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Abstract— The energy performance of large building portfolios is challenging to analyze and monitor, as current analysis tools are not
scalable or they present derived and aggregated data at too coarse of a level. We conducted a visualization design study, beginning
with a thorough work domain analysis and a characterization of data and task abstractions. We describe generalizable visual encoding
design choices for time-oriented data framed in terms of matches and mismatches, as well as considerations for workflow design.
Our designs address several research questions pertaining to scalability, view coordination, and the inappropriateness of line charts
for derived and aggregated data due to a combination of data semantics and domain convention. We also present guidelines relating
to familiarity and trust, as well as methodological considerations for visualization design studies. Our designs were adopted by our
collaborators and incorporated into the design of an energy analysis software application that will be deployed to tens of thousands
of energy workers in their client base.

Index Terms—Design study, design methodologies, time series data, task and requirements analysis, coordinated and multiple views.

1 INTRODUCTION

Consider a university campus containing about a hundred buildings.
For a university operations worker looking for opportunities to con-
serve energy, visualization can be helpful when analyzing and moni-
toring the energy performance of this large portfolio of buildings.

In this design study, we collaborated with a team of people at Ener-
NOC, a company that develops energy analysis and reporting software
for organizations such as commercial business chains, universities, and
utility companies. Our collaborators’ goal was to deploy a redesigned
version of Energy Manager, their energy analysis software tool; in do-
ing so, they hoped to retain their existing client base encompassing
thousands of organizations, attract new clients, and increase engage-
ment with their software. Meanwhile, our goal as researchers was to
successfully integrate our research process into our collaborators’ soft-
ware development practice. We designed and evaluated potential visu-
alizations with a variety of stakeholders in an industry setting, which
included our collaborators’ colleagues as well as their clients. This
paper documents a success story, where our collaborators committed
software development resources and adopted our visualization designs
that resulted from our research.

Visualization researchers and practitioners working in domains un-
related to energy analysis will find several transferable aspects of this
paper, beginning with our characterization of data and task abstrac-
tions. This project required that we design visualizations and promote
sophisticated visual analysis by individuals accustomed to unsophis-
ticated visual idioms. We needed to identify scalable visual encod-
ing and interaction idioms that can accommodate dozens to hundreds
of concurrent time series. To complicate matters further, we could
not rely upon the visual idiom of a line chart due to a combination
of data semantics and domain convention. Once we identified appro-
priate mappings between visual idioms and individual tasks, we next
addressed the question of accommodating task sequences: determin-
ing which visualizations ought to be juxtaposed in the same display,
and which ought to be presented sequentially. Coordinating these vi-
sualizations also posed a challenge; specifically, we sought to reduce
the amount of manual navigation between visualizations, as this is an
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issue with the existing Energy Manager tool.
Contributions: Our primary contribution is a set of generalizable
design choices and guidelines framed in terms of matches and mis-
matches between abstractions and visual encoding idioms for time-
oriented data, guidelines that transfer beyond the energy domain. We
also present guidelines relating to the themes of familiarity and trust.
The former refers to the spectrum between ubiquitous visual encod-
ings and those that a prospective user may have never seen before,
while the latter refers to the appropriate display of derived and aggre-
gated data, as well as giving users control over these data transforma-
tions. Finally, we contribute methodological advice for visualization
design projects. This includes considerations for designing workflows
that incorporate multiple views; while prototyping the visual encod-
ing design of a single view has received considerable attention in the
literature [24], workflow prototyping has received far less.
Outline: We begin by describing our research and design methodol-
ogy in Section 2. Sections 3–5 provide the context around our designs
in terms of task and data abstractions, the previous Energy Manager
system, and related work. Our designs are documented throughout
Sections 6–8. We report on which of our designs were adopted by
inclusion into our collaborators’ product development cycle in Sec-
tion 9. Finally, we reflect on familiarity, trust, and on methodological
considerations for visualization design studies in Section 10.

2 METHODOLOGY

In this section, we focus on how we conducted our research; we reflect
upon our methodological decisions and offer advice in Section 10.2.
Analyzing the work domain: Over the course of five months in
2013, we conducted 9 in-depth interviews with current users of En-
ergy Manager. Eight of those interviewed were employed by client
organizations, which included three North American universities, an
engineering consulting firm, and a school board. The final interviewee
was a colleague of our collaborators who regularly consulted with new
clients. Although we use the term energy worker to describe these in-
dividuals, we encountered a wide range of roles, job titles, skill sets,
and levels of training. The use of energy analysis tools such as En-
ergy Manager also varied in terms of context and frequency of use.
Despite these differences, we did identify several common goals and
activities relating to the energy analysis of building portfolios, which
we characterize in terms of data and task abstractions in Section 3.
Validating the abstractions: We validated our abstractions by check-
ing back with a subset of the people that we had previously spoken
to during the work domain analysis phase: our primary collaborators
and two “power user” energy workers. To do so, we consolidated our
thoughts and findings into a slide deck that contained screenshots, ex-
amples, mockups, and notes. These slides were a living research arte-



fact: we used them to present previous findings to collaborators and
energy workers, and we recorded their feedback as further annotations.
Eliciting feedback on visual encoding designs: We developed an
interactive sandbox prototyping environment that allowed us to rapidly
explore the design space of visual encodings, which we describe in
Section 6. This phase of the project lasted about four months. In
addition to weekly design feedback sessions with our collaborators,
we conducted two 60–90 minute design feedback sessions with the
two power users mentioned above, as well as two feedback sessions
with energy workers that we had not previously spoken to.

