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ABSTRACT
We characterize five task sequences related to visualizing
dimensionally-reduced data, drawing from data collected from in-
terviews with ten data analysts spanning six application domains,
and from our understanding of the technique literature. Our
characterization of visualization task sequences for dimensionally-
reduced data fills a gap created by the abundance of proposed tech-
niques and tools that combine high-dimensional data analysis, di-
mensionality reduction, and visualization, and is intended to be
used in the design and evaluation of future techniques and tools.
We discuss implications for the evaluation of existing work prac-
tices, for the design of controlled experiments, and for the analysis
of post-deployment field observations.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—Evaluation/Methodology

Keywords
Tasks, dimensionally-reduced data, interview study.

1. INTRODUCTION
Dimensionality reduction is the process of reducing a high-

dimensional dataset to a lower-dimensional representation that re-
tains most of its important structure. It has been an active research
area throughout several decades and across many domains, from
its origins in psychology [46, 57] through statistics [8] to machine
learning [18, 45, 49] and visualization [15, 16, 19, 55].

While many techniques and tools combining dimensionality re-
duction with visualization have been proposed, there is still no per-
fect automated solution that will generate the most effective visual-
ization for every situation. Analysts are faced with complex choices
between alternative dimensionality reduction techniques and be-
tween different visualization techniques for analyzing the resulting
data. These choices are strongly dictated by the analysts’ data and
tasks [29, 44]. The statistics and machine learning communities
have provided extensive classifications of dimensionality reduction
techniques based on data and technique characteristics [11, 12, 13,
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Figure 1: (a) Data is reduced to 2D; (b) encoded in a scatter-
plot to verify visible clusters; and (c) colour-coded according
to preexisting class labels to match clusters and classes.

18, 50, 54]. In contrast, there is very little that is explicitly stated
about the characteristics of tasks that analysts engage in when visu-
ally analyzing dimensionally-reduced data. To guide designers, an-
alysts, and those who conduct evaluations of techniques and tools,
a better understanding of these tasks is essential.

Our contribution is a characterization of five task sequences re-
lated to the visualization of dimensionally-reduced data: naming
synthesized dimensions, mapping a synthesized dimension to orig-
inal dimensions, verifying clusters, naming clusters, and match-
ing clusters and classes. In the last of these sequences, illustrated
in Figure 1, an analyst uses dimensionality reduction and scatter-
plots to verify clusters, and then match them with existing classes.
Our characterization is based on an in-depth analysis of ten inter-
views with analysts who use dimensionality reduction for visualiz-
ing their data, as well as on a literature review of papers that ap-
ply dimensionality reduction for the purpose of data visualization.
Our analysis framework is a recently proposed typology of abstract
tasks [7], and allows practitioners to identify task sequences based
on observed work practices, occurring in requirements gathering
activities and in field evaluations of deployed tools.

2. RELATED WORK
Characterizing tasks. The systematic analysis of worker activi-
ties and tasks is a critical process in the design and evaluation of
technology, and task analysis frameworks appear in many differ-
ent fields, including human factors and ergonomics [51], human-
computer interaction [32], and visualization [7, 38].

While many characterizations of visualization tasks are agnos-
tic to data type, some address specific types of data [42], such
as network-based data [25], time-oriented data [24], and tabular
data [14]. Data-specific task characterizations are important be-
cause they provide a less generic description of tasks. They con-
sider a specific set of data abstractions, facilitating a mapping to
appropriate visual encoding and interaction techniques [7, 29]. A
less generic description of tasks is also critical for evaluation, such
as when specifying tasks to be performed by participants in con-
trolled experiments. In this paper, we propose a data-type specific
characterization of task sequences for dimensionally-reduced data.

Characterizations of tasks are often based on their authors’ own
experience in conjunction with a thorough consideration of the lit-



erature [3, 42], while others are based on observations of human be-
haviour in controlled laboratory settings [2]. In contrast, our char-
acterization of task sequences is primarily based on an interview
study with analysts working with their own data [28], allowing us
to ground our findings in real data analysis practices.
Mapping tasks to techniques for high-dim data analysis. There
are many techniques and tools that combine analysis of high-
dimensional data, dimensionality reduction, and visualization, in-
cluding some developed by our research group [15, 16, 53]. While
there are helpful characterizations of high-dimensional data anal-
ysis techniques [4] and of dimensionally-reduced data [41], the
mapping between data, tasks, and appropriate techniques remains
unclear [44]. This problem is particularly apparent when designing
workflows, or instantiations of task sequences within software tools
for high-dimensional data analysis [15, 19].

