
Supplementary Appendices

Cascaded Displays: Spatiotemporal Superresolution using Offset Pixel Layers

Felix Heide Douglas Lanman Dikpal Reddy Jan Kautz Kari Pulli David Luebke
NVIDIA Research

This document contains additional results and analysis in support of the primary text.

A Weighted Nonnegative Matrix Factorization

Let us first again formulate the weighted nonnegative matrix factorization problem (WNMF) which we are trying
solve for the various spatial superresolution application in the paper. Given a non-negative matrix T ∈ Rm×n

+ , and a
target rank r < min(m,n), we want to solve:

Aopt,Bopt = argmin
A∈Rm×r

+ ,B∈Rn×r
+

1
2

∥∥T−ABT
∥∥2

W

= argmin
A∈Rm×r

+ ,B∈Rn×r
+

1
2

∥∥W◦T−W◦ABT
∥∥2

F

(S.1)

A.1 A Comparison of Weighted NMF Algorithms for Cascaded Display Factorization

A few efficient algorithms for weighted NMF are known. In this work, we consider the weighted multiplicative
update rules by Blondel et al. [2008], the weighted rank-one residue iteration (WRRI) method [Ho 2008], and the
alternating least-squares Newton (ALS-Newton) method [Paatero and Tapper 1994]. In the following we we analyze
their convergence, their numerical stability and their runtime on a recent GPU.

1 2 3 4 5 6 7 8 9
350

400

450

500

550

600

650

O
bj

ec
tiv

e

Iteration

Weighted Rank−one Residue
ALS−Newton
Blondel

1 2 3 4 5 6 7 8 9
34

34.5

35

35.5

36

36.5

P
S

N
R

 in
 d

B

Iteration

Weighted Rank−one Residue
ALS−Newton
Blondel

Figure S.1: Convergence with double precision factorization (rank-1 factorization on 1576× 1050 target image).
Left: Objective function, Right: PSNR for comparison.

In Figure S.1 we use each algorithm to factorize a target HD image (1576× 1050 pixels) into a rank-1 dual-layer
representation, as discussed in Section 3 in the paper. In this case, we ran each algorithm using double precision
floating point numbers. As can be seen, all three methods achieve similar results after a few iterations. We note
though that WRRI achieves better quality when few iterations are applied.

1 2 3 4 5 6 7 8 9
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100
O

bj
ec

tiv
e

Iteration

Weighted Rank−one Residue
ALS−Newton
Blondel

1 2 3 4 5 6 7 8 9
33.5

34

34.5

35

35.5

36

P
S

N
R

 in
 d

B

Iteration

Weighted Rank−one Residue
ALS−Newton
Blondel

0 10 20 30 40 50 60
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

O
bj

ec
tiv

e

Time in ms

Weighted Rank−one Residue
ALS−Newton
Blondel

0 10 20 30 40 50 60
33.5

34

34.5

35

35.5

36

P
S

N
R

 in
 d

B

Time in ms

Weighted Rank−one Residue
ALS−Newton
Blondel

Figure S.2: Convergence with single precision factorization (rank-1 factorization on 1576× 1050 target image).
Left: Objective function, Right: PSNR for comparison. Top: Iterations. Bottom: GPU Timings.

In Figure S.2 we show the convergence of the three algorithms when using floating point precision. As is evident
Blondel et al.’s update rules are numerically less stable than WRRI and ALS-Newton. Furthermore, we have im-
plemented all three methods on the GPU (Geforce GTX 770M) to compare actual run-time, which matters more
than pure convergence rate (bottom of figure). WRRI produces better factorizations in less time compared to the
other two methods. It is the fastest due to fewer required memory accesses (2× less than the other methods). As for
Blondel et al.’s method, we found images, where it never produced visually acceptable results. We note that in this
example ALS-Newton is quite fast for rank-1, which is predominantly because we have adapted it to our specific
problem of for rank-1 factorizations (see Section A.3).

The following table lists the performance we achieve when running three iterations with each method for a 1576×
1050 frames (timings averaged over 10 frames):

Method Newton WRRI Blondel
Time in [ms] 15.554 12.256 18.053

FPS 64.3 81.6 55.4

As can be seen, WRRI is certainly fast enough to be used in real-time applications, such as interactive content or
video playback.

A.2 Weighted Nonnegative Matrix Factorization for Joint Spatiotemporal Superresolution

Let us formulate the general spatio-temporal superresolution optimization problem. If we stack every pixel value at
every staggered refresh time in a large vector for each layer, we can model the spatio-temporal layer reconstruction
again as a weighted rank-1 NMF problem.

As in the previous section, assume we are given a non-negative matrix T ∈ Rm×n
+ . Then we want to solve:

aopt,bopt = argmin
a∈Rm

+,b∈Rn
+

1
2

∥∥T−CP1abT P2
∥∥2

W

= argmin
a∈Rm

+,b∈Rn
+

1
2

∥∥W◦T−W◦CP1abT P2
∥∥2

F

(S.2)

The vectors a,b are very large here, as they contain all layer pixels over all timesteps. The matrices P1,P2 are
permutation matrices, where P1 will permute the rows of the abT which contains all possible spatial and temporal
layer interactions (forward and backward in time). The matrix P2 will permute the columns of this matrix. Together
they permute abT , so that the resulting matrix contains the stacked image corresponding to a particular time-step in
one column. The weight matrix W assigns 0 weight to the large parts of this matrix, which correspond to no layer
interaction. Finally, the matrix C is a potential blur applied to the superresolved image (e.g., a diffuser). A small
blur allows an additive spatial coupling of nearby pixels.

