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Figure 1: PolyCut generated PolyCubes combine a small singularity count with low distortion. (Bimba con Nostra mesh provided courtesy
of INRIA by the AIM@SHAPE model repository; fertility idol provided courtesy of Frank ter Haar by the AIM@SHAPE model repository.)

Abstract

PolyCubes, or orthogonal polyhedra, are useful as parameteriza-
tion base-complexes for various operations in computer graphics.
However, computing quality PolyCube base-complexes for general
shapes, providing a good trade-off between mapping distortion and
singularity counts, remains a challenge. Our work improves on
the state-of-the-art in PolyCube computation by adopting a graph-
cut inspired approach. We observe that, given an arbitrary input
mesh, the computation of a suitable PolyCube base-complex can
be formulated as associating, or labeling, each input mesh trian-
gle with one of six signed principal axis directions. Most of the
criteria for a desirable PolyCube labeling can be satisfied using a
multi-label graph-cut optimization with suitable local unary and
pairwise terms. However, the highly constrained nature of Poly-
Cubes, imposed by the need to align each chart with one of the
principal axes, enforces additional global constraints that the la-
beling must satisfy. To enforce these constraints, we develop a
constrained discrete optimization technique, PolyCut, which em-
beds a graph-cut multi-label optimization within a hill-climbing lo-
cal search framework that looks for solutions that minimize the cut
energy while satisfying the global constraints. We further optimize
our generated PolyCube base-complexes through a combination of
distortion-minimizing deformation, followed by a labeling update
and a final PolyCube parameterization step. Our PolyCut formu-
lation captures the desired properties of a PolyCube base-complex,
balancing parameterization distortion against singularity count, and
produces demonstrably better PolyCube base-complexes then pre-
vious work.
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1 Introduction

PolyCubes, or orthogonal polyhedra, are volumes bounded by axis-
aligned planes. Recent research has highlighted the advantages of
using PolyCubes as base-complexes for parametrizing closed sur-
faces and volumes for applications including surface texture map-
ping [Tarini et al. 2004; Yao and Lee 2008], hexahedral meshing
[Gregson et al. 2011; Xia et al. 2010], trivariate spline fitting [Wang
et al. 2007], and volumetric texturing [Chang and Lin 2010]. How-
ever, construction of quality PolyCubes that provide an optimal
trade-off between parametrization distortion and chart or singular-
ity counts remains a challenge. Consequently, most of the works
above rely on manually or semi-manually constructed PolyCubes.

We improve on the state-of-the-art in automatic PolyCube base-
complex computation by recasting the problem as one of mesh seg-
mentation, or labeling, followed by PolyCube geometry extraction
and subsequent parameterization. We observe that, by construction,
a PolyCube parameterization re-orients triangle normals on the in-
put mesh, aligning each normal with a signed principal axis direc-
tion. These per-triangle alignment choices define a segmentation
of the surface mesh into charts, which map to axis-aligned faces
of the PolyCube. We therefore formulate PolyCube base-complex
extraction as a labeling computation which associates each input
mesh triangle with one of six possible orientations minimizing the
labeling cost subject to global constraints arising from the require-
ments to minimize distortion and ensure PolyCube validity. To
compute the desired labeling we use a discrete optimization frame-
work, we name PolyCut, that embeds multi-label graph-cut opti-
mization within a local search algorithm that resolve these global
constraints.

We demonstrate our new method on a large number of inputs and
compare our results to the state-of-the art [Lin et al. 2008; He et al.
2009; Gregson et al. 2011], highlighting the improvement in terms
of parameterization distortion, compactness, and singularity counts
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Figure 2: (left) Segmentation with non-monotone boundaries (lo-
cations where boundary orientations change, or turning points,
highlighted in yellow) leads to extreme mapping distortion; our al-
ternative with all monotone boundaries (center) (color corresponds
to axis direction: ±X - blue,±Y - red,±Z - gray) allows low dis-
tortion parameterization (right). (Kitten model provided courtesy
of Frank ter Haar by the AIM@SHAPE model repository.)

(Section 5). On average, our method reduces the number of sin-
gularities by 30%, while simultaneously improving the parameter-
ization stretch. To demonstrate the advantages of using our better
base-complexes, we use the resulting PolyCubes for hex-meshing,
leading to better mesh quality than that provided by the most recent
PolyCube based approach [Gregson et al. 2011].

Our key contributions that make this improvement possible are cast-
ing PolyCube computation as a multi-label graph cut problem, and
introducing a discrete optimization algorithm capable of generating
the desired constrained labelings that balance mapping distortion
against singularity counts.

1.1 Problem Statement and Overview

Our main challenge is to compute a labeling that induces a low-
distortion parametrization between the input model and the base-
complex, while keeping both the number of singularities (chart cor-
ners), and the number of charts, low. In addition to reducing the
number of singularities, coarser, or more compact segmentations,
also allow users to reduce the element count for applications such
as hex-meshing, or volume and surface fitting.

Segmentation compactness must be weighed against parameteriza-
tion distortion. To predict the distortion for a given labeling, we
consider both chart orientation and chart boundary shape. We ex-
pect charts to map to planar axis-aligned polygons with low para-
metric distortion, and to have ninety degree dihedral angles along
chart boundaries. Consequently, as observed by Gregson et al.
[2011], given a suitable coordinate system a local proxy of the dis-
tortion can be provided by measuring the angle between the normal
of each triangle and the oriented axis it is associated with. We refer
to this metric as geometric fidelity. Fidelity serves as a proxy for es-
timating the distortion caused by flattening each chart and rotating
them so as to form the ninety degree dihedral angles. In PolyCube
parameterization, an additional source of distortion comes from the
need to map chart boundaries to the axis-aligned straight edges
of the PolyCube. Thus, both shape and direction of the bound-
aries must be taken into account during labeling. In particular each
boundary must have a uniquely defined direction with respect to
the corresponding axis, defined by the cross-product of the normals
associated with the adjacent charts. We therefore need to avoid
non-monotone chart boundaries, ones where the direction as com-
puted on the input segmentation switches sign (Figure 2, left), as
in these cases ”straightening” the boundary to map it to the cor-
responding PolyCube edge would require extreme distortion. We
therefore aim to compute all-monotone labelings with no turning
points, i.e. locations along boundaries where the boundary direc-

tion switches sign.