One task for dimensionally-reduced data is that of matching clus-
ters and categorical classes given with the data, discussed below
in Section 4.2.3. Based on findings from an empirical data study,
Sedlmair et al. identified effective techniques for visualizing this
data that support this task [40], and called for similar work to be
done for other tasks relating to dimensionally-reduced data. Our
characterization of task sequences moves us closer to this goal.
Expert judgments and dimensionally-reduced data. We are
aware of one other study involving expert analysts’ interpretations
of visualizations of dimensionally-reduced data, though they do not
share our explicit examination of analysts’ domain problems and
tasks: Lewis et al. [26] asked expert and novice analysts in a con-
trolled lab setting to subjectively rate the value of 2D scatterplot
projections of seven dimensionally-reduced datasets, generated us-
ing nine different dimensionality reduction techniques. Their find-
ings showed that experts were more consistent in their positive and
negative ratings. Judging the value or quality of a visualization
of dimensionally-reduced data should occur regardless of task, and
analysts can additionally leverage automated quality metrics based
on human perception [1, 4]. We did not seek out novice analysts,
though the domain experts we interviewed varied in terms of their
perceived understanding of dimensionality reduction; furthermore,
we sought to identify and characterize experts’ tasks and activities
in naturalistic settings, rather than in a controlled lab study.

3. METHODS
Our methodological choice was motivated by a vibrant thread of

work in the visualization community using qualitative methods in
general [9, 17, 47], and interview studies in particular [21, 22].
Data collection. Between 2010 and 2012, we interviewed 24 data
analysts working in academic and industry settings, representing
over a dozen domains, spanning the natural sciences, computer sci-
ence, policy analysis, and investigative journalism. These analysts
were recruited from our extended personal and professional net-
works, and were known to work with high-dimensional data. These
interviews were semi-structured, lasting in duration from one to
four hours; some of these interviews were more akin to contextual
inquiries, occurring at the analyst’s workplace, while others were
performed in our department or via teleconference.

We discussed the analysts’ domain context, their data analysis
goals, and their data; we also asked more specific questions about
how they transformed their data and their use of dimensionality
reduction and visualization techniques. We also collected artifacts
from these analysts, including their published papers and theses,
their unpublished manuscripts, screenshots of visualizations they
had created, and in some cases, even their data.

Data analysis. We alternated between data collection and anal-
ysis, progressing from initial to focused coding of the data [10].
In this paper we concentrate our attention on the ten analysts who
(a) specifically used dimensionality reduction algorithms in analyz-
ing their high-dimensional data, and who (b) also visualized their
dimensionally-reduced data.

To analyze data collected from these ten interviews, we use a re-
cently proposed typology of abstract visualization tasks [7]. The
typology distinguishes why tasks are undertaken at multiple levels
of abstraction, what inputs and outputs a task may have, as well as
how a task is supported by visual encoding and interaction tech-
niques. Using this lens allowed us to better interpret our results
from the standpoint of visualization design and evaluation, culmi-
nating in the task sequences presented in Section 4, where we use
a fixed-width font to specifically highlight vocabulary from
this typology. In Section 5, we revisit the typology and illustrate
how it can summarize our five task sequences.

Finally, we enriched our analysis with further examples from the
literature. We specifically sought papers that report on applica-
tions where dimensionality reduction and visualization were used
in conjunction for analysis, and we consider these applications with
respect to the task sequences we identified.

