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Stochastic Blind Motion Deblurring
Lei Xiao, James Gregson, Felix Heide, and Wolfgang Heidrich

Abstract— Blind motion deblurring from a single image is
a highly under-constrained problem with many degenerate
solutions. A good approximation of the intrinsic image can,
therefore, only be obtained with the help of prior information in
the form of (often nonconvex) regularization terms for both the
intrinsic image and the kernel. While the best choice of image
priors is still a topic of ongoing investigation, this research is
made more complicated by the fact that historically each new
prior requires the development of a custom optimization method.
In this paper, we develop a stochastic optimization method for
blind deconvolution. Since this stochastic solver does not require
the explicit computation of the gradient of the objective function
and uses only efficient local evaluation of the objective, new priors
can be implemented and tested very quickly. We demonstrate
that this framework, in combination with different image priors
produces results with Peak Signal-to-Noise Ratio (PSNR) values
that match or exceed the results obtained by much more complex
state-of-the-art blind motion deblurring algorithms.

Index Terms— Motion deblur, blind deconvolution, stochastic
random walk, cross channel prior, chromatic kernel, saturated
pixels, Poisson noise.

I. INTRODUCTION

THE goal of deconvolution is to recover a sharp intrinsic
image I from a blurred image B. The image formation

process can be modeled as

B = K ⊗ I + N, (1)

where K represents the blur kernel, ⊗ represents discrete
convolution, and N is a noise term. We first assume Gaussian
noise for simplicity, and extend our algorithm for Poisson
noise in Section IV-D.

While there are many applications in which the kernel K is
known or can be calibrated a priori (e.g. aberration correction)
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or is considered to be from a small set of possible kernels
(depth of field blur), in other situations the kernel is unknown
since it is generated by a process that cannot be replicated
(e.g. object motion or camera shake).

This blind case, where both the kernel and the intrinsic
image is unknown is highly under-constrained, and is subject
to many degenerate solutions, including one where the
estimated kernel is simply a Dirac peak. It is therefore obvious
that blind deconvolution is only feasible with the use of addi-
tional information, either in the form of additional sensor data
(e.g. inertial sensors [1] or multiple input images of the same
scene [2]), or in the form of prior information (image priors).
While good priors for both the images and the blur kernels
are still an active area of investigation, many choices that
have been proposed are non-linear and often even non-convex.
This makes it difficult and time consuming to experiment
with different image priors, since each new candidate typically
requires a customized optimization procedure that can require
a significant effort to implement.

In this paper we extend our recent work in stochastic
non-blind deconvolution [3] to derive a blind method that
is purely based on stochastic sampling. The method relies
entirely on local evaluations of the objective function, without
the need to compute gradients. This makes it effortless to
implement and test new image priors. In our implementation
we focus on spatially-invariant blur kernels, although
extensions such as tile-based kernels would be straightforward
to add. Specifically we present the following contributions:

• a stochastic framework for blind deconvolution,
• a demonstration of stochastic optimization for non-

convex priors for the image (e.g. sparse derivatives and
cross-channel information), the kernel (e.g. anisotropic
diffusion), and even the data term (handling of saturation
and clamping, as well as an Anscombe transformation for
Poisson noise).

• an implementation with a range of sparsity and color
priors for the image, as well as sparsity and smoothness
priors for the kernel, that together match or outperform
existing state-of-the art methods,

• a method for recovering colored blur kernels that arrive,
e.g. in remote sensing where the exposure time varies per
channel (see [4]), and

• a method for dealing with clipped color values in
non-blind deconvolution.

The rest of this paper is organized as follows.
In Section II, we briefly review the previous work of
single-image blind deconvolution and describe the stochastic
optimization method. In Section III and IV, we present our
approach and describe its critical implementation details.
In Section V, we show our results of both synthetic images
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and real photographs. In Section VI, we conclude this paper
and discuss potential further work.

II. RELATED WORK

A. Known Point-Spread Function

In cases with a known blur kernel, the method is presented
with one or more blurry inputs and used to estimate sharp
intrinsic images. Application-specific kernels may be obtained
in a variety of ways, either by explicit design [5], [6], inertial
measurement [1], [7], calibration [8], [9] or known from
capture conditions. Kernels may also be estimated.

A key distinguishing feature of non-blind methods are the
priors that are applied. l1 priors enforce solution sparsity
see [10]–[12], with efficient solvers and well-developed theory.
Natural image statistics (e.g., heavy-tailed gradient distribu-
tion) are also popular, see [6], [13], but are non-convex and
often difficult to solve. More recently, non-local filters have
been used for image denoising, see [14]–[16], and are starting
to be adapted to deblurring [17], [18].

B. Unknown Point-Spread Function

When the blur kernel is not readily available, the problem
becomes much more challenging especially for single image
input. Recent success arises from the use of sparse priors
and multi-scale scheme. Fergus et al. [13] fits the heavy-
tailed prior by a mixture of Gaussians and solves the intrinsic
image gradient and blur kernel by a variational Bayesian
method [19]. Richardson-Lucy algorithm [20], [21] is then
applied to reconstruct the final intrinsic image with the esti-
mated kernel. Shan et al. [22] introduced a model of the spatial
randomness of noise and a local smoothness prior, and esti-
mates the intrinsic image and kernel in a unified framework.
Krishnan et al. [23] introduced a scale-invariant l1/l2 prior
which compensates for the attenuation of high frequencies
in the blurry image. Xu et al. [24] proposed to use the
l0 regularizer on the image gradient at intermediate steps of
blind kernel estimation and solved the optimization by a proxi-
mal algorithm [25]. Pan et al. [26] used l0 regularized intensity
and gradient priors for text deblurring. Customized optimiza-
tion methods were used for specific priors in these algorithms.
While developing better priors is still a promising direction for
future research, we believe our framework which can allow for
quick exploration of new ideas in this space can be valuable.

Another type of methods use filtering approaches to extract
strong image edges from which kernels may be estimated
rapidly. Cho and Lee [27] adopted shock filter [28] and
bilateral filter [29] to predict sharp edges. Xu and Jia [30]
proposed a edge selection process based on the observation
that strong edges do not always profit kernel estimation. They
also proposed a kernel refinement method by iterative support
detection [31]. These algorithms cannot capture the sparsity of
the image and kernel and can result in noisy estimates. The use
of shock filter and bilateral filter can result in oversharpened
edges and halo artifacts.

In case of highly noisy input, Tai and Lin [32] proposed
a method for jointly denoising and deblurring the image.
Zhong et al. [33] applied directional low-pass filters at
different orientations to the input image and estimated the

Algorithm 1 Stochastic Blind Deconvolution Framework

Radon transform of the blur kernel from each filtered image,
while the final blur kernel is computed by inverse Radon
transform.