We continued with the method of slide decks as research artefacts.
For each session with an external energy worker, we created a per-
sonalized slide deck that included screenshots from our sandbox en-
vironment along with explanations; these slides were sent to energy
workers in advance. Recognizing the importance of showing project
stakeholders their own data [24], these slides featured data from the
energy worker’s own portfolio of buildings. Since many of the energy
workers that we consulted with are located in other cities or countries,
many methods for participatory design and evaluation methods that
depend on the researchers and stakeholders being co-located [15, 26]
could not be implemented [4]. During these sessions, we shared our
screen and conducted chauffeured workflows [24] using our visualiza-
tion sandbox: we would present the energy worker with data from their
own portfolio and ask them to step through their energy analysis work-
flow with our alternative visual encoding designs. These sessions were
recorded for further analysis and their feedback was later transcribed
as annotations on the session’s slide deck. The result of this phase was
the identification of a set of matches and mismatches between visual
encoding idioms and individual tasks, which we discuss in Section 7.
Prototyping workflows: Based on feedback collected during the
chauffeured workflows with energy workers, we prepared storyboards
of these workflows using sandbox screenshots and mockups. We then
continued our design process by considering how to best juxtapose,
link, and sequence multiple visualizations, all while continuing to con-
sult with our collaborators and energy workers. This phase of the
project resulted in the workflow described in Section 8 and realized
in the redesigned Energy Manager described in Section 9.
Example artefacts: We generated 11 slide decks containing a total of
302 slides over the course of this project. We include example slides
in the supplemental material, along with other research artefacts.

3 ABSTRACTIONS

Following the work domain analysis phase, we recast activities from
domain-specific terminology to data and task abstractions.

3.1 Data Abstraction
The energy workers to whom we spoke oversee the energy perfor-
mance of dozens to hundreds of buildings, which are referred to as
portfolios. We now abstract a portfolio of buildings and its associated
time-oriented energy data, which we summarize in Table 1.
Building metadata: Consider a university, where buildings vary by
area, age, and number of occupants. They can also be differenti-
ated using any number of categorical tags, such as the type of build-
ing (“lecture hall”, “laboratory”), its campus or department (“chem-
istry”, “physics”), or the name of its building operations manager.
Building groups: Given all of this building metadata, we can have
groups of buildings with shared attribute values or ranges. A portfolio
may have many building groups, and they may overlap.
Multiple time series per building: The energy performance of each
building in a portfolio is monitored over time, and each building has
multiple time series associated with it. A building may consume sev-
eral forms of energy, such as electricity, natural gas, or steam. Many
non-residential buildings are equipped to report raw energy demand
values at the granularity of minutes, along with outdoor air tempera-
ture. Finally, building opening and closing hours are also recorded.
Derived data: Raw continuous energy demand data is typically ex-
amined during detailed investigations of single buildings at fine gran-

Term Abstraction Example
Building metadata

Building ID unique categorical #123
Building area quantitative 450 m2

Building age quantitative 20 years
# occupants quantitative 50 people
Location spatial 49.26◦ N, 123.25◦ W
Tag categorical “restaurant”

Temporal data for each building
Energy demand quantitative 200 kW
Outdoor temperature quantitative 18◦ C
Open / closed categorical Open Mon–Fri, 08-18h

Derived temporal data for each building
Consumption quantitative 800 kWh
Energy intensity normalized quantitative 1.78 kWh / m2

Weather-independent normalized quantitative 50 kWh / HDD‡

performance†

Predicted perform.† quantitative 190 kW
% Savings normalized quantitative 40%
Rank ordinal 1st, 2nd, 3rd

Table 1. Data abstraction summary. †Performance could be assessed
in terms of demand, consumption, or intensity. ‡Heating Degree Day
is one of several approaches to normalizing energy performance using
weather data; a full discussion of them is beyond the scope of this paper.

ularities of time; for instance, a building might exhibit an unexpected
spike in demand on a Sunday morning. However, for an energy worker
overseeing a large portfolio of buildings, analysis tasks typically re-
volve around derived and aggregated data, rather than raw continuous
data. These may include averages, minimums, and maximums for dif-
ferent temporal granularities of interest, such as the average weekday
electricity demand in January. Consumption is the most common of
these derived attributes, which is an accumulated amount of energy.
Intensity is consumption normalized by a building’s area, which al-
lows the energy worker to directly compare the energy performance of
buildings of different size. Similarly, it is possible to normalize energy
performance values by considering outdoor temperature, which allows
the energy worker to compare buildings at different times of the year,
or buildings in locations with different climates. Predicted energy per-
formance based on statistical models is also considered, though pre-
dicted values are problematic for reasons we describe in Section 4.
Relative and absolute differences between the observed energy perfor-
mance and the predicted or historical performance are also considered;
for example, the energy worker can determine how a building is per-
forming this year relative to its performance last year. Finally, given
any of these derived values, the energy worker can compare multi-
ple rankings of buildings, allowing them to identify, for instance, the
buildings most in need of an energy conservation measure.

In summary, we have a multidimensional table of buildings and
building attributes, along with quantitative energy-related attributes
with values changing over time.
Domain convention: The energy workers to whom we spoke are ac-
customed to interpreting any encoding that incorporates a continuous
line graph as raw energy demand, and thus it is inappropriate and po-
tentially misleading to use such encodings to display derived and ag-
gregated time series values such as energy consumption or intensity.
In the existing Energy Manager tool, derived and aggregated values
are encoded in bar charts or listed in tables; we will discuss in Sec-
tion 4 how these encodings do not scale, and in Section 7, we examine
alternative encodings.

3.2 Task Abstraction

Energy workers need to balance reducing costs and conserving energy
while ensuring the comfort and safety of people who use buildings in
their portfolio. To achieve these goals, the energy workers need to:
(i) assess the performance of buildings in their portfolio following the
implementation of an energy conservation measure, such as installing
new windows or lighting; (ii) determine which buildings in their port-
folio require energy conservation measures; and (iii) find and diagnose



anomalous energy performance such as spikes, outages, surges, or oth-
erwise erratic and inconsistent behaviour.

We characterize these activities as abstract tasks according to a ty-
pology that distinguishes between action and target terms [33],
one that builds upon a previous typology [5]; it can be helpful to think
of actions as verbs and targets as nouns. Each of the tasks can
be described by a need to discover: to generate and verify hypothe-
ses. While energy workers also occasionally present their findings
to colleagues and other stakeholders, our current focus is predomi-
nantly on the discovery process.