Finally, the chart connectivity has to define a valid PolyCube topol-
ogy, or structure. As pointed out by Eppstein and Mumford [2010]
the necessary and sufficient set of topological conditions on Poly-
Cube validity remains unknown. Hence we only enforce the set of
criteria listed in [Eppstein and Mumford 2010] as sufficient to pro-
vide valid PolyCube topology for genus zero objects. As they show,
a segmentation will not produce a valid PolyCube if charts associ-
ated with opposite orientations of the same axis share a boundary,
or if any chart has less than four neighbors. Additionally, one can-
not guarantee that a PolyCube embedding of a graph exists unless
each vertex in the graph has valence three, i.e. all segmentation
corners must have valence three.

Overview Our PolyCut labeling algorithm is explicitly designed
to address these requirements. We first observe that most of the
properties above can be encoded locally: we can express fidelity
via per-triangle labeling preferences, and can use binary terms relat-
ing pairwise label correlations between adjacent triangles to encode
the preference for compact segmentations, ones that have shorter
inter-chart boundaries, as well as some of the validity terms. A
labeling that optimizes a weighted function of these terms can be
computed via a graph-cut based multi-label optimization frame-
work (Section 3.1), yielding segmentations which prove a good
balance between compactness and fidelity. By minimizing chart
boundary length, this computation also tends to reduce boundary
curvature. However, it can, and does, introduce non-monotonicity
along chart boundaries since, depending on input geometry, non-
monotone boundaries (Figure 2, left) may better satisfy local fi-
delity (e.g. on the kitten’s nose) and sometimes also be shorter (e.g.
on his right ear) than monotone alternatives. While locally opti-
mal, such boundaries are clearly undesirable. Since the graph-cut
approach is purely local, it can also introduce charts with less than
four boundaries.

To leverage the advantages of the graph-cut approach while sat-
isfying the global monotonicity and boundary count constraints,
we embed the graph-cut optimization as a local step within a dis-
crete constrained optimization framework (Section 3, Figure 4). We
start with an unconstrained solution and then use a specialized lo-
cal search algorithm, based around the hill-climbing optimization
technique [Hoos and Sttzle 2004], which searches for valid all-
monotone segmentations while remaining close to the initial la-
beling. Each step of the algorithm locally perturbs the optimized
fidelity term in the vicinity of turning points on the detected non-
monotone boundaries, and re-applies the graph-cut optimization
with a set of constraints aimed at minimizing deviation from the
best obtained solution. The results of the relabeling are used to up-
date the constraints, and to guide the location and magnitude of
the next perturbation. The process terminates once all the non-
monotone boundaries are resolved, and all charts are valid. We
use the resulting constrained solution to characterize the axis orien-
tation for each chart boundary, and modify the boundaries to better
align with these orientations. The final base-complex PolyCube and
the cross-parameterization are then generated using a combination
of mesh deformation and distortion minimization (Section 4).

2 Related Works

Our work is related to research in several areas reviewed below.

PolyCube Parameterization and its Applications: PolyCube
parameterization was introduced to graphics by Tarini et al. [2004]
as a method for extending cube mapping to general shapes. Poly-
Cube maps allow geometry and texture data to be efficiently stored
as square or rectangular images, generalizing Geometry Images



Figure 3: Both He et al. [2009] and Gregson et al. [2011] generate PolyCubes with redundant or poorly placed charts (frames and zoom-in
highlight unnatural/spurious charts ) which introduce artifacts in downstream applications such as hex-meshing (Figure 14). Our method
successfully balances compactness and mapping distortion. Statistics for all models included in Table 1. (Bunny model courtesy of Stanford
Model Repository.)

[Gu et al. 2002]. The advantages of PolyCube maps over irreg-
ular meshes include a more regular and compact representation,
cache-friendly data access, easy texture filtering, and smooth chart
boundaries for texturing. PolyCubes also make ideal base domains
for GPU subdivision and multiresolution representation [Xia et al.
2011], and can be effectively used in quad and hex remeshing [Xia
et al. 2010; Han et al. 2010; Gregson et al. 2011] as they can be
trivially meshed with a regular quad or hex grid.

Given a PolyCube base-complex and a corresponding segmentation
of the input model, a low distortion mapping between the PolyCube
and the input can be computed via a number of both general [Tarini
et al. 2004; Wang et al. 2007; Wan et al. 2011; Wang et al. 2008]
and application-specific methods [Xia et al. 2010; Han et al. 2010;
Li et al. 2010b].

Mesh Segmentation and Base-Complex Construction: Mesh
segmentation is a well researched problem [Shamir 2008] with
many methods aiming for some trade-off between an appropriate
data, or fidelity, term and a related compactness metric. Similarly,
parameterization over different base-complexes has a long history
in mesh processing, see [Sheffer et al. 2006] and [Bommes et al.
2013] for surveys of construction of base-complexes with triangu-
lar and quad faces respectively.

What distinguishes our problem from those addressed by these bod-
ies of work is the highly constrained nature of PolyCubes imposed
by the need to align charts with one of the three principal axes,
and consequently the unique validity and monotonicity constraints
it enforces. To the best of our knowledge, global constraints such
as those have not been tackled in previous segmentation or base-
complex construction setups.

