dense coverage: In both datasets, the drawn stroke ribbons fre-
quently overlap and typically densely cover the communicated
shapes leaving relatively small inter-stroke gaps or holes whose
size is typically smaller than the width of the surrounding strokes
(e.g. Figure 1). The stroke width users employ varies across different
parts of the surface, and is typically more narrow on finer features.

Local tangent consistency: Artists frequently draw contiguous
surface patches using strokes with similar tangent directions (Fig-
ures 2, 5). Tangent consistency is local rather than global since
artist often use very different stroke directions in different parts of
the model: they choose stroke directions based on drawing conve-
nience and often align stokes with the minimal absolute curvature
directions on the intended surface.

Persistent adjacency: Artists use a range of drawing strategies
when forming tangent-consistent stroke patches: they may use
multiple side-by-side strokes, draw sharply-turning self-adjacent
strokes, or use long self-adjacent spirals (Figure 5). The strategy
may often vary across a single input. Adjacent side-by-side tangent
consistent strokes typically have comparable lengths. Consequently
most strokes have only a few, and often just one, immediately adja-
cent, similarly-directed strokes on each side.

Normal orientation: The input stroke normals are defined by the
orientation of the hand-held controller. Users typically aim for the
stroke ribbons to lie in the tangent plane of the intended surface,
thus the stroke normals are typically roughly orthogonal to this
surface (Figures 1, 2) but are rarely exact. VR systems use double-
sided ribbon rendering, which obscures stroke orientations from
artists. Consequently, we observe that artists do not attempt any in-
out consistency, producing strokes whose orientation is essentially a
function of drawing access convenience. Specifically, users typically
hold the controller like a brush, with its tip pointing away from
them, resulting in stroke normals that point toward the artist much
of the time. Consequently, normal direction is determined by the
location of the artist relative to the drawn shape and is typically
not reflective of the surface front-back orientation (Figure 2). As
this figure illustrates, normal mis-orientation is a persistent feature.
Approximately one-third of the strokes in our inputs are oriented
in the opposite direction to the plurality. This ratio holds across
artists and input categories. Thus orientation inconsistency must
be addressed by any method processing VR-brush strokes.

Intersecting and isolated strokes: When drawing different model
parts, artists rely on the what-you-see-is-what-you-get principle
and assume that making strokes or portions of strokes not visible
from outside the object is tantamount to erasing them. Thus, when
drawing different parts of the target shape, they often extend strokes
into the interior of themodels producingmultiple intersecting stroke
groups (Figures 2, 8) and do not erase occluded outlier strokes. Both
existing artwork and 3D drawings created at our bequest often
use sparse, isolated, strokes for communicating one-dimensional
or very narrow geometries (such as the chicken feet in Figure 2).
We speculate that this choice reflects the difficulty of accurately
depicting outer surfaces of narrow features and leverages the fact
that human observers can easily parse such abstracted or skeletal
elements.

Stroke Accuracy: Lastly, we note that users aim to accurately com-
municate the envisioned shape, thus the shape and location of most
stroke polylines typically reflects the intended surface geometry
along them up to low-frequency noise inevitable when drawing
3D content by hand. Note that the accuracy of any point on the
ribbons away from the polyline depends on both the accuracy of
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the stroke normals and the underlying surface curvature - when the
curvature in the direction orthogonal to the strokes is large, even
with perfect normals, ribbon sides can significantly deviate from
the surface (Figure 4).

(a) (b)

Fig. 6. Schematic surfacing illustration: (a) input strokes, (b) output mesh
consisting of inter-stroke mesh strips bounded by adjacent stroke polylines
(multicolor) computed first, and gap spanning strips (gray) computed later.

4 OVERVIEW
The SurfaceBrush framework is designed to operate in conjunction
with existing 3D stroke drawing tools and to process as input com-
pleted ribbon stroke drawings depicting manifold, open or closed,
surfaces. It converts these drawings into manifold surface meshes
describing the artist-intended geometry (Figure 7).

4.1 Surfacing Goals
The observations about the key properties of 3D VR drawings (Sec-
tion 3) allow us to formulate our algorithm’s goals in terms of
producing outputs consistent with user expectations.

Interpolation and Normal Consistency: While we expect some
strokes or stroke sections to be outliers, we expect most stroke
edges to be part of the target surface and to accurately depict its
location. Thus we expect the reconstructed surface to interpolate the
vast majority of stroke edges and expect this surface to be roughly
orthogonal to the interpolated stroke vertex normals.

Union of Inter-Stroke Strips: Combining these expectations with
observations about tangent consistency and persistence we argue
that users expect the interpolating surface to be dominated by sur-
face strips connecting, or bounded by, side-by-side stroke sections
with similar tangent directions (Figure 6b, multicolor). Each such
strip consists of a sequence of triangles where each triangle shares
one edge with its predecessor. Jointly, these strips form one or more
partial surfaces interpolating most stroke vertices and edges (Fig-
ure 6b has two such surfaces separated by the gray strip). Since we
expect the adjacencies between strokes to be persistent, we expect
the number of different strips bounded by each given stroke to be
small (frequently just one on the left and one on the right).

Gap Closure: We expect the final surface to connect the partial
surfaces closing the gaps between them. As before, we expect these
gap-spanning surface strips (Figure 6b gray) to connect close-by
boundary vertices and to be orthogonal to the partial surface nor-
mals at these vertices.

Manifoldness: To satisfy manifoldness, each stroke section must
bound at most two surface strips. Since we expect the stroke nor-
mals to be orthogonal to both strips and expect the output surface
to be fair, one of these strips should be on the right and the other on

the left of the section with respect to the local Frenet frame defined
by the stroke tangent and normal (see inset).

ri
gh

tle
ft

n(p) b(p)

t(p)

p

We expect sections along the partial surface bound-
aries to bound at most one gap-spanning strip
located on the opposite side of the partial sur-
face with respect to a Frenet frame defined by the
boundary tangents and the partial surface normals
along them.

