
StrokeAggregator: Consolidating Raw Sketches into Artist-Intended
Curve Drawings

CHENXI LIU, University of British Columbia
ENRIQUE ROSALES, University of British Columbia and Universidad Panamericana
ALLA SHEFFER, University of British Columbia

(a) Input raw sketch (c) Clustered strokes (d) Consolidated curves(b) Manual consolidation

Fig. 1. Stroke consolidation: (a) a raw, vector format, sketch; (b) manually consolidated clean curve drawing; (c) algorithmically clustered strokes and (d)
consolidated curves. Our output curve set (d) is of similar quality to the manually generated one (b). Please zoom in online to see image details. Raw sketch:
© Enrique Rosales. Manual consolidation: © Elinor Palomares.

When creating line drawings, artists frequently depict intended curves us-
ing multiple, tightly clustered, or overdrawn, strokes. Given such sketches,
human observers can readily envision these intended, aggregate, curves, and
mentally assemble the artist’s envisioned 2D imagery. Algorithmic stroke
consolidation—replacement of overdrawn stroke clusters by corresponding
aggregate curves—can benefit a range of sketch processing and sketch-based
modeling applications which are designed to operate on consolidated, in-
tended curves. We propose StrokeAggregator, a novel stroke consolidation
method that significantly improves on the state of the art, and produces ag-
gregate curve drawings validated to be consistent with viewer expectations.
Our framework clusters strokes into groups that jointly define intended
aggregate curves by leveraging principles derived from human perception
research and observation of artistic practices. We employ these principles
within a coarse-to-fine clustering method that starts with an initial clus-
tering based on pairwise stroke compatibility analysis, and then refines it
by analyzing interactions both within and in-between clusters of strokes.
We facilitate this analysis by computing a common 1D parameterization
for groups of strokes via common aggregate curve fitting. We demonstrate
our method on a large range of line drawings, and validate its ability to
generate consolidated drawings that are consistent with viewer perception
via qualitative user evaluation, and comparisons to manually consolidated
drawings and algorithmic alternatives.

CCS Concepts: • Computing methodologies → Image manipulation;

Additional Key Words and Phrases: Sketch consolidation, Gestalt perception,
stroke clustering, curve fitting

Authors’ addresses: Chenxi Liu, University of British Columbia, chenxil@cs.ubc.ca;
Enrique Rosales, University of British Columbia, Universidad Panamericana, albertr@
cs.ubc.ca; Alla Sheffer, University of British Columbia, sheffa@cs.ubc.ca.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201314.

ACM Reference Format:
Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: Con-
solidating Raw Sketches into Artist-Intended Curve Drawings . ACM Trans.
Graph. 37, 4, Article 97 (August 2018), 15 pages. https://doi.org/10.1145/
3197517.3201314

1 INTRODUCTION
Freehand line drawing provides a natural avenue for artists to
quickly communicate shapes, ideas and images. When creating line
drawings from scratch, artists often employ oversketching, using
groups of multiple raw strokes to depict their intended, aggregate,
curves (Figure 1a). Human observers can easily visually parse, or
consolidate, these drawings by mentally replacing clusters of raw
strokes with their corresponding aggregate curves. To create more
refined, colorized, or shaded drawings, or to use these sketches as
inputs to editing or modeling software, artists typically perform
manual stroke consolidation by retracing the drawing and replacing
raw stroke clusters with carefully drawn corresponding aggregate
curves (Figure 1b) [Arora et al. 2017; Eissen and Steur 2008]. We
present StrokeAggregator, a new algorithm that generates consoli-
dated drawings of comparable quality to those generated by artists
(Figure 1d).

Given the prevalence of tablets and other pen-sensitive displays,
artists can easily create line drawings within a computer program
and have the strokes recorded in vector form. These vector draw-
ings contain more information about artist intent than their raster
counterparts, motivating us to use vector format sketches as in-
put. Algorithmic consolidation of both raster and vector drawings
remains an open challenge: existing methods require parameter
tuning and frequently fail to produce satisfactory results (Section 2).
Manually generating consolidated drawings from either raster or
vector sketches requires expertise and time. An artist required nearly

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201314
https://doi.org/10.1145/3197517.3201314
https://doi.org/10.1145/3197517.3201314

97:2 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

(c)

(e)

(b)

(d)(a)

Manual consolidation

Input raw sketch

Fig. 2. Manual consolidation examples (color shows stroke grouping): (a) a
typical cluster consists of strokes which are angle compatible, or roughly
parallel along their side-by-side portions; (b) within each cluster, strokes are
roughly evenly spaced and the internal distance is much smaller than the
inter-cluster distance. Note that the absolute distance between the top red
and blue clusters is roughly the same as the internal absolute distance of the
orange cluster; however, humans treat the two differently based on relative
proximity rather than absolute distance; (c) disjoint Gestalt continuous
clusters define separate aggregate curves; (d) connected branches with
uneven internal density define separate curves; (e) width to length ratio,
or cluster narrowness impacts viewer choices. Here, strokes are viewed as
separate despite satisfying all other grouping cues. Raw sketch: © Enrique
Rosales. Manual consolidation: © Elinor Palomares.

thirty minutes to create the consolidated drawing in Figure 1b; our
algorithm generated a comparable quality consolidated drawing in
five minutes.
We identify and describe the core factors that lead viewers to

mentally consolidate raw strokes in line drawings in Section 3.1.
Intuitively, we expect aggregate curves to correspond to distinct,
narrow clusters of roughly evenly spaced strokes (Figure 2). We ex-
pect strokes within the same cluster to be angle compatible, or to be
roughly parallel along their nearby side-by-side sections (Figure 2a),
and expect strokes within the same cluster to be roughly evenly
spaced; we expect this internal spacing to be significantly smaller
than the closest distance from strokes within the cluster to all par-
tially parallel strokes outside it (Figure 2b). Perception literature
refers to this spacing-based property as relative proximity or relative
distance [Wagemans et al. 2012]. Our challenge is to algorithmi-
cally account for these properties. Relative proximity assessment is
complicated by the fact that pairwise distances between strokes can
vary at different points along them, resulting in different spacing
along different side-by-side stroke sections (Figure 2d). Human ob-
servers mentally separate stroke branches once the spacing between
them becomes visibly uneven. Algorithmically replicating branch
separation requires local analysis of spacing between side-by-side
strokes.
Our algorithm is based on two key insights. We note that for

nearby strokes, angular compatibility provides a strong negative
cue: nearby strokes with sharply varying tangent directions are
unlikely to describe the same aggregate curve. We also note that
given a group of angle compatible strokes, we can successfully assess
if these strokes form an internally consistent cluster with respect
to the principles above. We use these observations as the basis
for a coarse-to-fine gradual clustering framework (Section 4). We
form initial coarse clusters based on angular compatibility between
strokes and refine those based on average pairwise distance between
them, to form clusters of roughly evenly spaced strokes (Section 4.1).

We then perform local analysis of intra-cluster stroke spacing to
detect and separate stroke branches (Section 4.2). In the presence
of perceptual ambiguities in both stages, we separate groups of
strokes absent clear evidence that the combined cluster satisfies
all necessary perceptual criteria. Our final step (Section 4.3) relies
on the internal consistency of the computed clusters to resolve
ambiguities and to merge clusters which are both angle and spacing
compatible. Finally, we fit a shape preserving aggregate curve to each
resulting cluster (Section 5). We rely on the same set of perception
driven parameters across all inputs throughout the entire process;
we derive their values from perception literature, and customize
them to our setting via targeted human perception studies (Appendix
B).
Key to our approach is the ability to consistently assess percep-

tual compatibility between, and within, groups of strokes; and to
use the same metrics across different configurations of overdrawn
strokes that artists may draw (Figure 3, see surrounding text for
description). We provide this unified framework by computing a
common parameterization for each group of assessed strokes based
on their corresponding aggregate curve.
In summary, our overall contribution is the first sketch consoli-

dation method that reliably generates output curve networks that
are consistent with viewer expectations without the need for any
parameter tuning. We achieve this goal by leveraging a combination
of perceptual criteria and insights about artistic practices, which
guide our clustering framework and help resolve data ambiguities.

We present a gallery of results generated using our algorithm on a
diverse set of 36 raw line-drawings, created by multiple artists (Sec-
tion 7 and supplementary material). We validate our observations
and algorithm via a series of user studies, and extensive comparisons
to prior art and manually consolidated drawings. These experiments
jointly confirm that our method outperforms the state of the art,
and provides results consistent with viewer expectations. We plan
to release our data and code to facilitate further research.

2 RELATED WORK
Our work builds upon existing artistic practices and research on
processing of line drawings, extending a line of work that employs
Gestalt perceptual theory for sketch analysis [Bessmeltsev et al.
2015; Shao et al. 2012; Xu et al. 2014] and visual grouping [Jayaraman
et al. 2017; Nan et al. 2011a; Xu et al. 2012].

Fig. 3. Overdrawing strategies.
© Enrique Rosales.

