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Abstract—We present a network visualization design study focused on supporting automotive engineers who need to specify and
optimize traffic patterns for in-car communication networks. The task and data abstractions that we derived support actively making
changes to an overlay network, where logical communication specifications must be mapped to an underlying physical network.
These abstractions are very different from the dominant use case in visual network analysis, namely identifying clusters and central
nodes, that stems from the domain of social network analysis. Our visualization tool RelEx was created and iteratively refined through
a full user-centered design process that included a full problem characterization phase before tool design began, paper prototyping,
iterative refinement in close collaboration with expert users for formative evaluation, deployment in the field with real analysts using
their own data, usability testing with non-expert users, and summative evaluation at the end of the deployment. In the summative
post-deployment study, which entailed domain experts using the tool over several weeks in their daily practice, we documented many
examples where the use of RelEx simplified or sped up their work compared to previous practices.

Index Terms—Network visualization, change management, traffic routing, traffic optimization, automotive, design study.

1 INTRODUCTION

This design study is the result of a 9-month collaboration with Ger-
man automotive engineers at BMW tasked with specifying and opti-
mizing the communication within in-car networks, which connect the
vehicle’s electronic control units (ECUs) and enable the exchange of
information between them via several communication bus subsystems.
Their work is part of the challenging process of developing and testing
a network for a new series of cars [4] and at any given time there are
up to five such networks in active development at BMW. The difficulty
of this data-intensive process and the need for better tools is widely ac-
knowledged [7, 14, 18, 37]. The limited previous work on visual net-
work analysis in this domain has focused on analyzing network traces
in a late phase of the development cycle [40]. Here we present RelEx,
short for Relation Explorer, a system that supports development engi-
neers in an earlier phase of the automotive design cycle. RelEx focuses
on the mapping of logical communication specifications to a physical
network of ECUs and bus systems. We designed RelEx to better sup-
port our target users in adapting in-car networks according to change
requests from other engineers and in optimizing network traffic.

Analyzing network data is a large and important application area
for visualization, and a multitude of approaches and techniques for
network visualization have been proposed [46]. Despite some ini-
tial work towards understanding low-level, generic tasks in visual net-
work analysis [13, 25], the visualization community’s understanding
of what people are doing in real-world settings remains incomplete.
Most of the previous design studies investigating real-world applica-
tions of network visualization have been conducted on the domain of
social network analysis. There the central problem for data analysts is
to identify and describe communities and actors [17, 20, 34, 45]. Ab-
stractly, these domain problems map to the generic tasks of identifying
and describing clusters and specific types of nodes including high-
degree nodes, bridge nodes, and outliers. These generic tasks also oc-
cur in the visual analysis of email communication networks [24] and
academic co-authorship [30].
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However, network analysis problems arise in a very broad set of
application domains, and in many cases these problems map to very
different abstract tasks. In particular, we focus on building engineered
networks [1, 49], rather than on discovering evolved networks. This
design study adds diversity to the set of carefully documented use
cases that arise from the real-world practices and problems in visual
network analysis. Such diversity will help the visualization research
community avoid the pitfall of focusing too narrowly on use cases and
tasks that do not cover the full scope of user needs. An example of
such a pitfall in another field is discussed by Borgatti in his typology
of network flows [3], where he argues that the implicit assumptions
underlying many off-the-shelf network centrality measures only hold
for a small and specific set of network analysis use cases and are not
appropriate for others.

RelEx was developed through a collaborative user-centered process
that began with a problem characterization phase. We conducted a
grounded investigation of the current practices, needs, and challenges
of our target group, including an analysis of the success and failure
factors of previously proposed tools. We then developed abstractions
of the data and tasks and derived design requirements for visual anal-
ysis tools. We chose a coordinated multiple view approach featuring a
custom matrix representation for an overview of communication pat-
terns and a filtered detail view to support path tracing, in addition to
traditional domain-specific topological network views and lists. We
evaluated RelEx with domain experts in a longitudinal field study over
5 weeks with 7 domain experts, and a qualitative lab study with 10
domain experts. We also conducted a heuristic evaluation with HCI
graduate students for further usability refinement. The resulting tool
for the visual exploration of complex relations sped up some tasks that
were difficult with the previous workflow of our target users, and al-
lowed them to conduct some tasks that were completely unsupported
before. After the collaborative development and evaluation phase was
completed, our domain experts continued using RelEx for their daily
activities.