For non-uniform blur due to camera rotation,
Whyte et al. [34] proposed a parameterized geometric
model of the blurring process considering the rotational
velocity of the camera during exposure. Gupta et al. [35]
modeled the spatially varying kernels by a motion density
function which records the fraction of time spent in each
discretized portion of the space by the camera during
exposure. Harmeling et al. [36] and Hirsch et al. [37]
combined the global camera motion model and local patch
uniform deblurring to accelerate the non-uniform kernel
estimation.

C. Stochastic Random Walk Optimization Algorithm

In earlier work, we presented stochastic random-walk
optimization for tomography [38] and non-blind deblurring [3]
that uses many incremental local solution updates at sampled
locations. Sample placement is driven by a stochastic random
walk that favors local exploration where fast progress has
recently been made. The advantage of this approach is a simple
implementation and straightforward inclusion of complex
priors, at the cost of missing theoretical convergence
guarantees for non-smooth objectives, as well as a runtime
penalty. In this work, we extend the approach to handle blind
deconvolution.

III. BASIC ALGORITHM

Our algorithm is based on a multiscale approach that
iterates between kernel estimation and solving a non-blind
deconvolution step (Algorithm 1). The algorithm uses a scale
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Fig. 1. Our multi-scale scheme on the scene shown in Fig. 8.
Row 1 & 2: intrinsic images estimated at each scale. Row 3: kernel estimated
at each scale. In contrast to most existing blind deconvolution methods, our
algorithm can recover all color channels of the intrinsic image simultaneously
using the cross-channel information.

space to avoid local optima, working its way from the coarse
scales to the fine scales (also see Fig. 1). At each scale,
the method upsamples the kernel and intrinsic image from
the next coarser scale using nearest-neighbor and bicubic
upsampling respectively and then alternately updates the
current estimates for the intrinsic image (Section III-A) and
the kernel (Section III-B) at the current scale in an inner loop.
Next, prior weights are adjusted (Section III-C) before moving
to the next finer scale. At the coarsest scale, the kernel is
initialized as a 3 by 3 image with either a horizontal or vertical
stripe depending on the dominant gradient direction [13],
while the blurry image for each scale is obtained with bilinear
downsampling from the full-resolution blurry image.

A. Updating the Intrinsic Image Î
s

Given the kernel estimated at the current scale K̂s , the
function updateIntrinsicImage() in Algorithm 1 updates
our estimate of the intrinsic image by solving a non-blind
deconvolution problem using a stochastic random walk opti-
mization (Algorithm 2, also see [3]), which minimizes
objectives of the form:

f (Îs) = ||Bs − K̂s ⊗ Îs ||22 + θI · g(Îs) (2)

The quadratic term gives the data-fitting error. g(.) =
[g1(.), . . . , gR(.)]T is a vector of individual regularizers, and
θI = [θI1, . . . , θI R]T is the corresponding vector of weights for
each regularization term. The total weighted penalty (scalar)
is the dot-product of θI and g(.). Examples of gi(.) are given
in Eq. 8 - 12.

1) Random Walk Process: As summarized in Algorithm 2,
we create a random walk chain of pixel location xi in the
support domain of the intrinsic image at which we propose to
add to or remove from an energy quantum edI :

Îs
i = Îs

i−1 ± edI · δxi , (3)

where δxi is the characteristic function (i.e., Kronecker delta
function) for the sample pixel xi , and Îs

i the estimated intrinsic

Algorithm 2 Stochastic Random Walk Optimization

image at i th iteration of the random walk. Both the positive
and negative energy are evaluated at the sample pixel but
only the sample that decreases the objective function most
is kept.

The quantity c(xi ) measures the change of the objective
function f (.) if the proposed sample xi with value ±edI were
to be accepted, i.e.,

c(xi) = f (Îs
i ) − f (Îs

i−1) (4)

If the sample decreases the objective (i.e. c(xi ) < 0), it is
accepted and Eq. 3 is applied (lines 6-9, Algorithm 2).
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The quantity a measures the rate of objective change given
the new proposed sample xi , as defined in Eq. 5.

a = c(xi)/c(xi−1) (5)

If a is lower than a uniform-randomly generated real
number between 0 and 1 (a.k.a Russian roulette strategy in
Metropolis-Hasting sampling techniques [39]), and the previ-
ous sample xi−1 decreased the objective, the new sample is
discarded entirely leaving the intrinsic image and random walk
chain unchanged (lines 11-13, Algorithm 2). Otherwise, the
random walk chain is updated to the new sample location xi .

2) Evaluating c(xi ): Given a proposed sample, the objective
function in Eq. 2 changes locally because of the compact sup-
port of the blur kernel K̂s and priors g(.). We can efficiently
evaluate c(xi ) by only considering the local neighborhood of
the given sample pixel.

In practice, we keep a second sequence of images
B̂s

i = K̂s ⊗ Îs
i , which represents the blurred image we would

expect if the intrinsic image was Îs
i . The B̂s

i can be updated
efficiently by splatting K̂s ⊗ δxi during the random walk
process:

B̂s
i = B̂s

i−1 ± edI (K̂s ⊗ δxi ) (6)

The splat K̂s ⊗ δxi is just a shifted, and mirrored copy of the
kernel K̂s and is pre-computed for acceleration. The change
in the regularization term is evaluated in an analogous manner
but is specific to chosen regularizers.

3) Sample Mutation: The function sample(.) generates a
new sample xi from the previous sample xi−1 by the mutation
function t (xi |xi−1). Two types of mutation strategies are used.

The first strategy generates xi by a zero-mean
Gaussian-distributed random offset η(0, σ ) from xi−1.
This mutation allows more samples to be drawn in the
regions where they can reduce the objective function more
effectively. Using a Gaussian distribution ensures ergodicity
of the random walk process. The standard deviation of the
Gaussian kernel σ is set to 4 pixels when updating intrinsic
image.

The second mutation strategy chooses the new sample
randomly in the support domain with uniform probability.
We stimulate this mutation with 2% probability during the
random walk process. This helps to avoid start-up bias and
also contributes to ergodicity of the random walk process.

Eq. 7 gives the formula of the above mutation strategies:

xi =
{

random(�), if q < 0.02;
xi−1 + η(0, σ ), otherwise

(7)

where random(�) means a random pixel across the image
support domain �, and q is a random real number between
0 and 1 generated online at each mutation.

4) Sample Energy: The magnitude of the sample energy edI

is reset to be an initial large value at the beginning of each
scale, and adjusted iteratively at each scale. It is reduced by
half whenever the percentage of accepted samples over all pro-
posed ones in previous iteration goes below a constant scalar
γ ∈ [0, 1]. This allows the method to take large steps early
and make more subtle changes as the minimization proceeds.