Artist Sketching Practices. Artists
employ overdrawing strategies to
achieve a range of effects [Arora et al.
2017; Eissen and Steur 2008]: they
use earlier strokes as a visual scaf-
fold that helps them mentally refine
their intended imagery, and arrive at

the desired aggregate curve form by repeatedly overdrawing exist-
ing strokes (inset, red); they leverage overdrawing to emphasize
curves (inset, blue); and finally, since it is technically challenging
to accurately draw long, complex curves in one continuous motion,
artists often depict such curves by using collections of partially
overlapping simpler strokes (inset, green). While raw line drawings
effectively communicate shape, artists desire a clean, less sketchy

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:3

(a) Input raw sketch (c) [Orbay&Kara 2011] (d) [Liu et al. 2015](b) Manual consolidation (e) Our result
= 0.8BT

Fig. 4. Consolidation comparison (clusters and fitted curves): (a) input; (b) manually consolidated drawing; (c) [Orbay and Kara 2011]; (d) [Liu et al. 2015]; (e)
our result. While the results of prior methods exhibit a range of artifacts, our result (e) is consistent with the manual consolidation output (b). Raw sketch:
© Enrique Rosales. Manual consolidation: © Elinor Palomares.

line look when converting them into production-quality colorized
or shaded drawings. They therefore manually retrace the original
drawings, replacing multi-stroke clusters with carefully drawn cor-
responding aggregate curves [Arora et al. 2017; Eissen and Steur
2008]. A similar cleanup step is required if artists want to use their
sketches as input to most existing sketch shading [Finch et al. 2011;
Shao et al. 2012], sketch editing [Igarashi et al. 2005], single-sketch
based modeling [Lipson and Shpitalni 1996; Xu et al. 2014], or pos-
ing [Bessmeltsev et al. 2016] algorithms. These tools are designed for
processing consolidated drawings whose strokes already correspond
to complete meaningful curves.

Vectorization of Raster Line Drawings. Traditional vectorization
approaches [Bao and Fu 2012; Bo et al. 2016; Hilaire and Tombre
2006; Noris et al. 2013] extract a pixel-wide stroke skeleton from
input drawings, and then fit vector curves to skeleton branches. They
make only limited attempts to eliminate redundant branches formed
due to overdrawing, and are best suited for vectorizing “clean”, or
previously consolidated, drawings where strokes depicting the same
intended curve almost or fully overlap [Noris et al. 2013]. Bartollo et
al. [2007] pre-filter raster line drawings by painting over small inter-
stroke gaps, facilitating cleaner vectorization. Favreau et al. [2016]
initialize the stroke skeleton using a set of interior region boundaries
and use morphological thinning to obtain the skeleton branches
for dangling strokes. They vectorize and simplify the extracted
skeleton by merging skeleton branches at valence two vertices and
by collapsing short branches via merging when these operations
improve an overall metric that balances simplicity against input
fidelity. The optimization does not support more complex operations
such as merging of parallel branches, resulting in visible artifacts
on the inputs we tested (Figure 14).

Progressive Overdrawing. Some drawing systems update stroke
shape in real time when artists add new strokes [Bae et al. 2008;
Baudel 1994; Grimm and Joshi 2012]. They rely on absolute distance
and drawing order to determine which existing stroke each new
stroke is designed to refine. In our experience, order is not a reliable
criterion for stroke correlation, as artists often do multiple refine-
ment passes, returning to the same intended curve after editing
other portions of the drawing. Similarly, absolute distance is an am-
biguous cue for determining correspondence: when an artist draws
a similar stroke next to an existing one, they may aim to overdraw

it, or they may be delineating a new narrow feature (such as the
koala’s chin or feet in Figure 4).

Line Drawing Abstraction and Simplification. Drawing abstraction
methods [Grabli et al. 2004; Nan et al. 2011b] reduce visual clutter
in detailed drawings by removing fine or redundant content. In con-
trast, our framework seeks to preserve the drawing content while
identifying and consolidating groups of raw strokes that jointly rep-
resent the same intended curve. Methods for rendering 3D models
using contours and other significant surface curves reduce visual
clutter and produce cleaner drawings by leveraging 3D informa-
tion [Kalnins et al. 2003; Wilson and Ma 2004]. Operating on inexact
free-hand artist drawings, without any knowledge of their content,
requires a very different methodology.

Vector Line Drawing Consolidation. Early research on sketch anal-
ysis [Rosin 1994] proposed three perceptual criteria for stroke group-
ing: proximity (measured with respect to stroke length), parallelism,
and good continuation (measured in terms of tangent similarity at
stroke end points), but does not provide constructive methods for
jointly employing these criteria for stroke consolidation. Barla et
al. [2005] cluster strokes incrementally, replacing pairs of strokes
by an aggregate stroke if that stroke is within a fixed distance from
the two paired strokes and is roughly parallel to both. Shesh and
Chen [2008] and Bao and Fu [2012] extend this method to ani-
mated drawings. Noris et al. [2012] uses an interactive consolidation
process that incorporates user input and drawing order. Chen et
al. [2013] use a gradient field based framework to simplify or con-
solidate raster images. All these methods use absolute distance
thresholds or neighborhood size parameters set by the user. As
noted by Liu et al. [2015], over-sketched stroke densities vary be-
tween artists, and even between different regions within the same
drawing (Figures 1, 4), making threshold based decisions problem-
atic.
Orbay and Kara [2011] use a neural network to determine if

strokes belong in the same cluster; the features they use are clos-
est point distances and angles, and stroke graph distances. They
use a separate step to break clusters which have branch structures
(Figure 6). As they acknowledge, employing networks trained on
drawings created by one artist to consolidate drawings created by
another artist results in non-negligible clustering errors (Figure 4).
Simo-Serra et al.[2016; 2017] propose a learning based method for

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

97:4 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

cleanup or consolidation of raster sketches that can be used as a
precursor for subsequent vectorization. Their framework performs
poorly on the inputs we tested (see Figure 14).

Liu et al. [2015] introduce contextual angle and proximity metrics
defined relative to the size of empty spaces, or regions, enclosed
by the input strokes. They threshold the computed values to de-
termine which strokes to cluster. To address region size variation,
they repeatedly merge small regions with nearby large ones and
repeat the stroke merging step. They manually adjust the thresholds
to produce optimal results (in the comparisons shown throughout
this paper, we list the author provided value for TB ; for all inputs
authors set TD = 0.8TB). The method’s effectiveness diminishes on
drawings with different feature scales (see koala’s feet and fingers
in Figure 4).

Our method also leverages contextual, or relative, proximity, but
does so using region independent proximate distance evaluation. It
employs proximity and angle metrics built atop existing perception
research with no per-input parameter tuning. Lastly, while prior
methods computed aggregate curves by minimizing the distance
between these curves and point samples along the input strokes, we
focus on minimizing tangent deviation between them and the input
strokes. Our choice is motivated by prior research [Xu et al. 2014]
and design tutorials [Eissen and Steur 2008] which indicate that the
tangents of artist drawn curves are often more accurate than their
positions. Consequently, our output curves better conform with
viewer expectations than those generated by prior approaches (e.g.
the koala’s nose in Figure 4 or the eagle’s beak in Figure 16). Our
comparisons (Section 7) demonstrate that human observers prefer
our outputs to those produced by alternative techniques 92% of the
time (and judge them as on par 6%).

3 OVERVIEW

3.1 Perception of Oversketched Strokes
To mimic the mental process viewers apply to consolidate the draw-
ing, we rely on the following observations about human perception
of sketches derived from perception literature and sketching tutori-
als.

Angular compatibility. Studies indicate that viewers rely on angu-
lar compatibility, or the degree of similarity between stoke tangents,
when grouping nearby side-by-side strokes [Barla et al. 2005; Rosin
1994] (Figure 2a). While viewers mentally group strokes that serve
as visible continuation of one another [Bessmeltsev et al. 2015] they
do not hallucinate curves absent from the drawing, and thus employ
separate corresponding aggregate curves for such strokes (Figure
2c).

Relative proximity. Perceptual literature
strongly suggests that humans group ob-
jects based on relative proximity, or relative
distance: given a set of shapes, we visually

group objects if the spacing between them is much smaller than the
space between them and other objects (see inset, color indicates clus-
tering) [Wagemans et al. 2012]. Proximity can also be interpreted
as a function of density: the perceived groups have near-constant
internal object density, while incorporating any other object into the

group would result in highly uneven density. Note that this group-
ing is contextual—similarly spaced objects (inset, top versus bottom)
are seen as belonging to the same, or different, groups based on the
position of other objects. Also note that proximity based grouping
is scale independent, scaling all distances in the inset by the same
amount will not change the grouping. Using proximity as a criterion
for stroke grouping poses several challenges. First, it requires con-
text, since one cannot assess the relative proximity of any individual
pair of strokes. Second, relative proximity is a negative rather than
positive property: it indicates when objects do not belong together—
when both or one of them have much more close by objects—not
when they do. For roughly evenly spaced strokes, relative proximity
alone provides no cue as to whether these strokes should, or should
not, belong together. Lastly, distances between side-by-side strokes
vary at different points along them, raising a question of how to
assess proximity locally.

Narrowness. We speculate that humans intuitively understand
curves as being narrow, namely having a small width to length ratio.
We believe they use this intuition to distinguish between equally
spaces strokes that jointly depict aggregate curves and those that
do not (Figure 2e). We incorporate this narrowness criterion into our
clustering algorithm, and use a narrowness threshold estimated via
a perception study that validates our hypothesis (Appendix B).

disconnected

connected

Connectedness. The connectedness principle
highlighted by perception research [Wagemans
et al. 2012] suggests that humans group objects
that are inter-connected, such as points connected
by lines. For strokes, this principle argues for

grouping intersecting or near intersecting strokes when doing so
does not contradict other cues (see inset).

1 or 2?

2

Strength in numbers. Even with these cues in
place, we theoretically can have stroke configu-
rations which, from a purely perception driven
perspective, are ambiguous (see inset, top). To

address this type of configurations, we leverage artist intent. Specif-
ically, we recall that our inputs are generated by artists who intend
for viewers to assemble a clear mental image of the drawn content.
Design literature [Eissen and Steur 2008] suggests that artists rely
on thicker, overdrawn, lines to enhance drawing clarity and elim-
inate ambiguities. This suggestion confirms our observation that
artists use tight multi-stroke clusters to highlight intended aggre-
gate curves that may be ambiguous when drawn with a single stroke
(inset, bottom). We refer to this principle as strength in numbers and
use it to resolve ambiguous configurations, by using stroke number
within a cluster as a factor in the final decision making (Figure 5d,
Section 4.3).

