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Abstract

We provide the following supplemental material along with the paper
"A Taxonomy of Visual Cluster Separation Factors":

• Appendix A: Mathematical details about the measures used and the
extensions we made

• Appendix B: Parameterization of the dimension reduction (DR) tech-
niques we used

• Appendix C: A list of all datasets we analyzed in the qualitative
data study

• Appendix D: Condensed list of codes resulting from the open coding
process

• Appendix E: Plots of further grid size analysis

• Video 1: Lookup table of all 816 scatterplot representations we in-
spected in our study (AVI format, tested on VLC 1.1.12, no audio)

• Video 2: The interactive 3D data viewer we used in our study (MP4
format, tested on VLC 1.1.12, no audio)
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Appendix A: Mathematical Details
This section provides the mathematical definitions of the cluster separation
measures we used [SNLH09], as well as the extensions we made.

A.1. Original Definitions by Sips et al.
A.1.1. Centroid Measure

In their original work Sips et al. [SNLH09] explain the centroid measure for 2D
scatterplots, or Distance Consistency (DSC) as they call it, as follows:

“Given a data space X ⊆ Rn and a class structure C(X) defining m
classes. Let ci be a class and centr(ci) its centroid, and let x be x ∈
X with clabel(x) = i. CD describes the property of class members
that the distance d(x, centr(ci)) to its class centroid should be always
minimal in comparison to the distance to all other centroids, thus

d(x, centr(ci)) < d(x, centr(cj))∀j : 1 ≤ j ≤ m; j 6= i (1)

and d denotes a metric defined in X. CD(x, centr(ci)) = true de-
notes that the centroid property for x and its centroid centr(ci) is
fulfilled." [SNLH09]

Based on the CD property for each single point Sips et al. define the Distance
Consistency measure DSC (= centroid measure):

“Let X ⊆ Rn be a n-D data set with k data points. Let C(X) be a
class structure of X defining m classes C(X) = {c1, ..., cm}. Let ci
be a class and centr(ci) its centroid in C(X). Let clabel(x) be the
class label of a point x ∈ X. Let v(X) be a 2-D view of X, then
distance consistency DSC(v(C)) is defined as the classification error

DSC =
|x′ ∈ v(X) : CD(x′, centr′(cclabel(x))) 6= true|

k
(2)

with x′ is the 2-D projection of the data point x and centr′(ci) is
the 2-D projection of the centroid of class ci.” [SNLH09]

A.1.2. Grid Measure

Sips et al. [SNLH09] describe the grid measure for 2D scatterplots, or Distribu-
tion Consistency (DC) as they call it, as follows:

“Let C(X) = {c1, ..., cm} be a class structure of a high-dimensional
data space X ⊆ Rn describing m classes. Calling pc ≡ pcc(x, y) as
the number of data points of class c ∈ C(X) in the region centered at
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screen location x, y, the entropy of the class data probability density
within the region

H(x, y) = −
∑

c∈C(X)

pc∑
pc

log2(
pc∑
pc

) (3)

is a measure of consistency violation, having minimum value zero
if the region contains data from only one class [...], and maximum
value log2m if all m classes are mixed equally [...]. ” [SNLH09]

Based on the H property for a single grid cell they define the Distribution
Consistency measure DC (= grid measure):

“Let C(X) = {c1, ..., cm} be a class structure of a high-dimensional
data space X ⊆ Rn describing m clusters. Let v(X) be a 2-D view
of X then distribution consistency DC(v(X)) is a integrated and
weighted measure with

DC = 100− 1

Z

∑
x,y

p(x, y)H(x, y) (4)

The 1/Z is a normalizing constant chosen to improve interpretability.
We choose 100/ log2(m)

∑
x,y

∑
pc to give a score between 0 and

100.” [SNLH09]

A.2. Usage and Extensions
In the data study presented, we use and extend these measures to judge three
different visual encoding techniques, 2D scatterplots (2D), 3D scatterplots (3D),
and scatterplot matrices (SPLOMs). For all of them we compute:

1. m one-against-all class-wise measures, where m equals the number of
classes

2. one overall measure

Based on the definitions from Sips et al. (see above), we use and extend the
centroid and grid measure as follows:

A.2.1. Centroid Measure

2D Scatterplot: For all classes c ∈ C(X), we compute a class-wise value
Cent2Dc as follows:

Cent2Dc =
|x′c ∈ v(X) : CD(x′c, centr

′(cclabel(x))) 6= true|
kc

(5)
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with {x′c|∀x′ : clabel(x) = c} and kc as the number of the data points in class c.

