Supplemental Material Dimensionality Reduction in the Wild: Gaps and Guidance

M. Sedlmair, M. Brehmer, S. Ingram, and T. Munzner

University of British Columbia, Canada

Abstract

We provide the following supplemental material along with the paper submission "Dimensionality Reduction in the Wild: Gaps and Guidance":

- Appendix A: Full list of interviews and associated usage examples: domain, date, location, and duration of interviews, who interviewed them, publications, documents, & artifacts solicited by interviewees
- Appendix B: Interview foci & questions
- Appendix C: Data analysis examples

Example	Domain	Date	Dur.	Loc.	Interviewers	Pubs ¹	Docs
FishPop	fisheries sciences	2010-09-17	2h	remote	MS,SI	[6, 18]	m
MoCap	machine learning	2011-11-23	$1 \mathrm{h}$	UBC	MS,MB	[2, 31]	s
Music	media informatics	2011-01-22	0.5h	phone	MS	[4]	m,m,t[8]
$Concept^2$	life sciences	2010-11-18	1h	phone	MS,SI,TM		v,e
NPAlgo	machine learning	2010-12-01	1h	phone	MS,TM	[19, 20, 21, 22]	
SeqAln	bioinformatics	2010-04-20	1.5h	phone	MS,SI,TM	[5, 9, 10]	е
						[17, 14, 23]	
						[32, 29]	
GamMdl	machine learning	2010-12-07	2h	UBC	MS	[33]	m
		2011-04-07	0.5h	UBC	MS		
Search	search engine opt.	2011-01-26	1.5h	phone	MS,TM		m,e
ProstCan	bioinformatics	2011-04-04	1.5h	remote	MS	[28]	m
		2011-04-29	4h	remote	MS,SI,TM		
EpiGen	bioinformatics	2010-11-16	2h	remote	MS,HY,TMÖ	[24]	s,s
		2010-12-21	2h	remote	MS,HY,TMÖ		
StrucGen	bioinformatics	2011-04-20	1h	phone	MS,SI,TM	[16]	v
FlockSim	mathematics	2011-03-18	1.5h	SFU	MS,SB	[7, 11, 12]	t[1]
		2011-04-05	1h	SFU	ms,sb,tmö	[13, 15]	
CompBio	comp. bio.	2010-10-13	1h	remote	MS,SI		
ChemRel	comp. chem.	2010-10-07	1h	phone	MS,SI,TM		
MedImg	comp. vision	2011-04-05	1.5h	SFU	MS,SB	[3, 25, 26]	m
		2011-04-15	1.5h	SFU	MS,SB	[27, 30]	
TxtDocs	journalism	2012-03-05	3h	UBC	MS,MB,TM		m,w
BoatAct	marine/ocean sci.	2011-01-20	1.5h	phone	MS,SI		m,d,e,v
$Polymers^2$	structural chem.	2010-11-18	$1 \mathrm{h}$	phone	MS,SI,TM		е
(excluded)	comp. vision	2010-10-06	$1 \mathrm{h}$	SFU	MS,HY,TMÖ		

Appendix A: Full list of interviews

Table 1: Full list of interviews and corresponding usage examples.

The first five entries at the top of Table 1 correspond to the usage examples described in Section 5 of the paper. The single entry at the bottom of the table shows the interview that was excluded from further analysis.

Interviewers: Michael Sedlmair (MS), Matthew Brehmer (MB), Stephen Ingram (SI), and Tamara Munzner (TM); Hamidreza Younesy (HY), Steven Bergner (SB), and Torsten Möller (TMÖ) are with the School of Computing Science at Simon Fraser University (SFU), Burnaby BC, Canada.

Additional documents from interviewees (Docs): unpublished manuscript (m), data (d), presentation slides (s), thesis (t), visualization screenshots (v), additional email correspondence with us (e), web site / blog (w).

 \mathbf{Note}^1 : Articles published by interviewees and/or referred to us by interviewees.

Note²: CONCEPT & POLYMERS were interviewed together.

Appendix B: Interview foci & questions

A: Data (+ Data Analysis)

- How does your data look like?
- One dataset, more datasets?
- What are the major problems, challenges in the data analysis?
- Which information in the data is important for you / what do you read from the data?
- What else do you want to read from the data

B: Task (+ Goals)

- What are you doing?
- What are you working on?
- What are your Goals?
- What is the ultimate goal?
- What data analysis tasks are involved in your work?
- How important is data analysis in your daily work?
- What other tasks apart from data analysis?
- Collaboration or alone?
- What are the questions/hypotheses you try to answer by analyzing your data?
- C: Current Practices (Tools), Problems and Challenges
 - What are the current tools you use for data analysis?
 - What Visualizations are you currently using?
 - How is your procedure in analyzing the data with these tools (hypotheses)?
 - Good things/ bad things about these tools?
 - What are you missing with these tools (perfect analysis tool)
- D: Dim Reduction
 - Do you use DimRed in your work?
 - If not yet, why do you think it is important for you?
 - What are your expectations?