3.2 Algorithm
The observations above provide cues for judging the likelihood that
a given group of strokes depicts a single aggregate curve; however,
these cues cannot be easily translated into any standard clustering
framework. While relative proximity plays a major role in clus-
tering decisions, assessing it requires context and thus cannot be
reliably performed on stand-alone stroke pairs. Moreover, distances

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:5

(a) Raw vector input

(b) Coarse clustering (c) Proximity based cluster refinement (d) Final clusters

(e) Consolidated output drawing

...

Unify into
larger clusters:

Fig. 5. Given a raw vector sketch (a), our method first clusters based on pairwise compatibilities of angle and relative proximity, resulting in clusters consisting
of connected parallel strokes (b, Section 4.1). Our method then analyzes relative proximity within each cluster to separate branches (c, Section 4.2). Given these
reliable clusters, our method assesses all pairs of nearby clusters and merges them following the visual grouping rules (d, Section 4.3). Finally, the clusters are
consolidated into the cleaned-up sketch (e, Section 5). Raw sketch: © Enrique Rosales.

(a)

(b)

(c)

(d)

Fig. 6. Local versus global proximity: (a,c) on-average evenly spaced (and
connected) strokes may depict multiple aggregate curve branches; (b,d)
perceived narrow clusters.

between strokes may vary at different points along them, requiring
fine-grained local analysis to separate connected stroke branches
that depict different curves (Figure 6), which in turn requires a mean-
ingful dense inter-stroke correspondence. Our method overcomes
these challenges by employing a targeted clustering framework
that refines clusters by gradually incorporating new and more lo-
calized perceptual cues into their assessment (Figure 5). We first
coarsely cluster strokes based on average, or global, compatibility
between their strokes (Section 4.1, Figure 5b). We first assess the
angular compatibility of each pair of strokes independently. While
this metric may become fuzzy for far away strokes and border-
line cases, we successfully use it to provide initial, rough stroke
segmentation (Section 4.1.1). We refine the obtained segmentation
by assessing the relative proximity between strokes within each
angle-compatible cluster, breaking clusters into sub-clusters, each
of which has roughly uniform average inter-stroke spacing (Sec-
tion 4.1.4). We then assess the width of the resulting clusters, as
well as their local spacing uniformity. We use both cues to detect
and refine clusters which are only weakly connected, namely those
that have multiple distinct curve branches (Section 4.2, Figure 6).
The output of this stage is a set of stroke clusters that satisfy all
our perceptual criteria, and their corresponding aggregate curves
(Figures 5c, 6bd).

Across all these clustering stages, we opt for a conservative inter-
pretation of ambiguous and borderline cases, keeping strokes apart
absent clear evidence of compatibility. The last merging stage of our
algorithm resolves these ambiguous cases by relying on the fact that,
at this point, most of the clusters already contain multiple strokes;
we can therefore use intra-cluster stroke proximity to more reliably
assess inter-cluster relative proximity. We merge pairs of clusters
if the combined cluster satisfies our key perceptual criteria: angle,

relative proximity, and narrowness. Since most of the processed
clusters contain multiple strokes, we also employ the strength in
numbers principle by including cluster size in our consideration
of borderline cases. This process is repeated until no more cluster
pairs can be merged (Section 4.3, Figure 5d).

To assess the different properties of the considered clusters through-
out the algorithm, we compute their corresponding aggregate curves
(Section 5) and use those as a common reference frame, or parame-
ter domain, for perceptual properties assessment. We use the same
computation to generate the final consolidated drawing (Figure 5e).

Input and Output. The input to our algorithm is a line drawing
in vector format, generated using a standard stylus and tablet in-
terface, and where each stroke is represented by a polyline. We
expect each stroke to have an associated width value, generated via
tablet pressure or other UI specification, and we assume a stroke
width of one if such a value is not available. We replace clusters of
strokes that jointly depict individual artist intended curves by their
corresponding aggregate curves. We represent the aggregate curves
using the same format as the input strokes: as polylines with an
associated width. We leave it to the user to decide if they want to fit
these polylines with smooth curves later on (e.g. using the methods
in [Baran et al. 2010; McCrae and Singh 2009]).
Raw strokes captured via a stylus-on-tablet interface are often

noisy due to a combination of involuntary hand movement and
capture software inaccuracy [Baran et al. 2010; McCrae and Singh
2009]. We pre-process the raw data as described in Appendix A.
We do not use this process on previously cleaned data, such as the
examples provided by [Liu et al. 2015]. Our figures include both raw
and pre-processed strokes: input renders show the raw strokes and
clustering output images show pre-processed ones for comparison.

4 STROKE CLUSTERING

4.1 Coarse Clustering
4.1.1 Clustering Based on Angular Compatibility. The angular

compatibility between a stroke pair provides the first cue about
whether these strokes depict a common aggregate curve. Two nearby
strokes Si and Sj are more likely to depict the same aggregate curve
when they are fully or partially parallel and are less likely to belong
together when they are orthogonal to one another. We define an

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

97:6 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

angular compatibility score ComA(Si , Sj) that addresses all these
scenarios (Equation 1). This score is set to be positive for strokes
that are angle compatible, and negative for those which are not.
The value of the score reflects the degree of (in)compatibility. Since
angle provides a confident estimator of compatibility only for nearby
side-by-side strokes, we set the score to a small negative value for
all other stroke pairs, allowing their clustering to emerge from the
interaction of more adjacent strokes.

Given the angular compatibility scores, we wish to group stroke
pairs with positive scores, to separate strokes with negative scores,
and to resolve ambiguities by considering the magnitude of the
scores. This set of requirements naturally fits into a correlation
clustering framework [Bansal et al. 2004]. The advantage of using
correlation clustering over other clustering formulations is that the
number of clusters emerges directly from the input scores and does
not need to be estimated as a priori. We formulate our clustering
goal as maximizing

∑
i j ComA(Si , Sj)Yi j , where Yi j = 1 if the two

strokes are in the same cluster and Yi j = 0 otherwise. Obtaining
an optimal correlation clustering is proven to be NP-complete; we
use the method of Keuper et al. [2015], which provides an efficient
approximation of the optimum.

4.1.2 Pairwise Angular Compatibility Score. We require an angu-
lar compatibility score that is robust to noise and accounts for the
different adjacency relationships between stroke pairs: strokes that
are fully and partially side-by-side. In previous work, this problem is
handled by crafting multiple special cases [Barla et al. 2005; Liu et al.
2015] or by considering only angles at closest points [Orbay and
Kara 2011]. Purely local angle computation is clearly unreliable, as
point-wise normals can be noisy, but an average or integral measure
requires a meaningful reference frame or correspondence between
the two strokes. We provide a unified, integral angular compati-
bility score by first fitting a common aggregate curve SAij to the
pair of strokes Si and Sj (Section 5), and then assessing the angles
between the tangents of this common curve and each of its originat-
ing strokes. Specifically, we define Da (Si ,Sj) (Equation 2) as the
angular distance between each stroke and the aggregate curve and
set Da (Si ,Sj) = max(Da (Si ,S

A
ij),Da (Sj ,S

A
ij)). Since each point

on the input strokes has a corresponding point on the fitted curve,
this formulation addresses all possible stroke configurations, pro-
viding a unified measure. We convert this angular distance value
ϕ = Da (Si ,Sj) into a compatibility score as follows:

ComA(Si ,Sj) =



1, ϕ < 8◦

exp(− (ϕ−8
◦)2

2σ 2
1
), 8◦ ≤ ϕ < 17◦

0, 17◦ ≤ ϕ < 23◦

−1.5 exp(− (ϕ−30
◦)2

2σ 2
2
), 23◦ ≤ ϕ < 30◦

−1.5, 30◦ ≤ ϕ

, (1)

The parameters of this function reflect cues from perception re-
search. Literature indicates that viewers use approximately 20◦ as
the threshold distinguishing between perceived similar and dis-
similar tangents [Hess and Field 1999]. We therefore center our
compatibility function around this value, and use an angular com-
patibility threshold Ta = 20 through the rest of our computa-
tions. We set the size of the Gaussians to create smooth dropoff:

(a) (b)

(c) (d)

Fig. 7. Clustering stages: (a) angle based clustering output with two clusters
(pink and cyan) highlighted; (b) average proximity based clustering breaks
these two clusters into roughly evenly spaced distinct components; (c) local
refinement separates branches producing uniformly narrow clusters; (d)
consolidated output. Input sketch is from [Orbay and Kara 2011].

σ1 = 9◦/3.5,σ2 = 7◦/3.5. At this stage we are seeking for conserva-
tive clusters, and therefore we use a higher negative than positive
maximal correlation score (1 v.s. −1.5).

Angular compatibility only impacts clustering decisions for nearby
curves. We expect far away curves to end up in the same final cluster
only if they are interconnected via series of intermediate proximate
and angle compatible strokes (Figure 2ac). We therefore set the over-
all score to a minuscule negative number −10−6 for strokes that are
far from one another (farther than twenty times the stroke widths,
20Ws away at their nearest points) or have no side-by-side sections
(Figure 8). This value is small enough to allow strokes to be grouped
together if they share angle compatible intermediate strokes, but
pushes them apart otherwise.

4.1.3 Angular Distance. We compute the angular distance be-
tween a stroke Si and a corresponding aggregate curve SAij as fol-
lows. For a point p ∈ Si , we define the corresponding point p′ ∈ SAij
as its closest point on the aggregate curve. Given this correspon-
dence mapping p′ = Mi (p), we compute the pointwise angular
difference at p′ as Ai (p′) = arccos(t · t′). Here, t and t′ are unit
tangents to Si and SAij at p and p′ respectively.