PolyCube Base Complexes: Despite the variety of applications
that benefit from PolyCubes, most of the parameterization meth-
ods reviewed above rely on manually constructed base-complexes
(i.e. [Xia et al. 2011]), with only a handful of methods addressing
automatic construction. The first automatic PolyCube construction
method [Lin et al. 2008] uses the Reeb graph of the input object
and tends to produce overly coarse base domains that lack geomet-
ric fidelity resulting in excessive parameterization distortion. The
voxelization approach of Wan et al. [2011] exhibits similar artifacts.
Both methods lack means to refine the PolyCubes. The divide and

conquer approach [He et al. 2009] captures the geometric features,
leading to low distortion, but introduces multiple redundant singu-
larities (Figure 3, left). Gregson et al. [2011] (Figure 3, center)
generate PolyCubes using a combined deformation/segmentation
algorithm based on rotating surface normals towards the principal
axes. Although this method improves the domains considerably,
the number of singularities remains unnecessarily high, largely due
to a heuristic post-process the authors employ to improve mono-
tonicity. As the authors acknowledge, the method is not guaranteed
to produce a valid or all-monotone boundary PolyCube and in our
experiments failed to do so on a number of models (e.g see the
girl statuette in Figure 13). Our PolyCut method is explicitly de-
signed to generate compact segmentations while satisfying fidelity,
monotonicity and validity (Figure 3, right), generating better Poly-
Cubes in terms of distortion and singularity counts when compared
to these methods (Section 5, Table 1 ).

A related line of work [Li et al. 2010a;
Li and Qin 2012; Li et al. 2012] con-
siders coarse block-decomposition of low-
frequency models for tri-variate spline fit-
ting. These blocks define a quad base

mesh of the model’s surface, but in general do not correspond to
a valid PolyCube embedding (left).

3 PolyCut Segmentation

Our algorithm takes a triangle mesh as input and outputs a corre-
sponding PolyCube base-complex and a cross-parametrization be-
tween the two. Our key insight is that while directly optimizing
for a PolyCube base-complex that minimizes distortion is hard, it
suffices to optimize for the four criteria defined in Section 1, using
fidelity and monotonicity as a reasonable proxy for mapping dis-
tortion. To this end, we decouple the problem of finding the best
distortion-minimizing parameterization from the generation of the
PolyCube segmentation and treat them as two separate processes
(Figure 4). It is instructive to think of the first step, described here,
as a topological step, which produces a PolyCube segmentation,
and the second step as a geometric step which takes the segmenta-
tion and uses it to generate the actual PolyCube geometry and the
parameterization with respect to the input mesh (Section 4).



Figure 4: Algorithm Stages: The first, topological, step of our method produces a good quality PolyCube segmentation of the input mesh
(left), and is followed by a geometric step which defines the PolyCube vertex positions and a cross-parameterization between this PolyCube
and the input mesh (right). Our topological step first uses multi-label optimization to compute a segmentation that satisfies our compactness,
fidelity, and local validity constraints, but can contain non-monotone boundaries (turning points highlighted in yellow). It then uses discrete
optimization to resolve these boundaries and generate a valid segmentation.

We observe that most of the requirements for a good PolyCube seg-
mentation can be expressed locally, and involve a condition on ei-
ther one triangle, or two adjacent triangles. In particular, we note
that two of the Steinitz criteria for orthogonal polyhedra [Eppstein
and Mumford 2010] can be expressed as purely local constraints.
Unfortunately, monotonicity is not a condition that can be formu-
lated locally, as detecting a change in a boundary’s orientation with
respect to the corresponding axis requires at the very least consid-
ering two adjacent mesh edges. Moreover, such purely local evalu-
ation may provide multiple false positives as it will depend on the
local mesh connectivity. Once we have a labeling, however, the sit-
uation improves: we can robustly detect when a chart boundary is
non-monotone (see Section 3.2.1), and identify the turning points,
see Figure 5, where the boundary orientation changes. Moreover,
as shown in this figure, such boundaries typically can be resolved
by locally adjusting the segmentation in the problematic areas.

Similarly, one cannot a priori locally optimize for, or even evalu-
ate, the number of chart boundaries before a labeling is computed.
Once a labeling exists, however, counting them is trivial. In prac-
tice charts with less than four boundaries either have non-monotone
boundaries and are seamlessly resolved once these boundaries are
corrected (Figure 5) or are small enough to be simply discarded.
Thus, they require minimal special processing in our framework.

Figure 5: Zooming-in on a set of non-monotone boundaries in
an unconstrained segmentation of the bunny (Figure 4) and their
monotone solutions: A. Extending the non-monotone boundary to
reach another boundary; B. straightening a boundary; C. intro-
ducing a new chart with different label; D. Extending two non-
monotone boundaries to reach one another. Note that the list is not
exhaustive as multiple turning point configurations can exist within
one chart or even along a single boundary curve.

Motivated by these observations, we use multi-label graph-cut opti-
mization as a building block in our algorithm, employing it to com-
pute locally optimal segmentations within a global discrete con-
strained optimization framework. The goal of this constrained op-
timization framework is to enforce monotonicity and validity while
minimally increasing the fidelity and compactness costs compared
to an unconstrained solution. We observe that in order to enforce
monotonicity with minimal cost increases, we must support a va-
riety of topological strategies for resolving each detected turning
point (Figure 5): e.g. straightening the offending boundary portion,
extending the boundary until the turning point touches another chart
and the boundary gets split in two, or even adding a new chart with
a different label from those sharing the non-monotone boundary.
The optimal choice depends on the local geometry, and may involve
complex interplay between nearby non-monotone boundaries (e.g.
Figure 5, D). Instead of a set of rigid heuristics, such as the one used
by the post-process in [Gregson et al. 2011] we opt for a solution
guided by the input data, and in particular the fidelity term which
encodes the local surface geometry. In particular, we observe that
the labeling algorithm would automatically resolve non-monotone
boundaries if we locally bias the fidelity cost around the turning
points in an appropriate direction (Figure 6). We therefore search
for the minimal local bias, in terms of area of impact and magni-
tude, that achieves this goal for each turning point.