We can thus formulate our overall surfacing goal as generating
a manifold union of inter-stroke and gap-spanning strips that in-
terpolate the vast majority of the input stroke edges and vertices
(Figure 6, right). The inter-stroke strips need to connect side-by-side
stroke sections, and all strips need to be persistent and connect
adjacent stroke vertices with similar normals (up to orientation).
By design, we do not seek to connect distinctly separate connected
components (Figure 8), leaving this optional step to the user.

Notably, relaxing the manifoldness constraint makes the problem
much easier. However, non-manifold meshes cannot be processed by
many mesh processing algorithms and are not supported by many
commonly used data-structures, making the results significantly
less usable.

4.2 Algorithm
We designed our algorithm based on the requirements above. Since
the geometry of the gap-spanning mesh strips can only be deter-
mined once all inter-stroke strips are in place, we compute the
inter-stroke mesh strips first (Section 5) and then compute the gap-
spanning ones (Section 6). This separation into stroke and gap sur-
facing steps allows us to take advantage of the directional similarity
between strokes first, and to subsequently leverage direction simi-
larity between (previously non-existent) partial-surface boundaries.
Our first step computes dense matches between stroke vertices, then
uses these matches to form initial mesh strips between the strokes
(Figure 7c) and finally removes the non-manifold artifacts in the re-
sulting mesh (Section 5). SurfaceBrush employs a similar three-step
solution process during the gap processing step to match and then
connect the boundaries of the partial surfaces using gap-spanning
mesh strips (Section 6).

Pre-Processing. When artists use digital sketching tools, they of-
ten activate the stylus or controller trigger a few milliseconds before
starting the stroke drawing motion and deactivate it a few millisec-
onds after concluding the motion [Liu et al. 2018]. This behavior
produces short randomly oriented stroke sections next to stroke
end-points. Our pre-process removes these redundant sections using
an approach similar to [Liu et al. 2018]: we check if the strokes have
an abrupt direction change (angle of 45◦ or less between consecutive
tangents) within 15% of overall stroke length from either end and
remove the offending end-sections.

5 INTER-STROKE SURFACE STRIPS
At the core of our framework is the need to match sections, or edge
sequences, along input strokes that bound surface strips on the
artist-envisioned surface. When matching stroke sections, we seek
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Fig. 7. SurfaceBrush stages: (a) Input stroke polylines (black) and ribbons (color reflects normal orientation). (b,c) Inter-stroke strip computation: initial mesh
strips imposed by vertex-to-vertex matches (non-manifold edges highlighted in the inset) (b) and output manifold partial surfaces (each connected component
rendered in a different color) (c). Gap closure (d,e): gap-spanning mesh strips (d), and final surface (e). Input drawing: © Elinor Palomares.

Fig. 8. (a) The horse (Figure 1 contains multiple disjoint intersecting stroke
groups (see cutout view), (b) resulting surfacing output with each connected
component drawn in separate color. We use a Boolean union of these parts
as input to fabrication (Figure 1d). Input drawing: © Jafet Rodriguez.

matches that reflect four key properties: proximity, tangent similar-
ity, persistence, and normal consistency. Since we seek a manifold
output, we expect each stroke section to have at most one matching
section on its left and one on its right. Sections in the middle of a
cluster of side-by-side strokes should have matches on both sides
(inset, green); sections along the boundaries of such clusters should
have a matching section only on one side (inset, blue); and outlier or
isolated sections should have no matches on either side (inset, red).

The partition of strokes into sections and the classification
of these sections into the three types above are not known a
priori and need to be deduced by our algorithm. We simulta-
neously segment strokes into sections and match them with
respective sections on the same or other strokes, using a dis-
crete optimization framework, that operates on the stroke’s
vertices. Specifically, we first obtain pairwise vertex-to-vertex
matches and then use those to obtain the stroke sections and

the correspondences between these sections: each pair of matching
sections is defined by a maximal consecutive sequence of vertices
on one stoke that match to another consecutive vertex sequence on
the same or other stroke. Note that the vertex-to-vertex matches
should not necessarily be bijective - given strokes with different
vertex density we want to allow many to one matches to enable
dense correspondences (Figure 9, left).
To account for the demands above, we need to obtain vertex-to-

vertex matches that satisfy three types of criteria: (1) criteria that can
be assessed at the level of individual pairwise vertex matches, (2) cri-
teria that require assessing two matched vertex pairs at once, and (3)

Fig. 9. (left) Desirable non-bijective matches accounting for uneven density.
(right) Groups of matches that induce non-manifold meshes. Note that one
cannot determine if the result will be manifold by looking at a subset of the
matches (pairwise matches in 3D that cross one another in some view do
not necessarily induce incompatible matches.)

criteria that require assessing three or more pairs in tandem. Specif-
ically, proximity, tangent similarity, and normal consistency can be
assessed at the individual vertex-to-vertex match level. Promoting
persistence implies prioritizing configurations where consecutive
stroke vertices match to similarly consecutive vertices, necessitat-
ing assessing two matched vertex pairs at once. Lastly, assessing
manifoldness requires analyzing, and consequently disallowing,
configurations of three or more matched pairs (Figure 9, right), as
smaller subsets do not necessarily provide sufficient information.
Even a simpler variant of our problem, one where the decision

about incompatible matches can be done by assessing two matched
pairs (rather than a larger group) is shown to be NP-complete via a
reduction from 3D matching, which was shown to be NP-complete
by Karp [1972]. The reduction is straightforward: the pairs in this
problem correspond to sets in the 3D matching problem, and two
pairs are prevented from coexisting unless the corresponding sets
are disjoint. Thus, obtaining matches that satisfy our criteria using
off-the-shelf methods is impractical. We nevertheless efficiently
obtain a desirable solution that accounts for all three criteria types by
using a multi-stage matching method that leverages the anticipated
persistence of the matches we seek (Figure 10).

