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Figure 1: The diffractive achromat is a computationally optimized diffractive lens for full visible spectrum imaging, which is used jointly
with a computational image reconstruction algorithm. The microscope images show a traditional Fresnel diffraction grating (top) and our
diffractive achromat (bottom). In full visible spectrum illumination, the former can only be focused only at one specific wavelength (e.g.
green here) while all other wavelengths are out of focus. This results in highly nonuniform spatial and spectral response (color PSFs) on
the image plane coupled with Bayer filters (top middle). In particular, metamerism introduces a data dependency in the PSF shape for
any kind of broadband image sensor. Our diffractive achromat is optimized to equalize the spectral focusing performance within the whole
visible spectrum. Consequently, the PSFs for all wavelengths are nearly identical to each other (bottom middle). The captured blurry image
shows much higher color fidelity than the conventional diffractive lens (right). Our diffractive achromat is much thinner and lighter than an
refractive achromatic lens with the same optical power (left-most bottom).

Abstract

Diffractive optical elements (DOEs) have recently drawn great at-
tention in computational imaging because they can drastically re-
duce the size and weight of imaging devices compared to their re-
fractive counterparts. However, the inherent strong dispersion is a
tremendous obstacle that limits the use of DOEs in full spectrum
imaging, causing unacceptable loss of color fidelity in the images.
In particular, metamerism introduces a data dependency in the im-
age blur, which has been neglected in computational imaging meth-
ods so far. We introduce both a diffractive achromat based on com-
putational optimization, as well as a corresponding algorithm for
correction of residual aberrations. Using this approach, we demon-
strate high fidelity color diffractive-only imaging over the full vis-
ible spectrum. In the optical design, the height profile of a dif-
fractive lens is optimized to balance the focusing contributions of
different wavelengths for a specific focal length. The spectral point
spread functions (PSFs) become nearly identical to each other, cre-
ating approximately spectrally invariant blur kernels. This property
guarantees good color preservation in the captured image and fa-
cilitates the correction of residual aberrations in our fast two-step
deconvolution without additional color priors. We demonstrate our
design of diffractive achromat on a 0.5mm ultrathin substrate by
photolithography techniques. Experimental results show that our
achromatic diffractive lens produces high color fidelity and better
image quality in the full visible spectrum.
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1 Introduction

High quality imaging with reduced optical complexity has for a
long time been the target of investigation in both academic and
industrial research and development. In conventional imaging
systems, ever increasing optical complexity is inevitable because
higher and higher sensor resolutions require ever improved cor-
rection of aberrations of all kinds. Recent advances in compu-
tational imaging have introduced computation as a virtual com-
ponent that can shift the burden from optics to algorithms. This
allows for significantly reduced optical complexity while main-
taining high image fidelity at full sensor resolution and realistic
apertures (e.g. [Heide et al. 2013; Schuler et al. 2011]). In partic-
ular, diffractive optical elements (DOEs) have drawn great atten-
tion because of their ultrathin and lightweight physical structure,
a large, flexible design space, availability of mature fabrication
techniques, as well as better off-axis imaging behavior. Integ-
rating diffractive imaging elements and computational methods
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in a single imaging system has resulted in several new computa-
tional imaging devices with ultra compactness in the past few years
(e.g. [Gill and Stork 2013; Stork and Gill 2014; Peng et al. 2015]).

Unfortunately, two main problems still exist for diffractive ima-
ging applied in the full visible spectrum — first, the wavelength-
dependency of diffraction leads to strong chromatic aberrations
that degrade the image quality with blurs of a very large dia-
meter; second, the strong chromatic aberrations in addition cause
a significant wavelength dependency of the point spread functions
(PSFs) even within a single color channel. In particular, this
wavelength dependency means that objects with the same RGB
color are blurred differently if the underlying spectral distributions
differ. This metamerism problem means that image restoration al-
gorithms in practice use approximate PSFs based on some fixed
spectral distribution that is implicitly derived from the lighting con-
ditions during calibration. This approximation can result in a signi-
ficant loss of color fidelity even after image reconstruction. While
metamerism affects all imaging systems exhibiting chromatic aber-
ration, the problem is particularly pronounced for the strong disper-
sion present in diffractive optics.

In this paper, we aim to overcome the above limitations of diffract-
ive imaging in the full visible spectrum by introducing not only
improvements in the deconvolution, but more importantly, optimiz-
ing the diffractive optics itself. We find that the color fidelity loss
in conventional diffractive imaging is caused by the inherent non-
uniformity of spectral PSFs, which inspires us to design a diffract-
ive achromat by optimizing the surface profile to produce nearly
identical spectral PSF distribution for a series of wavelengths (see
Figure 1). The benefit of this strategy is twofold. On the one hand,
chromatic aberrations are reduced because of the balance among
spectral PSFs. On the other hand, the quasi-uniform spectral PSFs
significantly improve the color reproduction of the captured image.
Effectively, we sacrifice sharpness in a single channel for spectral
uniformity of PSF, which we can exploit to facilitate robust and
efficient deconvolution. In addition to validating the usability of
diffractive imaging under state-of-the-art deconvolution schemes,
we explore a two-step cross-scale deconvolution scheme to recover
sharp as well as color fidelity lossless images.

Particularly, our technical contributions are as follows:

• We introduce the diffractive achromat, a diffractive ima-
ging system for full-spectrum visible light imaging that com-
bines optimization in both diffractive optical design and post-
capture image reconstruction.

• We employ an effective optimization method for designing
achromatic DOEs subject to diverse achromatic requirements,
which rearranges the spatial and spectral distributions of PSFs
so that chromatic aberrations and color corruption are largely
eliminated in hardware.