Following recent guidelines on design study research [41], this pa-
per makes two contributions. The first is the characterization and ab-
straction of tasks and data in this problem domain, and their relation-
ship to abstractions used in other network visualization application ar-
eas. Our abstractions add a new and very different perspective on the
problems and tasks that people face in visual network analysis. The
second contribution is the carefully justified and validated design of
RelEx, created with a full user-centered design process that included
close collaboration with expert users at every step of the way. The val-
idation included a post-deployment study showing the effectiveness of
the matrix view, the first study documenting their utility in the field.



2 RELATED WORK

Most network visualization design studies focus on the abstract tasks
of cluster analysis and the identification of central nodes and outliers.
Many of these tasks come from the application domain of social net-
work analysis, where the domain problem is framed as the identifi-
cation and description of communities, key actors, and atypical actor
roles. Henry and Fekete documented that this abstraction matches the
needs of social science researchers as part of the MatrixExplorer de-
sign process [20]. The Honeycomb system from van Ham et al. [45]
and the work of Perer et al. [35, 34] also fit this mold. Design studies
focused on email communication networks [24] and academic paper
co-authorship [30] also use similar abstractions.

The abstract tasks and data abstraction of our target users, network
engineers, are fundamentally different. Our data abstraction is built
around multiple related networks that are explicitly changed by the
user, with a logical specification of communication paths layered on
top of a physically instantiated bearer network, and the abstract tasks
arise from the higher-level goals of specifying and optimizing traffic
flow, as described below.

Some design studies in network visualization have indeed addressed
a broader set of abstract tasks. In computational linguistics, Munzner
et al. proposed the Constellation system for visualizing semantic cor-
relation between words, with a focus on path tracing tasks [29]. Van
Ham uses a matrix-based visualization to support software architects
in identifying outliers – unwanted calls between software subsystems
– and the communication across different subsystems [44]. Another
major domain for network visualization stems from biological data.
Cerebral, for instance, was designed to support system biologists in
understanding changes over time and clusters in interaction graphs of
biomolecules [2]. ABySS-Explorer offers a graph-based visualization
of a sequence assembly with the goal of disambiguating paths [31].

Closest to our work are design studies from system analysis and
network trace visualizations. Pretorius and van Wijk presented a mul-
tivariate graph visualization tool for state transition analysis. They
explicitly outline that while most visualization techniques focus on
showing the structure of a graph, state transition analysis necessitates
incorporating additional information that is associated with nodes and
edges [36]. Our work presents another use case along these lines,
where the user needs to go beyond showing and understanding the
topology of a network. Finally, visual network analysis has also been
proposed for monitoring and testing computer networks. Fischer et al.
discuss a design study about visualizing network communication to
detect and analyze attacks on large computer networks [12]. Sedlmair
et al. introduced Cardiogram, a visual network analysis approach for
debugging in-car communication networks [40]. Both of these deal
with traces of actual communication in computer networks, whereas
we instead focus on the specification and optimization of communica-
tion routing in such networks.

3 PROCESS AND METHODS

This design study was conducted in nine months. Our user-centered
design approach was motivated by guidelines advocated in a wide va-
riety of methodologies, ranging from Action Research [15] to Multi-
dimensional In-depth Long-term Case Studies (MILCs) [42]. The
overall process was organized in three stages – problem characteriza-
tion, tool design and formative evaluation, and summative evaluation –
each of them using a mix of different data gathering methods to allow
for data triangulation. The target users were engineers within the large
automotive company BMW, working under high time pressure. All
activities involving domain expert participation were therefore care-
fully chosen and planned, considering their time as a restricted re-
source. The two researchers actively involved in planning and con-
ducting these studies were embedded within the company, with their
daily workspace close to those of the users.