We first note that absent themanifoldness requirement, thematches
we seek for can be computed independently for each stroke. Specifi-
cally, for a single stroke we can cast the optimization of the remain-
ing criteria as a maximization of a score function (Section 5.1) that
accounts for both the quality of individual matches and for persis-
tence, or pairwise compatibility between the matches at consecutive
stroke vertices. The matches that maximize this combined function
can be efficiently computed using a classical dynamic programming
framework [Viterbi 1967] (Section 5.1). This method, however, is de-
signed for finding matches for all vertices and consequently cannot
account for cluster borders or outliers. Thus, to avoid undesirable
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Fig. 10. Inter-stroke mesh strip formation: (a) input strokes and ribbons
(inset shows stroke polylines) (b) initial mesh strips reflecting restricted
matches (c) non-manifold edges and vertices in the initial mesh highlighted
in red, (d) output partial meshes after consolidation and extension. Input
drawing: © Jafet Rodriguez.

matches, we restrict the set of per-vertex matching candidates dur-
ing this computation. Our first matching pass (Section 5.2) uses very
conservative matching candidate sets, generating correct matches
for a large subset of vertices but intentionally leaving some vertices
unmatched. We use the computed matches to define inter-stroke
mesh strips (Section 5.3, Figure 10b).

We eliminate non-manifold configurations in the resulting mesh
(Figure 10c) while minimally reducing the matching score function
by formulating these goals as a classical correlation clustering prob-
lem [Bansal et al. 2004] and solve it using an approximation method
(Section 5.4). While the problem solved in this step remains NP-hard,
thanks to our restrictions on the possible matches assessed and our
enforcement of persistence between the matches, the number of
non-manifold artifacts in the resulting mesh is very small. Thus,
they can be efficiently and effectively resolved by applying the clus-
tering to only small subsets of the mesh triangles enabling speedy
solution.
The restrictions on the matching candidate sets imposed in our

first matching pass (Section 5.2) may result in unmatched stroke
vertices for which suitable matches do exist (the unfilled spaces
between strokes in Figure 10b). We generate mesh strips connect-
ing such previously unmatched vertices by applying the matching,
meshing and manifold consolidation steps again to stroke sections
along the boundaries of the current partial surface, using an updated
more lax matching candidate set (Section 5.5). The output of this
step is a manifold partial surface mesh interpolating stroke groups
with similar directions (Figure 10d).

5.1 Match Computation
When looking for matches, we distinguish between left and right
sides of each stroke using the direction of the stroke binormal
b(p) = t(p) × n(p) in the local Frenet frame at each stroke vertex p
defined by the stroke’s tangent t(p) and normal n(p), to distinguish
between these sides. Given a stroke S = p0, . . . ,pn and a candi-
date set of matching vertices for each stroke vertex p, we evaluate
the potential left (or right) matches (pi ,qi ) using a combination of
vertex-to-vertex scores Svl (pi ,qi ) for left side matches and Svr (pi ,qi )
for right-side matches, and a persistence score Se (pi ,pi+1,qi ,qi+1)
that assesses the compatibility between the potential matches of

q
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d 0nldt2
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Fig. 11. Components of the vertex matching score Svr (p, q): da , dt , d
r
n

consecutive stroke vertices. Both scores are designed to be sym-
metric so as to prioritize matches which are bijective whenever
possible, in order to reduce the occurrence of non-manifold artifacts.
We define the combined score of matching the vertices of S to the
vertices Q = q0, . . . ,qn as their left side matches as

Ml (S,Q) =
∏
i
Svl (pi ,qi )S

e (pi ,pi+1,qi ,qi+1) (1)

We define Mr (S,Q) in a symmetric manner and look for left and
right matches that maximize these scores. We use a product rather
than a sum to discourage outlier matches. Maximizing the per-stroke
scores can be seen as a variant of the classical Markov chain opti-
mization. Given a set of matching candidates C(pi ) for each vertex
pi ∈ S , we can compute the matches within these sets that inde-
pendently maximizeMl (S) orMr (S) in polynomial time using the
classical Viterbi algorithm [Viterbi 1967]. To obtain a valid solution,
we exclude from the per-stroke scores vertices with empty match-
ing candidate sets C(pi ) or the edges emanating from them. The
strategy we employ to compute the matching candidate sets during
different stages in our surfacing process is elaborated on in relevant
sections below. We define our overall matching goal as maximizing
the matching scores across all strokes S in our drawing,

M =
∑
S

Mr (S,Q) +Ml (S,Q). (2)

Absent any constraints, this goal can be achieved by maximizing
the scores for each stroke individually (as there is no requirement
for the matches to be symmetric).

Vertex-to-Vertex Matching Score. Given a pair of vertices p and q,
we define the score of using q as the left or right match of p as a
function of three distance terms, designed to be on the same scale
(Figure 11). The first is the absolute distance between them

da = ∥p − q∥.

The second term measures the degree to which the vertices are
side-by-side with respect to their respective tangents, t(p) at p and
t(q) at q, as

dt =
|(p − q) · t(p)| + |(p − q) · t(q)|

2
.

We set t(o) = (on −op )/∥on −op ∥ where on and op are the next and
previous vertices on the stroke of the vertex o.

Lastly, we use the following construction to measure the degree
to which the vector −→pq is orthogonal to the stroke normals at p and
q and to assess whether the matches are consistent with respect to
the strokes’ Frenet frames, namely whether the left (or right) match
of each vertex is on its right side with respect to its Frenet frame
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(see Figure 11, right). When assessing a left match, we compute an
offset vertex pc located at distancew(p) on the left side of p along
the frame’s binormal b(p), wherew(p) is the user-specified stroke
width at p. We compute both left and right offset vertices qr ,ql for
q using a similar strategy and using offset magnitudew(q). We set
qc to the offset vertex of q closest to pc and compute their midpoint
m′
pq = (pc + qc )/2. When q lies to the left of p and −→pq is orthogonal

to the stroke normals at p and q, this midpointm′
pq coincides with

the midpoint mpq = (p + q)/2. If either one of the criteria does
not hold, the two midpoints will be far apart (see Figure 11,right).
Following this observation, we define

dln = ∥mpq −m′
pq ∥.