For the overall measure we use the original measure as described in (2):

Cent2D = DSC (6)

Note that there is an alternative way to derive the overall value from the m
class-wise values as follows:

Cent2D =

∑
c∈C(X) Cent2Dckc

k
= DSC (7)

3D Scatterplot: We simply extend the euclidean distance measure used
in (1) from 2D to 3D and compute the class-wise and overall measures as for
the 2D Scatterplots: (5) and (6).

SPLOM: Let V = {v1, ..., vn} be all n = d(d − 1)/2 2D Scatterplot views
of a d-dimensional SPLOM (d × d SPLOM) and Cent2Dc(vi) the class-wise
value of class c in the 2D Scatterplot view vi as defined in (5). For all classes
c ∈ C(X), we define the class-wise measure of a SPLOM as the highest score
of all 2D views vi:

CentSPLOMc = max(Cent2Dc(vi)) (8)

We define the overall SPLOM measure as the weighted sum of all class-wise
values:

CentSPLOM =

∑
c∈C(X) CentSPLOMckc

k
(9)

A.2.2. Grid Measure

2D Scatterplot: For each class c ∈ C(X), we compute the class-wise measure
as follows. Let δc be the grid cell at position x, y with ∀δc∃x′ : clabel(x) = c.
We then define the class-wise 2D grid measure as:

Grid2Dc = 100− 1

Z

∑
δc

p(δc)H(δc) (10)

using the definition of H as given in (3). The class-wise measure of a class c is
therefore the entropy measure H applied to all grid cells that at least contain
one point of class c.

For the overall measure we use the original measure as described in (4):

Grid2D = DC (11)
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Note that based on this definition there is no obvious way to derive the overall
value from the class-wise values, as there is for the centroid measure.

We use a dynamic grid size g × g derived from k, the number of points of
the dataset:

g = b 2
√
kc (12)

3D Scatterplot: For 3D class-wise measures we change the definition of
δc to be the grid cell at position x, y, z with ∀δc∃x′ : clabel(x) = c and use the
formula given in (10).

For the overall measure, we extend the formulas given in (3) and (4) as fol-
lows:

H(x, y, z) = −
∑

c∈C(X)

pc∑
pc

log2(
pc∑
pc

) (13)

Grid3D = 100− 1

Z

∑
x,y,z

p(x, y, z)H(x, y, z) (14)

choosing 100/ log2(m)
∑
x,y,z

∑
pc for 1/Z.

For 3D Scatterplots we derive the grid size g × g as follows:

g = d 3
√
ke (15)

assuring that the number of grid cells is equal or slightly larger as the 2D grid
size defined in (12).

SPLOM: Similarly, we define the class-wise value GridSPLOMc(vi) as the
best class-wise score of all 2D projections vi as defined in (10):

GridSPLOMc = max(Grid2Dc(vi)) (16)

We define the overall SPLOM measure as the weighted sum of all class-wise
values:

GridSPLOM =

∑
c∈C(X) GridSPLOMckc

k
(17)

For all SPLOM computations, we use grid sizes as defined in (12).
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Appendix B: DR Parameterization
In our data study, we use four different dimension reduction (DR) techniques,
which we instantiated and parameterized as follows:

PCA [Jol02]: We use R’s [R11] standard PCA implementation princomp with
default parameterization.

MDS [BG05]: For performance reasons we used the Glimmer MDS implemen-
tation provided courtesy of Ingram et al. [IM09]. We used their Java CPU
version, with the following parameterization:
Near and Random Set Size = 10
Termination Threshold = 1e-4

RobPCA [TF09]: We use R’s robust PCA implementation PcaCov from the
rrcov package with cov.control=CovControlMest().

t-SNE [vdMH08]: We use R’s t-SNE implementation tsne from the package
tsne. We set the maximum number of iterations to perform:
max_iter = 500. Except for this, we used the default parameterization.