PROBLEM CHARACTERIZATION: The goal of the problem charac-
terization phase was to get a good understanding of our target group’s
needs and challenges. We did so by:

1. Reading about target domain background, from both internal
company documents and general background literature [4, 5, 26].

2. Understanding their tasks, previous practices, and problems by
conducting field work.

3. Identifying failure and success factors for tool use in the domain.
4. Abstracting the data and tasks from domain-specific to generic

forms that can be addressed through visualization methods.
5. Deriving design requirements for RelEx, and considering how

these might generalize to other problem contexts.
A major method used in our field work was contextual inquiry,

namely the combination of in-place user observation with the discus-
sion of what is observed [22]; we also used semi-structured interviews
and a focus group. We undertook contextual inquires with five domain
experts, all working in the area of network architecture, and conducted
between two and ten sessions per participant where each session took
between five minutes and one hour. During the sessions we asked our
participants to demonstrate typical and important tasks, and we inter-
rupted to request clarification of activities that were not obvious from
silent observation. We also asked questions regarding their field of
activity, other tools they use for their daily activities, and challenges
they are confronted with. Exploiting our workspace proximity, we also
requested that they spontaneously call us over to observe them when
their daily work led to relevant tasks that might interest us. These op-
portunistic interviews were a rich source of information about their
true daily work practices, versus the idealized recollected set of tasks
discussed at the pre-scheduled interviews. We also conducted a focus
group study with four domain experts. Finally, we carefully selected
three lead users from all of these engineers, and conducted guided in-
terviews with them in order to focus and evaluate our findings. In all
studies we took notes to log information and statements. This phase
lasted roughly three months. Section 4 presents its results.

DESIGN AND FORMATIVE EVALUATION: Based on the implica-
tions from our problem characterization, we designed and imple-
mented a prototype called RelEx, short for Relation Explorer. During
this phase, we continued the collaboration with the three lead users
that we identified before. Our process was divided into four stages,
following the design principles of parallel prototyping [10]. First, we
engaged in a diverging phase considering a broad set of alternative
data abstraction and visual design ideas. Appreciating the time restric-
tions of our collaborators, we ruled out many ideas by evaluating them
against our problem analysis without further user contact. Second, we
created paper mockups of the set of pre-selected ideas and discussed
them with our lead users to obtain feedback. Third, we converged to
one final design concept that we again paper prototyped and discussed
with the lead users. Fourth, we implemented the refined concept as
a software system using an agile development process with six major
tool releases over a period of three months. These prototypes were
actively used by the three lead users for their daily work, and we con-
stantly elicited feedback from them and refined the tool accordingly.
In parallel, we conducted a heuristic evaluation with five HCI gradu-
ate students to detect generic usability issues that could be found by
non-experts and further refined the tool to fix these problems as well.
Sections 5 and 6 report the results of this phase.

SUMMATIVE EVALUATION: To validate RelEx’s domain usefulness,
we conducted two studies. First, we conducted a field study in which
we deployed RelEx to a group of 7 automotive network architects who
used the tool for a period of 5 weeks. Our initial plan was to have
5 pre-scheduled hour-long weekly meetings. In practice, we met op-
portunistically at the instigation of the participants, in a similar spirit
to the problem characterization phase. These spontaneous meetings
lasted between ten minutes and one hour, and ranged in number from
3 to 9 with each participant. In these meetings, we interviewed the par-
ticipants about their experiences with the tool and elicited both forma-
tive suggestions for improvement and summative feedback in terms of
usage examples. While we also gave them logbooks, following stan-
dard recommendations [42], we found that participants almost never
used them due to their high workload. Based on the formative feed-
back, we iteratively refined, adapted, or added additional features to
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Fig. 1. Network abstractions: (a) The physical network describes how ECUs and bus systems are connected; (b) the logical network depicts
signals and their sending and receiving ECUs; (c) the logicalcount network collapses the logical multigraph into a weighted simple graph, with
weights corresponding to the number of signals sent between a pair of ECUs; (d) the signalpath network results from mapping the logical onto the
physical network, showing signal paths.