We define the overall score for assigning q as the left match of p:

Svl (p,q) = e
−(da+dt+dln)

2

2σ 2 . (3)

We define the right-side assignment score Svr (p,q) using drn com-
puted symmetrically to dln . Our empirical observations indicate that
users rarely leave unintentional gaps between side-by-side stroke
ribbons that are wider than half of these strokes’ widths. Thus, we
expect the values of each of the three distance metrics da , dt and dn
formost desirablematches to be less thandmax = 1.5(w(p)+w(q))/2.
Consequently, we expect pairwise matches where the sum of the
three distances exceeds 3dmax to be undesirable. Using the three
sigma rule we encode this preference by setting σ = dmax .

Persistence Score. Persistence requires the majority of
consecutive vertices along a given stroke to match to
similarly consecutive vertices (blue in inset). Exceptions
include discretization mismatches (red in inset) and
transitions between stroke sections that bound differ-
ent strips (green in inset). We account for persistence
without unduly penalizing such exceptions and assess

the acceptability of these exceptional cases when they occur by
formulating this score using geometric rather than topological prop-
erties. In addition to promoting persistence, the score we use further
reinforces our preference for matching side-by-side, parallel, stroke
sections.

Given a pair of consecutive vertices pi ,pi+1 that match to a pair
of vertices qi and qi+1, respectively, we measure persistence using
a combination of three distances

dp = ∥(pi+1 − pi ) − (qi+1 − qi )∥ + ∥(pi+1 − qi ) − (qi+1 − pi )∥ +

∥(pi+1 − qi+1) − (pi − qi )∥

The first term promotes matches that have the same spatial relation-
ship between the edge pi ,pi+1 and the line qi ,qi+1. The second and
third jointly promote co-planarity and parallelism between them.
These terms zero out when the edges are both parallel and coplanar
and jointly reflect how far they are from satisfying these conditions.
We convert this distance sum into a score in the [0, 1] range as
follows.

Se (pi,i+1,qi |qi+1) = e
−d2p
2σ 2 . (4)

We use the same value of σ as for the vertex-to-vertex matching
score, following the same argument.

5.2 Restricted Matching
Directly computing the best matches for each stroke while including
all vertices on all strokes in the candidate sets of each vertex is com-
putationally expensive. Moreover, our per-stroke score optimization
is defined so as to find left (right) matches for each vertex with a
non-empty left (right) matching candidate set. Yet, user drawings
may depict open surfaces whose boundary vertices should have
matches only on one side, and isolated strokes which should have
no matches on either side. Thus, to avoid outlier matches, we need
to discard potential outliers during candidate matching set compu-
tation. Our restricted matching pass obtains conservative, reliable
matches by leveraging our expectation of match persistence. Persis-
tence indicates that most strokes are likely to have just a few, and
frequently only one matching stroke on the left or right. Following
this observation, instead of looking for per-vertex matches globally,
we first locate for each stroke a single most likely, or most dominant,
neighboring stroke on its right and a single one on its left. We then
compute the best left and right per-vertex matches along each stroke
using a restricted set of matching candidates, which only includes
vertices on these dominant neighboring strokes, if they exist, and
on the currently processed stroke itself.

Locating Dominant Neighboring Strokes. To locate one dominant
left and one dominant right neighbor for each stroke S , we first com-
pute matches for vertices along this stroke that maximizeMl (S) and
matches that maximize Mr (S), by considering possible matching
candidates on all strokes. We then use the frequency of matches
from the stroke S to other strokes to define the dominant left and
right neighbors for this stroke.

During this first matching pass , we define the left (right) match-
ing candidate set for each vertex p to include vertices q across all
input strokes that satisfy the following baseline matching condi-
tions:

(1) ∥q − p∥ ≤ dmax
(2) the angle between q − p and the binormal b(p) is at most 60◦

(for the right candidate set we assess the angle between q −p
and −b(p))

(3) q , p and q is not an immediate neighbor of p along its stroke.

The baseline matching conditions are designed to reduce the likeli-
hood of outlier matches and to speed up computation by reducing
the solution space.

We define the left (right) matching frequency FST from
stroke S to stroke T as the percentage of vertices pi ∈ S
that match vertices qj ∈ T as their left (right) matches. Note
that this value is not symmetric: given for instance two side-
by-side strokes where one is shorter than the other, the
frequency for mapping the shorter to the longer will be
higher than the other way around. We define a stroke T
to be the dominant left (right) neighbor of stroke S if the

following three conditions hold: the left (right) matching frequency
from S toT is higher than from S to any other stroke; this frequency
FST is at least 30%; and at least one pair of consecutive vertices on
S matches a pair of consecutive vertices on T (the latter constraint
discards T-junction matches where a stroke matches an end-vertex
of another). As the inset shows (arrows point to the computed
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(a) (b)

Fig. 12. (a) Annotated consolidation input: incompatible triangles (red, of-
fending edges highlighted ) undecided triangles (orange), unaffected “out-
put” triangles (blue). (b) Consolidated manifold mesh. Inset shows the
strokes that trigger the non-manifold artifacts on the leg.

dominant neighbors), we intentionally do not enforce symmetry in
this process - allowing multiple strokes to share the same stroke
as their dominant left or right neighbor and have strokes with no
neighbors on one or both sides.

Restricted Matching Candidate Set. We define the left (right) re-
stricted matching set of each vertex along a given stoke to include
vertices on the same stroke and its left (right) dominant neighbor,
if one exists, that satisfy the baseline matching conditions (1) to
(3). We restrict this set further in the vicinity of stroke end-vertices,
forcing condition (2) to hold at both p and q. We use these restricted
matching candidate sets to compute the left and right per-vertex
matches that optimize Ml (S) and Mr (S). Limiting the matching
candidate sets drastically reduces the likelihood of outlier matches
and produces locally optimal results along each individual stroke
(Figure 10b).