• We propose a cross-scale prior in the deconvolution to further
mitigate the aberrations introduced by the diffractive optics.
Benefiting from the optimized uniform PSFs, our method is
more robust and efficient than state of the art.

• We build a prototype achromatic diffractive lens on a 0.5mm
ultrathin glass plate to validate the practicality of our ultrathin
and lightweight diffractive imaging in full visible spectrum
for different indoor and outdoor scenarios.

2 Related Work

Color fidelity in computational imaging For conventional im-
age acquisition, color fidelity is mostly preserved since most re-
fractive lenses are carefully designed with spectral invariant focus-

ing power [Smith 2005; Yamaguchi et al. 2008]. Then state-of-the-
art deconvolution formations can be directly applied to computa-
tionally recover color images. However, the spectral response of a
diffractive lens affects color fidelity drastically because its highly
spectral variant focusing power goes against the blur kernel convo-
lution model in sRGB color space (see Section 3.1 for theoretical
analysis). Consequently, the ill-posed inverse problem may lead to
unacceptable color artifacts, even if the perceptual blur has been
mostly removed. Preserving color fidelity is crucial for any con-
sumer imaging device [Su et al. 2014], which is also the goal we
seek in our diffractive achromat design.

Broadband diffractive imaging Despite advantages such as
thin structure and design flexibility, the severe chromatic aber-
ration in diffractive optics has limited their applications in ima-
ging under broadband illumination. A limited amount of work
has considered applying DOEs in consumer imaging devices,
but only in collaboration with refractive lenses. A multilayer
DOE has been used to correct chromatic aberrations in refract-
ive lens systems [Nakai and Ogawa 2002], although it still relies
on a multitude of refractive lens elements to provide most of the
focal power. A recent report on multi-wavelength achromatic
metasurfaces [Aieta et al. 2015] has revealed the potential for use
in lightweight collimators. As such, a chromatic-aberration-
corrected diffractive lens for broadband focusing has been de-
signed [Wang et al. 2016]. Note that these works don’t address the
reconstruction problem as we do and they are only designed at three
wavelengths.

In computational imaging, two types of imaging devices based
on DOEs have recently been investigated: lensless com-
putational sensors [Gill and Stork 2013; Monjur et al. 2015]
and Fresnel lens imaging with post pro-
cessing [Nikonorov et al. 2015; Peng et al. 2015]. The former
two integrate DOEs into the sensor, resulting in an ultra-miniature
structure with medium image quality. The latter two share a
similar idea with ours to apply Fresnel lens to replace bulky and
heavy refractive lenses in a camera. Although the chromatic
aberrations can be partially mitigated by optimizing for three
discrete wavelengths or digitally removed in the post-capture step,
the color fidelity is significantly reduced in the final image due
to metamerism. In our work we present a combination of optical
design and computational reconstruction that allows us to perform
color imaging at realistic image resolutions (full resolution on a
>5Mpixel image sensor), to our knowledge for the first time.

Digital correction of aberrations Optical aberrations can be
corrected by utilizing state-of-the-art image deblurring methods.
The principle is to formulate the image formation as a convolu-
tion process and apply statistical priors [Chan et al. 2011] to obtain
an optimal solution with reasonable complexity [Shan et al. 2008].
Usually, a denoising step is added to improve image qual-
ity [Schuler et al. 2013]. Existing image deblurring tech-
niques either assume the aberration-induced blur kernel is
known [Joshi et al. 2008] or use an expected maximization-type ap-
proach to blindly estimating the blur kernel [Krishnan et al. 2011].
Both techniques involve a convolution based image blurring model
without considering the spectral variance in PSFs.

For the correction of chromatic aberrations, cross-channel optimiz-
ation has proven to be effective [Heide et al. 2013]. This method
models the three color channels separately and exploits the cor-
relation between gradients in different channels, which provides
better localization. Since existing deblurring techniques for re-
moving chromatic aberrations all rely on additional color pri-
ors [Yue et al. 2015], the computational complexity is considerable.



Although the correction of chromatic aberrations for diffractive
imaging is also plausible [Nikonorov et al. 2015; Peng et al. 2015]
using existing techniques, the residual color artifacts are inevitable.
We will show that this is due to the inherent nonuniform distribu-
tion of spectral PSFs, which leads to a metamerism problem, where
the PSF becomes scene dependent. Although this problem affects
all broadband optical systems with chromatic aberration, it is espe-
cially pronounced in diffractive optics due to the large wavelength
dependency of diffraction. Special attention has to be paid to the
optimization of the diffractive lens in order to solve this problem.

Computational DOE design A huge amount of research has
been done in designing DOEs used for multiple wavelengths, either
by using harmonic diffraction and multiple layers to create high
efficiencies in multiple wavebands [Singh et al. 2014], or by in-
troducing computation to the design footprint to redefine the light
transmission function. The latter case is of significance not only to
mitigate dispersion, but also to encode the engineered phase dis-
tribution on the DOE profile for the tasks of image recovery or
special focusing expectation [Quirin and Piestun 2013]. The prin-
ciple is to design Fractal diffraction elements with variable trans-
mittance [Muzychenko et al. 2011]. Besides, iterative methods
based on greedy algorithms, such as Gerchberg-Saxton, genetic al-
gorithms, simulated annealing, and direct binary search, have been
extensively applied for optimizing both monochromatic and broad-
band DOEs [Kim et al. 2012; Zhou et al. 1999; Jiang et al. 2013].
Researchers in graphics have proposed alternative optimization
methods in simulating and creating wave optics imaging for visual-
ization purposes [Ye et al. 2014; Schwartzburg et al. 2014]. How-
ever, these approaches fail in our case for two reasons: first, they
are not intended for broadband imaging DOE designs; second, they
rely on either matured random search algorithms or their extended
versions, lowering the computational efficiency and optimization
robustness in our diffractive achromat designs.