RelEx, and provided our participants with tool updates. The summa-
tive results included experts’ estimations, comments and opinions, as
well as many usage examples where our participants successfully used
RelEx for their daily tasks. Second, we conducted a think-aloud study
with 10 domain experts, 5 of whom also participated in the field study.
These sessions lasted roughly one hour. This study focused on the
qualitative comparison of RelEx with the four previous tools discussed
in Section 4.3. We focused on gathering their opinions of benefits and
drawbacks and deliberately abstained from gathering quantitative per-
formance measurements. We did gather quantitative subjective ratings
using a questionnaire about tool use for a set of four representative and
open tasks, where the suitability of the tools for each task was rated
using 5-point Likert scales. In both studies, we logged verbal feedback
with written notes. The summative evaluation results are discussed in
Section 6.

CHALLENGES: During our investigations, we heard many statements
that we consider misconceptions about the role and value of visualiza-
tion, including “visualization is 3d”, “visualization is doing graphics
in Powerpoint”, “visualization is human-car interface design”, “visu-
alization is UI design” and “visualization is painting nice pictures”.
We chose to combat these misconceptions both explicitly through dia-
log, and implicitly through creating an effective visualization tool.

4 PROBLEM CHARACTERIZATION

We discuss data description and abstraction, results from our task anal-
ysis, previous practices and problems including successful and failed
domain tools, and design requirements we derived.

4.1 Data Description and Abstraction
The data our collaborators worked with was mainly stored in a
database called NetDB, a company-wide resource for all information
related to in-car network development. A first challenge was to fil-
ter the full information available within the database into the subset
that was important to our target users, and then to transform it into
an understandable data abstraction that is useful for visualization. Our
contribution includes the crisp abstract description of existing network
perspectives of engineers, and the explicit identification of new ele-
ments and abstractions as described below. We therefore distinguish
between the basic perspective, which more or less reflects and ab-
stracts how engineers currently think about in-car networks [4], and
further aggregations which we and our domain collaborators intro-
duced on top of this understanding.

BASIC PERSPECTIVE: Three types of elements found within in-car
networks were the main focus of attention for our users:
• The roughly 100 Electronic Control Units, or ECUs, are the

nodes of the network. There are three node roles: send, emit a
signal; recv, receive a signal; and gateway, repack and forward
a specific signal from one bus system to another.

• The roughly 10–15 bus systems, or buses, connect the ECUs.
Abstractly, they are undirected hyperedges – meaning that they
can connect multiple nodes – in the physical network discussed
below. ECUs with gateway roles are connected to multiple buses.

• The roughly 10,000 signal specifications, or signals, are infor-
mation containers used to transport a particular kind of informa-
tion in the network. Examples include ‘speed’, ‘temperature’,
and ‘window state’. These signal specifications describe the
types of information flow that can occur between ECUs, as op-
posed to the actual signal instances that might appear in a trace of
an active network, such as ‘speed = 25mph’. Abstractly, a signal
is a set of directed edges between ECU nodes in the logical net-
work defined below. Signals begin from a set of m send ECUs
and end at a set of n recv ECUs, but the common case is a single
sender with multiple receivers. The same physical ECU might
have different roles – send, recv, or gateway – for different sig-
nal specifications.

Based on these element groups, engineers distinguish between two
types of networks, which we abstract as following:
• The physical network specifies how ECUs are connected by

buses; signals are not involved. It can be described by a set
of {ECU,bus} pairs resulting in an undirected hypergraph, as
in Figure 1(a). This topological network is sparse, with a small
number of ECU nodes and bus edges.