6



Appendix C: Full list of datasets

ID Name Points Dimensions Classes Provenance
real

1 abalone 4154 7 28 uci [FA10]
2 bbdm13 200 13 5 umass [Uni11]
3 bostonHousing 155 13 3 uci [FA10]
4 breastCancer-diagnostic 569 30 2 uci [FA10]
5 breastCancer-original 454 9 2 uci [FA10]
6 cars-1 7404 22 2 colleagues [TAE∗09]
7 cars-2 7404 22 53 colleagues [TAE∗09]
8 cars-3 7404 22 12 colleagues [TAE∗09]
9 cereal 77 12 7 xmdv [War11]
10 ecoliProteins 332 7 8 visumap [Vis11]
11 eFashion 3272 4 8 sap [SAP10]
12 fisheriesEscapementTarget 121 12 11 colleagues [HB11]
13 fisheriesHarvestRule 121 12 11 colleagues [HB11]
14 hiv 78 159 6 colleagues [SNLH09]
15 industryIndices 102 6 13 uci [FA10]
16 ionosphere 351 34 2 visumap [Vis11]
17 iris 147 4 3 uci [FA10]
18 musicNetGroups 171 9 6 visumap [Vis11]
19 olive 572 8 3 colleagues [SNLH09]
20 pageBlocks 5473 10 5 uci [FA10]
21 parkinson 195 11 2 uci [FA10]
22 shuttle-big 43500 9 7 uci [FA10]
23 shuttle-small 14500 9 7 uci [FA10]
24 spamBase 4601 57 2 uci [FA10]
25 swanson 1875 6 3 xmdv [War11]
26 tse300 244 49 8 visumap [Vis11]
27 wine 178 13 3 uci [FA10]
28 world-10d 151 10 5 visumap [Vis11]
29 world-12d 151 12 5 visumap [Vis11]
30 worldMap 192 3 13 visumap [Vis11]
31 yeast 1452 8 10 uci [FA10]

Table 1: Real datasets. In order to make all dimension reduction techniques we
used in our study work, we had to preprocess some of the original data sources,
e. g., deleting duplicated data points, or deleting non-numeric dimensions. The
table shows the data as used in the study.
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ID Name Points Dimensions Classes
synthetic-entangled

32 entangled1-3d-3cl-separate 600 3 3
33 entangled1-3d-4cl-separate 400 3 4
34 entangled1-3d-5cl-separate 500 3 5
35 entangled2-10d-adjacent 1490 10 10
36 entangled2-10d-overlap 1479 10 10
37 entangled2-15d-adjacent 2049 15 15
38 entangled2-15d-overlap 2318 15 15
39 entangled2-3d-adjacent 1098 3 3
40 entangled2-3d-overlap 857 3 3
41 entangled2-4d-adjacent 1254 4 4
42 entangled2-4d-overlap 538 4 4
43 entangled2-5d-adjacent 741 5 5
44 entangled2-5d-overlap 696 5 5
45 entangled2-6d-adjacent 837 6 6
46 entangled2-6d-overlap 1034 6 6
47 entangled3-l-3d-bigOverlap 571 3 3
48 entangled3-l-3d-smallOverlap 496 3 3
49 entangled3-m-3d-adjacent 309 3 3
50 entangled3-m-3d-bigOverlap 325 3 3
51 entangled3-m-3d-smallOverlap 292 3 3
52 entangled3-s-3d-adjacent 185 3 3
53 entangled3-s-3d-bigOverlap 205 3 3
54 entangled3-xl-3d-adjacent 1821 3 3
55 entangled3-xl-3d-bigOverlap 1892 3 3

synthetic-gaussian

56 gauss-n100-10d-3largeCl 100 10 3
57 gauss-n100-10d-3smallCl 100 10 3
58 gauss-n100-10d-5largeCl 100 10 5
59 gauss-n100-10d-5smallCl 100 10 5
60 gauss-n100-5d-3largeCl 100 5 3
61 gauss-n100-5d-3smallCl 100 5 3
62 gauss-n100-5d-5largeCl 100 5 5
63 gauss-n100-5d-5smallCl 100 5 5
64 gauss-n500-10d-3largeCl 500 10 3
65 gauss-n500-10d-3smallCl 500 10 3
66 gauss-n500-10d-5largeCl 500 10 5
67 gauss-n500-10d-5smallCl 500 10 5
68 gauss-n500-5d-3largeCl 500 5 3
69 gauss-n500-5d-3smallCl 500 5 3
70 gauss-n500-5d-5largeCl 500 5 5
71 gauss-n500-5d-5smallCl 500 5 5

synthetic-grid

72 grid-3d 1000 3 8
73 grid-4d 1296 4 16
74 twoSquare 968 3 4
75 unevenDensity 905 3 2

Table 2: Synthetic datasets we generated.
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Appendix D: Merged Codesets
After both open coding passes, we merged the codesets from the two investiga-
tors into a single list, one for visual separation factors in datasets after coding
pass 1, and one for failure causes of the measures after coding pass 2. The two
merged codeset lists can be found bellow:

