A Taxonomy of Visual Cluster Separation Factors

Michael Sedlmair, Andrada Tatu², Tamara Munzner, Melanie Tory Univ. of British Columbia, Univ. of Konstanz, Univ. of Victoria

Visual Cluster Separation

Cluster Separation:

Simple Idea

Automatic Cluster Separation

Automatic Cluster Separation

- Many cluster separation measures proposed recently*
- For semi-automatic guidance in high-dim data analysis

^{*} Sips et al.: Selecting good views of high-dimensional data using class consistency [EuroVis 2009]

^{*} Tatu et al.: Combining automated analysis and visualization techniques for effective exploration of high-dimensional data [VAST 2009]

Our original intention:

DR and VE guidance

- DR = Dimension Reduction: PCA, MDS, ...
- VE = Visual Encoding: Scatterplots (2D, 3D, SPLOM)

Our original intention:

DR and VE guidance

- DR = Dimension Reduction: PCA, MDS, ...
- VE = Visual Encoding: Scatterplots (2D, 3D, SPLOM)

Automatic vs. Human?

Cluster Separation:

Simple Idea - Is this enough?

Our Goals

 What factors matter in human cluster perception?

 How reliable are current separation measures on a diverse group of datasets?

Main Contributions

Taxonomy of visual cluster separation factors

In-depth evaluation of 2 stateof-the-art separation measures

Qualitative Data Study

User vs. Data Study

- Previous work on measure evaluation: User studies
 - few datasets many users

- Us: Data study
 - many datasets few users

Qualitative Data Study

816 dataset instances

75 datasets

- 31 real / 44 synthetic
- pre-classified

4 DR techniques:

• PCA, RobPCA, Glimmer MDS, t-SNE

3 Visual Encodings:

- 2D Scatterplot
- Interactive 3D Scatterplot
- SPLOM

2 Measures

- Centroid¹ and Grid^{1,2} Measures for 2D Scatterplots (names adapted)
- Found to be the current cutting edge³

- 1. Sips et al.: Selecting good views of high-dimensional data using class consistency [EuroVis 2009]
- 2. Tatu et al.: Combining automated analysis and visualization techniques for effective exploration of high-dimensional data [VAST 2009]
- 3. Tatu et al.: Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data [AVI 2010]

Centroid Measure

Centroid: 93

Centroid Measure

Centroid: 93

Centroid Measure

Centroid: 93

Grid Measure

Grid: 97

Grid Measure

Grid: 97

Extensions of Measures

Straight forward

Data Analysis and High-Level Results

Data analysis (part 1):

Qualitative analysis of cluster separation factors

A taxonomy of visual cluster separation factors

Data analysis (part 2):

Evaluating the measures

Measure aligns with human judgement?

Data analysis (part 2):

Evaluating the measures

Measure: 10

dubious

Measure: 50

poor

Measure: 90

classwisepoor

blue: 100

red: 7

black: 20

Data analysis (part 2):

Evaluating the measures

False Positive

Measure: 90

False Negative

Measure: 10

High-level results

- Poor / Dubious / Classwise-Poor (Failure cases)
- Ok

Only real (296)

False Positives

False Negatives

All failure cases

Michael Sedlmair / EuroVis 2012

Data analysis (part 3):

Qualitative analysis of failure reasons

Using the factors we found in part I to explain the reasons why measures failed!

Walkthrough

Centroid: Stringy / outliers

Overall: 29 (Bad)

Problem: FN

Data: Fisheries, real

DR: MDS

In terms of taxonomy ...

Black & Red: ~70-80

Others: ~40-50 (Bad)

Problem: FN

Data: Fisheries, real

DR: MDS

In terms of taxonomy ...

Centroid:

* Big Classes Overspread Small

Red: **77 (Good)**

Problem: **FP**

Data: Gaussian, synthetic

DR: MDS

Centroid:

* Big Classes Overspread Small

Red: **77 (Good)**

Problem: **FP**

Data: Gaussian, synthetic

DR: MDS

In terms of taxonomy ...

Grid:

Equidistant Points

Overall: 99 (Good)

Problem: **FP**

Data: HIV, real

DR: t-SNE

In terms of taxonomy ...

A taxonomy of visual cluster separation factors

A taxonomy of visual cluster separation factors

A taxonomy of visual cluster separation factors

Mapping measure assumptions onto taxonomy

Centroid:

Mapping assumptions onto taxonomy axes

- only reliable if
 - round-ish clusters
 - not more than one dense spot
 - no outliers
 - similar sizes & #points

Grid:

Mapping assumptions onto taxonomy axes

- relatively robust against FN
- severe issues with FP
 - vulnerable to overlapping classes with non-random mixture, especially equidistant structures

They

Us

Scagnositcs

[Wilkinson 2005]

Mathematical depiction

Human perception

Gestalt principles

General capability

Specific guidance

Conclusion

Contributions

Taxonomy of visual cluster separation factors

In-depth evaluation of 2 stateof-the-art separation measures

Qualitative data study

A Taxonomy of Visual Cluster Separation Factors

Michael Sedlmair, Andrada Tatu², Tamara Munzner, Melanie Tory Univ. of British Columbia, Univ. of Konstanz, Univ. of Victoria http://www.cs.ubc.ca/labs/imager/tr/2012/VisClusterSep/