4. TASK SEQUENCES
We have identified five task sequences related to dimensionally-

reduced data. In this section, we summarize each task sequence
and illustrate the sequence with accompanying diagrams. Each
is named after the terminal task appearing in the sequence. We
also comment on how these task sequences arose in our interviews,
and which visualization techniques were used to address these se-
quences. These task sequences are not exclusive: some analysts
performed multiple task sequences in the course of their work. This
descriptive survey of analysts’ data, task sequences, and visualiza-
tion is summarized in Table 1. The dataset sizes being investigated
by these analysts ranged from dozens to over a million dimensions,
and from hundreds to hundreds of thousands of items.
Dimensionality reduction. All the task sequences we character-
ized begin with dimensionality reduction (DR). In our context, we
define DR as a means of dimensional synthesis: a set of m synthe-
sized dimensions is derived from n original dimensions, where
m < n. Dimensional synthesis techniques are commonly differenti-
ated between linear and non-linear [18]. Linear techniques such as
principal component analysis (PCA) [20] or classical multidimen-
sional scaling (MDS) [46, 57] produce synthetic dimensions from
linear projections of the original data. However, many datasets
have an intrinsic structure that can only be revealed using non-
linear techniques, such as Isomap [45], t-SNE [49], or Glimmer
MDS [16]. Further distinction between linear and non-linear di-
mensional synthesis is outside of the scope of this paper, though
we note that some techniques are more appropriate for verifying the
existence of local cluster structure while others are more appropri-
ate for identifying global intrinsic dimensions (or manifolds) [26].
In Table 1, we note who used linear and non-linear DR.

It is not our intent to catalog and differentiate the large body of
DR techniques; we will concentrate our analysis on their output,
asking why do analysts visualize these synthesized dimensions.

4.1 Dimension-Oriented Task Sequences
We describe two task sequences that specifically relate to synthe-

sized dimensions as generated by dimensional synthesis DR tech-
niques: naming synthesized dimensions and mapping synthesized
to original dimensions.



4.1.1 Name Synthesized Dimensions

DR
name synth. 

dimensions
start

Given a set of synthesized dimensions, an analyst may want
to discover what these dimensions mean, to generate
hypotheses about the semantics of these synthesized dimen-
sions. An analyst will browse the set of synthesized dimen-
sions, and for each dimension of interest, she will browse items
and their corresponding values; as a result, she may be able to
identify the name of a synthesized dimension.

This task sequence was attempted by two of the analysts we in-
terviewed (Analysts A and B in Table 1). Both worked in the field
of human-computer interaction and attempted to identify the intrin-
sic dimensions related to usage data collected about online search
behaviour and music listening behaviour, respectively.

A common approach, employed by both analysts, is to inspect
data points plotted according to two synthesized dimensions in a 2D
scatterplot, in which the analyst may be able to discern an interest-
ing semantic relationship along the axes. In some cases, these scat-
terplots are augmented with text labels containing categorical in-
formation, such as item name, annotated adjacent to a subset of the
plotted points [8, 27, 45] or available through interaction. Tenen-
baum et al.’s paper describing the Isomap algorithm [45] contains a
particularly compelling example (reproduced in Figure 2), in which
each data point in a scatterplot corresponds to an image of a face;
a random sample of these images are displayed directly in the scat-
terplot as thumbnails adjacent to their corresponding points. Given
this display, it is possible to discern names for the three synthesized
dimensions resulting from dimensional synthesis.

Figure 2: A figure from Tenenbaum et al. (2000) [45] (© 2000
AAAS), in which three synthesized dimensions have been iden-
tified: up-down pose along the y-axis, left-right pose along the
x-axis, and lighting direction indicated below each image.

4.1.2 Map Synthesized to Original Dimensions

DR
name synth. 
dimensions

map synth. 

to original
start

Regardless of whether an analyst is interested in naming synthe-
sized dimensions, another possible task sequence involves mapping
synthesized dimensions back to original dimensions. In the context
of principal component analysis, this mapping is often referred to
as the loading of the synthesized dimensions by the original dimen-
sions [20]. Given a synthesized dimension, an analyst may want to
discover this mapping. More specifically, the analyst may ei-
ther verify a hypothesis that this mapping exists, or generate

a new hypothesis about it. The analyst will browse items and
their values along this synthesized dimension and compare these
values to those along the set of original dimensions, looking for
similarities and correlations. This mapping could allow analysts to
identify groups of correlated original dimensions.

Four of the analysts we interviewed attempted to perform this
sequence of tasks; two of these analysts had previously attempted
to name some of their synthesized dimensions. Analyst A mapped
her synthesized dimensions to a set of original dimensions in ag-
gregated usage logs from an online music streaming service, while
Analyst B attempted the same task sequence with aggregate search
engine metrics but was unable to confidently map any of her syn-
thesized dimensions to her original dimensions. Both used 2D scat-
terplots to carry out this task sequence. The other two analysts were
explicitly interested in grouping original dimensions based on this
mapping: a policy analyst (C) investigating survey data pertaining
to recreational boating practices used 2D scatterplots to compare
synthesized dimensions and original dimensions, while a bioinfor-
matician (D) investigating protein regions used scatterplot matrices
(SPLOMs), heatmaps, and density plots.