After describing the spatio-temporal optimization problem ((S.2)), we now derive matrix factorization update rules.
For simplicity we do this using the well-known multiplicative Lee and Seung NMF rules [Lee and Seung 1999],
including the weight-adaption by Blondel et al. [2008]; however our derivations apply to other NMF algorithms
straightforwardly. The Blondel et al. NMF rules for Eq. (S.1) were:

B← B◦ (W◦T)T A
(W◦ABT)T A

, A← A◦ (W◦T)B
(W◦ABT)B

. (S.3)

where the double lines () denote elementwise division. After deriving the corresponding rules for (S.2) by follow-
ing the same approach as Ho [Ho 2008], we found that for our generalization of the NMF problem we can use the
following simpler derivation. Let us substitute

A := CP1a

B :=
(
bT P2

)T
= PT

2 b
(S.4)

Then we get for the first update of Eq. (S.3):

B = PT
2 b← PT

2 b◦ (W◦T)T (CP1a)
(W◦CP1abT P2)T (CP1a)

⇔ P2PT
2 b← P2PT

2 b◦ P2(W◦T)T (CP1a)
P2(W◦CP1abT P2)T (CP1a)

⇔ b← b◦ P2(W◦T)T (CP1a)
P2(W◦CP1abT P2)T (CP1a)

⇔ b← b◦ (PT
1 CT (W◦T)PT

2)
T a

(PT
1 CT (W◦CP1abT P2)PT

2)
T a

(S.5)

Line three follows because permutations matrices have the property P−1 = PT . The last line shows that the update
can be computed efficiently in parallel. It is very similar to the updates from (S.3). The update for a follows from

symmetry:

a← a◦ (PT
1 CT (W◦T)PT

2)b
(PT

1 CT (W◦CP1abT P2)PT
2)b

(S.6)

Our derivation using (S.4) can be applied analogously to the WRRI update-rules.

A.3 Real-Time Rank-1 Factorizations using an Alternating Least Squares using Newton

As discussed by Ho [2008], the alternating least squares method for non-negative matrix factorization is rarely used,
because it is inefficient. In contrast, the more recent WRRI is very efficient, which is why it is used in our paper.
However, we have discovered that for our specific problem and for rank-1 factorizations, there is an interesting way
to speed up ALS-Newton considerably.

For rank r = 1, our general nonnegative matrix factorization problem from Eq. (S.1) simplifies to:

aopt,bopt = argmin
a∈Rm

+,b∈Rn
+

1
2

∥∥T−abT
∥∥2

W (S.7)

In an alternating least squares scheme, one solves the biconvex problem from above by alternately solving for one
of the two variables a,b while fixing the other one and iterating (Algorithm 1).

Algorithm 1 Rank-1 Alternating Least Squares weighted NMF

1: k = 0, a0
opt = ainit ,b0

opt = binit

2: repeat
3: bk+1

opt := argmin
b∈Rn

+

1
2

∥∥T−abT
∥∥2

W . b-step

4: ak+1
opt := argmin

a∈Rm
+

1
2

∥∥T−abT
∥∥2

W . a-step

5: k := k+1
6: until Optimality achieved

We note that for our case r = 1, we can actually remove the non-negativity constraint (i.e., b ∈ Rn
+ and a ∈ Rm

+)
in step 3 and 4. The trick is that after solving the unconstrained (and hence convex) subproblems of Algorithm 1,
we can always project the solution to a non-negative solution with the same objective function value (or better) by
simply flipping the sign of the negative elements (assuming that the previous solution does not harm the constraint
as well). So we get the algorithm shown in Algorithm 2.

Algorithm 2 Unconstrainted Rank-1 Alternating Least Squares weighted NMF

1: k = 0, a0
opt = ainit ,b0

opt = binit

2: repeat
3: bk+1

opt := argmin
b

1
2

∥∥T−abT
∥∥2

W . b-step

4: bk+1
opt := sign

(
bk+1

opt
)
◦bk+1

opt

5: ak+1
opt := argmin

a

1
2

∥∥T−abT
∥∥2

W . a-step

6: ak+1
opt := sign

(
ak+1

opt
)
◦ak+1

opt
7: k := k+1
8: until Optimality achieved

We have formulated our non-convex problem now as a sequence of convex optimization problems. Let us consider
the b-step in algorithm 2; the derivations for a-step follow from symmetry. We solve the b-step using Newton’s

method which has quadratic convergence. For that we derive the gradient and Hessian of f (b) with:

bopt = argmin
b

1
2

∥∥T−abT
∥∥2

W

= argmin
b

1
2
‖DWt−DWOab‖2

F

= argmin
b

1
2
(
tT DT

WDWt−2tT DT
WDWOab+OT

a DWOab
)

= argmin
b

1
2
(
tT D2

Wt−2tT D2
WOab+OT

a DWOab
)

︸ ︷︷ ︸
f (b)

(S.8)

where in line two we have introduced the matrices D(·), which puts the matrix from the subscript on the diagonal and
the matrix O(·), which corresponds to the outer vector product operation with the vector in the subscript and the rhs,
followed by vectorization. The second line allows us to remove the Frobenius norm and we can now easily derive
the gradient and Hessian of f . For the gradient we get

∇ f = OT
a DWOab−OT

a D2
Wt

= OT
a DW◦(abT)−W◦W◦T1

(S.9)