T1 / Overview: An individual will lookup and summarize time-
oriented data from all the items spanning a coarse period of time.
Of interest are trends, outliers, distributions, extreme
values, and similarities. This abstract task corresponds to
the domain activities of assessing overall energy performance and de-
termining which buildings in a portfolio require energy conservation
measures. A concrete example of this task would be an energy worker
who asks: “how did the entire university perform this past year? Do
any buildings stand out?”

T2 / Drill Down: The second task is the result of drilling down from
the portfolio to a group of buildings and to a finer temporal resolu-
tion, examining energy performance in detail: a person locates and
compares trends, outliers, and features in time-oriented
data for items in the group. This abstract task corresponds to the do-
main activities of assessing building performance following an energy
conservation measure, or finding and diagnosing anomalous energy
performance, wherein a feature of interest could be a spike or sud-
den outage. One concrete example is “are my restaurants in Vancou-
ver performing better this January than they did last January?”

T3 / Roll Up: The third task is the converse of drilling down from the
portfolio to a group and from the group to individual buildings. This
task is one in which a person explores and locates trends,
outliers, and features in time-oriented data to identify the
proportion of individual behaviour relative to the group’s behaviour, or
the dependency between the aggregate amount and the individual
contribution. Concrete examples of this task include “what propor-
tion of a university’s energy consumption is consumed by its computer
science building over time?” or “which science faculty building con-
sumes the largest proportion of energy?”

Task sequences: These three tasks are not performed in isolation, but
in sequential energy analysis workflows, and some task sequences oc-
cur more often than others. We know from our interviews that the
frequency of this work varies, so the Overview (T1) task may be more
prevalent among energy workers who infrequently analyze their port-
folio’s energy performance. Others may skip the Overview task be-
cause they have a specific question about a group of buildings, pro-
ceeding directly to the Drill Down (T2) or Roll Up (T3) tasks. An en-
ergy worker will alternate between the Drill Down and Roll Up tasks,
as the completion of one task may prompt new questions.

4 EXISTING TOOL

We now analyze the existing Energy Manager tool and determine the
extent to which the tasks are supported.

Energy Manager, shown in Figure 1, is a multiple-page web-based
application, one that uses a small number of visual idioms adhering
to the domain convention mentioned in Section 3: bar charts and ta-
bles are used for derived aggregate values such as consumption, while
line charts are used for continuous values such as energy demand. The
main page presents a summary dashboard for a portfolio of buildings
(Fig. 1a). At the bottom of this dashboard is a sortable table listing
consumption, intensity, as well as aggregate savings values for the cur-
rently selected time period.

Line and bar charts such as those in Figures 1b and 1c are indexed
on the other pages, similar to how a Microsoft Excel workbook has
sheets, which can in turn contain multiple charts. Unlike Excel, En-
ergy Manager’s visualizations provide some interactivity: the user can
zoom, pan, and reveal values upon mouseover. However, none of the
visualizations are directly linked to one another or to the dashboard,
so the energy worker must navigate between them manually.
Task support: Energy Manager only partially supports the Overview
(T1) task: with the portfolio dashboard (Fig. 1a), the energy worker
can observe the aggregate consumption for a portfolio over time, or
alternatively she can observe single aggregate values for individual
buildings in the sortable table, but she will not be able to directly com-
pare how individual buildings vary over time. As a result, the energy
workers that we interviewed essentially ignored this dashboard, and
none of them had found the sortable table to be useful.

The Drill Down (T2) task is supported but the current approach
used by Energy Manager does not scale. The examples in Figures 1b

a

b

c
Fig. 1. Energy Manager, our collaborators’ existing energy analysis tool. (a) A dashboard for a portfolio of buildings. (b) A superimposed line chart
of energy demand and (c) a grouped bar chart of energy consumption (bottom) for a group of three restaurant buildings within this portfolio.



and 1c respectively display energy demand and consumption per-
formance for three restaurants. Since superimposed line charts and
grouped bar charts are limited by the number of discriminable colours,
these visualizations are inappropriate for the energy worker who needs
to consider more than a handful of buildings.

The Roll Up (T3) task is not explicitly supported. Though it is
possible to estimate the proportion of a building’s energy performance
relative to its group with bars and lines, this process is error-prone.
Task sequences not supported: Because the visualizations in Energy
Manager are not coordinated or linked in any way, it is difficult and
tedious to alternate from Overview (T1) to Drill Down (T2) and Roll
Up (T3) tasks. As in Excel, the energy worker will have to locate
an existing visualization or specify a new visualization using a wizard
dialog; if the bar or line chart for a set of buildings does not already
exist when the energy worker needs it, she has to create it. By the time
she has created it, she may have forgotten her objective.
Limited filtering and aggregation: The bar and line charts in Energy
Manager allow an energy worker to hide or show individual build-
ings. However, the energy worker cannot filter buildings with shared
attributes, such as filtering a portfolio of buildings to only show restau-
rants. Similarly, it is impossible to aggregate buildings together when
they share attributes: for instance, the energy worker cannot compare
the aggregate energy performance of restaurants in one city to those in
another city.
No faceting: Aside from the seldom-used portfolio dashboard shown
in Figure 1a, there is no faceting or juxtaposition of visualizations in
Energy Manager: the energy workers’ workarounds included opening
multiple browser windows, adjusting the line or bar charts to display
the same scale and ranges, and tiling these windows manually across
their monitor. Similarly, some energy workers printed and taped charts
together to accomplish the same result.
Summary: Due to these limitations, energy workers can only observe
narrow slices of their portfolio data, or they are presented with ag-
gregate data that is too coarse to be useful. In addition, they did not
trust Energy Manager’s derived predicted values based on statistical
models, and would have preferred to compare observed energy per-
formance to historical values. In other words, the derived and aggre-
gated values currently shown may hide information such as extreme
values and unusual distributions. As a result of this loss of detail, en-
ergy workers routinely export tabular data from Energy Manager and
import it into Excel, with which they would conduct a custom analy-
sis. Finally, many of the energy workers to whom we spoke remarked
that energy analysis software tools built by our collaborators’ competi-
tors [10, 34, 37] have limitations similar to those of Energy Manager.
Altogether, these problems may help to explain why the number of
energy workers who actively use Energy Manager is substantially less
than the number of user accounts.