We intend to use the stroke to curve angular distance to evaluate
whether two strokes are roughly parallel .

Fig. 8. Stroke pair layouts.

Therefore, instead of integrating angular
distances along the entire curve, we nar-
row the computation to sections of interest
where points on the aggregate curve have

corresponding points on both input strokes I1 (inset, blue). We
evenly sample the points p along SAi, j and define the angular dis-
tance as

Da (Si ,S
A
i, j) =

1
|I1 |

∑
p′∈I1

Ai (p′), (2)

where |I1 | is the number of samples along the section I1.

4.1.4 Average Proximity Based Clustering. Our first step of the
coarse clustering stage focuses on angular compatibility, and thus of-
ten groups side-by-side strokes which are visibly disjoint (Figure 7a).
We separate such strokes by breaking angle compatible clusters into

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:7

sub-clusters with no sudden internal proximity changes based on av-
erage inter-stroke proximity. This process results in clusters which
are narrow enough to be effectively parameterized via a shared
aggregate curve based correspondence (Figure 7b). We use the com-
puted correspondences to further refine these clusters using local
proximity analysis (Section 4.2, Figure 7c).
To measure the proximity, or distance, between two strokes Si

and Sj we fit them using an aggregate curve SAij which provides us
with their common parameterization. We define the correspondence
mapping q = Mi j (p) where Mi (p) = p′ = Mj (q) are the mappings
from the strokes to the curve SAij . Note that by construction the
points p′, q, p are colinear and the line connecting them is orthog-
onal to the aggregate curve. The average distance is then defined
as

Di, j (I1) =
1
|I1 |

∑
p′∈I1

| |p − q| |. (3)

If the side-by-side section |I1 | is empty we set the inter-stroke dis-
tance Di, j = +∞ . Our computation directly employs the mapping
between the stroke points, since at this point in the computation,
the side-by-side portions of the strokes we consider are roughly
parallel, ensuring reliable correspondences. This was not the case
for the angle difference computation (Equation 2), where to obtain
reliable values we had to map strokes to the aggregate curve instead
of to one another.
To measure proximity within a cluster C, for each stroke, we

locate its nearest neighbor based on the inter-stroke distance. We
define the internal cluster proximity as the maximum of these dis-
tances:

Dc = max
i ∈c
(min
j ∈c, j,i

(Di, j)).

Intuitively, this value measures the size of the largest gap between
strokes in the cluster. We measure the distance between two distinct
clusters by finding the closest distance between any two strokes
where each stroke belongs to a different cluster:

Dc,c ′ = min
i ∈c, j ∈c ′

Di, j

Following the relative proximity principle, we merge clusters C and
C′ if both of the following conditions are true.

Dc,c ′ < T
′
d ·max(Dc ,Dc ′),

max(Dc ,Dc ′) < T
′
d ·min(Dc ,Dc ′).

We set T ′d as follows. Our proximity study (Appendix B) indicates
that humans separate lines when the ratio of intra-cluster to inter
cluster distances reaches approximately Td = 2.1. The distances
we employ at this stage are averaged along the full length of the
strokes, and are thus only approximating closest inter- and intra-
cluster distances. We perform more fine grained-analysis during
subsequent local separation; therefore, to avoid over-segmentation
at this stage, we use T ′d = 1.25 · Td . Increasing the multiplicative
factor from 1.25 to 1.3, or even 1.4, leads to no visible changes in
our outputs.
We merge clusters incrementally, using the merging criterion

above. We speed up computation by using the HDBSCAN algorithm
[Campello et al. 2015].

Initialization. Our clustering criterion uses intra-cluster distances
Dc . However, these are onlymeaningful for clusters with at least two
strokes.We generate initial clusters by leveraging the connectedness
principle. We recall that intersecting or near-intersecting strokes
are likely to be seen as grouped together. We therefore generate
initial clusters by forming (near-)connected stroke components. We
consider two partially side-by-side strokes as nearly-intersecting
if they have pairs of points at a distance less or equal to twice the
stroke widths, 2Ws . We group intersecting pair of strokes only if
the resulting clusters conform to our perceptual cues: we check that
the two strokes are angle compatible and that their joint aggregate
curve is narrow. We measure angular compatibility as

Ai, j (I1) =
1
|I1 |

∑
p′∈I1

arccos(t(p) · t(q)), (4)

where p′ = Mi (p) = Mj (q), and t(p), t(q) are their respective tan-
gents. If the angle averageAi, j exceeds the thresholdTa , we keep the
strokes separate. To assess narrowness, we compute the widthWc
of their joint aggregate curve (Equation 5) and compare the curve’s
length to width ratio against the threshold Tn = 8.5 established via
our study (Appendix B).

Aggregate Stroke Width. To compute the width of an aggregate
curve, we first shoot left and right orthogonal rays from densely
sampled point p ∈ I1 on the curve and locate the farthest left and
right intersections il (p) and ir (p) with cluster strokes along each
ray. We set the width as

Wc = max(Ws ,median
p∈I1

(| |il (p) − ir (p)| |)). (5)

4.2 Local Cluster Refinement
The clusters obtained via this bottom-up clustering are visually
connected but may depict multiple connected curve branches in-
stead of a single aggregate curve (Figures 6, 7, 9). We detect such
multi-branch clusters and separate them into branches that corre-
spond to individual aggregate curves using a top-down recursive
process (Algorithm 1). At each level of the algorithm we consider
two criteria: evenness of the internal spacing between cluster strokes
(Section 4.2.2), and cluster narrowness. We assess narrowness as
described in Section 4.1.4. For any cluster that fails one of these tests,
we perform the split that maximally reduces spacing unevenness
(Section 4.2.1). Once a cluster is split into left and right branches,
we recursively apply the refinement algorithms to these branches.

In assessing spacing evenness, we seek to detect contiguous
branches, or sub-clusters, that have significantly larger intra-cluster
spacing along a significant portion of their length, compared to the
internal spacing within each branch (Section 4.2.2). We generate can-
didate sub-clusters based on local inter-stroke spacing (Section 4.2.1)
and then compare their internal spacing to the inter-cluster one to
determine if they indeed need to be separated (Section 4.2.2).

4.2.1 Potential Clusters. We compute potential sub-clusters by
analyzing local spacing between strokes (Figure 9). We parameter-
ize each cluster by shooting orthogonal rays from densely sampled
aggregate curve points and compute the intersections of these rays
with the cluster strokes (Figure 9, inset). We order the intersections
from leftmost to rightmost (with left and right defined with respect

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

97:8 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

ALGORITHM 1: Recursive Branch Separation
Input: A set of strokes to separate, C.
Output: ResultBranches.
ResultBranches← {C};
PotentialSeparations← FindPotentialSeparations(C) (Sec. 4.2.1);
Rmax ← 0; {C∗L, C

∗
R } ← {C, ∅};

for each separation {CL, CR } in PotentialSeparations do
R ← ComputeGapRatio({CL, CR }) (Sec. 4.2.2);
if R > Rmax then

Rmax ← R; {C∗L, C
∗
R } ← {CL, CR };

end
end
if Rmax > Td or C violates Narrowness then

LeftBranches← RecursiveBranchSeparation(C∗L);
RightBranches← RecursiveBranchSeparation(C∗L);
ResultBranches← LeftBranches ∪ RightBranches;

end

r = 0
r > 0

r > 0

r = 0

Fig. 9. Local cluster refinement: Pointwise stroke correspondences are de-
fined using intersections between strokes and orthogonal rays emanating
from the cluster’s aggregate stroke (black). The spacing between lowest
top (blue) and highest bottom (orange) intersection points is significantly
larger than the internal spacing within the top (blue) and bottom (orange)
branches. We measure this uneven distribution of intersection points by
comparing the inter-cluster gap д (gray, upper inset) and the left, right gaps
дL, дR (blue, orange, upper inset). The measured gap ratio r is positive when
the two clusters are clearly separate (upper inset, blue shadow section) and
zero when they overlap (lower inset, red shadow section).

to the aggregate curve direction). The lengths of the segments, or
gaps, between consecutive intersections along individual rays, pro-
vide a local measurement of relative proximity. If all these gaps are
of equal size, then visibly the intersection points and their corre-
sponding strokes are grouped together. If a gap д is much larger
than the gaps to the left дL ∈ GL and right дR ∈ GR of it, then the
intersections to the left and to the right and the strokes they lie on
are locally visibly separate (Figure 9). We first detect candidate gaps
д which indicate possible cluster separation using the ratio between
the length of this gap and that of those left and right to it as a cue
Specifically, we mark a gap д as a candidate if

д > Td (дL + дR)/2.

If д is the leftmost or rightmost gap, we only compare its size against
that of the gaps to the right, or left, respectively. If there is only one
gap, i.e. only two participating strokes, we set дL = дR = 2Ws , the
same lower bound on gap size as in the initialization of Section 4.1.4.

Given a candidate gap, we assign the strokes to the left and right
of it into separate left and right clusters, CL and CR , respectively.
We then assign the remaining strokes to these clusters as follows.
We first advance left and right along the aggregate curve as long

Fig. 10. The growing step for potential separation generation. At position pj,
given the gap across the aggregate curve, the intersection points are labeled
into blue and orange, and the strokes are labeled correspondingly. The
assignment at pj is propagated into pj−1 and pj+1. There are three possible
separations at pj−1 defined respectively by д1 to д3. Our method chooses
the largest gap д2 greedily. There is only one possible assignment at pj+1.

as all currently marked strokes remain on correct sides. At each
encountered aggregate curve point, we split the unmarked strokes
locally based on the largest gap between the previously marked
strokes. Intuitively, the optimal assignment of the remaining strokes
is one that maximizes the average gap between the left and right
clusters. To make this assignment, we assess three alternatives and
choose the separation that produces the largest average gap ratio.
The three alternatives we test are assigning each stroke to the near-
est, left or right, cluster based on shortest distance, assigning all
remaining strokes to CL , or assigning all remaining strokes to CR .

