
Cartel Documentation

Russell Gillette & Darcy Harrison

April 2014

1 Overview
Cartel is a mesh visualization and modification tool designed for simplicity and clarity. It is built on
top of a basic OpenGL 3.3 environment using the GLFW windowing system, and enables complex
rendering effects through the easy use of shaders and textures. Deployment and compilation are
simple due to the use of few, and common, dependencies.

2 Dependencies
The libraries included with the build are for VisualStudio 2012 or later, and the source code includes
some (though not many) C++ 11 operations, and thus will not work with earlier compilers. That
said, there is nothing OS specific within the code, and alternative libraries are easily acquired at the
below links.

2.1 GLEW
GLEW is the extension wrangler library for OpenGL that allows the use of newer OpenGL func-
tionality on computers that do not support it. You will never have to do anything using this library,
its just included, and thus worth mentioning. Its home webpage is here:

http://glew.sourceforge.net/

2.2 GLM
GLM is the open gl math extensions and provides a lot of useful functionality when interfacing with
GLSL, the OpenGL shader language. This library provides types, and functions on those types
used SOLELY FOR RENDERING. This is important, because the glm types do not offer double
precision, and do not interface easily with Eigen. Use glm only for visual effects or when passing
data to the GPU in main.

http://glm.g-truc.net/0.9.5/index.html

2.3 GLFW
GLFW is the windowing system used by Cartel. It is a common replacement for GLUT, and was
chosen due to its nicer rendering loop and newer interface. This windowing library is cross-platform,
allowing the deployment of this system across OSes, but does, at the time of writing this, make
setting up this project on a linux system with integrated graphics difficult.

http://www.glfw.org/

1

http://glew.sourceforge.net/
http://glm.g-truc.net/0.9.5/index.html
http://www.glfw.org/

2.4 Eigen
Eigen is the back-end linear-algebra library used by Cartel, and the largest source of complexity
within the project. This library makes heavy use of templates, but is well documented. Documen-
tation can found here:

http://eigen.tuxfamily.org/index.php?title=Main_Page

Please see §6 for common usage mistakes.

3 Classes

3.1 Model
Model is the main mesh container class, containing both the DrawMesh for rendering the loaded
mesh, and the EditMesh for operating on the mesh. It exposes both draw operations from the
DrawMesh, and edit operations from the EditMesh, so any functionality that has been added to
either of those classes will need to be propagated into this class as well. Due to this separation of
rendering and modification it is important to increment the edit count within EditMesh after each
modification so that the changes can be properly propagated.

3.2 DrawMesh
The DrawMesh is responsible for mesh rendering, and contains the mesh data as a formatted block
of memory with 32bit precision, rather than the 64bit precision offered when editing. This class is
only ever populated from the EditMesh (not the other way). Data is stored within a VBuffer, which
allows for various different data packing schemes, and uses the IBuffer to properly associate the data
block with faces.

3.3 VBuffer
The VBuffer class contains the allocated block of memory with a 32bit precision version of the
mesh. It also contains the packing information for the data, such as the offset to the start of a given
attribute (position/normal/texture data) and the stride between specific elements.

3.4 IBuffer
The IBuffer class is a simple buffer containing only the face index (or other index) information to
be used in rendering the mesh.

3.5 EditMesh
The EditMesh class contains a high precision version of the mesh in a half-edged data structure (see
§5). It is from this mesh which the DrawMesh is populated.

As of right now, normals are not stored in the edit mesh, but are calculated upon transfer to
the DrawMesh as face normals (thus vertices are duplicated per face). Texture Coordinates are not
saved.

3.6 OBJLoader
This class does what you would expect it to. It parses .obj files. An interface from which to use this
functionality is provided in "MeshUtils.h".

2

http://eigen.tuxfamily.org/index.php?title=Main_Page

3.7 WorldState
This class is a singleton to contain "world" or global data, and is responsible for toggling between
shaders, returning the current shader in the GL state, maintaining the tranformation matrices,
and storing materials, textures, and lights to be used inside of shaders. THIS CLASS IS NOT
RESPONSIBLE FOR INPUTS OR WINDOW INFORMATION. This global singleton is accessible
in main as "w_state".