5 RELATED WORK

We now review relevant previous work, beginning with work in the
energy domain. We also discuss visualizations of time-oriented data
in other domains, as well as evaluation studies that assess the effec-
tiveness of visualization idioms for similar data and task abstractions.
Visualization in the energy domain: Technology that allows for the
continuous measurement of a building’s energy demand is becoming
increasingly available, and several techniques to monitor and present
this data have recently been proposed, especially for residential build-
ings [9, 11, 15, 35]. Erickson et al. [11] developed a web-based resi-
dential energy dashboard for homeowners, allowing them to compare
against their neighbours with familiar bar and line charts. However,
such a dashboard would be unsuitable for the analysis work of an en-
ergy worker who oversees a portfolio of many buildings.

Though bar and line chart depictions of energy data are most com-
mon, other visual encodings have also been employed, from abstract
and artistic ambient visualizations [35] to a compelling calendar-based
visualization [42], in which calendar dates with similar energy be-
haviour are visually associated using a common colour. We also ex-
plore visual encodings beyond bar and line charts, and in Section 7.3,

we consider how to encode data from multiple buildings using calen-
dars. Another approach to summarizing the energy behaviour of mul-
tiple buildings is to use map-based visualizations [18, 25]; we discuss
the limitations of that approach in Section 7.4.

More closely related to our work is that of Goodwin et al. [15],
who presented several prototype visualizations of modelled residential
energy use across thousands of households at the scale of individual
household appliances. The domain activities they address overlap par-
tially with those performed by the energy workers we spoke to, such
as the need to find anomalous energy performance across many build-
ings; another activity they address, in which energy modelers perform
energy load-shifting simulations to estimate potential savings, is not
an activity performed by our energy workers. Their designs incorpo-
rated several visual encodings not typically seen in the energy domain:
horizon charts [19], boxplots [45], and matrix-based encodings. How-
ever, the focus and main contribution of their paper was on creative
methods for visualization requirements analysis, rather than on a thor-
ough analysis of the visualization designs themselves. In our work, we
reexamine some of these visual encodings, among others, and evaluate
their effectiveness in the context of our data and task abstractions.
Visualizing multiple time series: Many techniques for visualizing
time-oriented data have been proposed, and Aigner et al.’s 2011 sur-
vey [1] of these visualizations has provided us with a structured way
to think about this design space. In their terminology, our designs in-
corporate linear and cyclic encodings of time, depicting abstract mul-
tivariate interval data.

Another axis on which we can analyze existing techniques is the
number of time series being considered. At the low end of this con-
tinuum, superimposed line charts or grouped bar charts are appropri-
ate for a small number of time series. In the middle of this contin-
uum, faceting techniques such as small multiple line charts, horizon
charts [19] and matrix-based encodings [17, 40] are appropriate. At
the high end of this continuum, dense multi-form faceting techniques
and those that aggregate time series together are appropriate when
dealing with thousands of time series, such as in LiveRAC [27] or Line
Graph Explorer [22]. Since we are addressing portfolios of dozens to
hundreds of buildings, we position our designs toward the middle of
this continuum, and we evaluate faceting and matrix-based approaches
in the following section.
Evaluation of time-oriented data visualizations: We also situate our
work with regards to experimental studies [2, 8, 14, 21] that have ex-
amined the viability of alternative visual encodings for abstract tasks
similar to those that we characterized: identifying and comparing av-
erages, trends, extreme values, and outliers. Some studies address the
viability of encodings for a single time series [2, 8], while others con-
sider multiple concurrent time series; one study considered up to six-
teen time series [21], while another considered forty-eight [14]. We
too assessed the viability of different visual encodings for multiple
concurrent time series; however, our approach involves a qualitative
evaluation (see Section 2), as opposed to a controlled experiment.

Moreover, while these studies considered continuous time series
data, we must consider alternative scalable encodings, since in our
case domain conventions dictate that continuous line graph encodings
would be misleading for the display of derived and aggregated time
series values, as discussed in Section 3.1.

6 PROTOTYPING ENVIRONMENTS

Shiny sandbox: We developed an interactive browser-based visual-
ization design sandbox1 to produce data sketches [24], shown in Fig-
ure 2. The sandbox allowed us to rapidly prototype different visual en-
coding designs and conduct chauffeured workflows with energy work-
ers, a process that we described in Section 2. All of the designs dis-
cussed in Section 7 were produced within this environment, which was
developed2 using the Shiny web application framework [36].

Central to this sandbox environment are interactive controls for
sorting, filtering, and aggregating buildings, controls for selecting

1http://mattbrehmer.shinyapps.io/PortfolioSandbox
2http://github.com/mattbrehmer/PortfolioSandbox

http://mattbrehmer.shinyapps.io/PortfolioSandbox
http://github.com/mattbrehmer/PortfolioSandbox


VISUALIZATION DESCRIPTIONS AND OPTIONS

VISUALIZATION TAB PANELS

AGGREGATION, UNIT SELECTION, NORMALIZATION

METADATA FILTERS

LOCATION FILTERS

TEMPORAL FILTERS

# RESULTS, SORT ORDER

Fig. 2. A sandbox design environment for visualizing energy data from a portfolio of buildings. Designs depicted in Figures 3, 4, 5, and 7 were also
produced within this environment. A matrix of aggregate energy intensity values with auxiliary boxplots is shown for 5 (of 86) buildings, those with
the highest intensity. Client portfolio data has been anonymized by changing building names and location; all other data is real.

units of interest such as demand or consumption, as well as controls
for area and weather normalization; recall that there were no such con-
trols in the Energy Manager interface. Whenever these controls are ad-
justed, we sort the filtered set of buildings according to the currently
selected energy unit of interest and time span. The sandbox operator
can choose the sort order and select the number of results to show. For
instance, Figure 2 shows a view described in Section 7.3, and in it we
show 5 buildings from a geographically anonymized portfolio of 86
buildings, those with the highest energy intensity in 2013.
D3 interactive prototypes: Since our Shiny-based sandbox imple-
mentation did not allow us to directly experiment with interactions in-
volving coordinated selection across juxtaposed views, we developed
several interactive prototypes using D3 [3] that specifically address
this coordination; these prototypes are discussed in Section 8 and one
of them 3 is shown in Figure 6.