In our experiments we use the initial value of edI as 0.02
and γ as 0.1. Note that the blurry and intrinsic images are
normalized to be between 0 and 1.

5) Stopping Criteria: The random walk process is
terminated if the percentage of accepted samples in previous
iteration goes below a constant threshold ε and the magnitude
of the sample energy edI is smaller than ε meanwhile
(lines 16-20, Algorithm 2). In our experiments we
set ε to 0.001.

6) Regularizers g(.): A benefit of the stochastic optimiza-
tion framework is that it allows very general priors to be
used with no change to the overall algorithm. We have used
a selection of well-known and frequently used regularization
terms listed below.

• Anisotropic total variation [12] (convex, but non-smooth):

||∇x Îs ||1 + ||∇y Îs ||1 (8)

• Isotropic total variation [12] (convex, but non-smooth):

||(|∇x Îs |2 + |∇y Îs |2)1/2||1 (9)

• Sparse first-order derivatives [6], [13] (non-convex):

||∇x Îs ||p + ||∇y Îs ||p, p ∈ (0, 1] (10)

• Sparse gradient [6], [13] (non-convex):

||(|∇x Îs |2 + |∇y Îs |2)1/2||p, p ∈ (0, 1] (11)

• Sparse second-order derivatives [40] (non-convex):

||∇x x Îs ||p + 2||∇xy Îs ||p + ||∇yy Îs ||p, p ∈ (0, 1] (12)

In addition we use other priors, including one to reduce
chromatic artifacts (see Section IV-A) as well as non-convex
data term, e.g. in the case of images with Poisson noise
(Section IV-D).

7) Empirical Convergence: Following the analysis in [3],
our stochastic random walk framework is a form of stochastic
coordinate descent (SCD, [41]–[43]). In each iteration, the
algorithm picks a single pixel in the image and checks if
the objective can be reduced by depositing energy in this
pixel. This corresponds to picking a single degree-of-freedom
(i.e. a single coordinate axis in the vector of unknowns)
and descending along that direction, without computing full
gradient of the objective function. The difference to other
SCD methods is that our algorithm uses the random walk
process to exploit spatial coherence in the deconvolution
problem and focus the computational effort on regions with
sharp edges, where most work is to be done in deconvolution
(see Fig. 5).

For smooth objectives, SCD methods provably converge
as long as there is a finite probability of choosing each
possible coordinate axis. This is ensured by the ergodicity
of our mutation strategy. For general, non-smooth objectives
no such proof exists (see details in [3]), but in Fig. 3,
we show empirical convergence experiments for our method
in the case of non-smooth and non-convex objectives in
non-blind intrinsic image estimations.

In Fig. 4, we visualize the residual between the true intrinsic
and our estimation in selected iterations for the example
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Fig. 2. Ground truth intrinsic image (800×800 pixels) and kernels
(25×25 pixels) used for empirical convergence test in Fig. 3 and 6. The
kernels are upsampled by nearest neighbor for visualization.

Fig. 3. Example of non-blind intrinsic image estimation. In (a)-(d), the
1st row shows the inset of blurry input simulated with the true intrinsic image
and each kernel given in Fig. 2, and the 2nd row shows the inset of non-
blind estimated intrinsic image by our stochastic random walk method. Only
insets are shown due to limited space. The bottom row show the change of
objective function f and PSNR when the number of iterations increases.
In each iteration, 50000 samples were proposed. Sparse gradient prior
(Eq. 11 with p=0.8, non-convex) was applied. (a) With kernel 1. (b) With
kernel 2. (c) With kernel 3. (d) With kernel 4.

Fig. 4. Visualization of the residual between the ground truth and our
estimated intrinsic image at different iterations, for the example shown
in Fig. 3(a). The values of the residual are 10× magnified before coded
in CMYK colorspace, where magenta channel indicates positive values and
yellow negative. (a) Initial. (b) Iteration 20. (c) Iteration 60. (d) Iteration 200.

in Fig. 3(a). The algorithm reduces the residual progressively.
In Fig. 5, we visualize the sample distribution in the
random walk process for the examples in Fig. 3. As shown
in Fig. 5(a), the residual is large mostly at pixels near the
image edges. Fig. 5(b) shows the distribution of accepted
sample energy edI , which are mostly located at pixels where
the residual is large. Note that the positive and negative edI

Fig. 5. Visualization of sample distribution for the non-blind examples
in Fig. 3. From left to right, the columns show the example with
kernel 1, 2, 3, 4. (a) Shows the residual between initial intrinsic image
and ground truth. (b) Shows the map of accepted sample energy edI . The
values of the residuals and sample energy in (a)-(b) are 10× magnified
before coded in CMYK colorspace, where magenta channel indicates positive
values and yellow negative. (c) Shows the normalized distribution of proposed
sample locations xi (including both accepted and rejected samples.), coded in
key channel in CMYK colorspace. (d) Shows the histogram of the number
of proposed samples in (c). The horizontal axis indicates the bins of the
number of proposed samples (clamped at 45 for limited space), and vertical
axis indicates the number of pixels at each bin. Note the numbers shown at
the vertical axis are in unit of 103. As shown, the majority of pixels consume
about 5 to 30 samples.

partially overlap during the random walk process.
Fig. 5(c) shows the distribution of the number of proposed
samples (including both accepted and rejected ones). More
samples are proposed near the image edges. Fig. 5(d) shows
the histogram of the number of proposed samples in Fig. 5(c).
The majority of pixels consume 5-30 samples.

The intuitive reasons why such an apparently small amount
of samples are required are: 1) the samples are not uniform-
randomly proposed. The algorithm uses random walk to
exploit the spatial coherence in the images, thus enforce
importance sampling; 2) the sample energy ed is initialized
as a large value to reduce the number of required samples
at the beginning (as larger ed can reduce the objective more
effectively), and then progressively reduced to better recover
smaller details in the image. This multi-weight strategy help
reduce the total number of required samples; 3) each proposed
sample is evaluated with both positive and negative energy.
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B. Updating the Kernel K̂
s

The updateK ernel() function is used to perform kernel
estimation, i.e. to find the kernel that best explains the blurry
input Bs and intrinsic image Îs for a given scale s. This
operation is performed in derivative domain, minimizing the
objective function in Eq. 13 consisting of a data term and set
of priors g(.) with weights θK:

f (K̂s) = ||∇x,yBs − K̂s ⊗ ∇x,y Îs ||22 + θK · g(K̂s) (13)

We observed that the optimization converges faster when the
data-fitting error is computed in the derivative domain rather
than in the intensity domain. This is consistent with the
findings of Cho and Lee [27]. On the other hand, the cross-
channel prior (see Section IV-A) requires the image to be
represented in the intensity domain. Since mixing the intensity
domain and the gradient domain in a single subproblem would
be too costly, we use the gradient domain only for the kernel
subproblem.