3 Diffractive Imaging Model

3.1 Image Formation

In an imaging system, the recorded image in channel c is an integ-
ration of spectral images over the wavelength range Λ, weighted by
the spectral response Qc(λ) of the sensors for that channel. Each
spectral image reflects the joint modulation of illumination, surface
reflectance and sensor response. This process can be written as

bc(x, y) =

∫
Λ

Qc(λ) · A (i(x, y;λ)) dλ, (1)

where i(x, y;λ) is the latent spectral image, and A(·) denotes an
operator describing the aberrations of the lens.

In Fourier optics, the incoherent imaging process is modeled as a
convolution of the latent image and the system (intensity) PSF, so
the aberration operator is defined as [Goodman 2008]

A (i(x, y;λ)) = i(x, y;λ)⊗ |g(x, y;λ)|2, (2)

where ⊗ denotes 2D convolution. g(x, y;λ) is spectral amp-
litude PSF, from which the spectral intensity PSF can be derived
as k(x, y;λ) = |g(x, y;λ)|2. The amplitude PSF can be further
derived from scalar diffraction theory [Goodman 2008] as

g(x, y;λ) =
A

λzi

∫∫
P(u, v;λ) exp

(
−j 2π

λzi
(ux+ vy)

)
dudv,

(3)

where A is a constant amplitude, zi is the distance from the lens
to the image plane and (u, v) are coordinates on the lens plane. A
generalized pupil function P(u, v;λ) accounts for the lens:

P(u, v;λ) = P (u, v) exp (jΦ(u, v)) , (4)

where the aperture function P (u, v) is usually a circ function. The
phase term Φ(u, v) describes the phase retardation of light for each
point on the aperture, which in a general imaging system could be
caused by either refractive or diffractive optics, or a combination of
the two. In our case, Φ(u, v) is the function that will be optimized
to achieve a desired lensing effect and PSF. Using Eq. (4), we can
rewrite Eq. (1) as

bc(x, y) =

∫
Λ

Qc(λ)i(x, y;λ)⊗ k(x, y;λ)dλ

=

∫ ∞
−∞

∫
Λ

Qc(λ)i(ξ, η;λ)k(x− ξ, y − η;λ)dλdξdη.

(5)
For a conventional diffractive lens, the spectral PSFs k(x, y;λ) are
highly wavelength dependent, which has already been shown in
Fig. 1. Therefore, the PSF is not separable from the inner integ-
ration over wavelength. This effect is usually neglected in state-of-
the-art image formation models for deblurring, where the blur ker-
nel is assumed to be convolved with the latent color image. How-
ever, this approximation does not hold for large chromatic aberra-
tions, and therefore current deconvolution algorithms fail to recover
the latent image with high color fidelity.

To guarantee the deconvolution algorithms work in RGB space, we
design the spectral PSFs to be nearly wavelength independent, at
least over the spectral support of each color channel. On only then
can we use the approximation k(x, y;λ) ≈ kc(x, y), resulting in

bc(x, y) ≈
∫ ∞
−∞

kc(x− ξ, y − η)

∫
σ

Qc(λ)i(ξ, η;λ)dλ︸ ︷︷ ︸
ic(x,y)

dξdη

= kc(x, y)⊗ ic(x, y),
(6)

where ic(x, y) is the latent color image in channel c.

For an RGB image, the vector form of Eq. (6) can then be written
as

bc = Kcic, c = 1, 2, 3. (7)

As long as we can design a diffractive lens with nearly constant
spectral PSFs (i.e. a diffractive achromat), the convolutional image
formation model holds again.

3.2 Imaging Approach Overview

Our achromatic diffractive imaging approach consists of two main
parts — achromatic lens design and post-capture processing.

In the lens design, we devise a method that optimizes a DOE
to focus a range of wavelengths at a certain target focal length
while maintaining both a compact PSF as well as spectral uni-
formity. This optimization is performed for a dense set of discrete
wavelengths that are uniformly distributed over the target range.

Once we have a diffractive lens that exhibits spectral invariant ker-
nel behavior, the post-capture processing is modeled as an optim-
ization problem to solve the inverse problem of Eq.7. A two-step,
cross-scale deconvolution is presented to reconstruct the image.



4 Optical Design Optimization

4.1 Optimization Model

We have seen from Eqs. (3) and (4) that the spectral PSFs are de-
termined by the phase profile of the diffractive lens. Further, the
phase profile is a function of the height map h(u, v) of a trans-
missive substrate

Φ(u, v) =
2π

λ
(nλ − 1)h(u, v), (8)

where nλ is the refractive index of the substrate. We can control
the height map the of diffractive lens so that the PSFs can fit our
target PSFs in the `1 sense. We choose the `1 norm instead of least
squared error term is because penalizing the absolute value is more
robust to outliers, which in our case are the sparse high frequency
components (e.g. glitch intensity) of PSFs. These high spatial fre-
quencies are caused by optimizing discrete wavelengths individu-
ally, which leads to coherent interference patterns. Note that we are
targeting imaging with incoherent light, such that the real PSFs are
always smooth in practice. We simulate incoherence by low pass
filtering and outlier removal.

The minimization problem is written as

hopt = argminh
∑
λi∈Λ

wi ‖ pi(h)− t ‖1, (9)

where we have omitted the spatial coordinates for brevity. Here
pi(h) are the optimized PSFs, and t is the wavelength-independent
target PSF. The weights wi are assigned to balance relative diffrac-
tion efficiencies among wavelengths (see below). Note that the
optimization uses a discrete set of design wavelengths λi which
densely sample the target spectral range. This is possible because
PSFs vary smoothly with wavelength. The implementation of pi(h)
follows directly from Eq. (3): we first calculate the amplitude
PSFs by Fresnel diffraction propagation and then take the mag-
nitude squared.