The high-level framework we adopt can be summarized as follows.
We start by computing an unconstrained locally optimal labeling
(Section 3.1). We then use this labeling as a starting point for a local
search that resolves any non-monotone boundaries that the labeling
contains, while minimally deviating from the input solution. This
search explores possible local changes in the fidelity terms around
the turning points and repeatedly reruns the labeling following each
such change and re-evaluates the result prior to deciding on the next
set of changes (Section 3.2). To facilitate convergence and avoid
introducing new turning points, after each labeling step we evaluate
the validity and monotonicity of the produced charts and prevent
the subsequent labeling steps from changing the shape of any valid
charts with all monotone boundaries. The process terminates once
all charts are deemed valid and monotone. This process can be
seen as a special case of the classical hill-climbing [Hoos and Sttzle
2004] discrete optimization framework.

The hill climbing approach produces a locally near-optimal result
which satisfies global constraints, but is not designed to explic-
itly consider parameterization distortion, and in particular bound-



Figure 6: Selective biasing, sometimes minuscule (top) and some-
times more significant (bottom), of the fidelity term around turning
points resolves non-monotonicity. (top) Left to right: original fi-
delity costs for positive X (gray) assignment and a turning point
on the initial segmentation of bunny’s paw. Slightly increasing this
cost near the turning point resolves the boundary. (bottom) Same
process for back thigh requires larger increase to be propagated
across for the turning point to be resolved.

ary alignment with the corresponding oriented axes. To improve the
segmentation we use the assigned labels to detect preferred bound-
ary orientations, and then fine-tune chart boundaries while keeping
the chart topology intact (Section 3.2.2).

3.1 Graph-Cut Based Labeling

The graph cut algorithm described here provides the starting point,
or initial guess, for the local search labeling framework. We express
the fidelity versus compactness trade-off as an energy minimization
problem, in which each triangle t must be assigned one of six dis-
crete labels. Each label s ∈ {−X,+X,−Y,+Y,−Z,+Z} repre-
sents a signed normal direction ~s along the corresponding axis. We
search for a segmentation S which minimizes the energy E(S):

E(S) =
∑
t∈T

Ft(st) + c ·
∑
pq∈E

Cpq(sp, sq) (1)

subject to local validity constraints.

The unary fidelity term Ft(st) describes the cost of assigning
the label st to a triangle t, while the binary compactness term
Cpq(sp, sq) is the cost of assigning the label sp to a triangle p and
the label sq to a triangle q. The constant c serves as a user control
for the overall compactness of the PolyCube; the higher the value
of c, the more compact the resulting PolyCube becomes. We set
c = 3 unless otherwise specified (Section 5).

We now describe the fidelity and compactness terms in detail. The
cost of assigning a triangle t to a given label s is measured as a
function of the angle between the triangle normal ~nt and the label
direction ~s:

Ft(s) = 1− e−
1
2

(
~nt·~s−1
σ

)2

(2)

Setting σ = 0.2, using the three-sigma rule, yields a labeling cost
that goes from 0, when the triangle normal and label direction are
perfectly aligned, to close to 1, when the angle between the normal
and the label direction is approximately 65 degrees. Note that a
normal that is equidistant to each of the X, Y and Z axes will be at a
55-degree angle to each of them; our choice of maximum penalty is
designed to weakly differentiate between labeling costs when these
angles are close to 55. Example fidelity terms, and a labeling gen-
erated using the fidelity term alone, are shown in Figure 7.

Figure 7: The graph cut method weighs fidelity against compact-
ness. (left) The fidelity term expresses the cost of assigning a trian-
gle to one of the six principal axis directions (here, shown for the
positive Z (gray) and positive Y (red), cost range is from red (zero)
to one (blue)). (right) Labeling using fidelity alone produces noisy
results which may be better in some areas of the model but much
worse in others compared to the result in Figure 4a, obtained by
balancing fidelity against compactness.

The compactness term is designed to minimize boundary length.
Hence we set the cost Cpq(sp, sq) for two triangles sharing a com-
mon edge to 0 if the two triangles share the same label. For adjacent
triangles assigned two different labels, we set the cost to a function
of the dihedral angle between the two:

Cpq (sp, sq) = e
− 1

2

(
~np·~nq−1

σ

)2

(3)

We use this function, instead of a constant cost, to weakly guide
boundaries to align with geometric features. Using σ = 0.25, the
cost is 1 for coplanar triangles going down to e−8 for 90 degree
angles.

To compute the labeling that minimizes our energy function (Equa-
tion 1), we use a graph-cut based multi-label optimization frame-
work (http://vision.csd.uwo.ca/code/gco-v3.0.zip) that implements
a combination of the methods in [Boykov et al. 2001; Kolmogorov
and Zabih 2004; Boykov and Kolmogorov 2001].

Validity Two of the validity constraints described in Section 1 and
in [Eppstein and Mumford 2010] can be directly accounted for by
this local optimization process. We explicitly prevent two triangles
p and q sharing an edge or a vertex from being assigned to opposite
direction labels−L and +L by using the pairwise constraint mech-
anism provided by the optimizer. To eliminate chart corners with
valence above three, following the generation of a labeling, we first
detect such corners and then rerun the labeling with additional con-
straints that split each such corner into two. To generate the split
we choose the most prevalent chart label, resolving ties by prefer-
ring the label with largest area in the corner’s one-ring, and force all
triangles in the one-ring to have that label (setting the fidelity cost
to zero for this label, and to infinity for all others). In practice, we
never needed to run this step more than once.