The operator OT
a is the same as the outer vector product operation plus subsequent summation over the rows of the

resulting matrix. So we simply need to do the pointwise operation W◦abT −W◦W◦T, do the outer product with
a, sum over the rows of the corresponding matrix, which yields then the gradient w.r.t. b. For the Hessian we get a
diagonal matrix with

∂ 2 f
∂b2 = OT

a DWOa

= OT
a DW◦(a·1T)

(S.10)

By using the Newton method we can exploit the structure of our problem. Since the Hessian H(f) = D ∂2 f
∂b2

is a

diagonal matrix, the inverse in Newton’s method becomes simply a pointwise division and we get Algorithm 3:

Algorithm 3 Full newton for rank 1
1: repeat
2: bk+1

opt := bk+1
opt −

∇ f
∂2 f
∂b2

. Pointwise division

3: k := k+1
4: until Optimality achieved

We now have all the components to implement Algorithm 2. The resulting method is very efficient, but is still
slightly slower than WRRI, as demonstrated in Section A.1.

B Real-time CUDA Code for Rank-1 Factorization

We include our CUDA code for real-time rank-1 matrix factorizations. Our timings in Section A.1 were computed
with this kernel. The code supports three different update rules, Blondel et al.’s, WRRI, and ALS Newton.

The code itself consists of two kernels, one computes the the nominator (or gradient) and denominator (or Hessian)
for an update (for a considered layer) and another one performs the update given those components. Note, how the
three methods are surprisingly similar in terms of code.

1

2 /
3 / / rank−1 m a t r i x f a c t o r i z a t i o n f o r NMF, WRRI, ALS Newton
4 /
5

6 / / Computes d e n o m i n a t o r (o r h e s s i a n) [d denom] and n o m i n a t o r (o r g r a d i e n t) [d nom] f o r u p d a t e r u l e s f o r
7 / / l a y e r A [d A] or l a y e r B [d B] g i v e n t h e f r a g m e n t s (f o r numCh c o l o r c h a n n e l s) .
8

9 / / The i n t e g r a t e d f r a g m e n t c o l o r v a l u e s [d s a m p l e s] , t h e i r n o r m a l i z e d a r e a [d w e i g h t s] and
10 / / i n t e r s e c t i o n i n d i c e s on each l a y e r [d l a y e r I n t] a r e g i v e n f o r t h e f r a g m e n t s .
11

12 / / The k e r n e l s u p p o r t s NMF (method == 0) , WRRI (method == 1) , NEWTON (method == 2)
13

14 s t a t i c __global__ vo id factorization_kernel (f l o a t ∗d_A , f l o a t ∗d_B , i n t width_layer , i n t height_layer ,←â
i n t numCh , f l o a t ∗ d_samples , f l o a t ∗ d_weights , i n t numFragments , i n t ∗ d_layerInt , i n t ABflag , ←â

f l o a t ∗d_denom , f l o a t ∗ d_nom , i n t method)
15 {
16 / / Vars
17 f l o a t denom , nom , a_curr , b_curr , t_curr , w_curr , val ;
18 i n t layerAIdx , layerBIdx ;
19

20 / / P a r a l l e l ove r f r a g m e n t s
21 i n t fch = blockIdx .x ∗ blockDim .x + threadIdx .x ;
22 f o r (; fch < numFragments ∗ numCh ; fch += gridDim .x ∗ blockDim .x)
23 {
24 / / I n d i c e s
25 i n t f = fch % numFragments ;
26 i n t ch = fch / numFragments ;
27

28 / / Channel o f f s e t
29 i n t chOffLayer = ch ∗ (width_layer ∗ height_layer) ;
30

31 / / For c u r r e n t f r a g m e n t e x t r a c t i n d i c e s on bo th l a y e r s and t h e f r a g m e n t s a r e a
32 layerAIdx = d_layerInt [2 ∗ f + 0] ;
33 layerBIdx = d_layerInt [2 ∗ f + 1] ;
34

35 / / T a r g e t image f r a g m e n t v a l u e
36 t_curr = d_samples [fch] ;
37 a_curr = d_A [chOffLayer + layerAIdx] ;
38 b_curr = d_B [chOffLayer + layerBIdx] ;
39 w_curr = d_weights [f] ;
40

41 / / Update and a c c u m u l a t e
42 i f (ABflag == 0) / / Update A (ABflag == 0) , o r u p d a t e B (ABflag != 0)
43 {
44 i f (method == 0)
45 {
46 / / #### NMF
47 denom = (a_curr ∗ b_curr ∗ w_curr) ∗ b_curr ; / / Denominator wr t A
48 nom = b_curr ∗ (t_curr ∗ w_curr) ; / / Nominator wr t A
49 }
50 e l s e i f (method == 1)
51 {
52 / / #### WRRI
53 denom = (b_curr ∗ b_curr) ∗ w_curr ; / / Denominator wr t A
54 nom = b_curr ∗ (t_curr ∗ w_curr) ; / / Nominator wr t A
55 }

56 e l s e i f (method == 2)
57 {
58 / / #### NEWTON
59 nom = a_curr ∗ (b_curr ∗ b_curr) ∗ w_curr − b_curr ∗ t_curr ∗ w_curr ∗ w_curr ; / / Grad wr t←â