4.2 Cluster-Oriented Task Sequences
There exists another set of task sequences where the semantics of

the synthesized dimensions are not a central interest; instead, ana-
lysts are interested in clusters of items that might be revealed in the
dimensionally-reduced data. We characterize three task sequences:
verify clusters, name clusters, and match clusters and classes.
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Figure 3: Example scatterplots of dimensionally-reduced data illus-
trating tasks related to item clusters: Verifying the existence of clusters,
naming clusters, and matching clusters and classes. (a) no discernible
clusters (b) three discernible clusters (c) a match between clusters and
class labels (d) a partial match between clusters and class labels (e) no
discernible class separation.

4.2.1 Verify Clusters

DR
verify 

clusters
start

Analysts might seek to verify the general hypothesis that clus-
ters of items will be revealed in the dimensionally-reduced data, or
to verify hypotheses about specific conjectured clusters. In order
to discover clusters, analysts must locate and identify
item clusters in the low-dimensional representation of the data; in
the example of Figure 3b, we can identify three clusters.

All ten of the analysts we spoke to were interested in verifying
that clusters exist in their data. This task sequence is also cap-
tured by Buja and Swayne’s discussion of visualizing data follow-
ing multidimensional scaling [8]. The analysts we interviewed used
a variety of visualization techniques when performing this task se-
quence, including 2D monochrome scatterplots, such as those de-
picted in Figures 3a-b, as well as 3D scatterplots, SPLOMs, den-
drograms, heatmaps, and density plots.

4.2.2 Name Clusters

DR
verify 

clusters
start name 

clusters



Once the existence of clusters has been verified, such as in the
example of Figure 3b, the next task is often one of generating
hypotheses regarding the meaning of these clusters in the form of
a name. In this discover task, an analyst will browse items
within a cluster and attempt to summarize the cluster with a
meaningful name. In some cases, this name is made explicit, as the
analyst will annotate the cluster, thereby using the visualization
to produce new information about their data.

Eight of the analysts who had previously verified clusters also
attempted to name clusters in the course of their work, using the
same visualization techniques mentioned above. For instance, An-
alyst F examined bibliometric data from a corpus of life sciences
research literature, who attempted to identify and name clusters of
related research concepts, such as “cancer” or “RNA”.

4.2.3 Match Clusters and Classes

DR
verify 

clusters
start name 

clusters
match clusters 

and classes

The final task sequence we characterize is matching clusters with
classes. The input to this match task is not only a set of item clus-
ters, identified in the earlier verify clusters task, but also a set of
categorical class labels. These classes might come directly with the
data, be assigned using a clustering algorithm run by the analyst, or
be the result of manual labeling. The analyst must verify a hy-
pothesis that a cluster of items matches the class for those items. To
discover a match, the analyst performs a lookup for the class
and cluster membership of an item in order to compare them, re-
sulting in a match (as in Figure 3c), otherwise referred to as a true
positive, or a mismatch (as in Figures 3d-e), which could either
be a true negative or a false negative. This task was examined in
a recent paper on guidance for selecting appropriate visualization
techniques for dimensionally-reduced data [40].

Naming the clusters is not a pre-requisite for this match task,
though we did encounter four analysts who reported performing
both tasks in succession (A, B, I, J); two other analysts per-
formed this task without previously naming the clusters they iden-
tified (G, H). Typically, this task was performed using 2D scat-
terplots, wherein the points were coloured using the class la-
bels; SPLOMs, interactive and non-interactive 3D scatterplots, and
node-link graphs were also used. Note that the visual separabil-
ity of colour-coded clusters differs perceptually from the separa-

bility of monochrome clusters, as summarized in a recent taxon-
omy of cluster separation factors [41]. These perceptual differences
should be taken into account particularly when selecting experi-
mental stimuli for use in controlled experiments.

A possible outcome of this task sequence is a partial match be-
tween classes and clusters: there may be more clusters than classes,
or vice versa. In cases where there are more clusters than class la-
bels, illustrated in Figure 3d, this outcome suggests that the class
labels may not capture a finer-grained cluster structure in the data,
as was the case for the investigative journalist we interviewed (J).
In cases where there are more classes than clusters, illustrated in
Figure 3e, this result may either be a true negative, in which per-
fect class separation is not possible, or a false positive [40]. If this
mismatch is suspected to be a false negative, Sedlmair et al. rec-
ommend selecting other dimensions to visualize, using other visu-
alization techniques such as a SPLOM, or revisiting the choice of
dimensionality reduction technique.