3.2 Iterative Local Search via Hill Climbing

As previously noted, an initial segmentation generated by the above
method possesses most of the properties we would like a PolyCube
segmentation to have, and is close, in the space of all possible la-
belings, to a similar valid solution with monotone boundaries. The
question we face is how to obtain such a segmentation in a princi-
pled way. Analyzing the results, we observe that we can achieve the
desired output using our original labeling algorithm after perturbing
the per-triangle, per-label, fidelity costs Ft(s) (Equation 2) in the
vicinity of the turning points in the initial segmentation (Figure 6).



Our challenge, therefore, is to compute the suitable local perturba-
tions of these costs that result in a valid all-monotone segmentation.
Thus instead of resolving turning points by directly editing the seg-
mentation, we resolve them indirectly by tweaking the per-triangle
fidelity costs, searching for a set of small local changes that leads
to a valid, all-monotone segmentation.

This is a classical search problem, with a search space that is ex-
ponentially large with respect to the number of input triangles.
To make this problem tractable, we embed our labeling algorithm
within an iterative local search, or ’hill climbing’, framework,
which guides the perturbations toward promising local solutions.
At each step of this framework we first detect all currently valid
charts with all-monotone edges and ’freeze’ them in subsequent
hill-climbing steps. Specifically, we remove the frozen chart’s trian-
gles from any subsequent labeling operations, and add constraints
to prevent any triangle that shares an edge or vertex with the frozen
chart from being assigned either the same, or the opposite, label.
The first constraint prevents the chart from continuing to grow and
potentially introducing new non-monotone boundaries, whereas the
second constraint prevents the formation of invalid chart connectiv-
ity. We then proceed to incrementally change the per-triangle fi-
delity cost in the vicinity of the remaining turning points and reap-
ply the labeling algorithm after each such edit. Our algorithm ter-
minates once all chart boundaries are classified as monotone. In the
unlikely event that we terminate and still have a chart with less than
four boundaries, it is merged with one of its neighbors.

When exploring possible perturbations, we do not know a pri-
ori what change will best resolve a given turning point. For ev-
ery turning point we have the option of increasing, or decreasing,
the fidelity cost with respect to any of the six labels. Brute-force
searching for the best direction to bias each turning point is ex-
ponential with respect to the number of turning points to be re-
solved. In order to reduce the size of our search space, we create
six search branches {Xless, Xmore, Yless, Ymore, Zless, Zmore},
each of which expresses a preference towards, or away from, a
given axis. We seed each of these branches with our initial labeling,
then introduce an additive bias δ = 0.01 to the fidelity term around
each active turning point within a radius of 5% of the bounding
box diagonal length. When selecting δ we weigh speed against ac-
curacy - larger values speed up computation but can reduce result
quality. Searching each branch in a fixed direction reduces the num-
ber of elements in the search space from O(6|t|) to O(|t|), or from
exponential to linear time. While we have six label options, we
introduce one branch per-axis instead of one per direction (plus or
minus) as in practice only one of these directions is relevant for any
given turning point. Also note that increasing the fidelity cost for
the ± X labels is the same as simultaneously decreasing it for the
±Y and ±Z labels.

Since different turning points may be resolved by different
branches, we need a communication strategy between them. We
introduce two such strategies, a fast strategy that works for most
inputs we experimented on, and a much slower but more robust
restartable one. In the fast strategy, after updating the fidelity costs
and applying relabeling independently within each branch, we de-
tect all newly-valid charts with all-monotone edges and ’freeze’
them in subsequent labeling steps across all branches. The rest of
the processing remains independent per branch. In the restartable
strategy, in addition to detecting newly valid charts, we also detect
when any existing chart is split into two, indicating that a turning
point had been eliminated by splitting a non-monotone boundary
into two. When either event occurs, we restart the hill-climbing
process using the current labeling, frozen charts, and perturbed fi-
delity terms as the initial input for all branches. The restartable
strategy allows for finer-level perturbation control, necessary for

Figure 8: Hill-climbing visualization: we show the steps at which
valid, monotone charts are detected and frozen. Depending on the
input complexity it takes the method between a few dozen to a few
hundred iterations to converge. Note that as more charts are frozen
the labeling problem size shrinks speeding computation. Newly
frozen charts highlighted with yellow border.

Figure 9: Left: The highly complex red chart needs opposite bias
directions in different regions for a good solution - a task the ’fast’
climbing method is unsuited for. Right: Restarting the search after
each topological change provides the desired flexibility.

resolving charts which require one perturbation direction along one
boundary and an opposite direction along another (Figure 9). In
practice such charts are quite rare; the kiss was the only example
which required the restartable strategy.

3.2.1 Computing Turning Points

To detect non-monotone chart boundaries we need to compute the
signed orientation of edges along the boundary, using a consistent
notion of right and left charts. A change in sign indicates a non-
monotone boundary. Assigning orientation at an individual edge
level is sensitive to minor changes in local mesh connectivity. To
obtain more robust results, we extract turning points using the same
graph-cut framework as above, this time with two labels, positive
and negative. The unary term is a Gaussian falloff function of the
dot product of the edge and axis directions (σ = 0.9) and the binary
term for consecutive edges is zero when assigned the same level
and a Gaussian of the dot product of the edge directions (σ = 1.2)
otherwise. Following the labeling, boundaries with more than one
segment are classified as non-monotone and the segment joints are
marked as turning points.



Figure 10: We use PolyCube deformation (left) to reveal bound-
ary alignment directions and use those to improve the segmentation
boundaries. This process improves chart boundaries on the bunny’s
face (right).