The same stochastic random walk algorithm (Algorithm 2)
is used for updating the kernel except samples are now drawn
from the kernel image. As before, an energy quantum edK is
added or removed at each sample location xi causing the kernel
to be updated by Eq. 14, where K̂s

i is the estimated kernel
at i th iteration of the random walk, and δxi is the characteristic
function (i.e., Kronecker delta function) for the pixel located
at xi . Non-negativity of the kernel is enforced by rejecting any
sample that causes a kernel pixel to become negative.

K̂s
i = K̂s

i−1 ± edK · δxi (14)

Updates to the kernel result in a change to the entire blurry
image. To evaluate the data efficiently, the algorithm maintains
an estimate of the gradient of the current blurry image, ∇x,yB̂s

i ,
which is compared to the down-sampled captured blurry image
to evaluate the change to the objective function. Each sample
at xi is a scaled Dirac function ±edK δxi , resulting in an update
rule whereby a shifted and scaled copy of the current estimate
for the intrinsic image Îs is added:

∇x,yB̂s
i = ∇x,yB̂s

i−1 ± edK (δxi ⊗ ∇x,y Îs) (15)

As in the intrinsic image update, it is necessary to apply a
regularizer to the kernel estimation in order to enforce specific
properties. For motion blur kernels we expect kernels to be
i) smooth, ii) sparse, in the sense that most kernel entries
will be zero and iii) continuous, in that the kernel should
be a smooth curve over the exposure time. We enforce these
properties with the priors from Eq. 16-18 respectively:

• Smoothness [40]:

||∇2K̂s||22 (16)

• Sparsity:

||K̂s ||p, 0 ≤ p < 1 (17)

• Continuity:

||K̂s − AD(K̂s)||22 (18)

For the continuity prior, Eq. 18, anisotropic diffusion [44]
is used for the filter AD(.). This is a non-linear filter that

favors long continuous features which helps to reconstruct
thin motion-blur trails. A benefit of the stochastic optimization
algorithm is that this function may be computed exactly for
each sample, rather than linearized per iteration. As with the
intrinsic update, the key benefit of the stochastic framework
is that only local evaluations of the regularizers are required.

After updating the kernel, a simple denoising filter is applied
that sets any pixel in K̂s to zero whenever its eight neighboring
pixels are near zero. This removes isolated speckles that
sometimes occur with the stochastic random walk. The pixels
whose intensity is lower than a threshold (i.e., 0.05 times the
highest pixel intensity of current estimated kernel) are also set
to be zero. This can be interpreted as an additional shrinkage
operator that ensures kernel sparsity. The kernel image is
normalized to 1 at the end of each iteration.

In Fig. 6, we show empirical convergence test of our method
for non-blind kernel estimations. Regarding the parameters
in Algorithm 2, we use the initial value of edK as 0.01, and
γ as 0.1 in the experiments.

C. Updating the Weights

The weights θI and θK define the relative strength of the
data-fitting error and regularizers in the objective functions for
intrinsic image and kernel updates. The algorithm begins with
initially high θI (except for the cross-channel prior explained
in Section IV-A) at the coarsest scale and halves them when-
ever a new scale is started, until minimum thresholds are
reached. This helps to avoid local optima in the subproblem.
θK is kept unchanged for all scales in our experiments.

After the kernel is estimated at the finest scale, the function
updateIntrinsicImage() is applied again to generate the
final estimation of intrinsic image Î (i.e., line 18, Algo. 1).

In Fig. 7, we visualize the progress of intrinsic and kernel
estimation at multi-scale process.

IV. ALGORITHMIC EXTENSIONS

Having described the basic algorithm in Section III we now
proceed to introduce several useful extensions, including non-
convex priors for color images (Section IV-A) and chromatic
kernels (Section IV-B), as well as partially saturated pixels
(Section IV-C). Finally, we demonstrate how non-linear
versions of the image formation model can also be included
to account for non-Gaussian noise models (Section IV-D).

A. Color Images

To recover color images corrupted by motion blur, a simple
extension of the basic algorithm might perform kernel esti-
mation as described in Section III-B (summing the data term
over all three channels) followed by separately deblurring each
intrinsic channel. However, better results can be obtained by
jointly deblurring all intrinsic channels simultaneously since
the majority of edges in the true intrinsic image occur in all
channels, with sparse hue changes. Based on this observation,
Heide et al. [46] proposed a cross-channel prior to remove
chromatic aberrations caused by low-quality lenses:∑

i, j∈{r,g,b}
λi j ||Îs

i · ∇x,y Îs
j − Îs

j · ∇x,y Îs
i ||p, 0 < p ≤ 1 (19)
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Fig. 6. Example of non-blind kernel estimation. The true intrinsic image
and kernel are given in Fig. 2. The input blurry images are given in Fig. 3.
(a)-(d), from left to right, show the initial kernel, our non-blind estimated
kernel, ground truth kernel, distribution of accepted sample energy edK
(values are 10× magnified, magenta channel indicates positive values and
yellow negative), and normalized distribution of proposed sample locations xi
(coded in key channel). (e) shows the histogram of the number of proposed
samples (including both accepted and rejected samples). The bottom row show
the change of objective function f and PSNR as the number of iterations
increases. The initial kernels can be arbitrary for non-blind kernel estimation.
Note that the sample energy is non-zero at the region where the pixel intensity
is zero in both initial and final recovered kernel. This is due to the post-
processing (remove isolated pixel, shrinkage, and normalization) at the end
of each iteration. This post-processing also causes non-monotonicity in the
objective and PSNR curve. The priors defined in Eq. 16, 17 and 18 were
applied. In each iteration, 200 samples were proposed. (a) With kernel 1.
(b) With kernel 2. (c) With kernel 3. (d) With kernel 4.

Adding the cross-channel priors to the regularizers g(.)
for the intrinsic image results in a non-convex objective.
Heide et al. used an alternating minimization in which one
channel is deblurred with the other two fixed. We instead
reconstruct all channels simultaneously by running one

Fig. 7. Example of our blind estimation of intrinsic and kernel. The two plots
show the PSNR value of intermediate estimation of intrinsic and kernel at
multi-scale scheme. To compute the PSNR values, at each scale we upsample
the intrinsic and kernel to the finest resolution by bicubic or nearest neighbor
and remove the possible shifts first. The ‘final’ step in the plot means the
final restoration of the intrinsic image, i.e., line 18, Algorithm 1.

sampling chain per channel run in lock-step. Although the
method still alternates between the channels, this occurs
so frequently that the optimization is effectively performed
simultaneously over all channels. Our algorithm begins with
low weight for cross-channel prior at the coarsest scale and
doubles it when a new scale is started.