In this work, we consider only rotationally symmetric patterns. As
a result, we can reduce the optimization to a 1D problem. Operat-
ing directly on height profile is beneficial as fabrication constraints
and other proximity effects can be incorporated into the model.
The proposed method is summarized in Alg. 1. We discuss the
algorithm in detail below.

Target PSFs In optical design, blur kernels are usually represen-
ted as Gaussian distributions with different variances. However,
in our design we will end up sacrificing resolution in the cent-
ral wavelengths for improved resolution at both longer and shorter
wavelengths, so that the final PSF is achromatic but not as sharp.
We expect this process to introduce longer tails that are not repres-
ented well with a single Gaussian.

To seek an optimal distribution that is feasible with the current
physical profile, we adaptively tune the target function. Specific-
ally, after a few iterations we average the PSF distributions of
all wavelengths and fit this average to a mixture model of three
(centered) Gaussians to represent the PSF

t =
∑

j=1,2,3

ajG(µ, σj), (10)

where aj are the weights for each component function and∑3
j=1 aj = 1. The coefficients and parameters of the fitting model

are then tuned (e.g. σj are shrunk by a few pixels) to generate new
target PSFs with a sharper distribution. Via this update strategy, we

Algorithm 1 Optimization on diffractive achromat

1: k = 0, h0
m = hinit, t = tinit, w

0
i = winit, v

0
m = vinit

2: for iterations do . Repeat till convergence/termination
3: for all seeds 1, ..,m do . Implement m seeds in-parallel
4: hk+1

m = hkm + vkm . Update height profile
5: hk+1

m = OPT(hkm, h
k+1
m ) . Update local optimal

6: h̄k+1 = OPT(hk+1
m ) . Update global optimal

7: vk+1
m = vkm + c1(h̄k+1

m − hk+1
m ) + c2(h̄k+1 − hk+1

m ).
Update velocity vector for each seed

8: end for
9: end for

10: function OPT(h) . Store updated height profile
11: for i = 1 to N do
12: pi = pi(h) · f . Update PSFs
13: end for
14: hopt = minh

∑
i w

k
i ‖ pi − t ‖1 . Evaluate objective

15: wk+1
i = ‖pi−t‖1∑

i‖pi−t‖1
. Update weights

16: return hopt

17: end function

Figure 2: The initial height profile for the optimization is a mix-
ture of subregions screened from Fresnel lenses at the same focal
length for different wavelengths. The whole area is divided into N
subregions for N different wavelengths. The resulting initial height
profile is the superposition of such subregions.

only need to initialize the target PSFs once based on preliminary
simulation. Repeatedly fitting the averaged distribution assures that
we have considered the focusing contribution of all wavelengths.

Despite its achromatic focusing constraint, this PSF representation
helps maintain a relatively sharp peak in the PSFs so that high-
frequency features can be preserved. This is particularly beneficial
for deconvolution under the challenge of large kernels.

Initialization The optimization begins by calculating an initial
guess for the starting height profile. A purely random height profile
leaves our input too far away from the solution. We could start from
a Fresnel phase plate designed for a single, central wavelength (e.g.
550nm for the visible spectrum). However, we found that a better
choice is to use a composite of multiple zone plates. When optimiz-
ing forN discrete wavelengths, we divide the aperture intoN rings
of equal area. Within each ring, we initialize the height field to a
Fresnel phase plate for a specific wavelength λi at the target focal
length (see Fig.2).

Adaptive weights The final goal of our optimization is to uni-
formly assign the focal contribution of each wavelength. However,
during the optimization we still adaptively tune the weights wi in
Eq.(9) for selected wavelengths according to their deviations of fit-
ting errors. Specially, if the current design suffers from a weaker



optical power at one wavelength, which is explicitly reflected by
larger fitting error, the weight on this wavelength in the cost func-
tion will be adjusted in the next iteration following a simple rule
as wk+1

i = ‖pi−t‖1∑
i‖pi−t‖1

. We see that all weights wi will be up-
dated toward nearly identical value if the optimization approaches
the optimal.

Low-pass filtering The resulting PSFs after diffraction propaga-
tion contain narrow spectral peaks and valleys (Fig. 3). These ar-
tifacts are due to two types of discretization. First, both the DOE
plane and the image plane are represented as point samples, which
introduces high spatial frequencies that in reality get averaged out
by integrating over finite pixel areas. The second, and maybe more
important effect is that our simulation is also discretized along the
wavelength direction, which effectively treats the light as coherent
and introduces artificial interference patterns that are not present in
real-world broad-band imaging scenarios. As a result of this ana-
lysis, we treat the spectral peaks and valleys as outliers that we filter
out by applying a blur along the spectral dimension. Our experi-
ence indicates this filtering benefits the robustness and convergence
speed of the optimization.

4.2 Stochastic Optimization Algorithm

We choose Particle Swarm Optimization (PSO) algorithm to solve
our optimization [Eberhart and Shi 2001]. The advantage of PSO
algorithm is its high computing efficiency compared with other
stochastic algorithms, e.g. Genetic Algorithm etc. By implement-
ing a series of seeds (i.e. m seeds in Alg. 1) in parallel at each
iteration, the height profile update is more robust and faster to con-
verge.

At each iteration, the seeds update their height profiles and velocit-
ies of current design by tracking the optimal solution of their own
h and that of the group h̄ following a strategy hk+1 = hk + vk,
where vk is a velocity vector indicated in line 7 of Alg. 1. The two
weights c1, c2 are randomly assigned between (0, 1). We further
set a constraint in the implementation that |vm| ≤ 0.25hmax.