A
60 denom = b_curr ∗ b_curr ∗ w_curr ; / / H e s s i a n wr t A
61 }
62

63 / / Accumulate
64 atomicAdd (&(d_denom [chOffLayer + layerAIdx]) , denom) ;
65 atomicAdd (&(d_nom [chOffLayer + layerAIdx]) , nom) ;
66 }
67 e l s e
68 {
69 i f (method == 0)
70 {
71 / / #### NMF
72 denom = a_curr ∗ (a_curr ∗ b_curr ∗ w_curr) ; / / Denominator wr t B
73 nom = a_curr ∗ (t_curr ∗ w_curr) ; / / Nominator wr t B
74 }
75 e l s e i f (method == 1)
76 {
77 / / #### WRRI
78 denom = (a_curr ∗ a_curr) ∗ w_curr ; / / Denominator wr t B
79 nom = a_curr ∗ (t_curr ∗ w_curr) ; / / Nominator wr t B
80 }
81 e l s e i f (method == 2)
82 {
83 / / #### NEWTON
84 nom = (a_curr ∗ a_curr) ∗ b_curr ∗ w_curr − a_curr ∗ t_curr ∗ w_curr ∗ w_curr ; / / Grad wr t ←â

B
85 denom = a_curr ∗ a_curr ∗ w_curr ; / / H e s s i a n wr t B
86 }
87

88 / / Accumulate
89 atomicAdd (&(d_denom [chOffLayer + layerBIdx]) , denom) ;
90 atomicAdd (&(d_nom [chOffLayer + layerBIdx]) , nom) ;
91 }
92

93 }
94 }
95

96

97 / / Upda tes t h e l a y e r s A [d A] or l a y e r B [d B] g i v e n t h e p r e v i o u s l y computed
98 / / d e n o m i n a t o r (o r h e s s i a n) [d denom] and n o m i n a t o r (g r a d i e n t) [o r d nom] .
99

100 / / The k e r n e l s u p p o r t s NMF (method == 0) , WRRI (method == 1) , NEWTON (method == 2)
101 / / The a r r a y s d denom and d nom a r e r e s e t a f t e r w a r d s .
102

103 s t a t i c __global__ vo id update_kernel (f l o a t ∗d_A , f l o a t ∗d_B , i n t width_layer , i n t height_layer , i n t ←â
numCh , f l o a t ∗d_denom , f l o a t ∗ d_nom , i n t ABflag , i n t method)

104 {
105 / / Va ls
106 f l o a t val , nom , denom ;
107

108 / / P a r a l l e l ove r o u t p u t
109 i n t xych = blockIdx .x ∗ blockDim .x + threadIdx .x ;
110 f o r (; xych < width_layer ∗ height_layer ∗ numCh ; xych += gridDim .x ∗ blockDim .x)
111 {
112

113 / / Nom and denom
114 denom = d_denom [xych] ;
115 nom = d_nom [xych] ;
116

117 / / Get c u r r e n t v a l and do u p d a t e
118 i f (ABflag == 0)
119 {
120

121 i f (method == 0)
122 {

123 / / #### NMF
124 val = d_A [xych] ;
125 d_A [xych] = fminf (fmaxf (val ∗ fmaxf (nom , 1 . 0E−9) / (denom + 1 . 0E−9) , 0 .f) , 1 .f) ;
126 }
127 e l s e i f (method == 1)
128 {
129 / / #### WRRI
130 / / Wr i t e
131 i f (denom <= 0)
132 {
133 d_A [xych] = 0 .f ;
134 }
135 e l s e
136 {
137 d_A [xych] = fminf (fmaxf (fmaxf (nom , 0 . f) / denom , 0 .f) , 1 .f) ;
138 }
139 }
140 e l s e i f (method == 2)
141 {
142 / / #### NEWTON
143 / / Wr i t e
144 val = d_A [xych] ;
145 d_A [xych] = fminf (fmaxf (val − nom /denom , 0 .f) , 1 .f) ;
146 }
147

148 }
149 e l s e
150 {
151

152 i f (method == 0)
153 {
154 / / #### NMF
155 val = d_B [xych] ;
156 d_B [xych] = fminf (fmaxf (val ∗ fmaxf (nom , 1 . 0E−9) / (denom + 1 . 0E−9) , 0 .f) , 1 .f) ;
157 }
158 e l s e i f (method == 1)
159 {
160 / / #### WRRI
161 / / Wr i t e
162 i f (denom <= 0)
163 {
164 d_B [xych] = 0 .f ;
165 }
166 e l s e
167 {
168 d_B [xych] = fminf (fmaxf (fmaxf (nom , 0 . f) / denom , 0 .f) , 1 .f) ;
169 }
170 }
171 e l s e i f (method == 2)
172 {
173 / / #### NEWTON
174 / / Wr i t e
175 val = d_B [xych] ;
176 d_B [xych] = fminf (fmaxf (val − nom /denom , 0 .f) , 1 .f) ;
177 }
178

179 }
180

181 / / R e s e t nom and denom
182 d_denom [xych] = 0 .f ;
183 d_nom [xych] = 0 .f ;
184 }
185 }

Listing 1: Real-time matrix factorization code.

C Nonnegative Tensor Factorization for Multi-Layer Cascaded Displays

Multi-layer cascaded displays require a weighted nonnegative tensor factorization (WNTF). We use multiplicative
update rules in this circumstance, generalizing the two-layer update rules given by Equation 4 in the primary text.
However, WRRI rules for WNTF are provided by Ho [2008] in his Chapter 4.5. We briefly summarize the mul-
tiplicative WNTF rules, as they apply for spatial superresolution with cascaded multi-layer displays (i.e., three or
more layers placed in direct contact). We point the interested reader to Ho [2008] for extended discussion of WNTF.