5.3 Mesh Strip Generation
Our meshing step receives as input a set of vertex-to-vertex matches
pi ,qj between vertices on the same or different strips. It uses match
pairs containing consecutive vertices on each stroke to determine
the local meshing strategy (see inset). Given two consecutive match
pairs pi ,qj and pi+1,qj+1 (or similarly pi+1,qj−1) it triangulates
the quad pi ,pi+1,qi+1,qi (or similarly pi ,pi+1,qi−1,qi ) using the
diagonal that produces a more planar, better shaped triangulation.

pi 1

pi qj

pi 1 qk

qj 1

pi
qj

pi 1

pi qj

Since we expect the mesh to be fair, it discards the
quad if the dihedral angle between the resulting tri-
angles is under 45◦. Given two consecutive pairs
pi ,qj and pi+1,qj , it forms the triangle pi ,qj ,pi+1.
Given consecutive vertices pi ,pi+1 that match two
non-consecutive vertices qj ,qk on the same stroke,
it triangulates the polygon formed by the edges
(pi ,qj ), (qk ,pi+1), (pi+1,pi ) and the section qj ,qk
only if we have no matches between any pair of
vertices within this section. This condition is used
to avoid introducing non-manifold configurations.

It triangulates the polygon using edges that connect interior vertices
along the section qj ,qk to pi or pj , selecting a manifold, consistently
oriented triangulation that maximizes the matching score along the
section.

5.4 Manifold Consolidation
We expect each stroke section in the final output mesh to bound at
most one mesh strip on its left and right. Violating this expectation

produces partial surfaces with non-manifold edges or vertices (Fig-
ure 12a). While our matching strategy is designed to minimize the
likelihood of such non-manifold artifacts, it does not fully prevent
them. Thus the partial mesh defined by the union of mesh strips
computed as described above may contain non-manifold edges and
vertices. Our manifold consolidation step removes a subset of the
triangles surrounding such non-manifold entities to produce a man-
ifold output mesh. In selecting the subset to remove it seeks to
maintain as many triangles as possible in place, while optimizing
the matching quality along mesh edges connecting matched vertices.

Since strips often overlap along only a small portion of
their boundaries, leaving one strip in place while deleting
others would introduce unnecessary holes into the mesh.
At the same time, deleting individual triangles next to
non-manifold edges and vertices can result in an incon-
sistent mesh, which does not satisfy our persistence prior
and contain undesirable holes and tunnels, as illustrated
in the inset, middle. We obtain a manifold and fair solu-
tion that respects our priors by employing a correlation

clustering framework [Bansal et al. 2004] (see inset,bottom). Our
persistence term, combined with the use of the restriction of the
matching set, strongly discourages the type of matches that lead to
non-manifold artifacts. Consequently, the non-manifold artifacts we
face are typically very localized, allowing us to employ correlation
clustering locally, one problematic mesh region at a time.

We first identify pairs of adjacent triangles which we consider as
incompatible, namely ones that cannot jointly belong to the output
mesh, using the following criteria (see inset). (1) A pair of triangles
that share the edge pi ,pi+1, are classified as incompatible if their
non-shared vertices q and q′ are on the same side of this edge.

q’

q

q

pi 1

pi 1
pj 1

pi

pi

45

1

pi

pi

pj

(2) A pair of triangles t1 = (q,pi ,pi+1) and t2 =
(q,p′j ,p

′
j+1) sharing a common vertex q are clas-

sified as incompatible if they are on the same side
of the stroke containing q and if the projection of
one of the edges of t1 on the plane of t2 intersects
t2 or vice versa (note that a valid mesh can contain
multiple triangles that are on the same stroke side
with respect to a common vertex as long as they do
not “overlap”). (3) Lastly, while sharp creases in our
output mesh are possible, we view them as unde-
sirable, and classify triangles that share a common

edge as incompatible if the dihedral angle between them is less than
45◦.

We resolve all of these artifacts by discarding a subset of the
incompatible elements together with a subset of the triangles in
their immediate vicinity producing a manifold mesh. In making
the decision which elements to keep and which to remove we seek
to maximize the output matching score M (Equation 2). Since di-
rectly optimizing this score would make the problem intractable,
we approximate it in our graph arc weight assignment as described
below.

We compute the graphs we apply the clustering to as follows. We
classify triangles as undecided if they belong to a set of incompatible
triangles or if they are immediately adjacent to an edge or vertex
shared by a pair of incompatible triangles, and classify them as
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output otherwise. We form a separate graph for each connected
component of undecided triangles (which share edges or vertices).
Each graph has a node for each undecided triangle, and a single
output node that represents all output triangles. We connect these
nodes with arcs and assign arc weights as follows.

– We construct an arc for each pair of mutually incompatible
triangles t1, t2, and assign it a high negative weight (−30).

– We construct arcs for all pairs of undecided triangles that
share common edges and are not mutually incompatible and
assign them a weight of 1.

– We construct an arc between each undecided triangle and the
output node and define its weight as follows. We recall that
each triangle t in our mesh connects a stroke edge pi ,pi+1 to
a vertex q on the same or other stroke, which is to the left
or right of this edge. We compute the sum of the matching
scoresM(t) = Ma (pi ,q) +Ma (pi+1,q) where a is l or r based
on the side of the stroke that the vertex is on. We define the
arc weight asM(t)+C whereC is the number of edges shared
by the triangle t and output triangles. We include the edge
count in the cost to implicitly minimize the size of the holes
formed by the consolidation step.

We use these assignments to formulate clustering as a constrained
maximization problem. We maximize

∑
i j wi jYi j , wherewi j are the

weights defined on the graph arcs, and Yi j = 1 if the end nodes of
an arc are in the same cluster and Yi j = 0 otherwise. The sum in-
creases whenever the end-nodes of an arc with a positive weight are
assigned to the same cluster or when end-nodes of an arc with a neg-
ative weight are kept apart. We compute an adequate approximate
solution to this problem using the lifted multicut approximation
method [Keuper et al. 2015]. Following the computation, we retain
the subset of undecided triangles that belong to the same cluster
as the output node (Figure 12b). This subset is guaranteed to be
manifold, as the correlation clustering method ensures that any pair
of conflicting triangles are placed into different clusters. We apply
this clustering process to every group of triangles that are marked as
undecided; the union of the triangles previously marked as output
and the collection of subsets of undecided triangles kept after each
clustering operation then form our output manifold mesh.

