
Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras
(Supplementary)

Lei Xiao2,1 Felix Heide2,1 Matthew O’Toole3 Andreas Kolb4 Matthias B. Hullin5

Kyros Kutulakos3 Wolfgang Heidrich1,2

1KAUST 2University of British Columbia 3University of Toronto 4University of Siegen
5University of Bonn

1. Algorithm Details
This section provides implementation details for Algo. 2 (Amplitude update) and Algo. 3 (Depth update) in the main

paper. The symbol ∇ defines the derivative operator, T defines the matrix transpose, and I defines the identity matrix.

Algo. 2, Line 2:

a = argmin
a

ρ||c−Aa||22 + λ1ρa||∇a− y − p1 + u1||22 (1)

equals to the solution of the linear equation system:

(ρATA+ λ1ρa∇T∇)a = ρATc+ λ1ρa∇T(y + p1 − u1) (2)

and we solve it by the left division function in Matlab.

Algo. 2, Line 3:

y = argmin
y

λ1||∇a− y − p1 + u1||22 + λ2||∇y − p2 + u2||22 (3)

equals to the solution of the linear equation system:

(λ1I+ λ2∇T∇)y = λ1(∇a− p1 + u1) + λ2∇T(p2 − u2) (4)

and solved by the left division function in Matlab.

Algo. 2, Line 4:

p1 = argmin
p1

||p1||1 + ρa||∇a− y − p1 + u1||22 (5)

is a soft shrinkage problem and has closed form solution:

p1 = soft-shrinkage(∇a− y + u1,
0.5

ρa
) (6)

where the soft-shrinkage operator is defined as:

soft-shrinkage(x, ε) =


x+ ε;x < −ε
0;−ε ≤ x ≤ ε
x− ε;x > ε

(7)

1

Algo. 2, Line 5:

p2 = argmin
p2

||p2||1 + ρa||∇y − p2 + u2||22 (8)

is a soft shrinkage problem and has closed form solution:

p2 = soft-shrinkage(∇y + u2,
0.5

ρa
) (9)

Algo. 3, Line 2:

z = argmin
z

data fitting constraint︷ ︸︸ ︷
ρ||c− a ◦ g(z)||22 +

prior constraint︷ ︸︸ ︷
τ1ρx||∇z− x− q1 + v1||22

(10)

is a nonlinear least squares problem due to the nonlinearity of the modulation function g(z). We solve this problem by the
Levenberg-Marquardt method implemented in the lsqnonlin(.) function in Matlab. We provide the analytical Jacobian for
acceleration:

J(z) =

[
Jdata(z)

Jprior

]
(11)

where the matrix Jdata(z) and Jprior define the Jacobian of the 1st (data fitting constraint) and 2nd (prior constraint) least
squares in Eq. (10) respectively.

Since the 1st least squares are pixel-wise separable (benefit from our splitting method explained in Sec. 3.1 in the main
paper), Jdata(z) is simply a diagonal matrix composed of:

−ak ·
∂g(zk)

∂zk
· √ρ (12)

where k is the pixel index. For the ToF cameras based on cosine model modulation (see Eq. (1) in the main paper), the
diagonal element in Eq. (12) becomes:

−ak · i
4πf

c
· ei(

4πf
c ·zk) · √ρ (13)

For arbitrary modulation waveforms in the future, the diagonal element in Eq. (12) can be estimated from calibration data.
Jprior is simply the matrix version of the derivative operator∇ multiplied by

√
τ1ρx, which is independent of z.

Algo. 3, Line 3:

x = argmin
x

τ1||∇z− x− q1 + v1||22 + τ2||∇x− q2 + v2||22 (14)

equals to the solution of the linear equation system:

(τ1I+ τ2∇T∇)x = τ1(∇z− q1 + v1) + τ2∇T(q2 − v2) (15)

and solved by the left division function in Matlab.

Algo. 3, Line 4:

q1 = argmin
q1

||q1||1 + ρx||∇z− x− q1 + v1||22 (16)

is a soft shrinkage problem and has closed form solution:

q1 = soft-shrinkage(∇z− x+ v1,
0.5

ρx
) (17)

Algo. 3, Line 5:

q2 = argmin
q2

||q2||1 + ρx||∇x− q2 + v2||22 (18)

is a soft shrinkage problem and has closed form solution:

q2 = soft-shrinkage(∇x+ v2,
0.5

ρx
) (19)