The image formation model presented in Section 3.1 can be generalized to three layers as follows:

si1,i2,i3 =
K

∑
k=1

wi1,i2,i3

(
a(k)i1 b(k)i2 c(k)i3

)
, (S.11)

where we assume a bottom layer with I1 pixels, a middle layer with I2 pixels, and a top layers with I3 pixels. As in
the primary text, K time-multiplexed frames are presented to the viewer at a rate exceeding the critical flicker fusion
threshold. The transmissivity of pixel i3 in the top layer, for frame k, is denoted c(k)

i3
, such that 0≤c(k)

i3
≤1. Note that

wi1,i2,i3 denotes the cumulative overlap of pixels i1, i2, and i3.

At this point, we adopt a tensor representation for our image formation model. We encourage readers to refer to
Kolder and Bader [2009] and Wetzstein et al. [2012] for a review of multilinear algebra; in particular, we emphasize
that the latter develops a closely-related application of WNTF to multi-layer 3D displays. Similar to these references,
we define the canonical decomposition of an order-3, rank-K tensor as follows:

[[X,Y,Z]] :=
K

∑
k=1

xk ?yk ? zk, (S.12)

where ? denotes the vector outer product and {xk,yk,zk} represent column k of their respective matrices. Equa-
tion S.11 can be used to concisely express image formation by a three-layer cascaded display:

S=W◦ [[A,B,C]] =W◦

(
K

∑
k=1

ak ?bk ? ck

)
, (S.13)

where S is a sparse I1×I2×I3 tensor containing the effective emissivities of the subpixel fragments, W is also a
sparse I1×I2×I3 tensor tabulating the cumulative pixel overlaps, and ◦ denotes the Hadamard (elementwise) product.
Observe that {ak,bk,ck} represent the pixel values displayed on their respective layers during frame k (e.g., in
lexicographic order); hence, matrix A equals the concatenation of the frames displayed on the first layer such that
A = [a1,a2, . . . ,aK] (similarly for the other layers).

Given this image formation model, we propose the following objective function for optimal three-layer factoriza-
tions:

argmin
{0¨A¨1, 0¨B¨1, 0¨C¨1}

1
2

∥∥W◦ (βT− [[A,B,C]])‖2
2. (S.14)

Similar to Equation 3 in the primary text, β is the dimming factor applied to the target subpixel fragment emissivities
W ◦T. Following from Wetzstein et al. [2012], this objective can be minimized by application of the following
multiplicative update rules.

A← A◦

(
(W(1) ◦

(
βT(1)

)
)(C�B)

(W(1) ◦ (A(C�B)T))(C�B)

)
(S.15)

B← B◦

(
(W(2) ◦

(
βT(2)

)
)(C�A)

(W(2) ◦ (B(C�A)T))(C�A)

)
(S.16)

C← C◦

(
(W(3) ◦

(
βT(3)

)
)(B�A)

(W(3) ◦ (C(B�A)T))(B�A)

)
(S.17)

Target Image Conventional Single-Layer Display Cascaded Four-Layer Display

Figure S.3: Cascaded four-layer display using a two-frame factorization. In this simulated example, the “drift”
image was spatially superresolved by a factor of 16 using a stack of four light-attenuating layers, each shifted by
1/4 of a pixel, along each axis. The target image, the depiction with a single (low-resolution) display layer, and the
reconstruction using a cascaded four-layer display are shown from left to right. Notice the significant upsampling
achieved by the cascaded four-layer display. (Motorsport image courtesy Aurélien Vialatte.)

Layer 1 Layer 2 Layer 3 Layer 4

Fr
am
e
1

Fr
am
e
2

Figure S.4: Factorized layers and frames for the example in Figure S.3.

For completeness, we reiterate from that work that, in these expressions, � expresses the Khatri-Rao product:

X�Y = [x1 ?y1, x2 ?y2, · · · , xK ?yK]. (S.18)

Following Kolda and Bader [2009], X(n) is the unfolding of tensor X, which arranges the mode-n fibers of X into
sequential matrix columns. Generalization to higher factorization orders (i.e., greater numbers of layers) is provided
in that reference, as well as Wetzstein et al. [2012], and Ho [2008].

Simulated factorization results are shown in Figure S.3, with the individual layers and frames presented in Figure S.4.
Note that we generalize the lateral offset to maximize the superresolution capability: by progressively shifting each
layer by 1/4 of a pixel—creating 16 times as many subpixel fragments as pixels on a single layer. Given this
aggressive superresolution goal, we report that single-frame (i.e., order-4, rank-1) factorizations do not accurately
reproduce a target high-resolution image. However, we find that two-frame (i.e., order-4, rank-2) factorizations
achieve such high superresolution factors, as demonstrated by the fidelity of the inset regions in Figure S.3.

In summary, we have provided a generalized framework for cascaded displays that encompasses arbitrary numbers
of offset pixel layers and numbers of time-multiplexed frames; however, we emphasize that cascaded dual-layer dis-
plays remain our central focus: providing a means to quadruple spatial resolution with practical display architectures
supported by real-time factorization methods (e.g., the cascaded LCD screen and LCoS projector prototypes).

D Details on CFAs for Cascaded Displays

LCD panels primarily achieve color display by the addition of a color filter array, comprising a periodic array of
spectral bandpass filters. Typically, three neighboring columns of individually-addressible subpixels, illuminated
by a white backlight, are separately filtered into red, green, and blue wavelength ranges, together representing a
single full-color pixel column. At sufficient viewing distances, spatial multiplexing of color channels becomes
imperceptible. We observe that cascaded dual-layer LCDs can still double the vertical resolution when vertically-
aligned CFAs are present on each layer. However, increasing the horizontal resolution proves problematic without
modifying the CFA structure. We propose two such modifications: the use of multiple color filters per pixel (on the
top-most layer) and the use of cyan-yellow-magenta CFAs; use of both results in cascaded dual-layer LCDs that
appear as an single LCD with twice the number of color subpixels along each axis.