- E: Patterns of Interest
 - Clusters
 - Outliers
 - Correlation between dimensions (between axis, should be rare after Dim-Red)
 - Finding Meaningful LowDim Axes

Appendix C: Data analysis examples

In this section we provide examples from process of data collection and analysis, conducted in the spirit of grounded theory, as described in Section 3 of the paper. Names are obscured to preserve anonymity.

First, interview transcripts (e.g. Figure 1) and notes (e.g. Figure 2), along with publications and documents of our interviewees (e.g. Figure 3) were open-coded to identify concepts.

In Figures 4 and 5, the concepts identified in interview notes and documents, along with their properties and dimensions, were organized into axial codes in our interviewee summaries.

Figures 6, 7, 8, and 9 represent an iterative process of selective coding, the focus on conceptual relationships between axial codes. This led to the development of our descriptive taxonomy, described in Section 4 of the paper.

Figure 10 represents the result of categorizing usage examples as happy, struggle, or fail.

Figure 11 reflects the practices of memoing and theorizing, as prescribed by the methodology of grounded theory, occurring throughout the data analysis process. sequences, then additional information like fields that can superimpose. ultimate challenge is to learn how the structure relates to the genomes.

me: functional

functional information. all the information you measure or compute about experimental result. 3D structur eitself, various ways that can be represented in less atomistic forms. properties taht can compute or associate with surface.

binding cavity or cleft, for which small molecule or another part of the proetin could be substrate or site of information. those are things where once we have a 3D structure we can create a quant model. 3D structure becomes a quant model.

then question of creating biological hypotheses - given that kind of shape, we want to look at how many observations do we have of that shape or similar shapes that have epxerimentally exhibited a particular biological function.

maybe protein undergoes or facilities bio function of a particular type. if you want to start exploring and eo associations between function and shape, fo rinstance, or properties that may help to explain function that are mapped onto shape, like elctrostatic potential, then that's the kinds of simple view of a particular problem.

to give practical example, very large project protein structure initiative set out to solve 3D structures at a genomic scale. the way the human genome project tried to sequence the human genome. in a relatively uncharacteristic way for structural biology, they solved structures where did not know bi9ochemical function of them. normally it's hypothesis driven, where people try to understand function by looking at 3D structure dat.a but in this case idea was to solve structures that cover lots of sequence space, then to back and analyze late.r so have lots of structures where don't know the function.

computational task to find something you can see or compare about structure or one of its reduced forms where might have a clue about bio context. by looking at thingss wh

functional stuff. is it just out of GO ontology? or do you have your own?

GO describes biochemical functions. normally this particular protein is involved in a pathway that performs something related to cell

Figure 1: An example of an interview transcript (usage example STRUCGEN).

Dipum Medicium 320 datas ponte 2011 - 01 - 22 30min (1) Derter (Numrisch, Kategorisch) 39 Variable to for Dethandys alle in numriselie With ungeradelt Noter type Ziel Using of listening of Historles assification 145 wollten Andrews Butz MAAA k-means Idea) hundhin but dunn PCA Trac Tec Vorgeschlage Beispiele for Notz-gropp-· · Noter die imm wiech wiederhole (Lieden, Alber . Noter, die nor andre Sade horen · Tay - Nacht (wann have die leute) · Viele Mastr hrausgeford (abr leich nich die - Korreliation 200. Unsch. Un. ! klave Gruppe, die sie sich om Arthy enhalted hart !] - Forzy Us - Types (das ist was sie am Ende vausgefuch habi C 1) Ableitig der Varieble aus Listung hist. Zahlen, Haufighat, metrisch Var. (?) · Was for Uis. habt im hugenomme: (kategorish) SPSS - · Balke eliggramme (for 2.B. - P in motisch SF25 - On the congrant le tor and denogratisan Dath 2 'Scattyplois (abor meist hidt workdich was geschn) Was ware die Proteine mit Scattyplots / Ois -> Dath war aus vielen Welt (so scene augursch -> Dath war aus vielen Welt (so scene augursch -> Dath war aus vielen Welt (sin sich wicht Gius) V Self-Contid- & I Chie halle immer das Getile das Sic, sich micht Gin Sil Wolte autics filtur Outling bab ich yesuth -D Eich Zur Datenberühigung worth Sic

Figure 2: Raw interview notes (blue ink) for usage example MUSIC, with posthoc open-coding (red ink) to identify concepts.

Figure 3: Document sent to us by an interviewee (usage example SEQALN), with post-hoc open-coding to identify concepts.