5.5 Partial Mesh Extension
The partial mesh generated via the three step process described
above was computed by only considering matches from each stroke
to itself and its dominant neighboring strokes. This restriction pro-
duces mesh strips that satisfy all our criteria, but may leave side-by-
side stroke sections unmatched in cases where a stroke has multiple
immediately adjacent strokes on its left or right (Figure 10b). We
connect such left-out stroke sections with mesh strips using a simi-
lar process to the one above. We first apply our matching algorithm
(Section 5.1) to sections of the input strokes that lie on the bound-
aries of the current partial meshes. During the match computation,
we restrict the candidate set of each vertex p to include vertices on
the boundaries of the connected mesh component that p is on that
satisfy the baseline matching conditions described in Section 5.2,
and use the same restriction on tangent similarity near end-vertices.
The restriction to the same connected component is designed to

limit the matches to lie on roughly similarly directed strokes. We
then apply our consolidation process to the mesh computed from
these matches. Following this consolidation, we have a manifold
mesh (Figure 10d), which connects similarly directed strokes us-
ing mesh strips. We compute consistent normal orientations for
each connected component of this mesh using simple breadth-first-
traversal and close obvious small holes (ones with four or less sides)
inside each such component (typically located at transitions between
different strips along the same stroke).

6 CLOSING THE GAPS
The final stage of our algorithm closes gaps between close-by com-
ponents of the partial mesh as well as any remaining narrow holes
within them. It achieves this goal by using a similar mesh strip
formation process to the one used to form inter-stroke strips, with
some minor differences outlined below. This step is quite similar to
the mesh extension process (Section 5.5); while separating the two
improves input fidelity, for simplicity of implementation the process
outlined in Section 5.5 can be skipped with only minor impact on
fidelity.

Boundary Smoothing. The boundaries of the partial surfaces are
often very jaggy and contain occasional overlaps between oppo-
site boundaries. We resolve both artifacts by locally smoothing
the boundary vertices, using the following simple update pi =
pi/2 + (pi−1 + pi+1)/4. We only apply this update if it does not
change significantly the normals of the adjacent triangles (which
we evaluate by thresholding the angle between the pre-smoothed
and smoothed normals to be at most 45◦). This step leads to more
reliable matches and better shaped gap-spanning mesh strips.

Matching. We compute the matching scores as described in Sec-
tion 5.1, defining the Frenet frame at each boundary vertex using
the tangent to the boundary and the normal to the partial surface.
We set the maximal distance dmax for the boundaries of each con-
nected partial surface component using the average of the distances
between matched vertex pairs across this component. We define
the candidate set of each vertex to include other vertices on the
boundaries of both this partial surface and others that satisfy the
baseline matching conditions (1) and (3) in Section 5.2. We relax
condition (2) to require the angle between q − p and the boundary
binormal b(p) to be at most 80◦ (we orient the binormal to point
away from the bounded surface). We then proceed to compute the
best matches for each boundary loop as described in Section 5.2.

Meshing and Consolidation. We form gap-spanning mesh strips
by applying the algorithm in Section 5.3 as-is to the newly com-
puted matches and remove non-manifold artifacts as described in
Section 5.4. During consolidation, we leave all triangles on the previ-
ously computed partial surface in place by labeling them as output.

Orientation. Our partial surfaces are oriented during construction
and we orient each gap-spanning strip after consolidation. However,
when connecting these surfaces and strips together, we may intro-
duce gap-spanning strips that cannot be consistently oriented when
merged with the connected components they bound (a Moebius
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strip effect). We detect and resolve such configurations by first com-
paring the orientations of each partial surface and a strip it shared a
border with. For an orientable surface, we expect the orientations of
pairs of border triangles (one from the strip and one from the partial
to either be identical for all pairs of triangles or be inverted for all
of them. If this is not the case, we count the number of aligned and
inverted pairs. We keep the strip triangles which conform with the
majority choice (aligned or not) and discard the others. Finally, we
use a greedy breadth-first traversal to establish a common orien-
tation for the combined mesh. This process produces consistently
oriented surfaces for all orientable input geometries tested.

Optional Post-Processing. Our core surfacing framework robustly
closes narrow gaps and holes between input strokes. Since our sys-
tem is not limited to closed surfaces only, the determination whether
to surface larger and hence inherently ambiguous holes is left to the
user. We allow users to selectively close such large holes using the
hole-filling mechanism implemented in CGAL [2018]. Finally, users
can smooth the resulting mesh using standard Laplacian smoothing
to eliminate local geometric noise, and use Boolean operations to
join intersecting closed mesh components together.

As noted earlier, artists often use sparse strokes to communicate
narrow geometries (such as the chicken’s feet in Figure 2). We
represent such isolated strokes, ones which are not part of the
output triangulation, using their original triangulated ribbons.

7 VR DRAWING STUDY
To observe how experts and amateurs communicate shapes when
presented with a Virtual Reality flat stroke drawing interfaces,
we asked five participants to draw simple shapes (cubes and half-
spheres) using this interface. Our set of participants included one
formally trained artist, two 3D modelers, and two programmers.
Each participant was provided with a quick tutorial on the use of the
TiltBrush drawing interface; to avoid biasing the examples shown
during the tutorial did not include any dense stroke drawings, but fo-
cused on basic TiltBrush manipulation. Participants were allocated
a total of one hour to practice using TiltBrush and to then “Try to
draw a clean description of the surface” of a cube and a half-sphere.
They were told to stop once they were happy with the results. Three
participants employed the dense side-by-side stroke drawing style
from the get-go and proceeded to draw both examples using this
style. The remaining two created sparse curve drawings as their
initial attempt, but were not satisfied with those and after some
experimentation converged to the dense side-by-side stroke style as
well. Figure 13 shows six of the drawings created by the participants.
Additional drawings are included in the supplementary material.