Each subpixel fragment may depict a different color if it has an independent color filter. As a result, we propose
constructing cascaded dual-layer LCDs using monochromatic panels (i.e., those free of any color filter arrays). As
shown in the Figure 1 in the paper, offsetting such displays by half a pixel, both horizontally and vertically, creates
four times as many subpixel fragments as pixels on a single layer. To create a spatially-multiplexed color display,
a custom CFA is fabricated that has one color filter per subpixel fragment. This can be achieved by fabricating one
panel with a CFA with half the pitch as a conventional panel, such that two vertically-aligned color filters are present
at each pixel in the outermost display panel.

Figure S.5: Creation of subpixel fragments by dual-layer cascaded displays with cyan-yellow-magenta color filter
arrays (CFAs). (Top Left) Similar to Figure 1 in the paper, the rear layer of a cascaded dual-layer display is
fabricating similar to existing displays: a fixed CFA is manufactured, such that a single filter acts on each column
of pixels. Unlike conventional displays, traditional red-greed-blue filters are replaced with cyan-yellow-magenta
triplets. (Bottom Left) A second light-absorbing display is placed in direct contact with the rear display layer, which
an identical CFA. (Right) Once again, the geometric overlap of offset pixel layers creates an array of subpixel
fragments. The spectral overlap of the color filters creates an effective CFA that appears as a traditional red-greed-
blue filter pattern with twice the pitch as the underlying CFAs. Note that the effective CFA could also be achieved
simply by manufacturing one of the layers using a red-greed-blue CFA with twice the normal pitch, with no CFA
placed in the other layer.

Fabricating higher-frequency CFAs may require significant engineering investment. As an alternative, we propose
stacking two LCD panels with identical color filter arrays (see Figure S.5). However, unlike conventional LCDs
with red, green, and blue filters, we propose substituting materials capable of transmitting cyan, yellow, and magenta
wavelength ranges. The superposition of two dissimilar filters synthesizes red (i.e., combinations of magenta and
yellow), green (i.e., combinations of cyan and yellow), and blue (i.e., combinations of cyan and magenta) colors.

Consider a pair of LCDs with periodic columns of cyan, yellow, and magenta filters, beginning with a cyan column
on the left-hand side. We propose positioning the second panel with an offset of one-and-a-half pixels to the right
and half a pixel up or down (see Figure S.5). Such a configuration appears with twice as many subpixel fragments
along each dimension, covered by what appears to be a conventional red-green-blue CFA with twice the pitch of the
CFA in each layer.

This idea can be extended to other sub-pixel layouts and color filters, such as a 2×2-grid of cyan, yellow, magenta,
and white. When offset by a quarter pixel in each dimension, we quadruple resolution, but now have apparent
cyan, yellow, magenta, red, green, blue, and white sub-pixels. We emphasize that our description of multi-layer
cyan-yellow-magenta CFAs is not all-encompassing, and is offered as an illustrative example. As with the 2×2-
grid, more general CFA patterns and filter bandpass spectra can be used with the basic principle: overlapped CFAs
can synthesize arbitrary target CFAs that modulate individual subpixel fragments, while utilizing existing display
manufacturing processes that create a single color filter per pixel, per display layer.

We emphasize that emerging high-speed LCDs may eliminate the need for CFAs, instead using field-sequential color
(FSC), in which monochromatic panels sequentially display each color channel, while the backlight color is altered.

E Extended Analysis

E.1 Simulated Quality Comparison on a Dataset of Natural Images

Table S.1 and Table S.2 analyze the quality of a set of superresolved images using three alternative display superres-
olution techniques (in terms of PSNR and SSIM): additive superresolution, optical pixel sharing, and our cascaded
displays. The conclusion from the paper holds here as well. Single-frame cascaded displays achieve a better qual-
ity than two-frame additive superresolution displays, both in terms of PSNR and SSIM. Cascaded displays achieve
roughly the quality of a two-frame OPS display: the average PSNR of single-frame cascaded displays is slightly less
than for the jointly optimized OPS (our improvement to the original OPS paper), but our average single-frame SSIM
is slightly better than jointly optimized OPS; overall we consider the quality roughly equal. Cascaded displays with
two or more frames outperform all other methods by significant margins.

conventional
additive

(two frames)
additive

(four frames)

OPS
(two frames,

edge-optimal)

OPS
(two frames,

edge&smooth-
optimal)

cascaded
(one frame)

cascaded
(two frames)

cascaded
(three frames)

cascaded
(four frames)

Agama 29.34 35.64 46.09 33.01 36.28 35.70 49.34 69.59 90.67
Baba in Nepal 26.11 31.84 43.19 28.40 30.53 31.86 46.54 72.29 94.24

Bamberg 23.81 29.80 35.36 27.49 31.20 29.94 43.21 64.70 75.53
Bird 27.66 33.65 41.48 30.80 33.81 34.02 46.70 66.60 79.41
Drift 28.06 36.44 44.98 32.99 36.51 36.61 51.28 72.51 87.37

Farmer 27.81 33.37 44.20 30.79 33.48 33.44 48.16 71.18 90.60
Fire 29.25 35.12 41.12 33.96 37.91 36.35 49.74 65.19 74.29
Fly 24.66 29.12 34.70 30.46 34.00 29.46 39.71 54.10 68.08