5. A TASK TYPOLOGY REVISITED
The analysts we interviewed hailed from very different domains,

each using a different terminology to describe their work processes.
For instance, we needed a way to compare how diagnosing cancer
patients based on their genomic data (Analyst H) was like classi-
fying types of human motion through the use of sensors attached
to the body (Analyst G). We required an abstract vocabulary for
describing and comparing the work processes of these analysts.

For this reason, we use a recent typology of abstract visualization
tasks [7] that provides a domain-agnostic vocabulary and frame-
work for describing visualization tasks in terms of why, what, and
how. By describing a task in this manner, we can link outputs and
inputs to describe sequences of interdependent tasks, which Nor-
man would refer to as activities [35]. This typology has already
been used to characterize the tasks of journalists [6] and bioinfor-
maticians [30]. We use it here to describe task sequences relating to
visualizing dimensionally-reduced data across multiple domains.

Our analysis concentrated on the why and what aspects of the
tasks pertaining to dimensionally-reduced data, as summarized in
Figure 4. We chose not to be prescriptive about how these task
sequences should best be supported by visualization techniques;
instead, we described the variety of techniques used by the analysts
we interviewed for each task sequence.

Table 1: Top: A summary of task sequences performed by the ten analysts we interviewed, along with the visualization techniques(s)
used to perform these tasks sequences. Bottom: examples of task sequences in papers discussing DR and visualization.
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A Human-computer interaction usage logs from online music service 48 310 3 3 3 3 3 3 3 3

B Human-computer interaction aggregated search engine metrics 12–31 1,463 3 3 3 3 3 3 3 3

C Policy analysis recreational boating survey data 39 543 3 3 3 3 3 3 3 3 3

D Bioinformatics protein region data 160 10–100K 3 3 3 3 3 3 3

E Computational chemistry polymer molecule feature vectors 1K 10K 3 3 3 3 3 3 3

F Social network analysis bibliometric co-occurrence matrix 20K 20K 3 3 3 3 3 3 3 3

G Human computer interaction human motions from multiple sensors 1,170 9,120 3 3 3 3 3

H Bioinformatics genomic, clinical data from patients 1.4M 600 3 3 3 3 3 3

I Bioinformatics distance matrix of genome sequences 100K 100K 3 3 3 3 3 3 3 3 3

J Investigative journalism distance matrix of text documents 10K 10K 3 3 3 3 3 3

Ref. Citation
[8] Buja & Swayne (2002) distance matrix of Morse codes 36 36 3 3 3 3 3

[27] Matusik et al. (2003) BRDF reflectance model 4.36M 104 3 3 3 3 3

[37] Reveret et al. (2005) quadruped skeleton models 348–406 9 3 3 3

[45] Tenenbaum et al. (2000) 64 x 64 px images 4,096 698–1K 3 3 3 3



The analysts we interviewed were all interested in discovery,
which involves the generation and verification
of hypotheses. Figures 4b-f show which tasks relate to
hypothesis generation and which relate to hypothesis
verification. The graphical depiction also shows which
task can be associated with pure consumption of information
and which task can additionally lead to the production of
new information. When consuming information, an analyst will
search for targets within a visualization. Whether the location
and identity of these targets is known a priori will determine the
type of search. In tasks related to visualizing dimensionally-
reduced data, we found that search strategies used by analysts
were either browse, locate, or lookup, as indicated in
Figures 4b-f. Once targets are found, an analyst will execute some
form of query: they might identify a single target, such as an
item cluster, compare multiple targets, such as values along a
synthesized dimension to values along an original dimension, or
summarize all the targets, such as when naming a cluster.
Dependencies. The task sequences described in Section 4 con-
tain dependencies. For example, in order to match clusters and
classes, an analyst must first verify that clusters exist. Each of the
sequences also depend on the output of dimensionality reduction
techniques, the derived synthetic dimensions. The application
of dimensionality reduction to a set of original dimensions is it-
self a task, as shown in Figure 4a. However, unlike the other tasks
described above, it is about neither hypothesis generation nor ver-
ification, but rather about producing new information intended
to support subsequent tasks.