4.2.2 Separation assessment. Given a pair of clusters, we ana-
lyze the gap ratio to determine whether they should be separated.
We iterate over all rays that intersect both clusters and, for each
ray, locate the leftmost intersection with the right cluster and the
rightmost intersection with the left cluster. If these intersections
are immediately next to one another, we compute the ratio between
the size of middle gap д and the size of the average left and right
gaps as above

r = д/((дL + дR)/2).
If the intersection order is flipped, the clusters are locally connected.
In this case, we set r = 0.
The left and right gap values are ill-defined if the one of these

clusters consists of a single stroke. They can also be arbitrarily small
at a location where two or more strokes intersect; a division by a
value close to zero would result in an arbitrarily large ratio value
which would drastically change the average ratio. We resolve both
cases by rounding (дL + дR)/2 up to a lower bound. To determine
the bound we compute the average inter-stroke distances dl and dr
within the left and right clusters. If the larger of these is above the
baseline value of 2Ws that we use throughout (Section 4.1.4, 4.2.1),
we use 2Ws as the lower bound.

Otherwise, we examine if the cluster is
sufficiently wide to potentially merit sepa-
ration. We classify a cluster as wide if the
ratio of its length l to its maximal gap дm
inside is close to the narrowness threshold

l/дm < 2Tn . We use the default bound for non-wide clusters. For
clusters which are wide, yet have very small left and right inter-
stroke distances (see inset), we follow the strength in numbers

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:9

(a) (b) (c)

Fig. 11. Final unification: (a) before; (b) after, (c) consolidated result. Input
sketch: © Enrique Rosales.

principle and use the smaller bound max(dl ,dr ,Ws). This choice
facilitates separation of small clusters with small inter-cluster gaps
but even smaller intra-cluster gaps.

We use these computed ratios to deter-
mine if the left and right clusters are sepa-
rable. In theory, if each of the left and right
clusters had uniform internal spacing, we
could directly compare the average of lo-
cal ratios r to our proximity thresholdTd to
determine if the two clusters need to be sep-
arated. However, our original cluster could
have multiple branches (Figure 6ab). Thus,

either of the left or right clusters may consist of more than one
branch (see inset, © Enrique Rosales) and, as a result, may have
large internal gaps; this makes gap ratio assessment less reliable.
To nevertheless separate such right and left clusters, we use a more
lax gap ratio assessment, setting R to the average of the 90% largest
ratio values and compare this number to the threshold as a sep-
aration criterion. While this approach may occasionally lead to
over-segmentation, the resulting split clusters are merged back by
our final unification step. If multiple cluster pairs pass the splitting
test, we select the one with the largest R.

4.3 Cluster Unification
We finalize the consolidation process by assessing each pair of clus-
ters and merging them if the joint cluster satisfies our compatibility
criteria (angle, proximity, and narrowness). We can now perform
this task reliably as most clusters now contain multiple strokes,
allowing for reliable relative proximity assessment and aggregate
curve width estimation. Conceptually this step mirrors our branch
separation step (Section 4.2) by using similar criteria and principles.
As an optional step, we further consolidate the output drawing by
detecting and enforcing T-junctions and shared end points between
aggregate curves.

Pairwise Assessment. We determine if a pair of clusters Cl and Cr
should be merged based on narrowness, local angular compatibility,
and relative proximity. We assess narrowness as before: we compute
a common aggregate curve SAlr that corresponds to the union of the
two clusters. If the length to width ratio of the curve SAlr is smaller
than Tn , we keep the two clusters separate.

We assess angular compatibility within the region where the two
clusters are side-by-side. Given the aggregate curve SAlr and the
left and right aggregate curves, Sl and Sr , we compute the average
angle difference as described in Equation 4 by averaging pointwise

angle differences betweenSl andSr with respect toSAlr . If the angle
average exceeds the threshold Ta , we keep the clusters separate.

Proximity Assessment. In assessing prox-
imity between clusters, we try to overcome
local noise by computing distances between

clusters that account for their average rather than pointwise width.
We wish to use this average width when computing distances be-
tween clusters in regions where the pointwise width is smaller
than the average. To this end, we introduce the notion of a cluster
envelope (see inset) computed based on the cluster’s width. This
envelope is designed to reflect the average width of the cluster and
contain all cluster strokes. We fit every cluster with an aggregate
curve SA and compute the widths of these curvesWc (Equation 5).
We define the cluster envelope using the cluster’s width as follows.
We shoot orthogonal rays left and right from dense ordered samples
on the cluster’s aggregate curve. If the distance from the curve to
the outermost intersection with a cluster stroke is larger than half
the curve’s width, we use this intersection (inset, green) as an enve-
lope vertex, otherwise, we use a point along the ray at a half width
distance as a vertex (inset, blue). We connect vertices corresponding
to adjacent samples on the left and right of the curve, forming two
envelope boundaries. We connect the last left and right vertices on
both ends of the cluster to form a closed envelope polygon.
For each cluster we compute the median gap д within it. To

compute it, we consider all gaps between adjacent intersections
along orthogonal rays emanating from aggregate curve samples.
For median computation we ignore rays that intersect only a single
stroke, as well as intersections which are less than a stroke width
apart.

We merge clusters if the distance between their envelopes is less
thanTd ·(дl +дr)/2 everywhere along their side-by-side sections. We
measure the local distances along the rays computed for each cluster
and compare those to our threshold. To account for noise in the
computation, we ignore sequences of gaps larger than this threshold
if the length of this sequence (measured as distance between the
originating samples of the rays) is less than min(5Ws , 0.1 ·L) where
L is the length of the aggregate curve SAlr .

Single-stroke clusters. As noted earlier,
relative proximity assessment requires
at least three strokes to be meaning-
ful, making assessment of proximity for
single-stroke clusters problematic. More-
over, when drawing free-hand, artists do oc-
casionally draw outlier strokes—ones that

are intended to depict a target aggregate curve but are sufficiently
inaccurate to be visually separate from the other strokes in their
intended cluster (see inset, sourced from [Liu et al. 2015]).

We handle such ambiguous configuration by leveraging the strength
in numbers principle. For pairs of clusters where one cluster has
multiple strokes and the other has only one stroke, we use the angle
and narrowness tests as above, but apply a relaxed version of the
proximity test as follows. We keep the clusters apart if the shortest
distance between the single stroke and the envelope of the multi-
stroke cluster is larger than the median gap д computed on the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

97:10 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

multi-stroke clusterm. Otherwise, as before, we measure the gaps
between the cluster’s envelope and the stroke and compare those to
Td · д. We relax the strict proximity requirement above and merge
the stroke into the cluster if half the gaps within the side-by-side
region are below the threshold.

We finally consider pairs of single-stroke clusters. We use exactly
the same process as for the single stroke test above, but use the
stroke widthWs in lieu of the gap size д.

Outliers. Finally, we addresses a common artifact present in raw
artist drawings.When artists draw clearly erroneous strokes, instead
of deleting them, they sometimes simply hide them underneath wide
clusters of overdrawn strokes. To detect such outliers, for each pair
of single-stroke and multi-stroke clusters we assess containment as
follows. We intersect the single stroke S with the cluster’s envelope
and measure the portion ofS which is outside the envelope. We clas-
sify the stroke S as an outlier and remove it from the consolidated
output, if this portion is less than 10% of its length.

Before: After: Enforcing curve connections. We locate
and enforce coincident aggregate curve
end-points and T-junctions as an optional
post-processing step . We consider two end-
points of aggregate curves Si and Sj with
widthWi andWj respectively as coincident,
if they are within a distance ofWi+Wj from

one another. We consider an end-point of a curve Si as forming a
T-junction with the curveSj if it is similarly within distanceWi +Wj
from its closest point on Sj . To enforce these detected connections,
we project the stem end-points at T-junctions to the top curves of
the T, and place the shared end-points at their average locations.
We propagate the connection constraints along the curves by using
standard Laplacian deformation [Sorkine et al. 2004] ; we use the
current positions and tangents of curve vertices as reference and
trigger the deformation by constraining the curve end-points to
their new locations. We show a comparison in the inset and com-
parisons of all data in our supplementary materials. All final results
shown in this paper have this optional step turned on.

5 FITTING
The goal of this stage is to fit an aggregate polyline curve to a cluster
of polyline strokes. In computing the curve we seek to capture
its artist intended shape, and to explicitly preserve the slopes, or
tangents, of the input strokes (Figure 12). Our main challenge is
that while our input points are ordered along each given stroke, we
have no order between points on different strokes. Standard fitting
frameworks are not well designed for such data: traditional polyline
or parametric curve fitting techniques for unordered data typically
do not account for tangents, while implicit frameworks that use
normals or tangents are typically designed for closed curves.
We compute the desired curve using a modified Moving-Least-

Squares (MLS) fitting algorithm [Lee 2000; Levin 2004]. The stan-
dard MLS formulation does not support tangent optimization, since
tangent processing requires point order information which is not
available in the MLS setting. To provide an ordering, we split the

(a)

(b)

(c)

(d)

Fig. 12. Aggregate curve fitting: (a) input stroke with original (red) and con-
sistent (green) orientations; (b) MLS fitting output; (c) proximity graph and
extracted polyline (e) resampled (thin) and final (thick) optimized polyline
curve.

fitting into three stages: we first perform an initial MLS optimiza-
tion, where we solve for positions and tangents separately; we then
use these positions and tangents to compute an initial aggregate
polyline; finally, we align the edges of this polyline with the desired
tangent directions. As an alternative to our first step, one could
obtain tangential information by constructing a non-oriented gradi-
ent field [Chen et al. 2013]; however, this still requires consistently
orienting the resulting tangents.