Summary: Interview, 2010-09-17
personal
Biologist with statistics background.
<i>Domain:</i> Biology - Fisheries. <i>Type of user:</i> Data analyst for fisheries data.
<i>Work place:</i> DOF. <i>Overall User Goal:</i> Give recommendations about which harvest control rule to use. Publish papers.
Experience with DR techniques: - No
project
Short project description: Comparison of mathematical models simulating the behavior of fish populations. All models take a set of parameters such as carrying capacity and productivity. Each model is run with a variety of parameter combinations and Carrie checks if the fish population has died out for this model/parameterization.
Data: - Models tested with different parameterization - simulation data (input and output) - (n/dim unknown so far)
<i>Tasks:</i> - Evaluating different harvest control rules (HCRs) - Finding best HCR (i.e. Most robust against a variety of assumptions about fish populations)
Pattern of interest: - correlations
Goals/Metrics: - Level of extirpation
<i>Current analysis techniques (Visualization, Stats, DR):</i> - R - Matrices of line plots
Current problems / challenges:

Figure 4: Early version for an interviewee summary (usage example FISHPOP), italicized headings the result of axial coding: organizing concepts, properties, and dimensions.

Summary:

Based on:

- 1.5h Skype interview (11-01-26 MS + TM Notes)
- CHI '11 submission
- Email communication

Type of user	Researcher, wants to better understand search browser intent
User goal	Conduct research, publish papers, build better search UI/support for
	targeted ads
DR User	Non-expert, some background (alumni UBC InfoVis group), recruited
	machine learning expert to help with classification
Experience with	Used correspondence analysis to view structure of query tasks. Exposed to
DR techniques	DimStiller, tried to use it but it didn't work out: couldn't understand results.

Brief research description:

A better understanding of search browser query intent is needed to improve search browser user interfaces and support targeted advertising that better matches queries. They seek to build, refine, and validate a search query intent taxonomy, and then classify queries with their validated taxonomy.

Several hundred **determination** users were recruited to maintain a diary of their search query tasks over the course of several months. Queries were annotated by these users. Search metrics and topical content related to these queries were also collected. The researchers constructed a taxonomy based on this dataset, based on two intrinsic dimensions and 12 query intent clusters. This taxonomy will be used to classify future search queries based on intent.

Use case Instance:

Search query logs decomposed into individual search tasks from potentially hundredsthousands of the search are been apped to a low-dimensional space. The researchers seek to validate the intrinsic dimensionality of their taxonomy and its search query intent clusters with this data.

Data

- N = 1290 - 1463 search tasks (from 36 users); subsequent field study with 300 people (N much higher) (small by standards)

- **D** = many: (dirty data (sparse, incomplete), 12-13 diary/questionnaire fields, search metrics (clicks, refinement events, abandonment, query length), topical content, mix of categorical and numerical dimensions

Figure 5: Later version of an interviewee summary (usage example SEARCH), bold headings the result of axial coding: organizing concepts, properties, and dimensions.