7 VISUAL ENCODING MATCHES AND MISMATCHES

The Nested Blocks and Guidelines Model [30] describes a need for
guidelines that relate the domain, abstraction, idiom (technique), and
algorithm levels of visualization design [32, 33]. In Section 3, we de-
scribed the relationship between domain activities and the data and
task abstractions. In this section, we consider the space of visual
encoding idioms and present guidelines for matching idioms to ab-
stractions. Since the space of possible visual encoding idioms for
time-oriented data is large [1], we undertook a typical design study
approach [39]: considering several idioms, implementing a subset of
them, and selecting only the few good matches.

We identified five matches {4} between visual encoding idioms
and the combination of data and task abstractions, based on evidence
resulting from our process described in Section 2. We also identified
four mismatches {6} and two potential matches {?}. These matches

3http://bl.ocks.org/mattbrehmer/287e44c9a12151967874

and mismatches, summarized in Table 2, serve as generalizable guide-
lines that are transferable beyond the energy domain, especially when
we consider the similarity between our abstract tasks to those ad-
dressed in domain-agnostic evaluation studies [2, 21]. Furthermore,
these matches and mismatches fill a gap with regards to identifying
suitable visual encoding idioms for multiple time series in which val-
ues are not continuous, but derived and aggregated values that should
not be encoded as line charts.

Task Visualization Idiom Match?
T1: Overview Faceted bar chart 6

Bump plot 6

Bar + bump plot ?
(Calendar) matrix ?
Map 6

Juxtaposed matrix and boxplots 4

T2: Drill Down Faceted bar chart 4

Faceted boxplot 6

Faceted line graph 4

T3: Roll Up Stacked area graph 4

Stacked bar chart 4

Table 2. A summary of the matches and mismatches between abstract
tasks and visual encoding idioms.

7.1 Faceted Visualizations for Overview and Drill Down
We initially thought that faceted “small multiple” visualizations would
be a good match for both the Overview (T1) and Drill Down (T2)
tasks, in that they provide a scalable alternative to grouped bar charts
and superimposed line charts.
Faceted bar charts: a mismatch {6} for the Overview (T1) task, yet

http://bl.ocks.org/mattbrehmer/287e44c9a12151967874


a match {4} for the Drill Down (T2) task. Faceted bar charts were
among the first designs that we considered, especially after one energy
worker provided us with his own mockup of such a design. However,
if an energy worker has dozens or hundreds of buildings in their port-
folio, faceting is unlikely to scale [21]. We determined that it was a
poor match for the Overview (T1) task, though a match for the Drill
Down (T2) task, provided that the energy worker has already filtered
down to a smaller group of buildings, such as filtering a university
portfolio to show only the “laboratory” buildings. In addition, one
of the power user energy workers lamented that bar charts only show
coarse aggregate values, typically an average or a sum, and as a re-
sult of this loss of detail, they do not show other aggregate values of
interest, such as ranges or extreme values.
Faceted boxplots: a mismatch {6} for the Drill Down (T2) task. We
expected that faceted boxplots would allow energy workers to com-
pare ranges, distributions, and extreme values for multiple buildings
at different points in time, such as in Figure 3. However, despite the
long history of boxplots [45] and support from influential visualization
practitioners [12], we found that most energy workers are not familiar
with boxplots, except for a minority who had taken a post-secondary
statistics course. Furthermore, comparisons in faceted boxplots are
more difficult than in faceted bar charts, where positions are aligned to
each facet’s baseline; with faceted boxplots, the observer must com-
pare multiple positions and widths across separate facets. Our design
was therefore a daunting introduction to boxplots for those unfamiliar
with them and a poor match for the Drill Down task.

Fig. 3. Faceted boxplots that encode aggregate area-normalized en-
ergy demand distributions for 12 buildings across four months, sorted in
descending order according to the average demand value for this four
month period. A mismatch {6} for the Drill Down task (T2). Building
names are blurred to sanitize real client portfolio data.

Faceted line charts: a match {4} for the Drill Down (T2) task.
Faceted line charts are a good match when observing non-derived con-
tinuous quantitative time series values such as energy demand; an ex-
ample is shown in Figure 7 (bottom). They are a scalable alternative
to superimposed line charts [21] and the line chart encoding is already
very familiar to energy workers. As mentioned above in Section 3,
line charts are not appropriate for derived and aggregated values such
as energy consumption or intensity.

7.2 Rank-Based Overview Visualizations

As faceting seemed unlikely to be effective for the Overview (T1) task,
we considered non-faceted visualizations of aggregate values. Recall
how the sortable table in Energy Manager’s portfolio dashboard (Fig-
ure 1a, bottom) was never used for the Overview task; it contained
only coarse aggregate values for each item, providing little detail about
temporal variation. We therefore experimented with encodings for dis-
playing rank as well as rank change over time.
Bump plots: a mismatch {6} for the Overview (T1) task. Bump plots
encode rank and rank change; they incorporate a familiar line encod-
ing across equally-spaced temporal intervals [41]. However, as with
superimposed line charts, it becomes difficult to distinguish individual
items using colour. One possible solution is to highlight items that
vary in rank, rather than requiring the observer to locate these items.
Another problem is that bump plots only show relative rank and rank
change, whereas the absolute values that produce these ranks are not

shown. As a result this a loss of detail, the bump plot is also a poor
match for the Overview task.

