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1. Additional Experiments

Here we show additional experiments that illustrate the
performance of our method for non-Lambertian surfaces,
and examine the impact of the sparsity inducing priors.

1.1. Non-Lambertian Surfaces

Figures 1 to 4 show a progression of results for surfaces
that violate the assumption of diffuse Lambertian reflectors.
In these images, we show both the color-coded depth map
as well as a cross-section through the volume densities v(x)
for one scanline.

Figure 1 shows a single foam board. This material is
quite diffuse, and as a result the volume cross-section shows
a good localization of the depth value, revealing the board
was slightly tilted in depth.

Figure 1. Reconstruction of scene image with diffuse foamboard
(right). Smooth depth map, occluder-probability weighted depth
along z-coordinate visualized in jet color map (left). Slice through
the reconstruction volume along y-coordinate (middle).

Figure 2 shows results for two small whiteboards, which
are slightly more shiny than the foam boards, but still very
diffuse. We see that the sharpness of depth values suffers a
bit from the glossiness of the scene, although isolating the
strongest peak for each pixel still yields a good depth map.

Figure 2. Reconstruction of scene image with two whiteboards,
that are more reflective than the foam board (right). Color-coded
depth map of strongest peak along z-coordinate visualized (left)
(left). Slice through the reconstruction volume along y-coordinate
(middle).

Figure 3 shows an extreme example with two mirrors.
The geometry of the two surfaces can be recovered well,
since the reflections from the mirrors do not interfere with
each other on the diffuse wall - they create two spatially sep-
arated caustics. Our optimization procedure was adapted
to handle this special case, where everything stays as be-
fore exept for the bounce in the volume which is then made
spectular.

Figure 3. Reconstruction of scene image with two mirrors, that
are the most reflective objects tested (right). Color-coded depth
map of strongest peak along z-coordinate visualized (left). Slice
through the reconstruction volume along y-coordinate (middle).

Finally, Figure 4 shows the result of mixing Lambertian
and non-Lambertian surfaces. The F-shape is made out of
cardboard material painted with white fairly diffuse paint,
while the large rectangular surface is made out of brushed
metal. The reflection from the brushed metal surface is
extremely strong and glossy, and thus overlaps with the
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one from the “F” in both space and time. This causes our
method to fail to reconstruct the dimmer “F”-shape.

Figure 4. Reconstruction of challenging scene with a strong quite
diffuse reflector made from brushed metal and a letter made
from painted cardboard (right). Smooth depth map, occluder-
probability weighted depth (left). Color-coded depth map of
strongest peak along z-coordinate visualized (middle).

1.2. Sparsity Analysis

Figure 5 shows the effect of the sparsity inducing terms
in the opimization on the mirror scene from above. We
show slices through the recoverd volume without the spar-
sity terms (left) and with the full objective function (center).
We can see that our method nicely prefers a very sparse so-
lution and therefore finds good solutions that represent our
assumption of height field geometry well.

Figure 5. Example showing the effect of our sparse optimization
(all the sparsity terms explained so far): Scene with two pla-
nar mirror surfaces shown on the right. Slice through the re-
construction volume computed with simple backprojection along
y-coordinate (middle) shown on the left. Slice through the re-
construction volume computed our whole sparsity preferring op-
timization shown in the middle.



2. Optimization
This section provides a derivation of the optimization

method used in our paper.

2.1. Objective Function

We had formulated the following optimization problem
in the main paper

vopt = argmin
v

1

2
‖CPv − h‖22 + Γ(v), (1)

where the regularizer is:

Γ(v) = λ
∑
z

‖∇x,yvz‖1 + θ ‖Wv‖1 + ω
∑
x,y

indC(vx,y)

(2)
The individual components of the objective function

have been described in detail in the main paper.
Now, in order to solve the optimization problem from

Equation 1, we split the regularization term into a linear
operator K and a function F (.): Γ(v) = F (Kv), with

K =
[
DT
x ,D

T
y ,WIT , IT

]T
, (3)

where Dx,Dy are derivative operators for the x, y di-
mensions for all z coordinates (stacked ontop of each other)
and I is the identity matrix. We note that the minimum of
Γ(v) is obtained by independently minimizing F for each
component of Kv.