3.2.2 Boundary Optimization

While the hill-climbing framework aims for short and monotone
boundaries, it makes no explicit effort to align boundaries with their
corresponding axial directions. The reason being that while we can
control for labels assigned to pairs of adjacent triangles during the
segmentation process, we do not a priori know the orientation of
each boundary, i.e. the order of its two corners along the axis it
maps to. Naively introducing an unordered axial bias into the origi-
nal formulation would only lead to an increase in non-monotonicity,
as it will encourage longer, axially-aligned, but erratic boundaries
at the expense of straighter, but misaligned ones. Given a segmenta-
tion computed in the hill climbing step, we can estimate the desired
orientation of the boundaries and use these orientations to improve
the segmentation boundaries.

Our challenge, as always, is to balance the boundary shape against
fidelity. However we can no longer use the original unbiased fi-
delity term as using it will aim to revert the gains of the entire hill-
climbing process. While it is theoretically possible to keep track
of the individual changes to the fidelity costs introduced during the
climbing step, combining those in a coherent way across the multi-
ple branches can be difficult.

We note that computing fidelity (Equation 2) on an approximate
PolyCube suggested by the current labeling provides a good proxy
for this biased cost. To generate this approximate PolyCube, we use
the iterative deformation framework of Gregson et al. [2011] with
some changes detailed below. We then use the computed fidelity,
and an updated compactness term which reflects boundary orienta-
tion, in a relabeling framework that improves the alignment of chart
boundaries with the assigned orientations while still preserving va-
lidity and monotonicity (Figure 10).

PolyCube Deformation: Given an input mesh and a PolyCube
segmentation that assigns an orientation to each triangle normal,
we seek to deform the input by rotating the normals toward these
orientations, obtaining an approximate PolyCube. We use soft
rather than hard rotational constraints, as the current segmentation
is clearly not final, and therefore we aim to balance normal rotation
against input distortion.

Similar to Gregson et al. [2011], to avoid self-intersections and
better preserve the input structure, we use a volumetric mesh of the
input model for the deformation. Since any interior vertex in a chart
has a one-ring consisting purely of triangles with the same labeling,
it has a known assigned orientation. We compute the minimum
rotation for each vertex that aligns the vertex normal with its target
orientation. We then propagate these rotations to vertices along the
chart boundaries, and through the volumetric mesh interior. We
use these rotations to compute the vertex positions in the deformed
mesh, attempting to orient each edge in its new preferred direction
while maintaining its length. Given original vertex coordinates vi

and vj with rotation matrices ∇i and ∇j , we find new coordinates
ui and uj by minimizing:∑

i,j

((uj − ui)− (
∇i +∇j

2
) · (vj − vi))2 (4)

over all mesh edges (i, j). Since the vertex positioning step only
weakly satisfies the target rotations, we repeat the process two more
times to obtain a sufficiently clear PolyCube. We will use this
framework later, with additional refinements, to compute final Poly-
Cube geometry (see Section 4).

Chart Boundary Optimization We use the deformed models and
the orientation information to improve boundary alignment. Since
we aim to preserve the segmentation topology intact, we use a pro-
cess where we iteratively apply the relabeling step to small portions
of the segmentation, while preserving the topology. Specifically, we
repeatedly relabel pairs of charts that share boundaries and triplets
of charts that share corners. To prevent topological changes, when
applying the method to pairs of charts, we fix the labels on the tri-
angles along the non-shared boundaries of these charts, and set the
cost of assigning any label but the two participating ones to infinity.
For similar reasons, for each corner we consider all triangles within
a radius of 1

3
of the smallest incident chart boundary’s length. Any

label outside of this radius is fixed. We similarly restrict ourselves
to considering only the three chart labels incident to the corner in
question. While these constraints drastically reduce the likelihood
of topology changes, they do not fully prevent them. If such a
change does occur, we roll-back the relabeling result, leaving the
boundary as-is.

The labeling framework uses the same fidelity term as in Section
3.1, but with the fidelity computed on the deformed model. The
compactness term is similarly computed on the deformed model,
but is now modified to take into account how well a given boundary
edge is aligned with its target orientation:

Cpq(sp, sq) = 1− e
− 1

2

(
~epq·~d−1

σ

)2

(5)

Here the edge direction ~epq is given as per Section 3.2.1. Fix-
ing a ’start’ and ’end’ vertex for each boundary that are consistent
with the axis orientation and our notion of right and left charts, the
boundary direction ~d is given by the outgoing edge vector from the
starting vertex of the boundary in question, with respect to the cur-
rent chart.

4 PolyCube Positioning and Parametrization
Once we have a PolyCube segmentation, we must still generate the
corresponding base-complex and parameterization. We extract the
PolyCube geometry from the segmentation using the deformation
framework of Section 3.2.2, augmenting it with hard constraints to
ensure an exact PolyCube output. We first repeat the iterative pro-
cess in Section 3.2.2, but add planarity constraints to Equation 4
minimizing, for every surface edge, the difference between its end-
point coordinate values along the relevant axis. We use gradual de-
formation with soft constraints so as to minimize distortion. Once
the process converges, we compute the final solution by adding hard
planarity constraints forcing vertices in each chart to have the same
coordinate value along the corresponding axis.

The end result of this deformation is that each corner vertex on
our PolyCube is now in its correct position however, the posi-
tions computed for the rest of the vertices are not guaranteed to
be on the PolyCube defined by these corners. To compute a low-
distortion parameterization from the input mesh to the PolyCube



requires parameterizing each chart into a fixed, possibly, concave
planar polygon, a well known open problem in mesh processing
[Xu et al. 2011]. To obtain a low distortion mapping, sidestepping
this challenge, we first compute a bijective but possibly poor qual-
ity map from the input model to the PolyCube, and then improve
the mapping by operating in the opposite direction, i.e. from the
PolyCube to the input model.