Short description of current project	Domain	Experience with DR	Type of user	Data	N	Dim	Task	Pattern of interest	Metrics	Current Analysis Techniques	Current Problems / Challenges
Evaluating different failing simulation models in terms of harvest control use.	Biology - Fisheries	No	Analyst	Models tested with different parameterization	1	5 to 10	Evaluating HCR Finding best HCR	Correlations between dimensions Correlations in general	- Insight: Level of extirpation	- R - Line Graphs	Missing Overview Tedious interaction
Helping SpinPro Designers to reuse their images.	Vision	Yes	Researcher / Tool designer	Image database (design galleries)	?	26	Developing new search algorithms Debugging algorithms	- Clusters / Groupings	 Insight: What is the right algorithm Insight: Model improvement/ optimization 	- Matiab	
77 No explicit examples	Computational chemistry	Yes	Analyst	e.g. compounds with features represented in fingerprints	2	7	Analyzing dats for somebody else Communicating findings	7	 Finding cause/effect relationships Communicating cause/effect relationships 	 MD5, correlation matrices Pipeline Plot / Knime SpotTre / Tableau (rare) 	Sparse data Missing guidance Is information really true? How to trace back data analysis to build better compounds
Finding better clustering methods for biologists	Biology - Cancer / HIV	Yes	Analysts / Algo designers	Canoer / HIV / FlowCap	20.000	6 to 20	 Comparing clustering algorithms (stifferances/unique) Compare subonatic clustering vs manue results Developing automatic clustering techniques 	- Ousters / Classifications	- Better Analysis - Pääter Clustering - More accurate clustering	- R - C for speed - Heatmaps - Scatterpicts - By biologists: FlowJo tool	Scalability Communication with biologists Masilabels (sithy data) PCA nemoves important information PCA hard to interpret for biologists Interactive clustering with visualitation would be one
Recreational boating activity	coastal and ocean resources	ittie / no	researcher	survey data (ordinal and ratio) from recreational boaters	543 survey respondents	39 survey questions (mix or ordinal (Likert scale) and ratio (i.e. boat length)	find meaningful clusters of types of recreational boaters characterize boaters	clusters correlations b/w dims factors that characterize boaters (meaningful new clims)	- insight into clusters	PCA MDS SPLOMs k-means clustering focal point clustering	missing guidance stability of clusters the "bicb" cirty data
Epidemics. Providing a better	Biology - Genomes	Little	Researcher / Tool designer	Heatmaps of genome parts	10.000 - 100.000	160 (8x20)	- Understanding problem	- Olusters	- Insight: Getting Overview		- The manual sorting of the
Vaualizing research concepts in life science	Life science	Little	Researcher / Tool designer	Research concepts	2	20.000	- Implementing a VisTool	- Clusters	- Insight into Clusters	co-occurrence matrix of research concepts force-directed layout: 2d contentiate	- Scalability - Blob - Are clusters real
Visualizing bio polymer data	Biology - polymer bio.	Yes	Researcher / Tool designer	feature vectors about about polymer molecules	10.000 - 100.000	up to 1.000	- Implementing a VisTool	- Clusters	- Insights	MOS force-directed layouts correlation matrices matrix	- Are my clusters real - See clusters in higher D
Different projects with simulating run time of algorithms	 Computational Intalligence 	Yes	Researcher / Algo designer	Feetures about algos (eg parameters), run time, sampled	100.000 - millions	100-200	Generation of knowledge about algorithm parameterization, etc. Gome up with new algos, models, etc	 correlation between dimensions clusters of algorithms (JC3) 	- Insight	- Scatterpicts and co - mathematical calculations	 usual DR techniques do no work because of the dependencies between his variables inun-timefi
Meta-evaluation of behavioural game models	Behavioural game theory	No	Researcher / Algo designer	Sampling models with different parameters	100.000 - millions	5 to 8	- Getting insights into the problem	- Clusters of dims		mathematical calculations Line Graphs Basically computational met Line Graphs. Scatterplots	Data sampling / generating a data set that includes all maximus
Taxonomy for search tasks	Web search machines	Yes	Researcher	data from a big survey where people kept a diary of their search tasks	300 Subjects	iots of (aspects that people used to describe their tasks)	Come up with (owd) axes for the taxonomy understanding how tasks fit in predefined buckets	 low dimensional axes clusters in this low dimensional space 	 Correct Taxonomy: can other people put their task task in correctly 		- what are dims/what are
Classification of mutations in Prostate tumour cells	bioinformatics	Yes	Researcher / Algo designer	genomic and clinical data from cancer patients	600 subjects	1.4 M (genomic exons), 20 cinical variables	 classify potential cancer patterns based on their genomic data into categories; aggressive, non-aggressive, none - communicating the results to physicians 	 clusters at each stage of the analysis pipeline 	 cereations against physicians' neisy ground truth data more acountie classification 	Refine failure selection, PCA, MCS scatterpicts used at end of the pipeline	 Is the analysis pipeline valid? inust batch effect: noisy, perhaps mostly indifferentiated data need insight at interm stages of the analysis pipeline noisy ground stuth - dimensions highly intercompleted - untime completely
Multpie Sequence Analysis	bioinformatios	Yes	Researcher / Tool designer	protein sequences, each 10-30K letters long	- 100K sequences (use case 1,2) - 5 - 50 sequences (use case 3)	UC 1,2: dimensions not meaningful (NI distance matrix) UC 3: several hundred to SOK	 UC1: verify alignment of 100K sequences, locate clusters of sequences, did down UC2: use DIT avoid computing large distance matrix, as scatbiding to sequence alignment algorithm UC3: analysis of a virus strain where D >> N 	 previously unknown olusters cluster neighbourhood clusters that faoiltate sequence alignment (UC2) 	UC1: cluster detection, hypothesis generation, cluster insight UC2: scalable cluster alignment	many DR techniques and custom algorithms (particularly for UC2): MDS, PCA, CA, PCOORD, mISED, FastMap, SeedMap, BGA, MADE4, CIA - phylogenetic trees, reticulate networks	 trees do not scale past 1K communication of results in publications (ne consensus in the research community) UC3: D >> N
Modelle of biological aggregate (flock) behaviour	biological mathematics	unknown	Researcher	20 spatial + temporal biological aggregate motion produced by a model and ground huth data from recorded aggregate motion	# of samples = # of appropriate (exect N unknow) (not individuals within an appropriate)	14 model parameters	 given a set of model parameters, compare the predicted aggraphs movement with recorded ground truth cata reduce / refine the runnber of model parameters, performs sensitivity analysis generate and validate hypotheses 	 clusters original parameters contributing to the model groups of dimensions 	 cemparison with ground twith (excorted biological aggregate motion) model stability, computation speed 	Matab to filter model parameters - Inner and weakly linear analytical methods, numerical simulations, bifurcation analysis, - Paraglide, multidimensional visualization tool	stability of parameter/cation: how quickly is the model changing (need via for sensitivity analysis) - computational processing time - sparse statistics - visualizations difficult to intervent
Models of medical image segmentation parameters	computer graphics	Yes	Researcher / Algo designer	2D / 3D / 4D medical images (SPECT, dynamic PET), model with input and output perameters, ground truth data (manual image segmentations)	50 - 250 samples, very noiny, less if working in 4D (10-15 samples)	6 to 8 input parameters, 6 to 10 output parameters	model parameterization, refining, reducing # parameters sensitivity analysis human guidance and verification of parameter choice and settings comparison against ground truth	 clusters as means (areas of perameter stability shapes of clusters groups of dimensions cluster neighbourhood 	comparisons against physicians' ground truth data more accurate classification model stability, computation speed	Paragide, multidimensional visualization tool feature selection / manual DR	needs visualization support overfitting the model stability of the model doesn't thus DR algorithms / understand meaning of new dimensions: nesults in blob problem
Constructing a structural genomics database for proteins	structural genomics / bioinformatios	unknown	Researcher / Tool designer	protein data base including: - 3D structural data - sequence data - functional data (gene ontology)	nange from 70K to 15M protein modelt	huge space, 3 groups of dimensions	 model building visualization for communication vipothesis validation and generation: cluster structure space, correlate with known clusters in functional and sequence space 	clusters as means and ends groups of dimensions	 smallest number of degrees of freedom needed in structural models insight into clusters 	- dendrograms - custom visualization tools	need for intuitive visualization combining categorical and guantitative data, establishing distance metric
Classifying music listener user types on last.fm	media information	Little	researcher / analyst	Istening histories and demographic data from Last.fm	310 users (sampled from 5000, sparse data)	40-48 dimensions in 7 categories, mix of categorical and numerical	 hypothesis validation: validate existence of hypothesized user groups 	- clusters - semantics of reduced	 separable user groups validated hypotheses 	- k-means clustering - PCA	- no clear user groups after performing initial PCA (blob