Bump + bar plots: a potential match {?} for the Overview (T1)
task. We next considered an encoding that incorporates relative rank,
rank change, and absolute value, by adding bars to each series in the
bump plot, as shown in Figure 4. This approach is similar to two re-
cently proposed techniques that encode both relative rank and absolute
value [16, 20]. With this design, we still face the scalability problem
associated with colour discriminability. A combination of interaction
and highlighting rank variation may facilitate this discriminability; in
Figure 4, rank variation is encoded using the alpha channel, so the pink
series that varies considerably over time is most salient.

Fig. 4. A bar + bump plot of energy intensity, encoding rank change
for the top 7 building groups (buildings aggregated by tag) across four
seasons. The alpha channel encodes rank variation to highlight incon-
sistent buildings. A potential match {?} for the Overview task (T1).

Energy workers responded positively to this visualization, as it is
comprised of familiar bar and line encodings. However, despite this
positive response, we discovered that ranks as derived values are actu-
ally infrequently considered during energy analysis, and that they tend
to be more appropriate for annual planning and presentation activities,
such as determining how to prioritize energy conservation projects,
and less so for recurring analysis and monitoring activities. Thus, the
hunt for a match for the Overview (T1) task continued.

7.3 Matrix-Based Overview Visualizations

Time series matrix: a potential match {?} for the Overview (T1)
task. Matrix encodings are scalable and space-efficient [15, 17], as can
be seen in the center of Figure 2. Matrix encodings allow us to display
observed as well as differential values, allowing an energy worker to
review energy savings relative to predicted or historical values; a ma-
trix displaying differential energy data is shown in Figure 5. Most of
the energy workers that we interviewed were unfamiliar with this form
of encoding, except one who routinely made such visualizations in Ex-
cel. As a result, it took more effort to convince our collaborators of the
value of these matrix-based encodings for the Overview task.

We also learned that energy workers found matrices with diverg-
ing colour scales easier to interpret than than those with unidirectional
colour scales. Finally, we found that while red is fine for use in di-
verging colour scales, as it has a negative connotation, it is inappro-
priate for unidirectional colour scales in this context. As a result of
this mixed response to matrix-based encodings, we realized that more
work needed to be done.

Calendar matrix: a potential match {?} for the Overview (T1) task.
We altered our matrix encoding by partitioning the cells correspond-
ing to months into calendars (Figure 5), a design decision inspired
by previous work [23, 42]. Energy workers responded positively to
this encoding, which helped to resolve the unfamiliarity of the more
generic matrix encoding. However, months and days are not the only
time granularities of interest, so this encoding may not be appropriate
for all time ranges.



Fig. 5. A time series calendar matrix of energy intensity savings for 7
building groups (buildings aggregated by shared categorical tag), rel-
ative to historical values (blue = savings, red = higher than historical
intensity ). A potential match {?} for the Overview task (T1).

7.4 Map-Based Overview Visualizations

Maps: a mismatch {6} for the Overview (T1) task. We explored the
use of maps based on their popularity in previous work [18, 25]. We
conjectured that maps may be appropriate for buildings in a shared
neighbourhood, such as a university campus, even though that encod-
ing may be less appropriate for building portfolios spanning large ge-
ographic areas. However, after interviews with energy workers, we
realized that maps are better suited for presenting coarse aggregate
summary values of energy performance to a casual observer, and they
are less appropriate for recurring analysis work; to view energy be-
haviour varying over time, animating or faceting the map would be
necessary. Furthermore, an energy worker overseeing a portfolio of
buildings is already likely to be familiar with the locations of build-
ings in her portfolio, and their relative locations are not informative.
While using a map to encode energy data was found to be inappro-
priate for the tasks that we characterized, an interactive map may be
an effective means to filter a portfolio by building location, which we
considered in our sandbox environment shown in Figure 2.

7.5 Stack-Based Roll Up Visualizations

Stacked area charts & stacked bar charts: matches {4} for the
Roll Up (T3) task. The obvious visualizations of stacked area [6] and
stacked bar charts were indeed matches; an example of the former is
shown in Figure 7 (top). Stacked area charts are appropriate when con-
sidering energy demand values, while stacked bar charts are appropri-
ate for derived and aggregated values such as energy consumption or
intensity. For both of these encodings, differentiating individual time
series can be accomplished by interactive highlighting [44], as using
hue to differentiate stack elements will not scale.

8 WORKFLOW DESIGN WITH MULTIPLE VIEWS

Our design discussion up to this point has focused on visual encoding
choices for single views; we also want to stress the importance of in-
teraction and workflow design, which involves juxtaposing and linking
multiple views.
Juxtaposed matrix and boxplots: a match {4} for the Overview
(T1) task. One reason to juxtapose views is to support a single task
with complementary data. None of the encodings discussed thus far
are a clear match for the Overview task, although the time series ma-
trix designs described in Section 7.3 showed promise. A problem with
the matrix encodings is that they only display coarse aggregate values,
such as averages or sums for each matrix cell. Recall from Section 7.1
that an energy worker made the same remark about faceted bar charts.
Partitioning a matrix into calendars is one way to show a finer resolu-
tion in the same amount of space, however this encoding will not al-
ways be appropriate: for instance, an energy worker may be interested
in a time span shorter than a month, or longer than several years. The

alternative that we developed involves complementing and reinforcing
the aggregate values in the original matrix design by juxtaposing sin-
gle boxplots that encode ranges and distributions for each time series,
as shown in Figure 2. Though boxplots remain unfamiliar to energy
workers, these auxiliary boxplots are easier to interpret than faceted
boxplots (c.f. Figure 3), as they require no comparison of length or
width across separate facets. We reflect further upon the balance be-
tween familiarity and the use of auxiliary charts to combat information
loss in Section 10.1.

We then sought a better way to coordinate and link the matrix and
its juxtaposed auxiliary boxplots. We created several prototypes, and
one is shown in Figure 6. The interactive linked highlighting in this
prototype served both to promote engagement with these juxtaposed
visualizations and to facilitate the learning of these visual encodings,
which were previously unfamiliar to energy workers.

Fig. 6. An interactive auxiliary boxplot prototype: boxplots correspond-
ing to the brushed time period are shown alongside the boxplot for the
entire time series.

