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Abstract

We provide the following supplemental material along with the paper
submission "Dimensionality Reduction in the Wild: Gaps and Guidance":

e Appendix A: Full list of interviews and associated usage examples:
domain, date, location, and duration of interviews, who interviewed
them, publications, documents, & artifacts solicited by interviewees

e Appendix B: Interview foci & questions

e Appendix C: Data analysis examples



Appendix A: Full list of interviews

Example | Domain Date Dur. | Loc. Interviewers | Pubsl Docs
FishPop fisheries sciences 2010-09-17 2h remote MS, ST [6, 18] m
MoCap machine learning 2011-11-23 1h UBC MS,MB (2, 31] s
Music media informatics 2011-01-22 0.5h phone Ms 4] m,m,t[8]
Concept? life sciences 2010-11-18 1h phone MS,SI,TM v,e
NPAlgo machine learning 2010-12-01 1h phone MS, TM [19, 20, 21, 22]
SeqAln bioinformatics 2010-04-20 1.5h phone MS,SI, T™M (5, 9, 10] e
[17, 14, 23]
[32, 29]
GamMdl machine learning 2010-12-07 2h UBC MS [33] m
2011-04-07 0.5h UBC MS
Search search engine opt. 2011-01-26 1.5h phone MS,TM m,e
ProstCan bioinformatics 2011-04-04 1.5h remote Ms (28] m
2011-04-29 4h remote MS,SI,TM
EpiGen bioinformatics 2010-11-16 2h remote MS,HY, TMO [24] s,s
2010-12-21 2h remote MS,HY,TMO
StrucGen bioinformatics 2011-04-20 1h phone MS,SI,TM [16] v
FlockSim mathematics 2011-03-18 1.5h SFU MS,SB [7, 11, 12] t[1]
2011-04-05 1h SFU MS,SB, TMO [13, 15]
CompBio comp. bio. 2010-10-13 1h remote MS,S1
ChemRel comp. chem. 2010-10-07 1h phone MS,SI,T™M
MedImg comp. vision 2011-04-05 1.5h SFU [3, 25, 26] m
2011-04-15 1.5h SFU s [27, 30]
TxtDocs journalism 2012-03-05 3h UBC MS,MB,TM m,w
BoatAct marine/ocean sci. 2011-01-20 1.5h phone MS, 81 m,d,e,v
Polymers? structural chem. 2010-11-18 1h phone MS,SI,TM e
(excluded) comp. vision 2010-10-06 1h SFU MS,HY,TMO

Table 1: Full list of interviews and corresponding usage examples.

The first five entries at the top of Table 1 correspond to the usage examples
described in Section 5 of the paper. The single entry at the bottom of the table
shows the interview that was excluded from further analysis.

Interviewers: Michael Sedlmair (Ms), Matthew Brehmer (MB), Stephen In-
gram (SI), and Tamara Munzner (TM); Hamidreza Younesy (HY), Steven Bergner
(sB), and Torsten Moller (TMO) are with the School of Computing Science at
Simon Fraser University (SFU), Burnaby BC, Canada.

Additional documents from interviewees (Docs): unpublished manuscript
(m), data (d), presentation slides (s), thesis (t), visualization screenshots (v),
additional email correspondence with us (e), web site / blog (w).

Note!: Articles published by interviewees and /or referred to us by interviewees.

Note?: CONCEPT & POLYMERS were interviewed together.



Appendix B: Interview foci & questions

A: Data (4 Data Analysis)

How does your data look like?
One dataset, more datasets?
What are the major problems, challenges in the data analysis?

Which information in the data is important for you / what do you read
from the data?

What else do you want to read from the data

B: Task (+ Goals)

What are you doing?

What are you working on?

What are your Goals?

What is the ultimate goal?

What data analysis tasks are involved in your work?
How important is data analysis in your daily work?
What other tasks apart from data analysis?
Collaboration or alone?

What are the questions/hypotheses you try to answer by analyzing your
data?

C: Current Practices (Tools), Problems and Challenges

What are the current tools you use for data analysis?

What Visualizations are you currently using?

How is your procedure in analyzing the data with these tools (hypotheses)?
Good things/ bad things about these tools?

What are you missing with these tools (perfect analysis tool)

D: Dim Reduction

Do you use DimRed in your work?
If not yet, why do you think it is important for you?

What are your expectations?



E: Patterns of Interest
e Clusters
e Outliers

e Correlation between dimensions (between axis, should be rare after Dim-
Red)

e Finding Meaningful LowDim Axes



Appendix C: Data analysis examples

In this section we provide examples from process of data collection and analy-
sis, conducted in the spirit of grounded theory, as described in Section 3 of the
paper. Names are obscured to preserve anonymity.