To generate the initial map, we first map each chart boundary to its
corresponding PolyCube edge using arc-length parameterization.
We then use the method of [Xu et al. 2011] with mean-value co-
ordinates to position the interior chart vertices. If we require a vol-
umetric parameterization, we re-use the deformation framework,
keeping surface vertex positions fixed and specifying surface rota-
tions using a coordinate frame given by the new normal and one of
the edges.

For applications such as seamless texturing or meshing, the corners
of the PolyCube need to be placed at vertices of a fixed size grid.
To perform such quantization, we first place corner vertices in the
quantized locations. We then relocate the PolyCube surface vertices
using mean-value coordinates [Hormann and Floater 2006] with re-
spect to the corners of its corresponding PolyCube face. Finaly the
interior vertices are similarly relocated using the surface mesh as a
cage for 3D mean-value coordinates [Ju et al. 2005].

To compute a low distortion PolyCube to input map, we first remesh
the PolyCube using existing software [Alice Project-team ] and use
the mapping which we have just computed to project the PolyCube
mesh to the input model. We then iteratively slide the projected
vertices along the input surface in order to minimize the mapping
distortion between the two meshes, measured using mean-value co-
ordinates. We note that once we have the PolyCube and the initial
map, there are multiple methods for improving the parametrization.
While our technique is effective, we include it for completeness
only.

5 Results

We tested our method on over a dozen diverse inputs shown
throughout the paper, including both natural and engineered shapes,
and were able to generate valid, all-monotone boundary segmenta-
tions and produce suitable PolyCube base complexes on all these
inputs. Figures 2, 4, and 11 demonstrate the power of our dis-
crete optimization framework, highlighting both the prevalence and
the variety of non-monotone boundaries in unconstrained solutions,
and their appropriate resolution by our hill-climbing process. The
statistics for the models are summarized in Tables 1 and 2. Unless
otherwise specified, all the results were produced using the default
parameters described in the text. For the bimba and lion (Figure
13) we used a compactness factor c of 4, and for the armadillo
(Figure 11,d) a factor of 4.5; for the rest, the factor was set to 3.
For all the models, except the ’kiss’ (Figures 9 and 11, e) we used
the fast climbing mode described in Section 3.2. The runtime us-
ing this method varies between one minute for largely axis-aligned
models like the bumpy torus (Figure 11, c) which contain few non-
monotone boundaries in the initial labeling, to ten minutes for mod-
els such as the bunny which have many off-axis features. The kiss
model, which was generated with the restartable hill-climbing strat-
egy (Section 3.2), took 50 min to compute. Times were measured
on a MacBook Air (1.7Ghz Intel Core i5, 4GB RAM). The run-
times are comparable with those of recent PolyCube segmentation
[Gregson et al. 2011] and hex meshing [Lévy and Liu 2010] meth-
ods.

One important advantage of our approach, compared to methods
such as [Lin et al. 2008; Wan et al. 2011; Gregson et al. 2011], is

Model size # t.p. # # ang./area stretch
# tri. corners charts dist.

bunny (Tarini’04) 67 34 1.069/1.034 0.913
bunny (Lin08) 34 19 1.12/1.15 0.79
bunny (He’09) 363 206 1.007/1.068 0.871
bunny (Gregson’11) 88 46 1.055/1.077 0.820
bunny (ours) 56k 10 64 34 1.033/1.033 0.908

lion (He’09) 285 151 1.028/1.100 0.804
lion (ours) 57k 17 74 39 1.073/1.059 0.831

squirrel (He’09) 40 24 1.001/1.084 0.854
squirrel (ours) 53k 3 16 10 1.035/1.042 0.890

bimba (Gregson’11) 115 61 1.100/1.106 0.712
bimba (ours) 46k 6 30 17 1.061/1.053 0.843

girl (Gregson’11) 88 48 1.064/1.112 0.747
girl (ours) 72k 16 60 34 1.043/1.062 0.850

fertility 96 43 1.074/1.100 0.772
(Gregson’11)

fertility (ours) 37k 6 94 42 1.092/1.066 0.808

kiss (Gregson’11) 156 74 1.087/1.090 0.770
kiss (ours) 29k 19 120 56 1.047/1.049 0.871

rocker arm 70 38 1.082/1.066 0.819
(Gregson’11)

rocker arm (ours) 27k 6 62 34 1.066/1.051 0.857

carter (Gregson’11) 153 82 1.040/1.051 0.868
carter (ours) 69k 11 132 71 1.073/1.029 0.870

bumpy torus 208 104 1.093/1.069 0.793
(Gregson’11)

bumpy torus (ours) 40k 4 172 86 1.041/1.053 0.865

armadillo 80 42 1.318/1.224 0.577
(Tarini’04)

armadillo (ours) 56k 26 140 72 1.105/1.130 0.714

Kitten (ours) 37k 7 32 16 1.099/1.053 0.820

Table 1: PolyCube statistics, including a comparison to earlier
methods. Left to right: triangle count, number of turning points
in the initial segmentation (our method), number of singularities,
number of charts, angular and area distortion [Tarini et al. 2004],
stretch [Praun and Hoppe 2003]. For all metrics the optimal value
is one. Our method consistently introduces a smaller number of
singularities while producing parameterization with better stretch
and area distortion.

the flexible control of the trade-off between fidelity and compact-
ness. Figure 12 shows the results of varying the compactness factor
(Equation 1) on the PolyCubes computed for the bunny and girl
models. As expected, increasing this factor gradually reduces the
number of PolyCube faces at the expense of increased stretch/area
distortion (Table 2). Providing this control to the user is important
for many applications where distortion is weighed against singular-
ity counts, such as hex meshing or atlas generation.