In addition to this targeted experiment, we asked a modeler and
a non-expert to create VR drawings of shapes of their choice using
TiltBrush after showing them a few typical inputs created by one of
the authors. The drawings they produced are shown in Figures 1, 3,
and 14 (bonsai, pumpkin, mushroom, hart, tree, piggy bank, teddy,
dolphin). The drawings created exhibit the characteristics we de-
scribe in Section 3. Drawing these models took the participants 30
minutes on average. Creating such irregular, free-form shapes using
existing modeling technologies would require significantly more
time and a degree of familiarity with these tools that our target users

Fig. 13. Typical drawings created by study participants when instructed to
create cubes and half-spheres (domes) and our reconstruction results.

may not possess. The professional modeler who created our bunny
input (Figure 14) in 25 minutes estimated that it would take him two
and a half hours to create the same model in 3D Studio Max. These
experiments confirm that users see the dense side-by-side drawing
style as a convenient and effective way to communicate shapes, and
validate our argument for employing dense stroke drawing as a
modeling tool suitable for artists and amateurs.

8 RESULTS AND VALIDATION
We tested our algorithm on twenty nine inputs. These include inputs
created by amateur first-time users (Figure 13), an amateur user who
had some experience with the system (e.g. turtle, bonsai, chicken,
heart), and two modelers (e.g. bunny, wooden horse, teapot, skull).
Two inputs (ship, plane) were downloaded from online repositories.
The inputs range in complexity from simple shapes (spheres and
cubes in Figure 13) to complex models such as the bunny, horse,
and skull. In all cases our outputs accurately reflect the user-drawn
shapes.

Many images in online VR drawing repositories, see e.g. Figure 16
are created to provide a compelling visual rather than a detailed
model description; they contain multi-color strokes and use large
numbers of isolated strokes to convey narrow ruled surfaces. To
process this data, we augment our surfacing method to use color as
a negative matching cue, disallowing matches between differently
colored strokes. Our method reconstructs all surface elements, e.g.
tower, sail, deck, in these inputs while preserving the isolated
features intact, allowing us to rerender the sail on the boat with
surface texture.
Artists often depict surface creases (Figure 15a) by drawing rib-

bons whose sides delineate the desired crease shape. Our default
algorithm is designed to connect stroke spines and when used as is
rounds such creases leaving a beveled edge (Figure 15b). We provide
users with an option to retain creases, if they choose to do so. To
this end, when the the normals of two matched side-by-side strokes
form angle of 90◦ or less, instead of connecting the stroke spines,
we retain one half of the ribbon along one of the strokes, and con-
nect the side of that ribbon to the spine of the other. We use the
stroke with a larger number of vertices along the marched section
of interest to perform this task (Figure 15c).

Time Information. VR drawing software records
the time each stroke was drawn at. While artists
draw some immediately adjacent strokes sequentially,
as the inset shows, drawing order is not a reliable
indicator of adjacency (color represents drawing time
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Fig. 14. A range of inputs and SurfaceBrush results. Flower and skull: © Enrique Rosales, bonsai, pumpkin, mushroom, dolphin, heart, chicken, teddy bear,
piggy bank, tree: © Elinor Palomares.

(a) (b) (c)

Fig. 15. Optional sharp feature preservation: (a) input, (b) default output
with sharp features rounded, (c) with an optional feature preservation step.
Input drawing: © Enrique Rosales.

Fig. 16. Given two VR drawing from an online repository ((top) © Olga
Zinchenko derived from I Have 2 Cents (poly.google.com), (bottom) © Skeazy
J (poly.google.com)) we successfully reconstruct all the surfaces in the input
while preserving isolated strokes (inset, red) intact. We use the obtained
surface (bottom, right) to rerender the input with texture (a functionality
not supported by a ribbon-based representation).

from earliest, blue, to latest, red). Thus limiting or biasing matches
toward immediately preceding or succeeding strokes using drawing
order, could produce undesirable artifacts on typical user inputs.
Our framework is by design not dependent on stroke drawing order,
and thus can robustly handle such typical data.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 17. Relying purely on vertex-to-vertex scores when computing matches
between stroke vertices produces pre-consolidation partial meshes (a)
with numerous noisy matches and non-manifold edges resulting in post-
consolidation surface with many artifacts (b). Using unrestricted matches
(c, before consolidation, d, after) produces less artifacts but leaves many
undesirable holes, surfacing which would result in sharp dihedral angles and
undesirable connections between separate mesh components. Our results
before consolidation (e) and after partial surface computation (f). Our out-
put is fair and keeps the separate components apart. Non-manifold edges
in red, shading reflects front/back orientation.

Comparison to Algorithmic Alternatives. Figure 17 compares our
method against two potential algorithmic alternatives. We show the
impact of accounting for persistence during match assessment by
introducing the persistence scores Se (Section 5.1) by comparing our
results (Figure 17f) to results produced using only vertex scores Sv
(Figure 17ab). As the figure shows, using vertex scores alone results
in poor match persistence and subsequent visible surfacing artifacts.
Similar artifacts appear if we do not restrict the first matching
step (Section 5.2) to only dominant neighbor strokes (Figure 17cd).
In all cases, the results obtained using our complete pipeline are
significantly more reflective of the user input.