Figure 6: Early selective coding: focusing on conceptual relationships across summaries.

Notes					xonorry	Data Ta		Problems						r stuff	Othe							aconomy	Task Ta			
	Indiffe	Smoet	act. of	Stru	Scale		Туре	other	Trust	Comm	The	d Via	Nee	-	-	heses	Hypot	Masif	Curve	Reduc e for	Model	/ Refine	Make	slysis	Deta	Pur
	ed	old	group s of clims	seman tics of dims	dims	points			s s	e to others	(false negati ve7)	No	Yes	Comp	Explor	Valida tion	Gener ation	Pindin 9		Algo Input	Panam orteriz e	Reduc	Gener	Dims an end	end i	Cluste
no case study: not interesting enough?			×		25	7	Images - Feature vectors	local maxima, finding the right k	×							×	×				×		×			×
no case study: not interesting enough?					-20	20k	HIV data	use PCA, but removes too much important information for them		×						×	×								×	
no case study: vism	_			×	05 to 10	7	sim fishery data		×	×				x		×	x				x			×		no
no case study: very level interview (not e info)			×		7	7	different	sparse, varying aged and inconsistent data	×	×			×			×	no					slear	und			
possible case study descriptive					(similarity matrix)	20k	research concepts		×	×	×		×		×		×								×	
possible case study descriptive					up to 1k	10k-100k	feature vectors of polymer molecules	are my clusters real?	×				×				×								×	
possible case study descriptive					160	10-100k	genomes	clustering of a subgroup of dimensions (rows of heatmaps), order of dime is interesting		×			×		×		×								×	
to case study: no D			x		100-200	100k-1M	sampled in/outs from algos	PCA, MDS, etc do not work for grouped data						x		×	x			x	×	×	x	t i		
no case study: no D			x		5-8	100k-1M	sampled in/outs from game models	local maxima.		x				x			x				x			C		
possible case study descriptive					39 vars	543	traffic data from survey	missing values in the data, clustering is unstable/changes	×		×						×							×	×	
possible case study predictive	maybe		×	80	1.4M	-600	Classification of mutations in Prostate turnour cells		×	×			×	×			×			×			×			
possible case study descriptive				×	alot	300	diary survey about search tasks	what are dims/what are points				3	?	×	×	×								×	×	
possible case-study predictive					(similarity matrix)	100K	multiple sequence analysis	scalability, #dims >> #points		×			×		×		×			×					×	
to case-study - pan			X		6/60	250 (s)	medical image segmentation	Stability of parameterization, speed	×	x	x		×	x	×					×	×		×	t i		
no case-study - pan			×	×	144/pattern out	7	simulated animal group patterns	Stability of parameterization, speed					×	×		×	×				×	×				
no case study: not e info			×		alot	70K- 15M	structural genomics / protein structures	mix of categorical and quantitative parameters, no distance metric		×			×	×		×	×					×	×	×	×	
possible case study descriptive			×	×	39 - 48	310 - 5K	last.fm listener data		x		×		×	×	×	×	×							×	×	
possible case-study predictive					1170	9120	classifying human motion	speed,	×	x			x	×						×						
no case study - Mol	×				(similarity matrix)	10^3	investigating the iraci war logs, wikieaks info cluttos	indifferentiated data, word order not preserved by bag-of- words model	x	×	×		x	x	x	×	×								x	

Figure 7: Continued selective coding: focusing on conceptual relationships.