3.8 ControlState
This class is a singleton responsible for input and window state, as well as all GLFW callbacks. It
is accessible in main as "c_state".

3.9 RenderState
RenderState objects contain the GLbuffer id’s and VertexArray id’s that have been allocated by
opengl. When passed to the Model as initialization it specifies which set of buffers to use when
rendering. It is safe to use only one RenderState, but performance may be gained by thoughtful
allocation.

3.10 Texture
Textures are as of right now un-used, but the class is provided should texturing or texture effects be
desired for rendering. This class is meant to be an interface for texture-type specific implementations,
and thus should never be used on its own.

3.10.1 Texture2D

Defined in "TextureTypes.h", this class extends Texture and provides all of the necessary state
setup for use with 2D Textures. (Note that these textures must be square. For non-square textures,
Rectangle Textures will need to be implemented)

3.10.2 TextureCubeMap

Defined in "TextureTypes.h", this class extends Texture and provides all of the necessary state setup
and interfaces for use with Cube Map Textures.

4 Auxiliary Functions

4.1 MeshUtils.h
"MeshUtils.h" contains utility functions that operate on meshes, or construct meshes, but which are
not specific to a given mesh.

4.2 ShaderUtils.h
"ShaderUtils.h" provides utility functions for shaders, such as functions to load shaders from files,
build shaders, and compile shader programs.

4.3 TextureUtils.h
"TextureUtils.h" provides utility functions for textures including the construction of texture objects
from files.

3

5 Half-Edge Data Structure
Cartel uses a "half-edge" data structure. Each edge of a 2-manifold triangle mesh is represented by
a pair of directed "half-edges", one on each adjacent face or hole. The half-edges form a counter-
clockwise directed loop by linking to the next (forward adjacent) half-edge in the face or hole. The
triangles of the mesh are each defined implicitly by the directed loop of 3 half-edges. A half-edge also
references the vertex it originates on, the face it resides in, and the twin half-edge which is resides
on the opposite side of the edge.

5.1 Components
Each half-edge requires:

1. The face it belongs to

2. The next half-edge in the face loop, in a counter-clockwise direction. These two half-edges
share exactly one vertex.

3. The twin half-edge that is adjacent on the same vertices but in a different face. It is directed
opposite of this one (ie. If this half-edge is directed v0 → v1 the twin is directed v1 → v0.

4. The origin vertex of this half-edge. A half-edge directed v0 → v1 will store a reference to v0.
The next half-edge in the loop

These four components are sufficient to implement all manner of interesting geometry processing
algorithms. Given an arbitrary half-edge h in a triangle, the vertices can be retrieved via:

v0 = h.vert

v1 = h.next.vert

v2 = h.next.next.vert

(1)

In order for the mesh to track the all the triangular faces, it is sufficient to store a reference
to an arbitrary half-edge in each face. The vertices can be easily retrieved via the directed list of
half-edges as shown in Equation (1).

For easy traversal of a vertex 1-ring, each vertex stores a reference to an arbitrary half-edge
originating from it.

5.2 Boundaries
Meshes are often not closed ie. there are some edges which do not have adjacent triangles on (at
most) one side. The polygonal region of empty space is referred to as a hole, edges adjacent to it
are referred to as boundary edges. Our half-edge data structure handles places half-edges within the
hole polygon so that every half-edge has a well defined twin. An alternative option (not pursued
in this library) is to use a sentinel value to indicate when a half-edge does not have a twin. There
are other benefits to our approach which merit its use. Half-edges in holes reference a special face
reserved for holes. Holes are essentially treated just like any other face, except they have a special
index, can have arbitrary degree (ie. not restricted to triangles), and are wound in opposite direction
(ie. clockwise).