We find that the prior proposed by Heide et al. improves
deblurring performance even for achromatic kernels by sup-
pressing color artifacts that would be introduced by separate
deblurring of each channel. Example comparisons are shown
in Fig. 8, 9 and 10.

B. Chromatic Kernels

It is further possible to extend the method to estimating
chromatic kernels that occur in sensor fusion where indi-
vidual channels have unique exposure times (see [4]).
This is accomplished by separately updating each kernel
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Fig. 8. Results on a noisy real-world image. (a) Input. (b) Fergus et al. [13].
(c) Cho and Lee [27]. (d) RDS [45]. (e) Ours. Our algorithm significantly
reduces chromatic artifacts compared with previous methods (better view on
screen).

channel, but using the cross-channel prior in Eq. 19 during
the intrinsic image update at each scale as described
in Section IV-A. Synthetic examples of this strategy are shown
in Fig. 11.

C. Saturated or Missing Data

Saturated pixels are a common occurrence when taking
photos with consumer cameras, as is missing or unreliable
data due to lens debris. Deblurring data with saturated pixels
often results in visually objectionable ringing artifacts since
the capture process clamps the input data in a way that is not
consistent with the image formation model, while for debris
it may be preferable to mask out such regions and allow
the deblurring algorithm to inpaint plausible content. In the
following discussion, we consider only the case of saturated

blurry pixels, however the approach applies equally well to
lens debris.

To handle such saturated pixels, our algorithm performs
kernel estimation as usual using all non-saturated pixels.
When reconstructing the final intrinsic image, previous work,
including [3], simply uses a data term that omits saturated
blurry image pixels, leading to improved results over
deblurring naively. However we have found that a two-phase
approach to intrinsic image estimation yields much improved
results.

The two phase algorithm divides the intrinsic image into
two regions: a reliable region which does not contribute to
saturated blurry image pixels and an unreliable region that
contains pixels which contribute to saturated blurry pixels.
Four binary masks are defined:

• MB
s Saturated pixels in the blurred input.

• MI
v Mask of unreliable intrinsic pixels with a saturated

pixel from MB
s in their support.

• MI
u Mask of reliable intrinsic pixels, the inverse mask

of MI
v.

• MB
d Mask of blurred pixels with a contribution from an

unreliable pixel, i.e. where K ⊗ MI
v �= 0.

Using these masks we perform the intrinsic image recon-
struction in two phases. First the intrinsic image is estimated
for reliable intrinsic image pixels in MI

u, masking out data
term contributions from unreliable blurred pixels in MB

d by
minimizing:

f (Î) = ||(B − K̂ ⊗ Î) · (1 − MB
d )||22 + θI · g(Î) (20)

This optimization outputs the estimated intrinsic image every-
where that the linear image formation model holds, generating
samples everywhere in the image as needed to minimize both
data term and the priors g(.). The second phase reconstructs
the unreliable regions, leaving the intrinsic image in the
reliable regions (i.e. in MI

u) fixed.

f (Î) = ||(B − cli p(K̂ ⊗ Î)) · MB
d ||22 + θI · g(Î) (21)

The second phase only generates samples within the mask MI
v.

By performing the reconstruction in this method, ringing
is constrained to the non-reliable image region unlike in
the typical approach where it can spread well beyond as a
consequence of the data fitting term. Fig. 12 shows our results
on synthetic partially saturated data. When dealing with color
images, the proposed two-phase reconstruction is the same
as described except that the masks vary in different color
channels.

D. Poisson Noise

In previous sections, we use quadratic fidelity in the objec-
tive by assuming white Gaussian noise in the input images.
Here we extend our algorithm to deal with images containing
Poisson noise, using the Anscome transform [47]:

Ansc(z) = 2
√

z · c + 3/8, (22)

where z is normalized pixel intensity, c is a scalar for
converting z to its corresponding photon number.
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Fig. 9. Results on a real-world image and visual comparisons of state-of-the-art methods. (a) Input. (b) Fergus et al. [13]. (c) Shan et al. [22].
(d) Cho and Lee [27]. (e) Xu and Jia [30]. (f) Hirsch et al. [37]. (g) Krishnan et al. [23]. (h) Whyte et al. [34]. (i) Xu et al. [24].
(j) Ours. A closeup is shown in Fig. 10.

Fig. 10. Closeup of the cloth region in the scene shown in Fig. 9.
(a) Input. (b) Shan et al. [22]. (c) Cho and Lee [27]. (d) Xu and Jia [30].
(e) Xu et al. [24]. (f) Ours. Our result contains much less chromatic artifacts
than the other methods.

The Anscombe transform (denoted as Ansc(.)) converts
Poisson noise to approximately Gaussian noise. It allows us
to use quadratic term for data-fitting error in the transform
domain, and thus fits our multi-scale framework. Similar
transformations are available for other noise models, including
mixtures of Gaussian and Poisson noise, which are common
in real images.

Specifically, as shown in Eq. 23 and 24, we apply the
Anscombe transform on the observed blurry image B before
downsampling it into each scale s. At each scale, the data-
fitting error is computed in the transform domain, while the
regularizers on the intrinsic image g(Îs) are still computed in
regular domain. This is because all the intrinsic image priors
were learned from natural images, and may not hold well in

Fig. 11. Results on chromatic blur kernel. Left column: input image blurred
with a chromatic kernel (right bottom); Right column: our recovered intrinsic
image and blur kernel (right bottom).

the transform domain.

f (Îs) = ||(Ansc(B))s − Ansc(K̂s ⊗ Îs))||22+θI · g(Îs) (23)

f (K̂s) = ||∇x,y(Ansc(B))s − ∇x,y Ansc(K̂s ⊗ Îs)||22
+ θK · g(K̂s) (24)

Note that the data-fitting terms are non-convex now.
In Fig. 13, we show a synthetic example with Poisson noise
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Fig. 12. Results on partially saturated image. (a) True intrinsic image.
(b) Input blurry image. (c) Recovered intrinsic without two-phase approach.
(d) Recovered intrinsic with two-phase approach. The dynamic range of pixel
intensities in the true intrinsic image is [0, 68]. The simulated blurry image is
clamped to 1. The proposed two-phase approach helps reduce ringing artifacts
near saturated pixels.

(peak intensity = 500). We run our framework with Gaussian
noise assumption (using Eq. 2, 13), and with Poisson noise
assumption (using Eq. 23, 24). The latter produces visually
and quantitatively better results.