Code Description
3D-move Movement of points in 3D helps to detect a cluster (Gestalt law: Common

fate)
adjacent Adjacent classes: no physical distance between classes
bad Clusters heavily intermixed
bg-noise The background noise in 3D makes detectability of clusters harder
entangled Dataset seems to have entangled structures
gaussian Clusters look gaussian
going-high Going to higher dimensionality in SPLOMs does not seem to add a lot more

info (higher than 5x5)
good Clusters nicely separable
equidistant-mixed Dataset with partly or fully overlapped classes and equidistant point structure
inner-class Inner clusters usually okay in 2D and SPLOM but not in 3D
interesting Example with interesting data characteristics
periphery Clusters at the periphery easier to spot
mental Mental model helps understanding the class structure
more-views Different views in a SPLOM help to identify different classes
outlier Outliers exist
shape The shape of a cluster is important for its detection
sparse Data of a class is very sparsely distributed in view
stringy Data and/or clusters have a stringy shape
layery Data and/or clusters form a layer in 3D
tsne-not-good t-SNE does not work well for this example
tsne-great t-SNE successfully untangles some structure that was not visible by using

linear techniques
unbalanced-classes Classes differ strongly in no. of points / class
validation Validation of class structure in other views of a SPLOM is helpful
varying-density Clusters have different densities
z-depth Z-depth might influence your decision

Table 3: Merged list of codes from open coding phase 1, where we coded dataset
instances for general separability factors we observed.
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Code Description Error Type Measure
adjacent-classes Non-round clusters can cause false nega-

tives for both measures
FN grid

bg-noise Bg noise in 3D hinders that you see a cer-
tain class

TP both

big-class Big class is overshadowing small classes FP centroid
clumpy Clumpy class leads to an awkward po-

sition of the centroid / Entropy can-
not detect the connection between points
within a class

FP / FN both

equidistant-mixed Equidistant layouts of overlapping classes
are counterproductive for the grid mea-
sure because they can easily lead to false
positives

FP grid

grid-too-coarse Measure artifact: it seems that having a
finer grid will give a better result

FP grid

grid-too-fine Measure artifact: it seems that having a
coarser grid will give a better result

FN grid

identical-classes Nearly Identical or completely identical
classes lead to very similar centroids

FP centroid

many-classes If there are a lot of classes that are not
perfectly separated it usually is hard to
see structure; even though the measure
indicates that there is structure

FP both

mixed-classes Both, centroid and grid measure can have
severe problems with detecting strongly
overlapping classes

FP both

outliers Outliers can influence measures in a dis-
advantageous way

FP / FN both

overlaid-shapes Visually well separable based on Gestalt
perception; overlapping shapes cannot be
detected by measures

FN both

periphery Classes with centroids at the periphery
but strongly mixed with other ones can
lead to FPs

FP centroid

shape Shapes might lead to strange centroids:
this can lead to not properly detecting
the shape (FN)

FN centroid

similar-centroid Similar centroids for some actually nicely
separable classes

FN centroid

small-class Small classes are generally hard to spot
and might be easily overshadowed by
other bigger classes

FP centroid

sparse-class Sparse classes can lead to interfering cen-
troids / Chance to have only one point
per bin is high

FP both

split Classes are split by another class FP / FN both
splom-exacerbate Issue of FP exacerbates with higher-

dimensional SPLOMs
FP both

splom-wrong-pick Measure picked poor view(s) in the
SPLOM

FP both

variable-density Classes with varying densities can influ-
ence the performance of the measure

FP centroid

z-depth Z-depth led to a false picture of what is
really there

TP / TN both

Table 4: Merged list of codes from open coding phase 2, where we coded failure
cases for reasons why centroid and/or grid measure were not able to provide
reliable results. Error types: FP = False Positive; FN = False Negative; TP =
True Positive; TN = True Negative. TPs and TNs were excluded from failure
cases.
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Appendix E: Plots of Grid Size
To test the grid measure’s robustness against varying grid sizes, we recomputed
and plotted the measure values of 58 failure cases (50 false positives and 8 false
negatives) with different grid size parameterizations. Here, we present the plots
we used for our analysis:
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Figure 1: Plots of grid size variations for false positives (part 1): The horizontal
axis shows different parameters of the grid size g × g. The vertical axis shows
the resulting measure values we got by computing it with these grid size pa-
rameterizations. For false positives, we expected the grid to be too fine, and
therefore varied it step-wise to be more coarse. The original value we judged in
the study is the right-most value in the graph.
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Figure 2: Plots of grid size variations for false positives (part 2)
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Figure 3: Plots of grid size variations for false positives (part 3)
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Figure 4: Plots of grid size variations for false positives (part 4)
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Figure 5: Plots of grid size variations for false negatives: For false negatives, we
expected the grid to be too coarse, and therefore varied it step-wise to be finer.
The original value we judged in the study is the left-most value in the graph.
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