Stroke Orientation. To perform any meaningful operations on
point tangents, we require their orientations to be consistent (Fig-
ure 12a). More specifically, we want point tangents along parallel
or near-parallel strokes to have similar directions.

We achieve this goal using a simple pair-based orientationmethod.
We pick the longest stroke in the group, and set its orientation as
defined; we set the orientations of all other strokes to be undefined.
We then repeatedly select the closest pair of one defined and one
undefined strokes based on a distance computed as described below.
We assign an orientation to the undefined stroke such that t(p) ·
t(p′) > 0 using their respective representative points (p, p′). We
assign a distance value to each pair of strokes as follows. If the mid-
point tangents of the two strokes are near perpendicular (larger than
60◦ in our implementation), their orientation with respect to one
another is not well defined. We therefore set the distance between
them to∞. This choice delegates the orientation decision to other
more reliable pairs if these exist. Otherwise, we locate close and
representative pairs of points on the two strokes. To avoid points
with unreliable normals, we only consider points on each stroke
whose tangents are within 60◦ to the mid-point tangent. We then
select the closest pair of such sample points (p, p′) and use the
distance between them as the pairwise stroke distance. This process
works well for the data we tested and requires less computation
than more complex alternatives such as eigenspace analysis [Orbay
and Kara 2011].

MLS fitting. Our initial fitting step uses Moving-Least-Squares
(MLS) with adaptive neighborhood size [Lee 2000; Levin 2004]. We
adapt the basic MLS framework to simultaneously compute both
position and tangent values. MLS takes a point cloud as the input
and projects these points to the position-error-minimized manifold
(the position stroke SP in our case) [Levin 2004]. To conduct the
MLS projection step, each point needs to be associated with a local
neighborhood. Following the method in Lee [2000], we construct
the neighborhood by adaptively increasing the radius of a disk
centered at each point. The radius is increased until all points in this
disk are adequately co-linear; that is, until the correlation reaches a

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:11

minimum value ρ. We use an initial neighborhood size of h0 = 10Ws
and set the minimum correlation to ρ = 0.7. We obtain the point
positions on SP using the standard MLS projection (Figure 12b).

We compute the corresponding tangents as follows. Let p be the
position of a input sample and t be its corresponding tangent. With
the final neighborhood size h, we now define the averaging kernel
for a position p0 with tangent t0 as

K(p0,T) =

∑
p∈N (p0) t · θ (| |p − p0 | |)

∥
∑
p∈N (p0) t · θ (| |p − p0 | |)∥

. (6)

We define the neighborhood N (p0) to include all the points p that
satisfy | |p−p0 | | < αh and t ·t0 > β . Here, we scale the neighborhood
size h by α = 0.6 to avoid tangent over-smoothing, since tangents
are more sensitive than positions. We set β = cos (π3) to avoid
averaging outlier tangents. θ (d) = exp (−d2/(αh)2) is a Gaussian
function, similar to the position Gaussian of the MLS projection.

Polyline extraction. After computing the positions and tangents
on for points on SP , we extract an ordered sequence of such points
that will form the base for our output polyline (Figure 12c). We
compute this sequence as a path in a directed graph as follows.
We construct an Euclidean proximity graph where each point is
connected to all neighbors within the distance of h. Each edge in
this graph is assigned a direction that aligns with the averaged
tangent of its two endpoints. When the dot product of the two
tangents is negative, it suggests that one of them is an outlier and
the edge is thus deleted. We then compute the minimum spanning
directed tree using Edmonds algorithm [Chu 1965; Edmonds 1967]
and trim the tree down to its largest path. We determine if the path
is closed by searching for a path from its end to its beginning. If
such a path exists, and its length is below a small value (5Ws in our
implementation), we label SP as closed. An artist may not precisely
line up the start and end of a closed loop, and may accidentally
extend the end of a closed loop past its starting point. In order to
address this case in addition to the start to end path, we test paths
between all vertices within 10% away from the start and end points.

Tangent optimization. We now seek to optimize the polyline
S = {pi }(i = 1, . . . ,n) by aligning its edges (pi , pi + 1) with the
corresponding neighborhood tangents. Our objective function is
defined as

d(S,SA) =
n∑
i=1
∥

pi+1 − pi
| |pi+1 − pi | |

− K(pi ,T)| |2 + λ | |pi − p0i | |
2, (7)

p0i is the initial position of point pi on the aggregate polyline curve.
Here, the first term enforces tangent alignment and the second term
reflects the expectation that the polyline stays close to its original
position. We set λ = 10−3 to prioritize tangent alignment.
We minimize Equation 7 using iterated least squares. We define

the kth round objective as

d(Sk ,Sk−1) ≈
n∑
i=1
| |

pki+1 − p
k
i

| |pk−1i+1 − p
k−1
i | |

− K(pk−1i ,T)| |2 (8)

+ λ | |pki − p
0
i | |

2

Here, we replace the varying polyline edge length term in the denom-
inator with the known corresponding length in Sk−1; K(pk−1i ,T)

10/10

10/10

9/10

5/10

9/10

10/10

10/1010/10

Fig. 13. Examples of manually (blue) and algorithmically (red) traced aggre-
gate curves of different stroke configurations (black). Manual results form
multiple participants are overlaid over one another. The ratio shows the
number of participants whose results agreed with the plurality consolidated
result in terms of output curve number and approximate location. In all
cases our result aligns with the plurality response.

is the average kernel centered at position pk−1i and T is the input
tangent set. The aggregate tangent update helps center the curve
and diminish the impact of outlier stoke tangents.
We solve this least-squares problem using standard Cholesky

decomposition. For smooth input data a single tangent update step
is typically sufficient. However, solving the problem for multiple
rounds gives better results for highly noisy cases. We find three
iterations to be sufficient for all experiments.

6 VALIDATION
We validate the key aspects of our method in a number of ways:
comparisons to manual consolidation, comparison against prior art,
and qualitative evaluation. The exact questionnaires used in the
evaluations are included in our supplementary material.

Comparison to Manual Consolidation. Our method aims to re-
cover the viewer-perceived consolidated curve set from the input
drawings; therefore the key criterion for assessing it is via a com-
parison to manually consolidated results. We perform two separate
comparative studies.
The first study has two goals—to asses how consistent humans

are in their consolidation choices given a collection of strokes, and
to compare human consolidation choices to our algorithmic ones.
We picked 28 samples of different stroke configurations selected
from a diverse set of 14 drawings. We then asked 10 participants
(4 artists and 6 non-artists) to draw the curves they perceive these
strokes to represent: “You will examine different images in which
you will have to trace a clean version of the strokes you see.” The
combined results for a subset of the inputs (blue) superimposed
with our output (red) are shown in (Figure 13); the rest are included
in the supplementary. The results show that human observers are
generally consistent in their consolidation choices. For 80% of the
inputs, at least 8 out of 10 participants provided the same curve
configuration. On only 2 out of 28 inputs (including one in Figure 13)
the participant configuration choices were evenly split. In all cases,
StrokeAggregator’s result was similar to the plurality response.

In our second study, we selected seven complete input drawings
and asked an artist to consolidate them. Figures 1 and 4 show two
such artist results side-by-sidewith our outputs; the rest are included
in the supplementary. As these comparisons show, our results are
well-alignedwith the artist outputs. It took the artist 10 to 30minutes

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

97:12 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

(a) Input raw sketch (c) [Simo-Serra et al. 2017] (d) Our result(b) [Favreau et al. 2016]

Fig. 14. Comparison with raster cleanup and vectorization methods. The
top input is from [Orbay and Kara 2011]; the bottom input is from [Liu et al.
2015].

(c) [Our result](b) [Orbay and Kara 2011](a) [Input raw sketch]

Fig. 15. Comparison (clusters and fitting) with [Orbay and Kara 2011].
Inputs sourced from [Liu et al. 2015]. In column two the examples of wrongly
clustered strokes are highlighted.

to create each consolidated output, significantly larger than our
automatic consolidation times of 1 to 8 minutes.

Comparison to Prior Art. We compare our framework against the
most recent alternatives. Figure 14 compares our output against
two raster-space methods for vectorization [Favreau et al. 2016] and
cleanup [Simo-Serra et al. 2017]. To perform the comparison, we
rasterized the drawings at their original resolution using standard
software and ran the executable kindly provided by the authors. As
shown by the results, both raster methods fail to fully consolidate
the strokes when presented with drawings containing thick stroke
clusters. Our method successfully consolidates these inputs. The
failure of these methods is unsurprising, as raster-space methods
rely on less information. It also suggests that directional informa-
tion, which is increasingly available due to the wide usage of tablet
displays, benefits our consolidation task.
Figures 4, 15, and 16 show comparisons to vector consolidation

methods [Liu et al. 2015; Orbay and Kara 2011]. The results in these
figures were provided by the authors. As shown in Figures 4 and 15,
the method of Orbay et al. frequently fails to separate connected
clusters resulting in poor consolidation outputs, on a range of inputs
on which our framework produces the expected results. Figures 4
and 16 compare our results with those of Liu et al. Our method
achieves better fine input feature preservation, while still correctly

(a) Input raw sketch (b) [Liu et al. 2015] (c) Our result

= 0.8BT

= 1.5BT

= 1.1BT

Fig. 16. Comparison (clusters and fitting) with [Liu et al. 2015]. Note the
differences in the consolidation of feet and other fine features. The eagle
input is sourced from [Orbay and Kara 2011]. Toucan, penguin: © Enrique
Rosales.

consolidating wide large-scale clusters. The results of the method
of Liu et al depend on a user provided parameter TB (listed in the
figures), and those of Orbay et al. depend on the choice of the input
training sketches. Our outputs are produced with no additions input
or parameter adjustment.