The idea is to assume individual seeds can evolve according to
the information gathered from their own experience and that of
the group, so that the focal power change for each individual
wavelength is not be drastic and purely random. This update
strategy is beneficial to avoid falling into a local minimum, as well
as leveraging parallelism.

We borrow the from-coarse-to-fine strategy from multi-scale op-
timization to divide the N wavelengths to be optimized into sev-
eral scales. For instance, we start by optimizing N1 = 9 sampled
wavelengths in the spectrum. Once the optimization for this scale
has converged, we increase the number of wavelengths to a second
level N2 = 15, and N3 = 29 eventually. We can accept an
10nm interval in the wavelength sampling to already approximate
achromaticity among wavelengths in the full visible spectrum.

Figure 3 shows the comparison of simulated PSF cross-sections
for three selected wavelengths λ1 = 650nm, λ2 = 550nm
and λ3 = 450nm in the full spectrum. We compare a single
wavelength Fresnel phase plate (left) with the multi-ring initializa-
tion (center) and the final, optimized result (right). Our algorithm
sacrifices the performance of the central wavelength to comprom-
ise the spectral focal contributions. It’s worth noting that the shown
PSFs correspond to single wavelengths, which explains the high
spatial frequencies, which are interference patterns due to coher-
ence. These patterns average out for incoherent illumination (see
Section 6 and Fig. 11).

Figure 3: Cross sections of normalized PSFs for a regular Fres-
nel lens (left), the initial guess (center), and the optimized diffract-
ive achromat (right) at three selected typical wavelengths λ1 =
650nm, λ2 = 550nm and λ3 = 450nm. Note that here we op-
timize for 29 wavelengths from 410nm to 690nm with an interval
of 10nm. We sacrifice the performance at the central wavelength
to equalize PSF distributions.

5 Image Reconstruction

In this section we introduce the algorithms for solving the inverse
problem to recover sharp and high-fidelity color images using a
cross-scale prior in a two-step fashion.

5.1 Optimization Method

In order to recover latent images, our approach seeks the solution
to Eq. 7 by solving the following minimization problem

ic = argminic

µc
2
‖bc −Kcic‖22 + Γ(ic), (11)

where the first term is a standard least-square data fitting term, µc is
the weight of data fitting term for channel c = 1, 2, 3. The second
term Γ(ic) is a regularization term that enforces natural image pri-
ors in the solution, as explained in detail below.

We investigate an efficient non-blind deconvolution accounting for
the following properties of our diffractive achromat design. First,
despite the large PSF size of our lens, they show a preserved central
intensity peak as well as quasi-uniform intensity distribution for all
the color channels, therefore we do not need additional color priors
in our problem. Second, inspired by the image-pyramid strategy,
we solve our problem with at two scales, enforcing similar gradi-
ent distributions between scales. Intuitively, the edges in natural
images always exist at the same locations and are barely affected
when the image is downsampled to a lower scale. However, down-
sampling an image would lead to an improved signal-to-noise ratio,
which helps improving the conditioning of the problem. The latter
point can be particularly beneficial in our case.

Fast deconvolution and denoising at downsampled scale
We propose to implement the first step deconvolution on a down-
sampled image, for instance, half the size of the original image, to
deblur large edges and remove strong color corrupted noise. By de-
fining the regularization term Γ(ic) in this scale, the cost function
for a single channel in Eq. (11) is reformatted as

idc = argminidc
µ‖bd

c −Kidc ‖22 + β‖Didc ‖22

⇔ idopt = F−1

(
µF (K)∗ F

(
bd
c

)
µF (K)∗ F (K) + βF (D)∗ F (D)

)
,

(12)



where F (·) represents the Fourier transform, F−1 (·) is its inverse.
The superscript ∗ indicates the complex conjugate operation, D
is the first-order derivative filter matrix, and µ, β are the respect-
ive weights for each term. The superscript d denotes that all im-
ages are in the downsampled scale. This quadratic problem leads
to a closed-form solution in frequency domain, such that we can
directly use fast inversion to recover the sharp image idc at down-
sampled scale. In practice, we suggest to apply an additional de-
noising solver here at this scale if the captured image suffers from
strong noise.

Cross-scale deconvolution at full scale In the second step, we
apply a cross-scale prior in our regularization term, which bor-
rows the relatively sharp and denoised edge information from the
upsampled image of the 1st step’s result to benefit the deconvo-
lution at full scale. Our cross-scale prior is inspired by cross-
channel prior [Heide et al. 2013] and the multi-scale deconvolution
scheme [Yuan et al. 2008]. It is reasonable to assume large edges
and shapes shall be located where they are at both the upsampled
version of the downsampled scale image and the original full scale
image, i.e.

∇ic ≈ ∇isc ⇔ Dic ≈ Disc, (13)

where ic is the latent image at full scale, and isc is the upsampled
version of the deconvolved image idc in the 1st step using a bicubic
sampling scheme.

Note that strong noise in the original blurry image has been
smoothed and mostly removed during the processing at down-
sampled scale, then the second step can be run with relatively weak
regularization. Our approach differs from the multi-scale deconvo-
lution in [Yuan et al. 2008], which progressively refines details in
multiple scales such that at each scale iterative residual deconvolu-
tion is necessary. In our approach, we instead directly add the up-
sampled deconvolved image isc as an additional prior term to trans-
fer their edge information between two scales. The remainder of
our deconvolution problem still follows the same fast deconvolu-
tion scheme described above. By tuning the weights of two prior
terms, we can flexibly compromise on sharpness and smoothness of
the recovered image in a simple scheme. Then, by rewriting Γ(ic)
that includes the gradient prior as well as our cross-scale prior, the
cost function in Eq. 11 is reformulated as

ic = argminic

µ

2
‖bc −Kic‖22 + β‖Dic‖1 + γ‖Dic −Disc‖1.