Juxtaposed stack and facets: Another reason to juxtapose views is
to support fast alternation between tasks. Recall that the Drill Down
(T2) and Roll Up (T3) tasks are often performed in alternation, and
we were concerned about the loss of context when switching between
stacked bar or area charts and faceted bar or line charts. To prevent
this loss of context, we juxtaposed the stacked chart with the faceted
charts, and provide linked highlighting between elements in the stack
and those in the facets, as shown in Figure 7; as a result, both the Drill
Down and Roll Up tasks are supported in a single display. Currently,
four facets are shown in a row, with additional facets wrapping to sub-
sequent rows, sorted in the same order as the elements in the stack.

Fig. 7. A stacked area chart of energy demand data for 4 library build-
ings, juxtaposed alongside faceted line charts of the same data. The
same building is highlighted in red in both the stack and the facets.

Sequenced view navigation: Recall that the Drill Down (T2) and
Roll Up (T3) tasks involve fewer buildings and finer temporal resolu-
tions than the Overview (T1) task, which has a broader scope; thus, it
would be inappropriate to juxtapose the Overview visualizations with
the Drill Down and Roll Up visualizations in a single display. In-
stead, we considered how an energy worker would navigate between
these views shown on separate displays. Beginning with the matrix
and auxiliary boxplots, the energy worker can perform the Overview
task, select units of interest, and filter or aggregate buildings in the
portfolio. If the currently selected unit of interest is consumption or
intensity, selecting a column of the matrix directs the energy worker
to juxtaposed faceted and stacked bar charts that include every build-
ing from the matrix and spanning the time period corresponding to the
selected column. For demand data, the energy worker is directed to
faceted and stacked line charts. At this point, the energy worker can



perform the Drill Down and Roll Up tasks in alternation. We demon-
strate this multiple-view workflow in the supplemental video.

Finally, we also envisioned drilling down further to individual
buildings. If the energy worker selects a cell or row of the matrix,
she will navigate to a single bar or line chart for the corresponding
building and time period.

9 RESULTS

We are pleased to report that our collaborators adopted a number of our
visualization designs into a new version of Energy Manager, shown in
Figure 8, which will soon be deployed to their large client base. Their
client base is also expected to grow dramatically as a result of their
recent partnership with a large utility company: tens of thousands of
energy workers will now be able to analyze the energy performance of
their building portfolios with the redesigned Energy Manager.

As in our sandbox environment, options for filtering and aggregat-
ing buildings according to shared categorical tags are now prominently
and persistently shown in the menu at the top of the interface. The in-
terface also provides the ability to select units of interest and compare
observed energy values against trusted historical values, as an alter-
native to comparing observed values to less trusted predicted values,
overcoming a limitation of the original Energy Manager.
Coordinated matrix and boxplots: a variant of our design described
in Section 8 has been incorporated into the redesigned Energy Man-
ager. The number of buildings shown depends on the window size,
and more buildings appear as the energy worker scrolls. Our collabo-
rators did consider the alternative calendar-based encoding, but ruled
it out based on a requirement that arose late in the design process: that
the redesigned Energy Manager be accessible on a tablet device. Parti-
tioning the matrix cells into calendars may result in calendar dates too
small to be selectable without zooming, which may incur a high im-
plementation cost. Meanwhile, the boxplots update when the energy
worker brushes the matrix by hovering over a cell in the correspond-

ing matrix row, similar to the behaviour of the prototype we described
in Section 8. Unlike our earlier prototype, a single boxplot is shown
instead of showing one boxplot for the entire range and another box-
plot for the brushed time period; when no time period in the matrix is
brushed, the boxplot for the entire time series is shown.
Interactive workflows realized: Another critical improvement over
the original Energy Manager is the ability for an energy worker to drill
down from a row, column, or cell of the matrix to stacked, faceted,
superimposed, or individual line and bar charts, as shown in Figure 8.
The selected energy unit is retained across these transitions, so faceted
line charts and stacked area charts are used for demand, while faceted
bar charts and stacked bar charts are used for consumption. In faceted
views, individual facets can be manually resorted via drag and drop.
Stacked and faceted visualizations are currently shown separately; our
collaborators are considering juxtaposing stacked and faceted visual-
izations, such as in the design described in Section 8, which would
allow for an uninterrupted alternation between the Drill Down (T2)
and Roll Up (T3) tasks in the same display.

10 DISCUSSION

We now step back from specific aspects of visualization design for
time-oriented data to discuss higher-level guidelines, to reflect upon
on our methodology, and to indicate future work.

10.1 Guidelines: Familiarity and Trust
In addition to the specific guidelines regarding matches and mis-
matches between idioms and abstractions described in Section 7, we
also propose more general and succinct guidelines relating to the
themes of familiarity and trust.
Familiarity: As with professionals in many other domains, energy
workers are accustomed to working predominantly with familiar vi-
sual encodings, namely bars and lines. When we introduced them to
unfamiliar visualization designs, we learned several things:

MATRIX + BOXPLOTS: consumption

MATRIX + BOXPLOTS: demand

FACETED BAR CHARTS: consumption

FACETED LINE CHARTS: demand

STACKED BAR CHART: consumption

STACKED AREA CHART: demand

OVERVIEW ( T1 ) DRILL DOWN ( T2 ) ROLL UP ( T3 )

Fig. 8. The redesigned Energy Manager that incorporates many aspects of our prototype designs. On the left, the Site Overview (a time series
matrix) is juxtaposed with coordinated Value Range (boxplot) views. An energy worker can easily switch between units such as energy consumption
or energy demand and filter or aggregate the set of buildings to those that share a common categorical tag; by selecting a column of the matrix,
she can drill down to faceted or stacked visualizations of consumption (top middle, top right) or demand (bottom middle, bottom right).



Persevere despite unfamiliarity: Though counter-intuitive, we
learned that the juxtaposition of a matrix and a boxplot, two unfamil-
iar encodings, together with coordinated interaction and highlighting,
received more positive feedback than either of these encodings in iso-
lation. The issue of unfamiliarity with the time-series matrix was also
partially resolved when we partitioned the cells into calendars. We
similarly persevered with the unfamiliar bump plot: by superimposing
a layer of familiar bars on top of the bump plot, energy workers were
able to more easily interpret this rank-based visualization.