					Та	sk / Di	ata				L	lse C	Case	Class	505		1	DR Te (d	ochnia Ione)	ue	Comments
Use case instance	Primary Person / Paper	Add. persons / papers	clust	old	clssif icatio n	dim new	dim old	dim grou ps	dim seme ntics	PD A	мм	RM	PAL	RAI	SA	CF NO	o non e	filte	ar line	in	
Evaluating different fishing simulations	C						×	×	×	×		×					×	×			
Create Image search algorithm	(x				×			x	×				(x) x		×	×	
More accurate clustering for HIV data / flow cytometry	1		×	х						×			×				×	×	may		*Refining Clustering Algos
Genome Overview	(×				x	x*		×									×	×	*rows and cols of the matrix
Visualizing research concepts in life science	1		×							×									(x)	×	similarity matrix, no dims
Visualizing bio polymer data	E.		×							×									×	×	
Characterizing dynamic travel patterns of recreational boaters	(×				х		×	×	(x)						×		×	×	
Run-time prediction of algorithms for NP-hard problems	1			×				×		×	×>							×			PCA not applicable, dims too intercorrelat
Parameters in Algorithms	1											×					x				
Local Search Algorithm	H. Contraction of the second sec			х						×							×				tree-based distance metric
Meta-evaluation of behavioural game models							×	×			>	i x					×				
Classification of mutations in Prostate tumour cells	6		×		×					×	×			×				×	×	×	*and feature selection
Taxonomy for search tasks	1		×		×*	×	×		x	x									×	x	*cluster into given taxonomy
Multiple Sequence Analysis	1		×							×				×					×	×	*cluster neighbourhood
Bird moving patterns	1		a	x?			×	×	×		6	i) ×			×		×	×			*understand parameterization
New Model for medical image separation	1				×			×			,	×	×	×	×			×			
Structural patterns in proteins, matching with functional, sequence patterns	•		×					×		×	×						×*				*unknown
PCs of Music listening histories			×		×	×*	×	×	×	x									×		*clusters of dimensions
Classification of human motion with wearable sensors	(×	×									×			1	×	×		
Computational Chemistry	1				×			×		×										×	cause/effect relationships
Insights and Com of Jarge document sets (Journalism)			×							×							1			×	

Figure 8: Continued selective coding: focusing on conceptual relationships.

						Problems		01	her sti	uff				
Use case instance	Primary Person / Paper	blob	Com muni cate	trust	dirty data	other	Need Vis	hypo gene rate	hypo valid ate	com pare	indiff data	n	d	other comments
Evaluating different fishing simulations			×	×			×			×		?	5 - 10	* compare 4-5 different models
Create Image search algorithm				×		local maxima, finding the right k		x (vis)	x			?	25	sparse infos from interviews
More accurate clustering for HIV data / flow cytometry			×	x			×			×*		20K	-20	* compare different clustering algorithms
Senome Overview			×			order of dims, clustering subgroups of dims	×		×			100K	160	
fisualizing research concepts in life science		x	×	×	×		×	×				20K		similarity matrix, no dims
fisualizing bio polymer data				×	×		×	×				100K	1K	
Characterizing dynamic travel patterns of recreational boaters		×		×	×	missing guidance which techniques to use,	×	×		×*		534	39	*compare diff clustering techniques for cross-validation (trust
Aun-time prediction of algorithms for NP-hard problems						run time, highly intercorrelated dimensions				×		1M	100	
Parameters in Algorithms						local maxima, intercorrelated dimensions				×		1M	100o, 63i	
ocal Search Algorithm						intercorrelated dimensions				×		11	lots	
Meta-evaluation of behavioural game models			×			local maxima		×		×		1M	5 - 8	
Classification of mutations in Prostate tumour cells			×	×	×	#dims >> #points	×			×	x*	600	1.4M	* possibly indifferentiated
Taxonomy for search tasks					×	what are dims/what are points	?		×	×		300	a lot	
Multiple Sequence Analysis			×			scalability: #dims >> #points	×	×				100K		similarity matrix, no dims
Bird moving patterns						stability of parameterization	×	×	×	×		?	14V 10	* compare model to ground truth
New Model for medical image separation		×	×	×		stability of parameterization	×			×		250	61,60	
Structural patterns in proteins, matching with functional, sequence patterns			×			mix of categorical and quantitative parameters, no distance metric	×	×	×	×		70K- 1M	a lot	
PCs of Music listening histories		×		×		missing guidance which techniques to use,	×	×	×	×		300-5 K	39-48	
Classification of human motion with wearable sensors			x	×		speed	×			×		9K	1.1K	
Computational Chemistry			×	×	×	sparse data, varying aged and inconsistent data, missing guidance	×		×			?	?	
Insights and Com of large document sets (Journalism)		×	×		×	indifferentiated data, runtime complexity	×				×	10^3		similarity matrix, no dims, indifferentiated

Figure 9: Continued selective coding: focusing on conceptual relationships.