(14)
Adding the cross-scale prior results in a non-linear optimization
problem that can be solved by introducing slack variables for the `1
term. Specially, we form the proximal operators [Boyd et al. 2011]
for the subproblems, thus turning the `1 terms into shrinkage oper-
ators. We define p = Dic as a slack variable for

proxθ‖·‖1(p) = max

(
1− θ

|p| , 0
)
� p

proxθ‖ · −α‖1(p) = max

(
1− θ

|p− α| , 0
)
� p + α,

(15)
where α = Disc. The proximal operators for their convex conjug-
ates can be derived from [Boyd et al. 2011]. We then use a similar
half-quadratic penalty scheme as in [Krishnan and Fergus 2009] to
solve Eq. (14). (see Supplementary document for details).

5.2 Efficiency and Robustness Analysis

In the first step, the direct division in frequency domain is very
fast, but may result in the recovered image being strongly corrupted
by noise. One can further apply a multi-layer perceptron (MLP)

approach in [Schuler et al. 2013] or similar fast method to denoise
the lowest scale before upsampling. Here we directly use the MLP-
based denoiser with off-line learned data in [Schuler et al. 2013] at
the downsampled scale. Although the kernel of our lens differs
from the Gaussian kernels with which the system has been trained
the results are still perceptually pleasing for our purpose.

In the second step, we can recover the latent image efficiently at the
full scale due to the introduction of the cross-scale prior. We have
compared our implementation with recently reported non-blind de-
convolution methods in Tab. 1. See supplementary document for
PSNR results of the full dataset [Chakrabarti and Zickler 2011].
The last column in Tab. 1 indicates the case of a regular Fresnel
lens with cross-channel deconvolution. We find that all the res-
ults reconstructed from the diffractive achromat show much higher
PSNR than those from a regular Fresnel lens. This validates our
design motivation that diffractive achromat preserves higher color
fidelity than conventional diffractive lens. Further, by running our
two-step deconvolution, denoising and cross-scale edge preserva-
tion, our results outperform existing methods.

Table 1: Averaged PSNR comparisons of recovered images from
different deconvolution schemes. The first 5 columns indicate the
results of our diffractive achromat using respectively the deconvo-
lution by Krishnan, Schuler, multi-scale Krishnan, and multi-scale
Schuler+Krishnan (see Fig. 4), while the last column shows the res-
ult for a standard Fresnel lens with a cross-channel prior.

Method 1 2 3 4 Ours Fresnel
PSNR/dB 25.86 26.05 26.51 26.73 27.10 22.54

At either scale, we do not rely on a color regularizer in the cost func-
tion, which lowers significant computing burden. Additionally, the
high frequency components in the compromised PSF is usually of
very low intensity. They are actually mixed with additive noise, and
are smoothed in the downsampling process. Although the theoret-
ical size of PSFs can be considerably large, in practice, it doesn’t
degrade the image so much. In our experiment, for a 20 megapixel
RGB image and 200-pixel PSFs, the running time of our two-step
algorithm in Matlab IDE is around 250 seconds on a PC with Intel
Xeon i7@2.70Hz CPU. Further performance improvements could
be achieved through GPU optimization and parallelization.

6 Implementation

We show our implementation of the proposed achromatic diffract-
ive imaging method, including the prototype design, fabrication and
a number of experimental results for synthetic data as well as real
indoor and outdoor scenes at full sensor resolution. For figures
some figures we present only cropped regions to highlight detail
structure. The full resolution images can be foudn in the supple-
mental materials.

Prototype We designed two types of diffractive lenses, our dif-
fractive achromat and a conventional diffractive lens with the same
optical parameters for comparison. The focal length is designed
at f = 100mm with an aperture diameter 8mm for both cases.
The conventional diffractive lens is designed at central wavelength
550nm. Our diffractive achromat is optimized for wavelengths
from 410nm to 690nm with a 10nm sampling interval. Both
lenses are attached on a Canon 70D camera body that has 5740
× 3648 pixels with the pixel pitch of 4.1µm.

Fabrication We fabricate the designed diffractive achromat using
multi-level photolithography techniques. In the lithography step,



Figure 4: Comparisons for different combinations of deblurring step and denoising step on synthetic dataset (top row) and real cap-
ture (bottom row), each with input blurry noised image, fast LUT deconvolution [Krishnan and Fergus 2009], direct deconvolution +
MLP [Schuler et al. 2013], their multi-scale mix-implementations, and our approach with cross-scale prior. For the top row, the blurry
image is synthesized using hyperspectral images with 29 wavelengths, blurred by the kernel in Fig. 10, and added with σ = 0.005 Gaus-
sian white noise. The inset numbers indicate the PSNR and runtime on the synthetic image with 1.45 megapixels size in Matlab IDE on a
commercial PC. Ours is proved to be robust and efficient.

an auxiliary Cr layer and a photoresist layer are first deposited and
coated on the Fused Silica wafer. Patterns on the mask are trans-
ferred to the photoresist through exposure to the UV light. After
development and Cr etching, a patterned area on the wafer becomes
exposed to the ion beam in the following reactive ion etching (RIE)
step. By controlling the etching duration, a certain depth on the
wafer is obtained. A mixture of SF6 and Ar are used as the ion
beam in RIE.