Gypful 31.25 37.16 44.74 38.24 44.25 37.73 51.47 68.02 80.51
Laser 31.05 35.59 45.98 34.53 36.86 36.49 53.34 79.92 94.54
Libelle 28.09 33.77 41.42 32.74 36.49 34.02 45.57 63.69 75.56

Painted Ladies 27.19 34.87 43.08 31.37 34.59 34.82 50.97 70.35 84.88
Porsche 25.64 31.58 35.81 30.59 34.47 31.95 45.38 64.03 78.30
Suzuka 27.42 33.12 38.52 34.71 38.96 33.78 45.51 62.24 74.97
Townhall 24.81 30.12 36.41 30.17 33.99 30.07 42.51 66.00 85.15

Trapp 28.18 34.89 41.78 35.95 39.18 35.72 47.84 69.62 83.74
Vespula 27.38 32.51 42.22 30.49 33.00 32.80 45.18 64.76 79.80

Glarus Cow 25.04 29.40 37.29 27.78 30.20 29.68 42.93 66.88 80.96
Melinaea 32.00 38.90 47.43 39.33 44.75 39.50 53.98 70.18 83.50
Mototaxis 29.37 35.88 45.17 33.16 36.49 36.26 49.63 70.09 84.20

AVG 27.71 33.64 41.55 32.35 35.85 34.01 47.45 67.60 82.32

OPS
(two frames,

edge-optimal,
per-image)

OPS
(two frames,

edge&smooth
per image)

33.10 36.28
28.43 30.53
27.64 31.20
30.85 33.81
33.04 36.51
30.79 33.48
33.97 37.91
30.49 34.00
38.35 44.25
34.53 36.86
32.75 36.49
31.39 34.59
30.82 34.47
34.71 38.96
30.18 33.99
36.00 39.18
30.57 33.00
27.85 30.20
39.38 44.75
33.17 36.49

32.40 35.85

Table S.1: Peak signal-to-noise (PSNR) in [dB] for a set of natural images. Three alternatives are compared:
additive superresolution displays using either two or four frames, optical pixel sharing (OPS) using two frames,
and cascaded displays using one, two, three and four frames. We emphasize that additive superresolution uses a
single display layer, whereas OPS and cascaded displays employ two display layers. For OPS we have included
two versions, one where we have optimized its edge-theshold and used 1/ε = 8 for smoothing as described in the
paper. We have also included a second version where we have jointly optimized for both, the edge-threshold and
the smoothing parameter 1/ε , which was not described in the original paper. For the optimization of the optimal
parameters for this image set, we have used the average PSNR in the last row of this table as the objective function.
For the table on the right (in grey) we have optimized the OPS parameters per image for the best achievable quality.

E.2 Spatial Superresolution: Slanted Edge MTF Measurements

We also compare MTFs that are computed using the slanted edge method [Burns 2000] in Figure S.6. In this case,
the MTF is estimated from the profile of the slanted edge. Note how we the slanted edge MTF of our cascaded
display matches the MTF of the target image. We also observe that OPS reproduces the slanted edge very well, since
there is enough pixel intensity in the bright regions that it can redistribute to the edge. Please note that this breaks
down for natural images (as shown in the section above and for more challenging frequency charts, i.e., the MTF via
chirp in the paper).

conventional
additive

(two frames)
additive

(four frames)

OPS
(two frames,

edge-optimal)

OPS
(two frames,

edge&smooth-
optimal)

cascaded
(one frame)

cascaded
(two frames)

cascaded
(three frames)

cascaded
(four frames)

Agama 2.6819 2.9338 2.9948 2.8110 2.8898 2.9347 2.9957 2.9998 3.0000
Baba in Nepal 2.3541 2.8304 2.9867 2.5766 2.6989 2.8309 2.9941 3.0000 3.0000

Bamberg 2.4238 2.8530 2.9664 2.6849 2.8079 2.8582 2.9939 2.9999 3.0000
Bird 2.5995 2.8977 2.9833 2.7635 2.8512 2.9076 2.9948 2.9999 3.0000
Drift 2.6366 2.9347 2.9952 2.7703 2.8567 2.9383 2.9979 3.0000 3.0000

Farmer 2.4702 2.8611 2.9911 2.6746 2.7938 2.8621 2.9945 2.9999 3.0000
Fire 2.7300 2.9278 2.9822 2.8539 2.9108 2.9455 2.9975 2.9999 3.0000
Fly 2.5230 2.8480 2.9653 2.8059 2.8885 2.8591 2.9909 2.9997 3.0000

Gypful 2.8332 2.9515 2.9916 2.9227 2.9729 2.9563 2.9976 2.9998 3.0000
Laser 2.3728 2.7674 2.9792 2.6453 2.7673 2.7936 2.9956 3.0000 3.0000
Libelle 2.7461 2.9319 2.9879 2.8552 2.9125 2.9373 2.9957 2.9998 3.0000

Painted Ladies 2.5505 2.9046 2.9860 2.7454 2.8435 2.9050 2.9973 2.9999 3.0000
Porsche 2.5691 2.8784 2.9672 2.7760 2.8664 2.8858 2.9959 2.9999 3.0000
Suzuka 2.6407 2.9244 2.9847 2.7885 2.8694 2.9339 2.9965 2.9999 3.0000
Townhall 2.5729 2.8691 2.9712 2.8250 2.9047 2.8688 2.9932 2.9998 3.0000

Trapp 2.8018 2.9700 2.9950 2.9100 2.9472 2.9753 2.9986 3.0000 3.0000
Vespula 2.4246 2.8383 2.9818 2.6663 2.7743 2.8501 2.9928 2.9999 3.0000