First, interview transcripts (e.g. Figure 1) and notes (e.g. Figure 2), along with
publications and documents of our interviewees (e.g. Figure 3) were open-coded
to identify concepts.

In Figures 4 and 5, the concepts identified in interview notes and documents,
along with their properties and dimensions, were organized into axial codes in
our interviewee summaries.

Figures 6, 7, 8, and 9 represent an iterative process of selective coding, the focus
on conceptual relationships between axial codes. This led to the development
of our descriptive taxonomy, described in Section 4 of the paper.

Figure 10 represents the result of categorizing usage examples as happy, strug-
gle, or fail.

Figure 11 reflects the practices of memoing and theorizing, as prescribed by
the methodology of grounded theory, occurring throughout the data analysis
process.



sequences, then additional information like fields that can
superimpose. ultimate challenge is to learn how the structure relates
to the genomes.

me: functional

functional information. all the information you measure or compute
about experimental result. 3D structur eitself, various ways that can
be represented in less atomistic forms. properties taht can compute or
associate with surface.

binding cavity or cleft, for which small molecule or another part of

the proetin could be substrate or site of information. those are

things where once we have a 3D structure we can create a quant model.
3D structure becomes a quant model.

then question of creating biological hypotheses - given that kind of
shape, we want to look at how many observations do we have of that
shape or similar shapes that have epxerimentally exhibited a
particular biological function.

maybe protein undergoes or facilities bio function of a particular
type. if you want to start exploring and eo associations between
function and shape, fo rinstance, or properties that may help to
explain function that are mapped onto shape, like elctrostatic
potential, then that's the kinds of simple view of a particular
problem.

to give practical example, very large project protein structure

initiative set out to solve 3D structures at a genomic scale. the way

the human genome project tried to sequence the human genome. in a
relatively uncharacteristic way for structural biology, they solved
structures where did not know bi9ochemical function of them. normally
it's hypothesis driven, where people try to understand function by
looking at 3D structure dat.a but in this case idea was to solve
structures that cover lots of sequence space, then to back and analyze
late.r so have lots of structures where don't know the function.

computational task to find something you can see or compare about
structure or one of its reduced forms where might have a clue about
bio context. by looking at thingss wh

functional stuff. is it just out of GO ontology? or do you have your own?

GO describes biochemical functions. normally this particular protein
is involved in a pathway that performs something related to cell

Figure 1: An example of an interview transcript (usage example STRUCGEN).
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Figure 2: Raw interview notes (blue ink) for usage example MusIc, with post-
hoc open-coding (red ink) to identify concepts.



Multiple Sequence Alignments or MSAs: made by e.g. Clustal W. These are
alignments of sets of DNA or Protein “sequences” where the rows are individual

sequences, the columns are the Jetters tha[: match up between different sequences. Here
is a short section of an alignment between 7 sequences.
|
|
Human beta PHLJTPEEKSAVTALWGKVN—-VDE GGEALGRLL%PWTQRFFESFGDLST'
Horse beta QLSGEEKAAVLALWDKVN- - EEEVGGEALGRLLYVYPWTQRFFDSFGDLSN
Human alpha - -/~ VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF - DLS -
Horse alpha -VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF - DLS-
Whale myoglobin  --------- VLSEGEWQLVLHVWAKVEADVAGHGODILIRLFKSHPETLEKFDRFKHLKT
Lamprey globin PIVDTGSVAPLSAREKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT
Lupin globin =~ -------- GALTESQAALVKSSWEEFNANI PKHTHRFFILVLEIAPAAKDLFSFLKGTSE

These sequences are evolutionarily related. Originally there was just one sequence in one
species and they diverged in different lineages as evolution and speciation and gene
duplications happened with letters changing and bits (one or a few consccutive letters)
being added on or lost. The latter cause the need for gaps (““~* characters). The-major

research topic in our lab is how to compute these (find-the-optimal alignment). A Cluseg

secondary rescarch topic that has become more urgent recently is how to visualise them. wen )
We can now make alignments of 100s of thousands of sequences and cannptJeak \
them- Normally MSAs are analysed by clustering the tows according to sdt of Prebion

3 ____jhe number and type of shared characters between each pair of sequences. We have been
- -

ns using MDS and nd Correspondence Analysis to i more. I
originally did this with PQOO§ (see below). .
Cussic MP S RCOORD: principal co-ordinates analysis from John Gower in the 1960s; turns out to be / -
classic MDS.HVV:mmITSVD on a double centred distance matrix. Now ',
we do it with Nystrém if N is very big. We also tried the power-method. I used this in
my PhD which was a clustering of insects from different orders based on morphology.

Since then [ used it once in a paper in 1992, which is the only single author paper I ever
wrote, on applying it to sequence alignments.