While the distinctions between these tasks and task sequences
may seem obvious in hindsight, we initially struggled to find a
vocabulary and framework that would allow us to distinguish be-

tween these task sequences and their interdependencies. The task
typology [7] allows us to describe these task sequences explicitly,
whereas they were implicit in previous work combining dimension-
ality reduction and visualization.
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Figure 5: The why part of the abstract task typology [7], with
the refinement (emphasized in red) that the actions of annotate,
record, and derive are forms of produce [34].

Extended typology. Figure 5 reproduces the why part of an ex-
tended task typology [34]. The changes relevant to our analysis
in this paper pertain to three actions: an analyst may annotate
information, derive new information from existing, or record
their use of a visualization so as to provide analytical provenance
or to facilitate subsequent presentations of the visualization. The
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to form the task sequences described in Section 4.



terms annotate, derive, and record were previously at-
tributed to families of interaction techniques in the how part of the
typology [7]; the extended typology classifies them as ends rather
than means and thus situates them as forms of produce. Both
versions of the typology distinguish whether a person will use a
visualization either to consume or produce information. The
remaining aspects of the typology describing lower levels of ab-
straction are unchanged.

6. DISCUSSION
We discuss the utility of our characterization of task sequences

with regard to several visualization evaluation scenarios, the limi-
tations of our current findings, and our planned future work.

6.1 Implications for Evaluation
Task characterization and evaluation are closely linked. An un-

derstanding of visualization tasks and activities informs how an
evaluation is conducted, from the justification of experimental pro-
cedures to the collection and analysis of field observations.

Our current work adds to previous task characterizations pro-
posed in the visualization evaluation literature [14, 25, 48]. As
evaluation takes on many forms, we frame our discussion around
four of Lam et al.’s scenarios for empirical studies [23].
Understanding work practices. Work practice evaluations pro-
vide a richer understanding of the perspective of people who might
benefit from visualization, reflecting real work practices and activ-
ities. While their immense importance has been outlined several
times [5, 29, 33], only a few dedicated examples exist in the visu-
alization literature [21, 22, 47].

More commonly, however, such work practice evaluations occur
in design studies, an increasingly popular form of problem-driven
visualization research [39]. In particular, a design study’s early
discover stage [39] involves the analysis of work practices within a
very specific usage context in a particular domain. These concrete
work practices are then translated into abstract visualization tasks
and design requirements.

Our current work goes beyond task characterization in design
studies by conducting interviews with analysts across different ap-
plication domains. We then abstracted our findings into more gen-
eral task sequences, or activities [35], across these domains. In
doing so, we intend to support researchers when conducting and
analyzing future work practice evaluations, specifically when di-
mension reduction techniques are to be employed. We encourage
practitioners to adopt our characterization of task sequences into a
lexicon for coding observations of work practices and for translat-
ing domain-specific descriptions of these practices. We believe that
using our task sequences will make the analysis process more effi-
cient and, furthermore, will allow for better transferability between
design studies from different application domains [39].
Evaluating user performance. Our characterization of task se-
quences can inform the design of experimental procedures and par-
ticipant instructions in controlled laboratory studies, where the aim
might be to quantitatively assess human performance on a newly
proposed visualization technique. Many previous characterizations
of tasks have informed experimental design, such as the adoption of
Zhou and Feiner’s task characterization [58] in a laboratory evalu-
ation of an information retrieval tool [31]. We expect that our char-
acterization of task sequences will play a similar role in the eval-
uation of techniques or tools that visualize dimensionally-reduced
data. For instance, an experiment might compare multiple visual-
ization techniques for verifying clusters and subsequently match-

ing clusters and classes, where performance might be measured in
terms of speed and accuracy.

Munzner refers to such studies as a form of downstream valida-
tion, in which a design has been implemented for its investigation
in a study [33]. In contrast, upstream validation in this case refers to
the justification of visual encoding and interaction design choices
before its implementation. We deem our task sequences to be simi-
larly helpful for such upstream evaluations. Researchers presenting
new visualization or interaction techniques can refer to our task se-
quences to concisely state assumptions about which abstract tasks
are supported, rather than leaving this description implicit in a way
that places a burden on a potential adopter of the technique.
Evaluating user experience. In either lab or field settings, a re-
searcher can evaluate the user experience of a tool or technique by
dictating the tasks without specifying how to execute them, ask-
ing study participants to verbalize their actions while they attempt
to execute a sequence of tasks. Such a protocol might allow the
researcher to understand if features of the tool are learnable, use-
ful, or in need of further usability improvements. Questionnaires
and interview questions relating to user experience could also be
framed around our characterization of task sequences.