Glarus Cow 2.1670 2.7186 2.9634 2.4766 2.6263 2.7331 2.9893 2.9999 3.0000
Melinaea 2.8529 2.9548 2.9949 2.9171 2.9594 2.9569 2.9978 2.9999 3.0000
Mototaxis 2.6415 2.9205 2.9917 2.7765 2.8611 2.9245 2.9968 3.0000 3.0000

AVG 2.5796 2.8858 2.9830 2.7623 2.8501 2.8928 2.9953 2.9999 3.0000

OPS
(two frames,

edge-optimal,
per-image)

OPS
(two frames,

edge&smooth
per image)

2.828 2.890
2.578 2.699
2.685 2.808
2.765 2.851
2.788 2.857
2.685 2.794
2.861 2.911
2.808 2.889
2.942 2.973
2.651 2.767
2.868 2.913
2.754 2.844
2.779 2.866
2.808 2.869
2.831 2.905
2.915 2.947
2.666 2.774
2.477 2.626
2.932 2.959
2.788 2.861

2.771 2.850

Table S.2: Structural similarity index (SSIM [Wang et al. 2004]) as a sum over all color channels for a set of natural
images. Three alternatives are compared: additive superresolution displays using either two or four frames, optical
pixel sharing (OPS) using two frames, and cascaded displays using one, two, three and four frames. We emphasize
that additive superresolution uses a single display layer, whereas OPS and cascaded displays employ two display
layers. For OPS, we have included two versions, one where we have optimized its edge-theshold and used 1/ε = 8
for smoothing as described in the paper. We have also included a second version where we have jointly optimized
for both the edge-threshold and the smoothing parameter 1/ε , which was not described in the original paper. For
the optimization of the optimal parameters for this image set, we have used the average SSIM in the last row of this
table as the objective function. For the table on the right (in grey) we have optimized the OPS parameters per image
for the best achievable quality.

Target Conv. Disp. Add. 2 Fr. Add. 4 Fr. OPS Cascaded 2 Fr.
0 0.5 1 1.5 2

0%

20%

40%

60%

80%

100%

Cycles per pixel

Target Image

Conventional

Additive (2 Frames)

Additive (4 Frames)

Optical Pixel Sharing

Cascaded (2 Frames)

Figure S.6: Slanted edge comparison between target image, conventional display, additive displays with 2 and 4
frames, OPS, and cascaded displays (rank-2). On the right, we show the slanted edge MTF measurement for the
different methods.

E.3 HDR Analysis of Cascaded Displays

Similar to other dual-modulations displays reviewed in Section 2.2, cascaded displays also increase the dynamic
range. Figure S.7 presents the appearance of a linear ramp using a a pair of 8-bit cascaded displays. As observed
throughout this section, reconstruction artifacts due to compression are nearly eliminated by adopting two-frame
factorizations.

Figure S.7: High dynamic range (HDR) applications of cascaded displays. A target ramp (left) is presented with a
single 8-bit display (middle) and a cascaded display using two 8-bit layers (right).

E.4 Analysis of Temporal Superresolution on a Natural Movie

In the following, we compare the quality of our temporal superresolution vs. the at the original lower frame rate. To
this end, we compute the PSNR and SSIM between the target video at superresolved frame rates and our method
and the normal-framerate (i.e., low-framerate) video (called “naive” in the figure.).

0 20 40 60 80 100 120 140
10

15

20

25

30

35

40

45

Frame

P
S

N
R

Our reconstruction
Naive

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

Frame

S
S

IM

Our reconstruction
Naive

Figure S.8: PSNR and SSIM over movie frames (“drift sequence”, see video supplemental).

Supplementary References

BLONDEL, V., HO, N.-D., AND VAN DOOREN, P. 2008. Weighted nonnegative matrix factorization and face
feature extraction. In Image and Vision Computing, 1–17.

BURNS, P. D. 2000. Slanted-edge mtf for digital camera and scanner analysis. In Proc. IS&T 2000 PICS Conference.

HO, N.-D. 2008. Nonnegative Matrix Factorization Algorithms and Applications. PhD thesis, Université catholique
de Louvain.

KOLDA, T. G., AND BADER, B. W. 2009. Tensor decompositions and applications. SIAM Review 51, 3, 455–500.

LEE, D. D., AND SEUNG, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature
401, 6755, 788–791.

PAATERO, P., AND TAPPER, U. 1994. Positive matrix factorization: A non-negative factor model with optimal
utilization of error estimates of data values. Environmetrics 5, 2, 111–126.

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image Processing 13, 4, 600–612.

WETZSTEIN, G., LANMAN, D., HIRSCH, M., AND RASKAR, R. 2012. Tensor displays: Compressive light field
synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, 80:1–80:11.

	Weighted Nonnegative Matrix Factorization
	A Comparison of Weighted NMF Algorithms for Cascaded Display Factorization
	Weighted Nonnegative Matrix Factorization for Joint Spatiotemporal Superresolution
	Real-Time Rank-1 Factorizations using an Alternating Least Squares using Newton

	Real-time CUDA Code for Rank-1 Factorization
	Nonnegative Tensor Factorization for Multi-Layer Cascaded Displays
	Details on CFAs for Cascaded Displays
	Extended Analysis
	Simulated Quality Comparison on a Dataset of Natural Images
	Spatial Superresolution: Slanted Edge MTF Measurements
	HDR Analysis of Cascaded Displays
	Analysis of Temporal Superresolution on a Natural Movie