K

L attach a PDF but this is ancient and very long winded and a bit silly and jgnores the
entire MDS literature. This paper just looked at how to apply this to scquc‘ﬁmw
cxplanations are laboured and embarrassingly patronising. The basic idea is that
you can take a MSA and compute a distance between every pair of sequences and do
PCOORD. It discusses the kinds of distances to usc and has some black and white
pictures that used to be pretty. These were only just post Letraset® i.e. the pictures were
made using a drawing program (MacDraw) to modify output from a plotting package
instead of sticking small letters onto sheets of paper. These were among the first
completely computer based figures I ever made.

Figure 3: Document sent to us by an interviewee (usage example SEQALN),
with post-hoc open-coding to identify concepts.



Summary: Interview, _ 2010-09-17

Biologist with statistics background.

Domain: Biology - Fisheries.
Type of user: Data analyst for fisheries data.

Work place: DOF.
Overall User Goal: Give recommendations about which harvest control rule to use.
Publish papers.

Experience with DR techniques:
-No

project

Short project description:

Comparison of mathematical models simulating the behavior of fish populations. All
models take a set of parameters such as carrying capacity and productivity. Each model
is run with a variety of parameter combinations and Carrie checks if the fish population
has died out for this model/parameterization.

Data:

- Models tested with different parameterization
- simulation data (input and output)

- (n/dim unknown so far)

Tasks:

- Evaluating different harvest control rules (HCRs)

- Finding best HCR (i.e. Most robust against a variety of assumptions about fish
populations)

Pattern of interest:
- correlations

Goals/Metrics:
- Level of extirpation

Current analysis techniques (Visualization, Stats, DR):
-R
- Matrices of line plots

Current problems / challenges:

Figure 4: Early version for an interviewee summary (usage example FISHPOP),
italicized headings the result of axial coding: organizing concepts, properties,
and dimensions.



Based on:
- 1.5h Skype interview (11-01-26 MS + TM Notes)
- CHI 11 submission

- Email communication

Type of user Researcher, wants to better understand search browser intent

User goal Conduct research, publish papers, build better search Ul/support for
targeted ads
DR User Non-expert, some background (alumni UBC InfoVis group), recruited

machine learning expert to help with classification
Experience with | Jsed correspondence analysis to view structure of query tasks. Exposed to
DR techniques DimStiller, tried to use it but it didn’t work out: couldn’t understand results.

Brief research description:

A better understanding of search browser query intent is needed to improve search browser
user interfaces and support targeted advertising that better matches queries. They seek to
build, refine, and validate a search query intent taxonomy, and then classify queries with their
validated taxonomy.

Several hundred -sers were recruited to maintain a diary of their search query tasks
over the course of several months. Queries were annotated by these users. Search metrics and
topical content related to these queries were also collected. The researchers constructed a
taxonomy based on this dataset, based on two intrinsic dimensions and 12 query intent
clusters. This taxonomy will be used to classify future search queries based on intent.

Use case Instance:

thousands of users need to be mapped to a low-dimensional space. The researchers
seek to validate the intrinsic dimensionality of their taxonomy and its search query intent
clusters with this data.

Search query Iois decomposed into individual search tasks from potentially hundreds-

Data

-N = 1290 - 1463 search tasks (from 36 users); subsequent field study with 300 people (N
much higher) (small by ‘tandards)

- D = many: (dirty data (sparse, incomplete), 12-13 diary/questionnaire fields, search metrics
(clicks, refinement events, abandonment, query length), topical content, mix of categorical and
numerical dimensions

Figure 5: Later version of an interviewee summary (usage example SEARCH),
bold headings the result of axial coding: organizing concepts, properties, and
dimensions.
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Figure 6: Early selective coding: focusing on conceptual

suminaries.
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7: Continued selective coding: focusing on conceptual relationships.




Task/ Data Use Case Classes Comments
Use case instance Primary Porson/  Add. persons / papers | clust clust clesif dim dim Gim  dim [PD M MR MP AD RAI SA CF NO|
Paper now oid icatio now old grou seme| A M ®
n bs ntics
[ X xox |x x X x
{ x x x x ] x x ox
[ X x x « x | x may ‘eining Custerng Algos
{ x X e x X x*rows and colsof the matrx
| x x 6) x smiarty matix, no dime.
{ x x x|x @ x x x
1 x x x x x x PCA not applicable, dims too intercorrelated
[ x x
[ x x x roo-based distanca metric
{ x x X x x X % x‘and foaturs selestion
| x *xx x| x X | x_*custerinto given taxanomy
1 x* x x X x ‘cluster neighbourhood
4 - *? x x x 0 x X x *understand parameterization
New Model for medicsl image separation ] x x X x x x x x
in protei ing wi ] x x x x - oo
soquence patterns
PCs of Music listening histories. b x x x* x x x [ x x *clusters of dimensions.
Classification of human motion with wearable sensors. 1 x x x X x
Computationl Chemistry [ x x x X causelafiect reationsrips
Insights and Cam oflarge document sets (Joumaiism) ] x x x

Figure 8: Continued selective coding: focusing on conceptual relationships.