The substrate in our implementation is a 0.5mm-thick 4 inch Fused
Silica wafer. Each lens is fabricated by repeatedly applying the
photolithography and RIE techniques. We choose 16-level micro-
structures to approximate the continuous surface profile. Dif-
fractive lenses with 2D micro-structures approximated by 16-level
achieve a theoretical diffraction efficiency of up to 95%, and in-
creasing the number of levels to 32 yields almost no improve-
ment [Fischer et al. 2008]. The 16 levels can be achieved by re-
peating four iterations of the basic fabrication cycle with different
amounts of etching. The total height for 2π phase modulation cor-
responds to 1195nm etching depth on the wafer. See supplement-
ary document for more detail on the fabrication process.

Experimental results We show in Fig.4 the comparison res-
ults using different deblurring and denoising methods, including
single scale fast LUT deconvolution [Krishnan and Fergus 2009],
single scale MLP-based deconvolution [Schuler et al. 2013], two-
scale fast LUT deconvolution, one scale MLP-based deconvolu-
tion followed by one scale fast LUT deconvolution, and our two-
step cross-scale deconvolution. Our algorithm produces sharp,
high color fidelity images in the full visible spectrum due to the
achromatic design. We run our experiments for a hyperspectral
image database with 50 images and the results yield an averaged
PSNR 26.2dB with our proposed algorithm, even the worst result
still stays above 25.0dB (See Tab. 1). Figure 5 shows some syn-
thetic results of natural scenes from the hyperspectral datasets in
[Chakrabarti and Zickler 2011] and [Skauli and Farrell 2013].

Figures 6 and 7 show the experimental results captured using our
diffractive achromat. We have presented diverse natural scenes, in-
cluding indoor, outdoor, rich color, high reflection, etc.. The res-
ults show that our method is close to spatial and depth invariant
achromatic aberration within a long range. Refer to the caption of
each figure for scene details.

Compared to synthetic results, the captured results suffer from

Figure 8: Blurred (left) and deblurred (right) results of capturing
a standard resolution chart image which is projected by a projector
onto a white plane. The capture distance is around 1.8m. The same
PSF estimation used in Fig. 7 is applied here.

an additional haze effect, which degrades the image quality. We
identify several sources for these deviations: First, the discrete
height profile and limited spatial resolution of our photolithography
process reduces the diffraction efficiency of the prototype. This
could be alleviated by moving to an electron-beam lithography pro-
cess. Second, the engineering errors derived from the custom op-
tical mounts, e.g. custom holder and aperture result in some light
leaks in the camera. Finally, our prototype is designed to be optimal
for a spectral range from 410nm to 690nm, while the sensor may
have a wider spectral response.

7 Evaluation and Discussion

We have demonstrated our diffractive achromat is able to image
natural scenes with competitive resolution and color fidelity. In this
section, we analyze the imaging performance from the perspectives
of spatial resolution, off-axis behavior and color performance. The
potential applications and limitations are discussed as well.

Resolution measurement We evaluate the resolution of our
achromatic lens by taking an image of the ISO 12233 resolution
chart, shown in Fig. 8. The captured image is very blurry due to the
large blur kernel from our achromatic lens. High-frequency fea-
tures, such as small edge patterns shown in the close-ups, are in-
distinguishable, After the deconvolution step, the recovered image
preserves most of the low-frequency and mid-frequency features.
Image contrast is also improved. The resolution comparison with a
pure refractive lens is provided in the following.



Figure 5: Illustration of synthetic results with blurred (top row) and deblurred (bottom) results of selected scenes, with σ = 0.005 Gaussian
white noise added, the left 3 pairs are synthesized with 29 wavelengths’ hyperspectral images, while the right 2 pairs 71 wavelengths. The
quantitative evaluations on full dataset are also provided, refer to Supplementary document for details.

Figure 6: Blurred (top) and deblurred (bottom) results of real captured scenes. All four scenes are captured at different depths with single
exposure and no gain, under indoor artificial and mixed illumination (left two pairs), and natural sunlight illumination (right two pairs),
using a single 0.5 mm ultrathin diffractive achromat we fabricate. Note that we roughly use a white light source attached with a pinhole to
calibrate the PSF only at one depth (2 m), and we use it for all deconvolutions.

Figure 7: Blurred and deblurred results of outdoor scene with a large depth variance and reflection feature (left pair), desktop stuff with rich
colors (center pair) and natural human face (right pair). The same PSF calibrated for Fig. 6 is used here.



Figure 9: On-axis and off-axis behavior comparison of an
achromatic refractive lens (top-left) and a hybrid diffractive-
refractive lens (bottom-left). From the blurred and deblurred patch
pairs presented in the right hand side, we observe that embedding
our DOE design in a lens exhibits better spatial uniformity, despite
the residual aberration. Here we assume within each selected patch
the PSF is locally invariant. Accordingly, the MTFs estimated from
gray-scale slant edges inside each deblurred patch are provided
(bottom-right). The auxiliary refractive optics used are Thorlabs
achromatic lenses, with focal length 50mm, 100mm, and thick-
ness 8.7mm, 4.7mm, respectively. The equivalent focal lengths
are all 50mm and full field of view is around 30◦.

Off-axis behavior In addition to the benefit of ultrathin and light-
weight structure, our diffractive achromat exhibits lower off-axis
distortion than that of a refractive lens with the same focal length, as
illustrated in Fig. 9. Compared to the simple refractive lens that has
highly spatially variant PSFs across the field of view, our diffract-
ive achromat exhibits smaller field curvature, thereby the resulting
PSFs are almost uniform across the image plane. This property sim-
plifies PSF calibration that otherwise is time-consuming or even im-
practical for refractive lenses. Specifically, after the deconvolution
step, the off-axis image patch of a hybrid lens exhibits sharper edges
than that of a pure refractive lens (see the zoom-in patches). The
MTFs estimated from the slant edge method [Samei et al. 1998] are
presented in the bottom-right of Fig. 9. We see that the diffractive
achromat results in a good compromise between on-axis and off-
axis performance. The computational burden for splitting image
patches to account for the spatial variant blur kernels is also elim-
inated and is further beneficial to the deconvolution step.