		tas	ik: goal	purpose of	using DR			DR				Intere	sts: Point Clu	sters (Re	sults)
							dim.	filtering	dim	. synth	esis				
		predictive model	descriptive understanding	algorithmic input	data analysis	none	manual	automatic	linear	non- linear MDS	non- linear mani	explicit + implicit groups	explicit, no implicit groups (blob)	implicit groups	no implicit groups (blob)
Fishery population simulation	FishPop	1			1	1	1								
Visualizing MSA results	MSAVis		1		1				1	1		1		1	
Analyzing gene expression in tumour data	GenEx		1		1					1			-	1	
Characterizing intent in search engine usage	Search		1		1				1	1		1		1	
Evaluating behavioural game models	GamMdl	1				1								1	
Characterizing music listening behaviour - round 1	LstFM1		1		1		1		1				1		1
Classifying human motion - validating algorithms	MoCis1	1			1		1	1	1				1		
Predicting algorithm performance for NP-hard problems	NPAlgo	1		1			1								
Medical image segmentation	Medimg	1			1		1								1
Prostate tumour classification	ProstCan	1		1	1		1	1	1	1		1	1		
Characterizing recreational boater activity	BoatAct		1		1				1	1			1		
Epigenomics: creating overviews of genomes	Epigen		1		1				1	1				1	
Mapping life sciences research concepts	Concept		1		1					1				1	1
Characterizing music listening behaviour - round 2	LstFM2		1		1				1						
Integrating structural and functional genomic data	StrucGen	1	1		1	1	1					1	1	1	1
Exploring collections of text documents	TxtDocs		1		1					1		1	1	1	1
Graphics motion capture: model of quadrupeds	Quadrup	1	1	1	1				1						
Clustering cells in computational biology	CompBio		1	1	1		1	1				1	1	1	1
Biological aggregate behaviour simulation	FlockSim	1			1		1							1	1
Characterizing structures of biopolymer nanocomposites	Polymers		1		1				1	1				1	1
Finding causal relations in computational chemistry	ChemRel		1		1					1		1	1		
Graphics geometry: articulated shapes	ArtShp	1		1						1		1			
Morse codes	MorseCd		1		1					1				1	
Multiple sequence alignment (MSA)	MSAAlg	1		1						1				1	
Classifying human motion - alg input	MoCis1	1		1				1	1			1			
Data-driven reflectance model from picture db in graphics	BRDF		1		1				1		1				
Isomap Picture databases	Faces		1		1						1				
	27	12	17	7	22	3	8	4	12	13	2	9	8	13	8
		44%	63%	26%	81%	11%	30%	15%	44%	48%	7%	33%	30%	48%	30%
						_	_		_	_	_			_	

Figure 10: Classifying usage scenarios: happy, struggle, fail

Figure 11: Examples of memos and ongoing theorizing occurring during the course of data analysis.

References

- S. N. Abdolyousefi. Equilibria of a Nonlocal Model for Biological Aggregations: Linear Stability and Bifurcation Studies. Master's thesis, Simon Fraser University, 2011.
- [2] K. Altun, B. Barshan, and O. Tunçel. Comparative study on classifying human activities with miniature inertial and magnetic sensors. *Pattern Recognition*, 43(10):3605–3620, 2010.
- [3] S. Andrews, G. Hamarneh, and A. Saad. Fast random walker with priors using precomputation for interactive medical image segmentation. In Proc. Intl. Conf. Medical Image Computing and Computer-Assisted Intervention: Part III (MICCAI), pages 9–16. Springer-Verlag, 2010.
- [4] D. Baur, J. Büttgen, and A. Butz. Listening factors: A large-scale principal components analysis of long-term music listening histories. In Proc. Conf. Human Factors in Computing Systems (CHI). ACM, in press.
- [5] G. Blackshields, F. Sievers, W. Shi, A. Wilm, and D. G. Higgins. Sequence embedding for fast construction of guide trees for multiple sequence alignment. *Algorithms for Molecular Biology*, 5(21):1–11, 2010.
- [6] M. Booshehrian, T. Möller, R. M. Peterman, and T. Munzner. Vismon: Facilitating analysis of trade-offs, uncertainty, and sensitivity in fisheries management decision making. *Computer Graphics Forum (Proc. EuroVis)*, in press.
- [7] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, and J. Simpson, S. From disorder to order in marching locusts. *Science*, 312(5778):1402–1406, 2006.
- [8] J. Büttgen. What's in a History? A Large-Scale Statistical Analysis of Last.FM Data. Master's thesis, Ludwig-Maximilians Universitat Munchen, 2010.
- [9] A. C. Culhane, G. Perriere, and D. G. Higgins. Cross-platform comparison and visualization of gene expression data using co-inertia analysis. *BMC Bioinformatics*, 4(59), 2003.
- [10] A. C. Culhane, J. Thioulouse, G. Perriere, and D. G. Higgins. MADE4: an R package for multivariate analysis of gene expression data. *Bioinformatics*, 21(11):2789–2790, 2005.
- [11] R. Eftimie. Modeling Group Formation and Activity Patterns in Self-Organizing Communities of Organisms. PhD thesis, University of Alberta, 2008.
- [12] R. Eftimie. Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. *Journ. Mathematical Biology*, 2011.