V. RESULTS

A. Visual Comparisons

In Fig. 8, 9, 10, and 16 we compare the results of our
algorithm with several state-of-the-art methods on real-world
images. Our algorithm significantly reduces chromatic
artifacts in the recovered intrinsic images. Fig. 11 shows our
results on simulated data with chromatic blur. Our algorithm
recovers the chromatic kernel well and produces a clean
intrinsic image without color artifacts. Fig. 12 contains results
for partially saturated data. The proposed simple two-phase
method effectively reduces the ringing artifacts near the
saturated pixels. Fig. 13 shows our results with the proposed
non-convex data-fitting error in Eq. 23 and 24.

Fig. 13. Results on a synthetic image with Poisson noise (peak
intensity = 500). Each subfigure contains an inset at the right-bottom corner
for better view. (a) True intrinsic. (b) Input blurry (21.23 dB). (c) Our result
with Gaussian noise assumption (24.24 dB). (d) Our result with Poisson noise
assumption and the Anscombe transform (24.70 dB). The result with Poisson
noise assumption recovers more details and is less noisy especially in bright
regions. We run both experiments with numerious parameters and select the
results with highest PSNR.

B. Qualitative Comparisons

We also tested our algorithm on a real-world database
that contains ground truth intrinsic images [48]. The database
consists of 4 images, each of which is blurred with 12 kernels.
8 of the kernels are approximately uniform across the image,
while 4 kernels are both large and exhibit strong spatial
variation. The dataset provides 199 unblurred frames recorded
during the camera motion trajectory for each image. We
run the provided script to compute the Peak Signal-to-Noise
Ratio (PSNR) value for each of our results. The script first
estimate the optimal intensity scaling and translation between
the recovered image and the unblurred reference image such
that their l2 error over three color channels becomes minimal.
PSNR is then computed using these calibrated images. The
final PSNR values reported in the paper is defined as the
maximum PSNR between the recovered image and any of the
199 unblurred reference images along the trajectory.

In Table I, we show the PSNR values averaged over all
4 images for each kernel by our algorithm, and compare
with Fergus et al. [13], Shan et al. [22], Cho and Lee [27],
Xu and Jia [30], Krishnan et al. [23], Whyte et al. [34],
Hirsch et al. [37] and the Robust Deblurring Soft-
ware (RDS) [45]. The downloadable software [45] incorpo-
rates technologies proposed in [24] and [30]. We adjusted
the parameters in their software to produce the best results
possible. For the other methods we use the published PSNR
results directly from the database [48]. The PSNR value and
recovered intrinsic image for each image can be found in the
supplementary material.

On mostly spatially-invariant kernels (#1-7 and #12),
our algorithm produces results that are either close to or
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TABLE I

PSNR (dB) COMPARISONS ON THE BENCHMARK DATASET [48]:

ON MOSTLY SPATIALLY-INVARIANT KERNELS (#1-7 AND #12),

OUR ALGORITHM PRODUCES RESULTS CLOSE TO OR BETTER

THAN THE STATE-OF-THE-ART METHODS. OUR ALGORITHM

FAILS TO PRODUCE THE BEST RESULTS ON THE EXTREMELY

LARGE AND SPATIALLY-VARIANT KERNELS #8-11 (WITH

SIZE OVER 141 BY 141 PIXELS). THE RESOLUTION

OF EACH INPUT IMAGE IS 800 BY 800 PIXELS.

PLEASE SEE SECTION V FOR MORE DETAILS

better than the best published methods. We notice that the
state-of-the-art RDS [45]’s results sometimes look sharper
than ours, but are actually oversharpened at the edges and
thus have lower PSNRs. We show examples in Fig. 14, where

Fig. 14. Comparison on image #1 with kernel #3 and image #4 with
kernel #4 from the dataset [48]. (a) Ours (38.82dB). (b) RDS [45] (33.34dB).
(c) Reference. (d) Ours (33.29dB) (e) RDS [45] (30.72dB). (f) Reference.
The filter-based method RDS [45] over-sharpens the image and creates halo
artifacts near the edges (better view on screen).

their results even look sharper than the ground truth and
contain halo artifacts at the edge pixels. This may be caused
by the use of explicit shock filter and bilateral filter in their
kernel estimation.

All methods perform significantly worse on the spatially-
variant kernels #8-11. Our software does not currently deal
with spatially-variant kernels, and instead recovers an average
kernel for the whole image. As a result, our method only
produces PSNR values in the middle of the field for these
kernels. Fixing this problem would require cutting the image
into tiles, solving a blind deconvolution problem for each
tile, realigning the resulting tiles (since blind deconvolution
can introduce an offset in the kernel and intrinsic image),
and stitching the results back together. This should be easily
feasible in the future, but is not currently implemented.

C. Computational Cost

We compared the runtime with two state-of-the-art
methods, Cho and Lee [27] and RDS [45], using the
executable files provided by the authors. The method
by Cho and Lee [27] requires only a few seconds per
megapixel, but their results are consistently worse than ours
(see Fig. 8, 9 and 10 and Table I). In Fig. 8 for an 848 by
636 blurry/noisy RGB image and a 19 by 19 achromatic
kernel, our method requires 197.0 seconds in total
(140.4 seconds for blind kernel estimation, and 56.6 seconds
for non-blind deconvolution). RDS method [45] is relatively
faster than ours at 121.9 seconds, but their results show suffer
from more artifacts.



3082 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 10, OCTOBER 2015

TABLE II

RUNNING TIME ANALYSIS: THE REPORTED TIME ARE IN SECONDS. WE

RUN OUR UNOPTIMIZED CODE ON IMAGES WITH PIXEL RESOLUTION

400 × 400, 800 × 800, 1200 × 1200, AND KERNELS WITH PIXEL

RESOLUTION 15 × 15, 25 × 25, 35 × 35. THE BLURRY IMAGES

ARE SIMULATED WITH RESIZED INTRINSIC IMAGE AND BLUR

KERNEL AT EACH RESOLUTION. (a) SHOWS THE EXPERIMENTS

ON GRAY-SCALED IMAGES. (b) SHOWS THE EXPERIMENTS ON

RGB IMAGES, WHERE ALL CHANNELS WERE RECOVERED

SIMULTANEOUSLY. WE INCREASED THE NUMBER OF

PROPOSED SAMPLES AS THE IMAGE SIZE AND KERNEL

SIZE INCREASE. THE RESULT IMAGES AND

PARAMETERS ARE SHOWN IN

THE SUPPLEMENTARY

We also run our algorithm on different size images and
kernels and report the runtime in Table II. The code was
compiled with gcc and the experiments were done on an Intel
i7 CPU with 16GB RAM. The result images and parameters
are shown in the supplementary document.