Owing to the spatial invariant PSFs of our diffractive achromat,
we can also introduce a hybrid refractive-diffractive lens design as
in [Peng et al. 2015]. Our hybrid design concept differs from con-
ventional hybrid designs in that we do not leverage the negative
chromatic aberration of DOEs to compensate for the positive chro-
matic aberration of refractive lenses [Meyers 1998]. One can com-
bine our diffractive achromat with any off-the-shelf refractive lens
to assemble a hybrid lens that has improved spatial uniformity com-
pared to purely refractive designs. See supplementary document for
the extensional experimental results of an achromatic diffractive-
refractive hybrid lens.

Color performance The advantage of our diffractive achromat
is to generate spectrally invariant PSFs, which is usually neglected
by conventional diffractive imaging methods. An ideal diffractive
imaging device should preserve high spatial frequencies across all
color channels, similar to a refractive optical system. Our proposed
optimization method achieves this for all the three color channels.
We show the Modulation Transfer Functions (MTFs) for each chan-

Figure 10: Color performance comparison of conventional dif-
fractive lens and our achromatic diffractive lens. Conventional dif-
fractive lens has a sharp green channel but severely blurred blue
and red channels. Our achromatic lens balances three channels to
show averaged performance for all. The MTF plots for our design
(solid) are closer to each other, compared to those of the conven-
tional diffractive lens (dashed). The insets show the respective color
PSFs of the two lenses.

nel to illustrate the benefit of our design in Fig. 10. Compared with
a conventional diffractive lens, our design shows balanced perform-
ance in three channels indicated by the MTF curves getting close to
each other (solid plots), while the MTFs for the conventional dif-
fractive lens are separated far away from each other (dashed plots).
This can be more clearly seen from the captured color PSFs for both
lenses. The conventional diffractive lens has a peak for the green
channel and the other channels are of very low intensity, so the PSF
looks green. For our diffractive achromat, since we optimize for
29 wavelengths to equalize the intensity distribution, the color PSF
looks much more natural and closer to that of the refractive lens.
The measured results of PSFs are presented in Fig. 11, from which
we see that the quasi-uniform spectral PSF behavior has been es-
tablished.

Limitations Our prototype suffers from a few shortcomings,
which can be traced back to limitations of the current manufac-
turing process. Like other DOEs with discrete levels of surface
relief, our achromatic prototype cannot achieve 100% diffraction
efficiency for all the wavelengths. The spread of the lost energy
results in slightly foggy appearance in the captured image, which is
still difficult to eliminate especially in high contrast scenes.

Our prototype is also limited by the resolution of the photolitho-
graphy process that we employ for fabrication. This results in a
minimum feature size of 1µm, and places a limit on the aperture
sizes and focal lengths that are possible with this process. We note
that the resolution could be improved by two orders of magnitude
switching to an electron-beam lithography process, which, how-
ever, was beyond the scope of this work.

Finally, we also note that there is a small residual wavelength de-
pendency left in the optimized design of the diffractive achromat.
For imaging in natural environments with broad-band, incoherent
light, we have demonstrated that this is not an issue. However, for
partially coherent or fully coherent light, the PSF will contain inter-
ference patterns with high spatial frequencies that are sensitive to
small shifts in wavelength. The deconvolution method will not be
able to restore a high-quality image in this scenario.

Potential applications and future work We have shown in this
paper that diffractive achromats are viable for full spectrum ima-
ging in the visible domain. However, our method is not limited to
applications in the visible band. Diffractive lenses are very prom-



Figure 11: The measured PSFs on a sRGB color sensor for 5 selected spectrum bands (left), and the PSF we have calibrated for all above
deconvolutions (right-most). Note that for individual measurement, a bandpass filter with a 40nm FWHM is attached in front of our lens.

ising for imaging in the ultraviolet or far infrared spectrum, where
refractive lenses are not able to transmit the desired wavelengths
with high efficiency [Wang et al. 2003; Kang et al. 2010]. The ul-
trathin structure of diffractive optics drastically improves transmis-
sion for these wavelengths, while simultaneously reducing weight.

Moreover, it is possible to use our approach to design custom optics
for specialized purposes that require imaging of multiple discrete
wavelengths. By optimizing only for these wavelengths while neg-
lecting others, better PSFs can be achieved than with a broad band
optimization. Due to its flat field property, our diffractive achromat
design is an alternative option to be combined with off-the-shelf
lenses to correct off-axis aberrations flexibly such that the number
of lenses in an imaging system can be significantly reduced without
decreases in image quality [Aieta et al. 2012]. Additional work on
how to apply the known kernel distributions to benefit the deconvo-
lution process can also be interesting.

8 Conclusion

In this paper, we have proposed a novel achromatic diffractive ima-
ging method that bridges diffractive optical elements and compu-
tational algorithms to build lightweight and thin optics for the full
visible spectrum. By introducing optimization to the design of dif-
fractive optics, we develop a diffractive achromat that trades off
color fidelity and overall spatial resolution. The residual aberrations
resulted from this compromise are tackled by employing a two-step
image deconvolution with our proposed cross-scale prior. The al-
gorithm includes a downsampled scale fast deconvolution and de-
noising step, and a full scale cross-scale deconvolution. Both steps
are implemented without additional color priors to rapidly recover
high quality color. We envision our method offers an opportunity
for the joint design of ultrathin diffractive achromats and computa-
tional algorithms, further to boost the potential application of com-
pact imaging devices in many broadband illumination scenarios.
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