The particular definition of K allows us now in the next
section to map our optimization problem to one that can
be efficiently solved with the alternate direction method of
multipliers method (ADMM) with a modified linearization
step.

2.2. Solving the Optimization Problem

We first rewrite the Eq. (1) as a constrained opti-
mizeation problem by introducing the variable j:

vopt =argmin
v

G (v) + F (j)

subject to Kv = j
. (4)

We can then form the augmented Lagrangian

Lρ (v, j, λ) =G (v) + F (j) +

λT (Kv − j) +
ρ

2
‖Kv − j‖22

, (5)

where λ is a dual variable associated with the consensus
constraint. ADMM now minimizes Lρ (v, j, λ) w.r.t. one
variable at a time while fixing the remaining variables. The
dual variable is then the scaled sum of the consensus con-
straint error. For more details see, for example [2].

For our problem, the minimization of the augmented La-
grangian in each step leads to the following algorithm.

The individual steps of this algorithm are as follows:

Algorithm 1 ADMM algorithm

1: vk+1 := argmin
v

Lρ
(
v, jk, λk

)
// v-step

2: jk+1 := argmin
j

Lρ
(
vk+1, j, λk

)
// j-step

3: λk+1 := λk + ρ
(
Kvk+1 − jk+1

)
// λ-step

v-step The update of the volume v proceeds as follows:

vk+1 =argmin
v

Lρ
(
v, jk, λk

)
=argmin

v

1

2
‖CPv − h‖22 + (λk)T

(
Kv − jk

)
+

ρ

2

∥∥Kv − jk
∥∥2
2

≈argmin
v

1

2
‖CPv − h‖22 + (λk)T

(
Kv − jk

)
+

ρ
(
KTKvk −KT jk

)T
v +

µ

2

∥∥v − vk
∥∥2
2

=
(
PTCTCP + µI

)−1 (
PTCTh + µvk−

ρ
(
KTKvk −KT jk

)
+ KTλk

)

(6)

Note that in the third step we have made an approxi-
mation that linearizes the quadratic term from the second
line in the proximity of the previous solution vk. This lin-
earization approach is known under several different names,
including Linearized ADMM or inexact Uzawa method
(e.g. [3, 1]). The additional parameter µ satisfies the re-
lationship 0 < µ ≤ 1/

(
ρ‖K‖22

)
.

j-step The slack variable j is updated as follows:

jk+1 =argmin
j

Lρ
(
vk+1, j, λk

)
=argmin

j
F (j) +

(λk)T
(
Kvk+1 − j

)
+
ρ

2

∥∥Kvk+1 − j
∥∥2
2

=argmin
j

F (j) +
ρ

2

∥∥∥∥(Kvk+1 − λk

ρ

)
− j

∥∥∥∥2
2

(7)

Both F (.) and the least square term can be minimized
independently for each component in j. Using the slack
variable j, the minimization involving the difficult function
F has now been turned into a sequence of much simpler
problems in just a few variables.

To derive the specific solutions to these problems, we
note that the last line in Equation 7 can be interpreted as a
proximal operator:

jk+1 = prox(1/ρ)F

(
Kvk+1 − λk

ρ

)
(8)



using the standard definition [2]:

proxγF (ν) = argmin
j

(
F (j) +

1

2γ
‖j− ν‖22

)
. (9)

Proximal operators are well-known in optimization and
have been derived for many terms. Please see [2] for a
detailed overview and applications. For our problem, we
require the proximal operators for the `1 norm and for the
indicator set. These are given as

proxγ|·|(a) =(a− γ)+ − (−a− γ)+

proxγ indC(·)(a) =ΠC(a)
(10)

The first term is the well-known point-wise shrinkage
and the second is the projection on the set C.

λ-step The final step of the ADMM algorithm is to update
the Lagrange multiplier by adding the (scaled) error:

λk+1 := λk + ρ
(
Kvk+1 − jk+1

)
(11)
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