D. Influence of the Noise

To test the influence of noise on the performance, we run
our algorithm on synthetic data with various noise levels. The
parameters are tuned roughly for the results. The results are
shown in Fig. 15.

E. Priors and Parameter Selection

Our framework allows us to easily adapt any priors
or data-fitting term in the objective function. We use

Fig. 15. Results on synthetic data with difference levels of white Gaussian
noise. In subfigure (a-f), the standard derivation (σ ) of the noise is set to be
0, 0.01, 0.02, 0.03, 0.04 and 0.05 respectively. In each subfigure, the 1st row
shows the input blurry image, and the 2nd row shows our deblurred result.
The PSNR values are shown at the left-top corner of each image. An inset is
shown at the right-bottom corner of each image for better view.

smoothness (Eq. 16), sparsity (Eq. 17, p = 0.8) and
continuity (Eq. 18) as kernel priors for all results in the
paper. We use sparse gradient (Eq. 11, p = 0.6 or 0.8),
sparse second-order derivatives (Eq. 12, p = 1) and cross-
channel prior (Eq. 19, p = 1) as intrinsic image priors for
Fig. 7, 8, 9, 10 and Table I. And we use isotropic total
variation (Eq. 9) and cross-channel prior (Eq. 19, p = 1)
as intrinsic image priors for Fig. 11.

Regarding the number of iterations and sample mutations in
our experiments, we usually use T (in Algorithm 1) as 5-10,
N (in Algorithm 2) as 5 for both intrinsic and kernel updating,
and M (in Algorithm 2) as 10000-50000 for intrinsic updating
and 100-500 for kernel updating in the multi-scale process.
In the final intrinsic image restoration step (line 18, Algo. 1),
we usually use N as 5, and M as 100000-500000. These
numbers are proportionally adjusted with the resolution of
input image and kernel for better convergence.

The prior weights θI and θK are roughly tuned for
best results. In our experiments we set the initial and
minimum-threshold weight of sparse gradient as 0.05-0.5 and
0.0005-0.002, the initial and maximum-threshold weight of
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Fig. 16. Results on more real data from [27] and [45] (better view on screen). (a) Blurry input. (b) Cho and Lee [27]. (c) RDS [45]. (d) Ours.

cross-channel prior as 0.0001 and 0.0005 (see Section III-C
for the strategy of weights updating). In the final intrinsic
image restoration step, we set the weight of sparse gradient
and cross-channel prior as 0.0005-0.002 and 0.0005-0.002.

VI. CONCLUSION AND FUTURE WORK

In this paper we present an attempt using simple random
search technique for complex imaging problems: a simple and
effective algorithm for blind motion deblurring from a single
input image. We propose to use cross-channel information to
reduce chromatic artifacts in the estimated intrinsic images and
to recover chromatic blur kernels. We also propose a two-phase
method to reduce ringing artifacts when deblurring saturated or
missing pixels. Furthermore, we propose to use a non-convex
data-fitting term to deal with Poisson noisy images.

Our algorithm provides an easy-to-use framework for blind
deconvolution problems. It allows us to easily test new priors
for both the kernel and the intrinsic image. This kind of

experimentation would be much harder with other optimization
methods.

The computational efficiency of our method is below those
highly optimized specialized solvers. However, such solvers
typically include only a single regularization term, whereas we
can easily combine many, for much improved image quality.

In the future, we would like to extend our algorithm to
handle spatially variant kernels with the method outlined
above. We also would like to further improve on the handling
of saturated pixels. We observe that pixels saturated in
one channel might not be saturated in another. By employing
the cross-channel information together with neighboring
pixels, we should be able to recover the saturated pixels
better.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
anonymous reviewers for their valuable comments.



3084 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 10, OCTOBER 2015

REFERENCES

[1] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblurring
using inertial measurement sensors,” ACM Trans. Graph., vol. 29, no. 4,
p. 30, Jul. 2010.

[2] A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than
one,” Pattern Recognit. Lett., vol. 26, no. 3, pp. 311–317, Feb. 2005.

[3] J. Gregson, F. Heide, M. B. Hullin, M. Rouf, and W. Heidrich,
“Stochastic deconvolution,” in Proc. IEEE Conf. CVPR, Jun. 2013,
pp. 1043–1050.

[4] L. Lelégard, E. Delaygue, M. Brédif, and B. Vallet, “Detecting and cor-
recting motion blur from images shot with channel-dependent exposure
time,” in Proc. 22nd ISPRS Congr., vol. 1, no. 3, pp. 341–346, 2012.

[5] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography:
Motion deblurring using fluttered shutter,” ACM Trans. Graph., vol. 25,
no. 3, pp. 795–804, Jul. 2006.

[6] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” ACM Trans. Graph.,
vol. 26, no. 3, p. 70, Jul. 2007.

[7] S. K. Nayar and M. Ben-Ezra, “Motion-based motion deblurring,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, pp. 689–698, Jun. 2004.

[8] A. Moretti et al., “In-flight calibration of the Swift XRT point spread
function,” Proc. SPIE, vol. 5898, pp. 348–356, Jan. 2005.

[9] J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional
deconvolution microscopy using a measured depth-varying point-spread
function,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 24, no. 9,
pp. 2622–2627, 2007.

[10] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vis.,
vol. 40, no. 1, pp. 120–145, May 2011.

[11] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative threshold-
ing algorithm for linear inverse problems with a sparsity constraint,”
Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

[12] T. Goldstein and S. Osher, “The split Bregman method for
L1-regularized problems,” SIAM J. Imag. Sci., vol. 2, no. 2, pp. 323–343,
2009.

[13] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single photograph,” in Proc.
SIGGRAPH, 2006, pp. 787–794.

[14] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conf. CVPR, vol. 2. Jun. 2005, pp. 60–65.

[15] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, and K. Egiazarian,
“BM3D image denoising with shape-adaptive principal component
analysis,” in Proc. SPARS, Apr. 2009.

[16] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. ICCV, Sep./Oct. 2009,
pp. 2272–2279.

[17] A. Danielyan, V. Katkovnik, and K. Egiazarian, “Image deblurring by
augmented Lagrangian with BM3D frame prior,” in Proc. WITMSE,
Aug. 2010, pp. 16–18.

[18] S. Kindermann, S. Osher, and P. W. Jones, “Deblurring and denoising
of images by nonlocal functionals,” Multiscale Model. Simul., vol. 4,
no. 4, pp. 1091–1115, 2005.