Problems. Other stuff
Use case instance Primary Person / [ blob Com trust dirty other Need hypo hypo com indiff n  d other comments.
Paper. muni data Vis gene valid pare data
cate rate ate
Evaluating different fishing simulations x  x x * 2 5-10 " compare 4.5 differant models
Create Image search algorithm x ocal maxima, fining the right k xbis) x ? | 25 sparse infos from intervie
More accurate clustering for HIV data / flow cytometry. xox x 20K | ~20 * compars different clustering aigorithms
Genome Overvie x order of dims, clustering subgroups of dims | x x 100K 160
Visualizing research concepts in ifs science xxx ox X x 20€ simiarty matrix, no dims.
Visualizing bio polymer data. x x x| x 100K 1K
i i x X x_ missing guidance which tachniques touse, | x | x x s34 30 a
ir ictic runtime. highly intercorreiaed dimensions. x ™ 100
Parameters in Algorithms ocal maxima, intercorrelated dmensions x M 1000,
&
Local! intercomaiated dimansions x 1 ts
Meta-evaluation of behavioural game models x local maxima x x ™ 58
Classification of mutations in Prostate tumour cells x x| x #dims>>#points x x X' 800 1.4M * possibly indfferentated
‘Taxonomy for search tasks. X what are dima/what are points 2 x x 300 alot
Muitiple Sequence Analysis x ‘scalabilty: 4cims >> #points x [ x 100K simiarity maix, no dims
Bird moving patterns stabilty of parameterization X xoxow ? 147 * compare model to ground truth
1o
New Model for medical image separation x| x| =x stabilty of parameterization x x 250 6o
i ing wi 2 x mix of categorical and quantitative parameters, | x| x| x| x 70K alot
no distance metric ™
PCs of Music listening histories x x missing guidance which technigues touse, | x| x | x| x 3005 3948
«
Classification of human motion with wearable sensors X x psed x x K 11K
Computational Chemistry X x  x sparsedata, varying aged andinconsistent | x x ? |2
data, missing guidance
Insights and Com of large document sets (Journalism) x x  indifferentiated data, runtime complexity x x 100 simiarty matrix, no dims, ndifferentiated

Figure 9: Continued selective coding: focusing on conceptual relationships.

task: goal purpose of using DR | DR Interests: Point Clusters (Results)
dim. filtering | dim. synthesis
explicit +  SXPlicit, no no implicit
non- non. | mplicit imeicit  impicit "
manual automatic linear linear linear| groups  SEUCES 9"°PSpion)
MDS mani
Fishery population simulation
Visualizing MSA resuts
|Analyzing gene expression in tumour data
age
Evaluating behavioural game models
Characterizing music listening behaviour - round 1 |
human motion -
Predicting algorithm performance for NP-hard problems
Medical image segmentation 1 1
Prostate tumour classification ProstCan| 1 1 1 1 1 1 1 1
Characterizing recreational boater activity BoatAct 1 1 1 1
Epigenomics: creating overviews of genomes. Epigen 1 1 1 1
Mapping life sciences research concepts Concept 1 1 1 1 1
Characterizing music listening behaviour - round 2 LstFM2 1 1 1
Integrating structural and functional genomic data StrucGen| 1 1 1 1] o 1 1 1 1
Exploring collections of text documents TxtDocs, 1 1 1 1 1 1 1
Graphics motion capture: model of quadrupeds Quadrup 1 1 1 1 1
Clustering cells in computational biology CompBio 1 1 1 1 1 1 1 1 1
Biological aggregate behaviour simulation FlockSim| 1 1 1 1 1
biopolyr Polymers 1 1 1 1 1 1
Finding causal relations in computational chemistry ChemRel 1 1 1 1 1
Graphics geometry: articulated shapes Artshp| 1 1 1 1
[Morse codes MorseCd 1 1 1 1
Multiple sequence alignment (MSA) msAalg| 1 1 1 1
Classitying human motion - alg input MoCis1| 1 1 1 1 1
Data-driven reflectance model from picture db in graphics|  BRDF 1 1 1 1
isomap Picture databases Faces| 1 1 1
27 12 17 7 22 3 8 4 12 13 2 9 8 13 8
44% 63% 2%  81% [11%]| 30%  15% |ee% 8% 7% | 33% 0% 8% 30%

Figure 10: Classifying usage scenarios: happy, struggle, fail
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Figure 11: Examples of memos and ongoing theorizing occurring during the
course of data analysis.
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