- [13] R. Eftimie, G. de Vries, M. A. Lewis, and F. Lutscher. Modeling group formation and activity patterns in self-organizing collectives of individuals. *Bulletin of Mathematical Biology*, 69(5):1537–1565, 2007.
- [14] A. Fagan, A. C. Culhane, and D. G. Higgins. A multivariate analysis approach to the integration of proteomic and gene expression data. *Pro*teomics, 7(13):2162–2171, 2007.
- [15] R. C. Fetecau and R. Eftimie. An investigation of a nonlocal hyperbolic model for self-organization of biological groups. *Journ. Mathematical Biology*, 61(4):545–579, 2010.
- [16] M. J. Gabanyi, P. D. Adams, K. Arnold, L. Bordoli, L. G. Carter, J. Flippen-Andersen, L. Gifford, J. Haas, A. Kouranov, W. a. McLaughlin, D. I. Micallef, W. Minor, R. Shah, T. Schwede, Y.-P. Tao, J. D. Westbrook, M. Zimmerman, and H. M. Berman. The structural biology knowledgebase: a portal to protein structures, sequences, functions, and methods. *Journ. Structural and Functional Genomics*, 12(2):45–54, 2011.
- [17] D. G. Higgins. Sequence ordinations: a multivariate analysis approach to analysing large sequence data sets. *Computer Applications in the Biosciences (CABIOS)*, 8(1):15–22, 1992.
- [18] C. Holt and M. Bradford. Evaluating benchmarks of population status for Pacific salmon. N. American Journ. Fisheries Management, 31(2):363–378, 2011.
- [19] F. Hutter, T. Bartz-Beielstein, H. Hoos, K. Leyton-Brown, and K. Murphy. Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, *Experimental Methods for the Analysis of Optimization Algorithms*, pages 363–414. Springer-Verlag, 2010.
- [20] F. Hutter, H. Hoos, and K. Leyton-Brown. Tradeoffs in the empirical evaluation of competing algorithm designs. Annals of Mathematics and Artificial Intelligence, 60:65–89, 2010.
- [21] F. Hutter, H. Hoos, K. Leyton-Brown, and K. Murphy. Time-bounded sequential parameter optimization. In C. Blum and R. Battiti, editors, *Learning and Intelligent Optimization*, volume 6073 of *Lecture Notes in Computer Science*, pages 281–298. Springer, 2010.
- [22] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness models: Methodology and a case study on combinatorial auctions. *Journ. ACM*, 56(4):22:1–22:52, 2009.
- [23] S. F. Madden, S. B. Carpenter, I. B. Jeffery, H. Bjorkbacka, K. A. Fitzgerald, L. A. O'Neill, and D. G. Higgins. Detecting microRNA activity from gene expression data. *BMC Bioinformatics*, 11(257), 2010.

- [24] C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones. ABySS-Explorer: visualizing genome sequence assemblies. *IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis)*, 15(6):881–888, 2009.
- [25] A. Saad, G. Hamarneh, and T. Möller. Exploration and visualization of segmentation uncertainty using shape and appearance prior information. *IEEE Trans. Visualization and Computer Graphics (Proc. Vis)*, 16(6):1366–1375, 2010.
- [26] A. Saad, G. Hamarneh, T. MÃűller, and B. Smith. Kinetic modeling based probabilistic segmentation for molecular images. In D. Metaxas, L. Axel, G. Fichtinger, and G. SzÃľkely, editors, *Medical Image Computing and Computer-Assisted Intervention âĂŞ MICCAI 2008*, volume 5241 of *Lecture Notes in Computer Science*, pages 244–252. Springer, 2008.
- [27] A. Saad, T. Möller, and G. Hamarneh. ProbExplorer: Uncertainty-guided Exploration and Editing of Probabilistic Medical Image Segmentation. *Computer Graphics Forum*, 29(3):1113–1122, 2010.
- [28] Y. Saeys, I. n. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. *Bioinformatics*, 23(19):2507–2517, 2007.
- [29] W. Shi, F. Lei, C. Zhu, F. Sievers, and D. G. Higgins. A complete analysis of HA and NA genes of influenza A viruses. *PloS ONE*, 5(12):e14454, 2010.
- [30] T. Torsney-Weir, A. Saad, T. Möller, B. Weber, H. C. Hege, J. M. Verbavatz, and S. Bergner. Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. *IEEE Trans. Visualization and Computer Graphics (Proc. Vis)*, 17(12):1892– 1901, 2011.
- [31] O. Tunçel, K. Altun, and B. Barshan. Classifying human leg motions with iniaxial piezoelectric gyroscopes. *Sensors*, 9(11):8508–8546, 2009.
- [32] I. M. Wallace and D. G. Higgins. Supervised multivariate analysis of sequence groups to identify specificity determining residues. *BMC Bioinformatics*, 8(135), 2007.
- [33] J. Wright and K. Leyton-Brown. Beyond equilibrium: Predicting human behavior in normal-form games. In Proc. AAAI Conf. Artificial Intelligence (AAAI), pages 901–907, 2010.