[19] J. Miskin and D. J. MacKay, “Ensemble learning for blind image
separation and deconvolution,” in Advances In Independent Component
Analysis. Berlin, Germany: Springer-Verlag, 2000, pp. 123–141.

[20] W. H. Richardson, “Bayesian-based iterative method of image restora-
tion,” J. Opt. Soc. Amer., vol. 62, no. 1, pp. 55–59, 1972.

[21] L. B. Lucy, “An iterative technique for the rectification of observed
distributions,” Astronomical J., vol. 79, no. 2, pp. 745–754, 1974.

[22] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” in Proc. SIGGRAPH, 2008, pp. 73:1–73:10.

[23] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a
normalized sparsity measure,” in Proc. IEEE Conf. CVPR, Jun. 2011,
pp. 233–240.

[24] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for
natural image deblurring,” in Proc. IEEE Conf. CVPR, Jun. 2013,
pp. 1107–1114.

[25] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 123–231, Jan. 2014.

[26] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring text images via
L0-regularized intensity and gradient prior,” in Proc. IEEE Conf. CVPR,
Jun. 2014, pp. 2901–2908.

[27] S. Cho and S. Lee, “Fast motion deblurring,” in Proc. SIGGRAPH Asia,
2009, pp. 145:1–145:8.

[28] S. Osher and L. I. Rudin, “Feature-oriented image enhancement using
shock filters,” SIAM J. Numer. Anal., vol. 27, no. 4, pp. 919–940, 1990.

[29] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. ICCV, Jan. 1998, pp. 839–846.

[30] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” in Proc. ECCV, 2010, pp. 157–170.

[31] Y. Wang and W. Yin, “Sparse signal reconstruction via iterative support
detection,” SIAM J. Imag. Sci., vol. 3, no. 3, pp. 462–491, 2010.

[32] Y.-W. Tai and S. Lin, “Motion-aware noise filtering for deblurring
of noisy and blurry images,” in Proc. IEEE Conf. CVPR, Jun. 2012,
pp. 17–24.

[33] L. Zhong, S. Cho, D. Metaxas, S. Paris, and J. Wang, “Handling noise
in single image deblurring using directional filters,” in Proc. IEEE Conf.
CVPR, Jun. 2013, pp. 612–619.

[34] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring
for shaken images,” in Proc. IEEE Conf. CVPR, Jun. 2010, pp. 491–498.

[35] A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, and B. Curless, “Single
image deblurring using motion density functions,” in Proc. ECCV, 2010,
pp. 171–184.

[36] S. Harmeling, H. Michael, and B. Schölkopf, “Space-variant single-
image blind deconvolution for removing camera shake,” in Proc. Adv.
Neural Inf. Process. Syst., 2010, pp. 829–837.

[37] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf, “Fast removal
of non-uniform camera shake,” in Proc. ICCV, Nov. 2011, pp. 463–470.

[38] J. Gregson, M. Krimerman, M. B. Hullin, and W. Heidrich, “Stochastic
tomography and its applications in 3D imaging of mixing fluids,” ACM
Trans. Graph., vol. 31, no. 4, pp. 52:1–52:10, 2012.

[39] G. Casella and C. P. Robert, Monte Carlo Statistical Methods. New York,
NY, USA: Springer-Verlag, 1999.

[40] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and
evaluating blind deconvolution algorithms,” in Proc. IEEE Conf. CVPR,
Jun. 2009, pp. 1964–1971.

[41] S. Shalev-Shwartz and A. Tewari, “Stochastic methods for
	1-regularized loss minimization,” J. Mach. Learn. Res., vol. 12,
pp. 1865–1892, Feb. 2011.

[42] S. Sardy, A. G. Bruce, and P. Tseng, “Block coordinate relaxation
methods for nonparametric wavelet denoising,” J. Comput. Graph.
Statist., vol. 9, no. 2, pp. 361–379, 2000.

[43] Y. Li and S. Osher, “Coordinate descent optimization for 	1 minimiza-
tion with application to compressed sensing; a greedy algorithm,” Inverse
Problems Imag., vol. 3, no. 3, pp. 487–503, 2009.

[44] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629–639, Jul. 1990.

[45] Robust Deblurring Software. [Online]. Available: http://www.cse.cuhk.
edu.hk/~leojia/deblurring.htm, accessed Jan. 1, 2014.

[46] F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and
A. Kolb, “High-quality computational imaging through simple lenses,”
ACM Trans. Graph., vol. 32, no. 5, p. 149, Sep. 2013.

[47] F. Anscombe, “The transformation of Poisson, binomial and negative-
binomial data,” Biometrika, vol. 35, nos. 3–4, pp. 246–254, Dec. 1948.

[48] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling,
“Recording and playback of camera shake: Benchmarking blind decon-
volution with a real-world database,” in Proc. ECCV, 2012, pp. 27–40.

Lei Xiao received the B.S. degree in biomedical
engineering from the Huazhong University of
Science and Technology, in 2009, and the
M.S. degree in computer engineering from the
University of New Mexico, in 2012. He is
currently pursuing the Ph.D. degree with the
Computer Science Department, University of
British Columbia. His research focuses on inverse
problems in computational imaging.

James Gregson received the B.Eng. and
M.A.Sc. degrees in mechanical engineering with
a specialization in compressible multiphase flows.
He is currently pursuing the Ph.D. degree with the
University of British Columbia with a research on
imaging inverse problems and their applications to
fluid capture. He has worked in areas ranging from
geometry processing to computational displays.



XIAO et al.: STOCHASTIC BLIND MOTION DEBLURRING 3085

Felix Heide received the B.Sc. and M.Sc. degrees
from the University of Siegen. He is currently
pursuing the Ph.D. degree with the University of
British Columbia. His research interests are centered
on computational photography, optimization, and
displays.

Wolfgang Heidrich received the Ph.D. degree in
computer science from the University of Erlangen,
in 1999. He is currently the Director of the
Visual Computing Center with the King Abdullah
University of Science and Technology. He is also
affiliated with the University of British Columbia,
where he held the Dolby Research Chair until 2013.
He was a Research Associate with the Computer
Graphics Group, Max-Planck-Institute for Computer
Science, Saarbrucken, Germany, before joining
UBC in 2000. In particular, he has worked on

computational photography and displays, high dynamic range imaging and
display, image-based modeling, measuring, rendering, geometry acquisition,
GPU-based rendering, and global illumination. His work on high dynamic
range displays served as the basis for the technology behind Brightside
Technologies, which was acquired by Dolby in 2007. He has written well
over 150 refereed publications on these subjects and has served on numerous
program committees. His research interests lie at the intersection of computer
graphics, computer vision, imaging, and optics. He was a recipient of the
2014 Humboldt Research Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