Qualitative Evaluation. We also conducted a study to compare
our outputs to artist outputs and previous work. We asked 20 partic-
ipants to compare our outputs to consolidated drawings generated
by alternative methods [Favreau et al. 2016; Liu et al. 2015; Orbay
and Kara 2011; Simo-Serra et al. 2017] and artists (5 each of [Favreau
et al. 2016; Orbay and Kara 2011; Simo-Serra et al. 2017], 6 [Liu
et al. 2015], and 5 artist). Each query in this study included an input
drawing (“Original”, top) and two consolidated outputs (“(a)” and
“(b)”, bottom), arranged in random order and presented side-by-side:
one generated by our algorithm, and one generated by an alternative
method or by an artist. We asked “Which of the drawings below,
“(a)” or “(b)” is a cleaner and accurate version of the drawing on top
“Original”? If both are, please select “both” if neither select “neither”.
(see supplementary material for exact questionnaire). The full statis-
tics and questionnaires are provided in the supplementary material.
Our results were judged on par with those created by artists; in
comparisons with artist results, viewers selected “both” 50% of the
time, and preferred our result 25% of the time. In a comparison
with prior work, our results were overall judged as superior 92%
of the time. In comparisons to the method of Liu et al [2015], our
results were preferred 80% of the time and ranked on par 17% of the
time. In comparisons to other methods, our results were judged as
superior 97% of the time. These numbers validate that our methods
performance is on par with manual consolidation and is far superior
to prior art.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:13

Fig. 17. Additional diversely sourced results. The duck input is sourced from [Liu et al. 2015], the architectural model and man are sourced from [Orbay and
Kara 2011], shark and triceratops: © Cristina Arciniega, flower and bow-tie: © Enrique Rosales. Please zoom in online to see image details.

7 RESULTS
We tested our method on 36 inputs with sizes (measured in pixels)
ranging from approximately 300x400 to 1000x800, 20 of which are
shown throughout the paper and others are included in the sup-
plementary material. Our inputs include examples sourced from
prior work, e.g. fandisk (Figure 14), eagle (Figure 16), man and opera
(Figure 17) are from [Orbay and Kara 2011], and grandpa (Figure 14),
duck (Figure 17), and fairy and car (Figure 15) are from [Liu et al.
2015]. They also include new inputs created by two different artists
(e.g. Figures 1, 4, shark, bowtie and triceratops in Figures 17). Our in-
puts include relatively clean drawings with few overdraws (bowtie,
man) and very sketchy drawings with large clusters of overdrawn
strokes (penguin, toucan, grandpa). We include both drawings of
organic shapes (toucan, pig, penguin), as well as design drawings of
free-form and regular shapes (opera, fandisk, car). Our framework
produces results consistent with viewer perception on all these
inputs.

Impact of Design Choices. Figures 5, 7, 11 show the stages of our
progressive cluster refinement process, highlighting the contribu-
tion of each stage. The local analysis stage (Section 4.2) is critical for
processing clusters with branching structures (Figures 5b, 7b). The
narrowness cue is critical in processing features such as the tail of
the penguin (Figure 16), the moon shaped windows on the building
(Figure 18), or the stripes on the side of the shark (Figure 17).

Runtimes. Our method takes on average 2.5 minutes to consoli-
date a drawing. Approximately 50% of the time is spent in the final
unification, given we exhaustively assess pairs of nearby clusters
in this stage. The rest of the runtime is split between the angular
compatibility stage and the proximity refinement stage with a ratio
of 1 : 4. In our inputs, the numbers of strokes range from a couple
of dozens to 300 and the number of clusters range from 15 to 140
(toucan).

Limitations. While human observers likely base some of their
mental consolidation decisions on content recognition (Section 6),
our method relies only on local stroke context. Thus, it may fail
in situations where stroke level cues become unreliable. In particu-
lar, our method targets inputs where overdrawing is used for the
purposes identified in Section 2, and is not directly applicable to
stylized line drawings (Figure 18ab). In such drawings strokes are
used as expressive paint-brushes and their tangents no longer reflect
the tangent of their corresponding aggregate curves. In this setting,
our core cue of angular compatibility between cluster strokes fails.
Figure 18c shows another example where local context and global
image recognition may result in different consolidation outputs.
While our result is consistent with human grouping given local
context only (left), one may argue that in the global context (right)
humans would group the highlighted vertical strokes together to
form a building corner.

8 CONCLUSIONS
We presented a new, robust line drawing consolidation framework
that does not require per-input parameter tuning and produces re-
sults validated to be consistent with viewer perception. Our method
leverages a set of observations about perceptual cues and artist tech-
niques that help viewers parse rough line-drawings and employs
those in a coarse-to-fine clustering framework.
The values for the proximity and narrowness thresholds we

gleaned from domain specific small-scale human studies were suf-
ficient for our algorithmic needs. The most interesting avenue for
future research is an in-depth perceptual study of the interaction
of the different perceptual cues humans employ for mental sketch
consolidation.

ACKNOWLEDGMENTS
We would like to thank Gunay Orbay, Levent Burak Kara, Xueting
Liu and Tien-Tsin Wong for providing comparison data, Cristina

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

97:14 • Chenxi Liu, Enrique Rosales, and Alla Sheffer

8/10

(a) (b) (c)

Fig. 18. Our framework relies on local context rather than recognition.
Thus its ability to process intentionally sketchy (a) or stylized inputs with
unreliable stroke tangents (b) is limited. (c) Our clustering choices on this
input are consistent with local human ones (8 out of 10 viewers keep the
strokes separate given purely local context (left)), and do not account for
global context which humans rely on given the complete image (right).
Bunny: © Elinor Palomares.

Arciniega, Elinor Palomares and Hugo Vargas for their artistic in-
puts, Nicholas Vining for paper editing, and the reviewers for their
insightful suggestions. The authors were supported by NSERC.

REFERENCES
Rahul Arora, Ishan Darolia, Vinay P. Namboodiri, Karan Singh, and Adrien Bousseau.

2017. SketchSoup: Exploratory Ideation Using Design Sketches. Computer Graphics
Forum (2017).

Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: As-natural-
as-possible Sketching System for Creating 3D Curve Models. In Proc. UIST. 151–160.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation clustering. Machine
Learning 56, 1-3 (2004), 89–113.

Bin Bao and Hongbo Fu. 2012. Vectorizing line drawings with near-constant line width.
In Proc. International Conference on Image Processing. 805–808.

Ilya Baran, Jaakko Lehtinen, and Jovan Popović. 2010. Sketching clothoid splines using
shortest paths. In Computer Graphics Forum, Vol. 29. 655–664.

Pascal Barla, Joëlle Thollot, and François Sillion. 2005. Geometric Clustering for Line
Drawing Simplification. In Proc. EGSR.

A. Bartolo, K. P. Camilleri, S. G. Fabri, J. C. Borg, and P. J. Farrugia. 2007. Scribbles to
Vectors: Preparation of Scribble Drawings for CAD Interpretation. In Sketch-Based
Interfaces and Modeling.

Thomas Baudel. 1994. A Mark-based Interaction Paradigm for Free-hand Drawing. In
Proc. UIST. 185–192.

Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh. 2015.
Modeling character canvases from cartoon drawings. ACM Trans. Graph. 34, 5
(2015), 162.

Mikhail Bessmeltsev, Nicholas Vining, and Alla Sheffer. 2016. Gesture3D: Posing 3D
Characters via Gesture Drawings. ACM Trans. Graph. 35, 6 (2016).

Pengbo Bo, Gongning Luo, and Kuanquan Wang. 2016. A graph-based method for
fitting planar B-spline curves with intersections. Journal of Computational Design
and Engineering 3, 1 (2016), 14–23.

Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. 2015. Hier-
archical Density Estimates for Data Clustering, Visualization, and Outlier Detection.
ACM Trans. Knowl. Discov. Data 10, 1 (2015), 5:1–5:51.

Jiazhou Chen, Gael Guennebaud, Pascal Barla, and Xavier Granier. 2013. Non-Oriented
MLS Gradient Fields. In Computer Graphics Forum, Vol. 32. 98–109.

Yoeng-Jin Chu. 1965. On the shortest arborescence of a directed graph. Science Sinica
14 (1965), 1396–1400.

Jack Edmonds. 1967. Optimum branchings. J. Res. Nat. Bur. Standards 71B, 4 (1967),
233–240.

Koos Eissen and Roselien Steur. 2008. Sketching: Drawing Techniques for Product
Designers. Bis Publishers.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
simplicity: a global approach to line drawing vectorization. ACM Trans. Graph. 35,
4 (2016), 120.

Mark Finch, John Snyder, and Hugues Hoppe. 2011. Freeform Vector Graphics with
Controlled Thin-plate Splines. ACM Trans. Graph. 30, 6 (2011), 166:1–166:10.

Stéphane Grabli, Frédo Durand, and François Sillion. 2004. Density Measure for Line-
Drawing Simplification. In Proc. Pacific Graphics.

Cindy Grimm and Pushkar Joshi. 2012. Just DrawIt: A 3D Sketching System. In Proc.
SBIM. 121–130.

Robert Hess and David Field. 1999. Integration of contours: new insights. Trends in
Cognitive Sciences 3, 12 (1999), 480–486.

Xavier Hilaire and Karl Tombre. 2006. Robust and accurate vectorization of line
drawings. IEEE Trans. Pattern Anal. Mach. Intell 28, 6 (2006), 890–904.

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-rigid-as-possible
Shape Manipulation. ACM Trans. Graph. 24, 3 (2005), 1134–1141.