We note that expertise has many facets; the distinction between
novices and experts is a particularly nuanced question for stud-
ies considering dimensionality reduction. Several of the high-
dimensional data analysts that we interviewed might be described
as middle-ground users [15]: they had significant domain exper-
tise but only partial understanding of the available dimensionality
reduction tools and the mathematics underlying these techniques.
This characteristic of users is important to keep in mind when re-
cruiting participants for evaluations of user performance or user ex-
perience, as some evidence exists that participants with an under-
standing of dimensionality reduction will interpret visualizations
differently than those who do not [26].
Evaluating visual data analysis and reasoning. While a re-
searcher must dictate the tasks in a controlled laboratory experi-
ment, another scenario is the observation of tasks in an open-ended
qualitative evaluation of a visualization tool or technique. Here,
the researcher must recognize when these task sequences appear in
naturalistic settings, in order to better understand how visual data
analysis and reasoning are supported following the introduction of
a new visualization system. This form of evaluation is typical in
design studies [39, 43], particularly after a tool is deployed.

As with evaluations of work practices, our characterization of
task sequences could become part of a lexicon for coding observed
behaviour after a tool is deployed. In cases where direct obser-
vation of tool use is not possible, our characterization of task se-
quences might be used to analyze interaction log files, or used as a
basis for diary or interview questions, suggesting a consistent vo-
cabulary for participant responses. Precedents for the use of task
characterization in evaluation of deployed tools include the adop-
tion of Yi et al.’s characterization [56] in a longitudinal field study
of a social network analysis tool [36], or the use of Brehmer and
Munzner’s task typology [7] to evaluate why and how journalists
used a tool for analyzing large document collections [6].

Finally, if we consider the task sequences name synthesized di-
mensions and name clusters in particular, one conceivable evalua-
tion of visual data analysis and reasoning would involve collecting
participant annotations and explanations of synthesized dimensions
or clusters in visualizations of dimensionally-reduced data. Such a
study might adopt a protocol similar to one used by Willett et al. to
elicit participant annotations and explanations of time-series visu-
alizations in an application deployed online [52]. This evaluation



could help to identify the features of a visualization tool that facil-
itate or inhibit visual data analysis and reasoning.

6.2 Limitations and Future Work
Our interview findings are certainly not exhaustive, and despite

conducting interviews with twenty-four analysts, only ten of these
analysts contributed to our characterization of task sequences. This
selection was based on our goal of studying task sequences relating
to visualizing data reduced with dimensional synthesis techniques.
There are many other interesting areas of high-dimensional data
analysis that we did not address. Specifically, we found that many
of our excluded interviewees used dimensional filtering techniques,
in which a subset of the original dimensions are retained [19, 55].
Alternatively, other analysts applied dimensionality reduction to
their data without visually analyzing it. In these cases, dimension-
ality reduction was used to reduce the data for algorithmic input,
such as for classification and other machine learning applications.

We consider our findings to be existence proofs of the task se-
quences as performed by analysts as part of their ongoing work. We
do not make claims about the prevalence of these task sequences in
high-dimensional data analysis. Neither we do not make claims
about completeness: our characterization of task sequences might
be incomplete due to sampling or observer bias.
Future work. We intend to use our characterization of task se-
quences in future tool development, particularly in the design and
evaluation of workflows: software instantiations of features to sup-
port these sequences. We plan to conduct further analysis of our
collected data, characterizing the visualization techniques and tools
used by the analysts we interviewed to perform these task se-
quences, situating these techniques among those proposed in the
literature, and considering further implications for design. Finally,
we hope to expand upon this set of task sequences to characterize
additional high-dimensional data tasks, including those relating to
data resulting from dimensional filtering.

7. CONCLUSION
We presented a characterization of five task sequences related to

visualizing dimensionally-reduced data. Our abstract characteriza-
tion of these task sequences fills a gap between the large body of
technique-driven literature and analysts’ domain problems in this
area. We encourage other researchers to consider these task ab-
stractions in the evaluation of existing work practices, in the dis-
cover phase of future design studies involving high-dimensional
data and dimensionality reduction, in the design of controlled ex-
periments, and in field evaluations of deployed systems.
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