Comparisons: We compared the PolyCubes generated by our
method to those created via existing alternatives. Our bunny Poly-
Cube computed with the compactness factor set to 6 (Figure 12) is
quite similar to the output of Lin et al., and has comparable distor-
tion (Tables 1 and 2). However, in contrast to PolyCut, neither [Lin
et al. 2008] nor [Wan et al. 2011] support other PolyCube resolu-
tions.

When compared to recent techniques [He et al. 2009; Gregson et al.
2011], our method is able to generate PolyCubes with significantly
fewer singularities and charts, while achieving comparable or better
stretch and area distortion (Figures 3, 13, Table 1). For Gregson et
al., we measured distortion on their output quad meshes - directly
measuring distortion on their PolyCubes produces infinite values



Model compactness #corners #charts ang./area dist. Stretch

girl 3 60 34 1.044/1.062 0.850
girl 6 32 19 1.074/1.176 0.691
girl 10 24 14 1.068/1.305 0.583
girl 17 8 6 1.170/1.131 0.652

bunny 3 64 34 1.033/1.033 0.908
bunny 6 34 19 1.068/1.104 0.750
bunny 10 16 10 1.062/1.184 0.683
bunny 17 8 6 1.103/1.197 0.657

Table 2: Impact of adjusting the compactness factor (Figure 12).

model Gregson [2011] PolyCut PolyCut min S. Jac.
model S. Jac. min/average S. Jac. min/avg improv factor
fertility .196/.911 .259/.872 30%
bunny .138/.930 .274/.938 100%

rockerarm .226/.899 .370/.890 64%
girl/BU .235/.925 .401/ .926 71%
carter .177/.823 .250/.894 41%

Table 3: Hex-meshing quality comparison to [Gregson et al. 2011].
Left to right: minimal and average scaled Jacobian for the two
methods, improvement factor for minimal Jacobian. Our method
dramatically increases the worst element quality, a critical metric
for analysis accuracy.

due to collapsed or flipped triangles. The reduction in singularity
numbers is particularly significant in models with many off-axis
features, such as the bimba (Figure 13, right) where our method
reduces the number of singularities by a factor of five (from 115
to 30) compared to [Gregson et al. 2011] while simultaneously re-
ducing distortion, or the lion (Figure 13, left) where we reduce the
singularity count by a factor of four (from 285 to 74) compared to
[He et al. 2009] while improving stretch and area distortion (our
result has a marginally higher angular distortion). Overall, when
compared to these methods we observe, on average, a reduction
of around 30% in the number of singularities. In contrast to Greg-
son et al.[2011], our method resolves all non-monotone boundaries,
while theirs may leave those in place, e.g. see the forehead of the
girl statuette in Figure 13. We speculate that the major factor in
the observed improvement is the use of a principled local search
to eliminate turning points, as opposed to the local heuristic used
by Gregson et al., which attempts to fix turning points individually,
choosing from three templated solutions.

We had also compared our method against the manually generated
PolyCubes of Tarini et al. [2004] (Table 1). On the bunny model
our method produces a PolyCube with nearly identical complexity
and comparable distortion statistics. On the armadillo model our
method produces a much finer PolyCube, one which as expected
leads to less distortion. Producing such a high detail PolyCube
manually would be a challenging task.

Lastly, to showcase the importance of using better PolyCubes from
an application perspective, we used our PolyCubes as input to the
hex meshing method of [Gregson et al. 2011] (Figure 14). The
improvement on the bunny highlights the importance of correctly
resolving non-monotone boundaries. While the heuristic approach
of Gregson produces an unnatural vertical chart on the bunny’s side
(Figure 3) leading to visible mesh artifacts, our method resolves
the thighs in a more natural manner. For the fertility model the
improvement is a result of better alignment between boundaries and
their corresponding axis directions. The element quality statistics
are listed in Table 3. As pointed out by Gregson et al., the critical
number to look at is the minimal Jacobian, which is significantly
better for all our results.

6 Conclusions

We have presented PolyCut, a novel method for generating Poly-
Cube base-complexes via constrained multi-label optimization.
Our method generates high quality results, with low singularity
counts and small distortion, across a wide range of models. We
offer a user-controllable balance between compactness and para-
metric distortion via the compactness factor. We significantly out-
perform previous work in terms of PolyCube compactness, with-
out compromising mapping distortion. As our method is fully au-
tomatic and robust across a wide range of inputs, applications re-
quiring PolyCubes can now be developed without a need for time-
consuming manual or semi-automatic schemes.

Limitations Like in previous PolyCube computation methods,
our outputs depend on the initial orientation of the input model and
it would be worthwhile to explore computing optimal orientations
automatically, e.g. via PCA analysis of surface normals. Follow-
ing [Eppstein and Mumford 2010] we require every corner in the
segmentation to have valence three, a sufficient but not necessary
requirement for PolyCube existence, which sometimes leads to for-
mation of redundant charts. Unfortunately, to our knowledge, no
weaker sufficient requirement exists. Lastly,the local search method
we use is an approximation method, and as such is not guaranteed
to converge to a valid solution or find the best possible PolyCube
segmentation for a given mesh (as represented by an exhaustive
search).

Future Work Currently, it is up to the user to select a compact-
ness factor that fits their needs via trial and error. Directly relating
this factor to mapping distortion is a challenging open problem. Fu-
ture work also involves the integration of other global search frame-
works into our PolyCut algorithm. Better PolyCubes may be gener-
ated via stochastic methods or by adding random restarts to our hill
climbing. We also feel that our hybrid framework approach can be
used to extend multi-label optimization to work on other problems
in geometric mesh processing and computer graphics.
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