Pradeep Kumar Jayaraman, Chi-Wing Fu, Jianmin Zheng, Xueting Liu, and Tien-Tsin
Wong. 2017. Globally Consistent Wrinkle-Aware Shading of Line Drawings. IEEE
Trans. Vis. Comput. Graph (2017).

Robert D. Kalnins, Philip L. Davidson, Lee Markosian, and Adam Finkelstein. 2003.
Coherent Stylized Silhouettes. ACM Trans. Graph. 22, 3 (2003), 856–861.

Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas Brox,
and Bjorn Andres. 2015. Efficient decomposition of image and mesh graphs by lifted
multicuts. In Proc. ICCV. 1751–1759.

In-Kwon Lee. 2000. Curve reconstruction from unorganized points. Computer aided
geometric design 17, 2 (2000), 161–177.

David Levin. 2004. Mesh-independent surface interpolation. In Geometric modeling for
scientific visualization. 37–49.

H Lipson and M Shpitalni. 1996. Optimization-based reconstruction of a 3D object from
a single freehand line drawing. Computer-Aided Design 28, 8 (1996), 651 – 663.

Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2015. Closure-aware sketch
simplification. ACM Trans. Graph. 34, 6 (2015), 168.

James McCrae and Karan Singh. 2009. Sketching piecewise clothoid curves. Computers
& Graphics 33, 4 (2009), 452–461.

Liangliang Nan, Andrei Sharf, Ke Xie, Tien-Tsin Wong, Oliver Deussen, Daniel Cohen-
Or, and Baoquan Chen. 2011a. Conjoining Gestalt Rules for Abstraction of Archi-
tectural Drawings. ACM Trans. Graph. 30, 6 (2011).

Liangliang Nan, Andrei Sharf, Ke Xie, Tien-Tsin Wong, Oliver Deussen, Daniel Cohen-
Or, and Baoquan Chen. 2011b. Conjoining Gestalt Rules for Abstraction of Archi-
tectural Drawings. ACM Trans. Graph. 30, 6 (2011). 185:1-185:10.

Gioacchino Noris, Alexander Hornung, Robert W Sumner, Maryann Simmons, and
Markus Gross. 2013. Topology-driven vectorization of clean line drawings. ACM
Trans. Graph. 32, 1 (2013), 4.

Gioacchino Noris, Daniel Sỳkora, A Shamir, Stelian Coros, Brian Whited, Maryann
Simmons, Alexander Hornung, M Gross, and R Sumner. 2012. Smart scribbles for
sketch segmentation. In Computer Graphics Forum, Vol. 31. 2516–2527.

Gunay Orbay and Levent Burak Kara. 2011. Beautification of design sketches using
trainable stroke clustering and curve fitting. IEEE Trans. Vis. Comput. Graph 17, 5
(2011), 694–708.

Paul L. Rosin. 1994. Grouping Curved Lines. InMachine Graphics and Vision 7. 625–644.
Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2012. CrossShade: Shading

Concept Sketches Using Cross-section Curves. ACM Trans. Graph. 31, 4 (2012), 45:1–
45:11.

Amit Shesh and Baoquan Chen. 2008. Efficient and dynamic simplification of line
drawings. In Computer Graphics Forum, Vol. 27. 537–545.

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2016. Learning
to simplify: fully convolutional networks for rough sketch cleanup. ACM Trans.
Graph. 35, 4 (2016), 121.

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hiroshi Ishikawa. 2017. Mastering
Sketching: Adversarial Augmentation for Structured Prediction. ACM Trans. Graph.
(2017).

O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian
Surface Editing. In Proc. Symposium on Geometry Processing. 175–184.

Johan Wagemans, James H Elder, Michael Kubovy, Stephen E Palmer, Mary A Peterson,
Manish Singh, and Rüdiger von der Heydt. 2012. A century of Gestalt psychol-
ogy in visual perception: I. Perceptual grouping and figure–ground organization.
Psychological bulletin 138, 6 (2012), 1172.

Brett Wilson and Kwan-Liu Ma. 2004. Rendering complexity in computer-generated
pen-and-ink illustrations. In Proc. NPAR. 129–137.

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D Curve Networks from 2D Sketches via Selective Regu-
larization. ACM Trans. Graph. 33, 4 (2014), 131:1–131:13.

Pengfei Xu, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. 2012. Lazy selection:
a scribble-based tool for smart shape elements selection. ACM Trans. Graph. 31, 6
(2012), 142.

APPENDIX A: STROKE PRE-PROCESSING
Raw strokes captured via a stylus-on-tablet interface are often noisy
due to both involuntary hand movement and capture software in-
accuracy [Baran et al. 2010; McCrae and Singh 2009]. In particular,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

StrokeAggregator: Consolidating Raw Sketches into Artist-Intended Curve Drawings • 97:15

0.01
0

10

20

30

40

50

60

70

80

90

100

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Ratios

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.35

Width Study

Groups Study

1.00
0

10

20

30

40

50

60

70

80

90

100

1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60
Ratios

2.80 3.00 3.20 3.40 3.60 3.80 4.00

How many groups of lines do you see in
this image?

more than 5 2 1 3 4 5

A thin line A thick line A rectangle

Does the image below show a
line (thick or thin) or a rectangle?

Fig. 19. (top) Narrowness threshold question examples and answer distri-
bution;(bottom) proximity question examples and answer distributions.

such interfaces often do not accurately detect when the artist lifts
the stylus away from the tablet, leaving small “hook” sections at the
ends of strokes. In some cases, as noted by Liu et al [2015] artists
barely lift the stylus up inbetween drawing near parallel strokes,
in which case the capture interface records multiple strokes as one.
We account for these artifacts by pre-processing raw strokes. We
smooth and densely resample the strokes using the Cornucopia
algorithm [Baran et al. 2010]. As we seek to preserve the input
stroke shape as much as possible, we set Cornucopia “error cost”
to 5, which keeps the output stroke very close to the input. We cut
each original stroke at Cornucopia-detected C0 discontinuities, as
well as at sharp curvature extrema where the curvature is both high
(larger than 0.125) and distinct from that along the rest of the curve
(at least three times the median curvature). Since the hooks at the
end of strokes are a capture artifact and not part of the intended
artist input, we delete their hanging portion (we classify a segment
between a detected discontinuity and an end point as a hook if it is
both short in absolute terms 15Ws and forms less than 15% of the
overall stroke length).

APPENDIX B: PERCEPTION-DRIVEN PARAMETER
SETTING
To cluster strokes, we employ three perception motivated parame-
ters: angular compatibility threshold Ta , relative proximity factor
Tp , and curve narrowness threshold Tn . We rely on prior research
to set the angular threshold Ta [Hess and Field 1999], but have no
such sources for the other two parameters. We set these parame-
ters to values consistent with human perception by conducting two
informal perceptual studies.

Narrowness. To establish the narrowness threshold, we show par-
ticipants a range of rectangles with varying short to long side ratios
Sr (Figure 19,top). In total, we show viewers 36 questions in random-
ized order. Intuitively, we expect viewers to perceive rectangles with
low ratios as lines (thick or thin) and those with high ratios as actual
rectangles. We ask viewers “Does the image below show a line (thick
or thin) or a rectangle?” and provide them three answer options

“thin line, thick line, rectangle”. As the answers summary (Figure 19,
right) shows, there is a strong correlation between participant re-
sponses and the ratio Sr , confirming our hypothesis that viewers
use short to long side ratios to determine if the shape they look at is
one or two dimensional. To avoid forming two-dimensional clusters,
we use a threshold designed to ensure that approximately 2/3 of
respondents perceive the input as a line. In our computations, we
use the long to short side ratio; we use a round value setting the
threshold to Tn = 8.5 ≈ 1/0.117.

Proximity Factor. To establish the proximity factor, we show par-
ticipants triplets or quadruplets of vertical lines with different spac-
ing (Figure 19,bottom). For triplets we keep the distance d1 between
one pair of lines fixed, and have the third line placed to the right or
left of them at intervals d2 varying from d1 to 3d1. For quadruplets
we use the same placing strategy for three of the lines but place
the fourth line far away from the others—at distance 6d1 away. In
total, we show viewers 64 questions in randomized order. We ask
the viewers “How many groups of lines do you see in this image?”
and provide six answer options “1, 2, 3, 4, 5, more than 5”. We use
those to derive the separation ratio Dr = d2/d1 at which the viewers
separate the third line from the first two. For triplets we look at the
number of 1 versus 2 answers and for quadruplets at the number
of 2 versus 3 answers. As the answers summary (Figure 19,bottom)
shows, there is a strong correlation between participant responses
and the ratio Dr , confirming the hypothesis that proximity ratio
plays a major role in perceptual grouping. The answer curves for
both questions, the one with only the potentially grouped lines,
and the one with an extra “support” line are essentially identical.
This confirms our hypothesis that one can assess relative proximity
within a potential cluster without considering distance to other clus-
ters. In our computations, we use the threshold as admissible upper
bound, thus to obtain conservative clustering results, we again seek
a number at which approximately 2/3 of respondents perceive the
input as a single cluster. We thus set Td = 2.1.
We collected responses from 15 different participants for each

study. The full statistics and questionnaires for the two studies are
provided as supplementary material. The validity of these studies is
further corroborated by the fact that the parameters gleaned from
them allowed us to consolidate a wide range of raw input drawings
in a manner consistent with viewer expectations (Section 6).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 97. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Perception of Oversketched Strokes
	3.2 Algorithm

	4 Stroke Clustering
	4.1 Coarse Clustering
	4.2 Local Cluster Refinement
	4.3 Cluster Unification

	5 Fitting
	6 Validation
	7 Results
	8 Conclusions
	Acknowledgments
	References