Beware assuming familiarity: Introducing visual idioms using
names that are well-known in the visualization literature can be mis-
leading when they allude to familiar concepts in a way that is unfa-
miliar to the target audience, as we found with energy workers and the
term “heat map” [13, 46]. We initially referred to the time-series ma-
trices as “heat maps”, but this visualization term led to considerable
confusion because of conflicting domain conventions with the energy-
related meaning of heat and expectations raised by the word map: this
encoding does not show energy solely used for heating, nor does it
show the geographic location of buildings4. In the redesigned Energy
Manager, the time-series matrix is referred to as a Site Overview.

We also had a difficult experience gathering feedback about box-
plots because the term itself was unfamiliar. In the redesigned Energy
Manager, the boxplots are referred to as the Value Range visualization,
a term that appears to be understood. In hindsight, we could have ex-
plicitly solicited visualization names from energy workers early on in
the process based on their own descriptions [29].

Trust: When visualization is used as part of the hypothesis generation
and verification process, trust is imperative, especially for derived and
aggregated values. Previous work has investigated the trustworthiness
of visualizations for text-based data [7], and we now discuss the topic
of trust motivated by our design of visualizations of time-oriented data.

Auxiliary charts to combat information loss: When the number of
concurrent time series grows large, it is difficult and overwhelming to
visualize individual values from each time series; instead, a common
approach is to visualize derived aggregate values [27]. This loss of de-
tail is apparent in the original Energy Manager’s portfolio dashboard
(Figure 1a) as well as in the cells of our time series matrix (Figure 2).
Whenever there is a loss of detail, there is a loss of trust: one of the
power user energy workers remarked that these derived aggregate val-
ues hide information such as extreme values. In juxtaposing the time
series matrix with auxiliary boxplots that update whenever a matrix
cell containing an aggregate value is brushed, we are not only restor-
ing lost information: we are also restoring trust.

Promote agency over derived values: In our sandbox environment
and in the redesigned Energy Manager, we provided explicit and ob-
vious interactive controls for filtering, aggregation, normalization, and
unit selection, controls that were missing in the original Energy Man-
ager. With these controls, we provide energy workers agency over the
creation of derived values and these values become more trusted. Sim-
ilarly, the redesigned Energy Manager includes the option to compare
observed energy performance to selected historical values, as an al-
ternative to comparing against predicted values generated by a “black
box” statistical model; until there is some visual indication as to how
the underlying model algorithms generate these values [31], there will
be little trust, and it is therefore preferable to provide the option to
compare against trusted historical values.

10.2 Methodological Reflection

Though our overall methodological approach is similar to many other
visualization design studies [26, 39], there are some specific aspects of
our methodology that are unique to projects executed in company set-
tings [38]: we negotiated access to clients and to their portfolio data at
the very beginning of our collaboration, and we encourage researchers
considering similar collaborations to do the same. In addition, we also
engaged primarily with remote energy workers, and our methodologi-
cal decisions described in Section 2 reflect this logistical difficulty [4].

4This confusion is not unique to the energy domain [13, 46].

We now take the opportunity to reflect on three other aspects of our
methodology:
Work domain analysis: Worth it, and don’t be daunted. Conducting
a rigorous and systematic work domain analysis can be time consum-
ing and logistically challenging. However, it is helpful to realize that
authorities on work domain analysis [43] established their method-
ologies in the design of high-risk, high-cost systems, such as nuclear
power plant control rooms. Work domain analysis and requirements
analysis methodologies for many visualization design projects can be
more flexible [28] and creative [15]. A thorough work domain analysis
need not take a year to complete, and subsequent phases of abstraction
and iterative design can be carried out while continuing to develop an
understanding of the work domain.
Workflow prototyping: In addition to using our sandbox environment
to identify appropriate visual encodings for individual tasks, we also
used it as a tool to generate possible workflows that support a sequence
of tasks. Some visualization research projects stop before this step,
but we argue for its importance. We thought that confronting energy
workers with a combinatorial explosion of possibilities from a large
set of visual encodings and view parametrization options would fall
short of a full solution to the problem at hand.
Grounding design decisions: Document everything, strive to be con-
sistent and systematic. One collaborator remarked that our approach
often confirmed some earlier suspicions rather than introduced major
surprises, where the novelty lay in a clear path to design decision-
making that was missing before: “we performed an analysis of [En-
ergy Manager’s] flaws in a systematic way, put a name on them, and
then tested with users”. The exhaustive collecting and analyzing of
qualitative data before and during design allowed us to justify the de-
sign decisions described in Sections 7 and 8. Presenting our consoli-
dated findings and design justifications in concise and consistent anno-
tated slide decks was highly appreciated by our collaborators. Given
this presentation of evidence, our collaborators adopted our designs
with confidence, much in the same way that the results of a controlled
quantitative experiment can convince stakeholders [38].

10.3 Future Work

This paper focused on the visualization design and evaluation process
and how our designs were adopted into our collaborators’ production
timeline. In the future, we would like to assess the adoption of the
redesigned Energy Manager following its wide-scale deployment in
Summer 2015. We will track usage over an extended period of time
and speak to more energy workers via interviews and focus groups.

11 CONCLUSION

We conducted a design study in the energy domain, one in which
we collaborated with an energy analysis software company and their
clients to develop visualizations for analyzing the energy performance
of large building portfolios. We described generalizable visualization
design choices framed in terms of matches and mismatches between
abstractions and visual encoding idioms that are transferable beyond
the energy analysis domain. We also contributed more general guide-
lines pertaining to the themes of familiarity and trust, along with
methodological guidance for visualization design studies. As a re-
sult of our research and design process, our visualization designs were
adopted by our collaborator into their development of a redesigned
commercial energy analysis application that will be deployed to tens
of thousands of energy workers.
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