Comparisons to Prior Art. As discussed in Section 2 the inputs we
process do not conform to the input specifications of the existing
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Fig. 18. Comparison against representative point cloud reconstruction techniques using as input stroke vertices (top) and dense ribbon samples (bottom): Left
to right : input, [Dey and Goswami 2003], [Kolluri et al. 2004],[Öztireli et al. 2009], [Fuhrmann and Goesele 2014]. Non-manifold edges highlighted in red,
boundaries in purple. Our result shown in Figure 21.

genus 6 genus 49
1 connected
component

21 connected
components

(a) (b) (c) (d)
[Kazhdan and Hoppe 2013]

Fig. 19. Even with manually corrected normal orientation (a), state of the art frameworks that utilize normals, here [Kazhdan and Hoppe 2013], produce
outputs with excessive genus and other artifacts using stroke vertices (b) or dense ribbon samples (c). (d) Our result. Input drawing: © Jafet Rodriguez.

genus 357
416 connected
components

genus 512
403 connected
components
1 hole

genus 1059
668 connected
components

genus 1059
668 connected
components

genus 5
64 connected
components

genus 38
118 connected
components

[Ju 2004]Inputs [Barill et al. 2018][Shen et al. 2004]

Fig. 20. Attempting to reconstruct the user created models by applying topology repair methods to input ribbons fails on both original ribbons (top) and
ribbons wit manually corrected normal orientation (bottom). Left to right: input, result of [Shen et al. 2004], result of [Ju 2004], result of [Barill et al. 2018]. Our
result is shown in Figure 21. Input drawing: © Elinor Palomares.

curve loop, cycle or network surfacing methods. Our input drawings
can be easily converted into oriented point-clouds by using stroke
polyline vertices or point samples on the ruled ribbons around
them. Figures 3 and 18 show comparisons of our outputs to those
produced from such point-clouds using a range of state of the art
techniques [Dey and Goswami 2003; Edelsbrunner and Mücke 1994;
Fuhrmann and Goesele 2014; Kazhdan and Hoppe 2013; Kolluri et al.
2004; Öztireli et al. 2009]. Additional comparisons to reconstructions
produced using these methods, and the ball-pivoting method of
[Bernardini et al. 1999] are included in the supplementary material.
Ball-pivoting outputs exhibit similar artifacts to those demonstrated
for the other reconstruction techniques.
Existing methods that incorporate per-point normals as part of

the data, e.g. [Fuhrmann and Goesele 2014; Kazhdan and Hoppe

2013; Öztireli et al. 2009], typically rely on those to have consis-
tent in-out orientation. Our data does not satisfy this assumption,
leading such methods to catastrophically fail, producing meshes
with excessive genus and other artifacts. Even when the strokes are
manually oriented for global consistency, the self-intersections be-
tween different stroke groups commonly present in our data cause
major artifacts in the reconstructions computed with these meth-
ods (Figure 19). Delaunay type methods [Dey and Goswami 2003;
Edelsbrunner and Mücke 1994; Kolluri et al. 2004] are similarly ill-
suited for the uneven input spacing and the low-frequency errors
present in artist data, and produce outputs with large numbers of
non-manifold edges and vertices, multiple redundant connected
components, and with mesh triangles connecting unrelated surface
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Fig. 21. From VR drawing to 3D printed model: (a) input, (b) reconstructed
surface, (c) 3D printed model. Input drawing: © Elinor Palomares.

(a) (b)

Fig. 22. Our framework is not designed for surfacing very sparse (a) or
randomly oriented (b) strokes. In the former scenario it leave the input
strokes essentially as is. In the latter where persistence and tangent con-
sistency do not apply it produces results comparable to those obtained via
reconstruction from point clouds.

parts. Our targeted framework overcomes all of these artifacts and
produces the user-expected output on the tested inputs.
Topology Repair methods [Barill et al. 2018; Ju 2004; Shen et al.

2004] are designed for closed surfaces. Even when the input draw-
ings depict closed shapes, applying these methods to our input
triangle ribbons produces inadequate results (Figure 3, top). Re-
sult quality only marginally improves when ribbon orientation is
manually corrected (Figure 20, bottom).

Parameters and Runtimes. Our method has no user-tuned param-
eters, and all the results shown in the paper were obtained under
identical conditions. Our algorithm takes under 5 seconds to surface
the teapot (95 strokes, 3K vertices) models of similar complexity, and
takes 52 seconds to surface our biggest model, the horse (298 strokes,
20K vertices) on a 4 core Intel Core i7-6700HQ with 2.60 GHz RAM
and 32GB DDR4. Out of this time, 60% is spent in the matching code
and 25% doing consolidation.

3D-Printable Models. As indicated earlier, and illustrated in Fig-
ures 2 and 8 users often use disjoint sets of strokes to draw different
model parts; these are kept as disjoint components by our method.
When a user specifies that the intended output is expected to be a
connected closed intersection-free manifold surface, after closing
all holes (Section 6) we use a Boolean union operation to combine
all overlapping components into one. The resulting models can then
be 3D printed as shown in Figures 1, 21.

9 CONCLUSIONS
We present SurfaceBrush, a novel framework for freeform surface
modeling using virtual reality brush strokes as input. This modeling
interface is supported by a specialized surfacing algorithm that
converts raw artist strokes into a manifold, user-intended surface.
Our studies show that both experts and amateurs can successfully
use our framework to create compelling 3D shapes.

Limitations and Future Work. Our surfacing method is based on
observations of practices artists typically employ when using VR

brushes to draw 3D shapes. Thus it, predictably, breaks down when
artists drastically deviate from the fence-painting metaphor and use
either very sparse (Figure 22a) or arbitrarily directed (Figure 22b)
strokes. However, as our experiments show, even first-time users
typically quickly converge to producing the type of inputs we expect
when asked to depict geometric shapes, and thus are unlikely to
experience this limitation. At the same time these restrictions may
cause difficulties with processing of legacy inputs created to visually
and artistically convey rather than model 3D content. Such inputs
may use strokes to create artistic effects, e.g. mimicking van Gogh’s,
impressionist or Pointillist drawing styles, and may use layers of
differently directed strokes to depict fur, hair, or texture. Our method
is not designed to recover shapes from such highly stylized data.
The focus of our reconstruction method is on fidelity to user in-

put. Exploring regularization and beautification of input and output
created from non-expert drawings is an interesting future research
topic that could potentially lead to more robust methods that recon-
struct user intended rather than directly depicted shapes.

Our reconstruction process is currently offline, thus users can only
see the resulting model after completing the drawing. It would be
interesting to explore a variation of our method that provides users
with real-time feedback as they draw. Such a method can potentially
save user time and provide helpful real-time suggestions. As already
noted, artist strokes are often aligned with principal (typically min-
imal absolute) curvature directions - it would be worth exploring
how this extra information can be used in geometry optimization
and other surfacing tasks down the line.
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