4

5.3 Common Operations
5.3.1 Face → Vertex Iteration

Given a face fi, we can visit all the vertices in the face by starting from the arbitrary half-edge
H(fi) associated with it.

h = H(fi)

v0 = h.vert

v1 = h.next.vert

v2 = h.next.next.vert

(2)

5.3.2 Vertex 1-Ring Iteration

Given a vertex vi, we can visit all of the vertices {vj} which share an edge with vi by starting
from the arbitrary half-edge H(vi) associated with the vertex, then iterating around the edges in a
clockwise manner.

h0 = H(vi).twin

v0 = h0.vert

hj = hj−1.next.twin

vj = hj .vert j = 1, 2, . . . ,Degree(vi)− 1

(3)

5.3.3 Vertex → Face Iteration

Given a vertex vi, we can visit all of the faces that are adjacent on this vertex by starting from the
arbitrary half-edge H(vi) associated with the vertex, then iterating around the faces in a clockwise
manner.

h0 = H(vi)

f0 = h0.face

hj = hj−1.twin.next

fj = hj .face j = 1, 2, . . . ,Degree(vi)− 1

(4)

5.3.4 Face Neighbor Iteration

Given a face fi, we can visit the three neighboring faces by visiting the half-edges of fi and their
twins.

h = H(fi)

f0 = h.twin.face

f1 = h.next.twin.face

f2 = h.next.next.twin.face

(5)

5.4 Implementation Details
The half-edge data structure is implemented more or less as described in § 5.1. All arrays are
implemented via std::vector< T >.

• There is an array of half_edge structures each of which stores: the integer index of the next
half-edge in its directed face loop, the integer index of the twin half-edge adjacent on the same

5

vertices, the integer index of the face this half-edge is associated with, and the integer index
of the vertex that this half-edge originates out of.

• There is an array with an entry for each vertex, which stores the integer index of an arbitrary
half-edge which originates from that vertex. There is another array of Eigen::Vector3d objects
for the location of each vertex in space.

• There is an array with an entry for each face, which stores the integer index of an arbitrary
half-edge which defines that face.

5.5 Rationale
Storing indexes can be problematic when deleting half-edges, faces, etc. Our current approach
switches the index at the back side of the id array for the position being deleted prior to removing
the index, such that no space is left in the array. This approach has the unfortunate drawback that
it re-orders ids, and thus when traversing one of the index lists it is important to iterate in reverse
order (such that all out of order ids have already been traversed).

In our implementation we considered many alternatives to this scheme, but found all of them
to have their own problems. These alternatives include: Storing permanent ids, flagging objects as
deleted but not removing them, or else storing ids within a linked list data-structure (each element
allocated on the heap). Permanent ids increases the lookup time, requiring either a hash-table or
binary look-up. Hash-tables incur a non-trivial overhead, and binary look-up increases the traversal
time of the mesh significantly. Flagging objects as deleted results in non-existent elements remaining,
and thus requires the non-intuitive check for deleted elements while traversing the mesh. Finally,
linked-list data stores do not allow random access, thus having a large traversal time (unless pointers
are stored). More importantly, each element would require an allocation, which is extremely costly.

6 Common Mistakes

6.1 Eigen Mistakes
• std data-structures must use the aligned allocators provided by eigen

std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d> >

• due to implicit type casts, sometimes operations will not work. This is resolved by proper
placement of parenthesis

<double> * (Eigen::Rotation2Dd(<double>) * <Eigen::Vector2d>)

• Eigen has had past bugs where linear solves choose the wrong solver to use internally or do not
come up with the correct result. These problems are all fixed, but it is a good precautionary
measure to validate your result by simply multiplying them by your matrix to ensure Ax = b
holds.

6

	Overview
	Dependencies
	GLEW
	GLM
	GLFW
	Eigen

	Classes
	Model
	DrawMesh
	VBuffer
	IBuffer
	EditMesh
	OBJLoader
	WorldState
	ControlState
	RenderState
	Texture
	Texture2D
	TextureCubeMap

	Auxiliary Functions
	MeshUtils.h
	ShaderUtils.h
	TextureUtils.h

	Half-Edge Data Structure
	Components
	Boundaries
	Common Operations
	Face Vertex Iteration
	Vertex 1-Ring Iteration
	Vertex Face Iteration
	Face Neighbor Iteration

	Implementation Details
	Rationale

	Common Mistakes
	Eigen Mistakes