• The logical network specifies the communication of signals be-
tween ECUs; buses are not involved. It can be described by a set
of {send,signal,recv} triples resulting in a directed multigraph
– meaning that there can be multiple edges between nodes – as
shown in Figure 1(b). This network is very dense, typically with
two orders of magnitude more signal edges than ECU nodes.

FURTHER AGGREGATIONS: We found that the needs and interests
of our users were more complex than these basic elements supported
by their previous tools, and thus derived further data abstractions and
aggregations. We identified two more elements:
• signalcount elements, which are the result of aggregating to-

gether all signals between a particular pair of ECUs into a single
element that includes a count of how many signals it includes;

• signal paths which specify the routing of a specific signal from
the logical network over the physical network.

which led us to two new network abstractions:
• The logicalcount network is a weighted version of the logi-

cal network transformed from an unweighted multigraph to a
weighted simple graph, as shown in Figure 1(c). That is, there
is only a single edge between any pair of nodes, and the edge
weights are the number of signals between those two ECUs in
the logical network. Each edge in this network is a single signal-
count element. While this network has up to an order of magni-
tude fewer edges than the logical one, it remains very dense.

• The signalpath network specifies the mapping of the logical net-
work onto the physical network. In other words, the logically
specified signals are mapped to signal paths that adhere to the
physical network structure, taking into account the bus connec-
tivity. It can be described as a set of {src,signal,bus,dest} 4-
tuples resulting in a directed multigraph, as in Figure 1(d). The
src ECU can be either a send or a gateway, and the dest can be
either a gateway or a recv. A single signal triple from the logical
network is mapped to a set of multiple 4-tuples in the physical



network; this 4-tuple is the signal path defined above. This graph
is even more dense than the logical network, since a single sig-
nal on it between two ECUs on different buses is mapped into
several segments, one for each gateway that must be traversed.

NOVEL ASPECTS: This data abstraction differs from those in previ-
ous work in several ways.

In terms of scalability requirements, nearly all previous work has
focused on the scalability of the topology itself, with systems designed
to handle large numbers of nodes and edges. In our case, the physical
network is quite small, with around 100 ECU nodes and 10-15 sets of
bus hyperedges. Straightforward static representations are sufficient
to show this topological structure alone, as supported by the Topology
Maps discussed in Section 4.3. Instead, we face a path scalability
problem: there are 10,000 signals, specifying communication paths
that are overlaid onto this topology.

The network specification data is also actively changing due to ex-
plicit actions by the target users as described below. In contrast, the
previous work on dynamic networks has been in support of passively
changing datasets, where the users seek to understand what changes
occurred; the Honeycomb system is one example [45].

Finally, this dataset can be described as an overlay communica-
tion network where a logical layer expressing communication paths
is mapped onto a physical layer with physical edges. This set of related
networks is a more complex data abstraction than the networks typi-
cally found in domains such as social network analysis, where there is
a single directed graph with actors as nodes and friendship relations as
edges [17].

4.2 Task Analysis

Our final task abstraction begins with a summary of the problem of
traffic optimization, as articulated by the automotive engineers. We
broke this high-level task down into a set of mid-level subtasks, and
developed a low-level characterization of all user activities in terms of
queries about relations.

The central concern of the engineers is to actively change the net-
work. A change request, particularly one from external colleagues,
will directly address only the elements of a basic physical or logical
network specification. These constitute adding, removing, or changing
ECUs, buses or signals. However, changes to individual elements in
these two networks often require additional changes to the signalpath
routing specification: the set of signal paths that specify the mapping
between them. Examples include connecting an ECU to an additional
or different bus, sending a signal via another bus, or sending a signal
to other ECUs. Thus, the signalpath network is usually affected by a
change request, even though it is not directly mentioned.

TRAFFIC OPTIMIZATION: The high-level goal of traffic optimiza-
tion on the signalpath network is thus the ultimate consideration that
underlies all change requests. The process of specifying an efficient
and effective signal routing requires accounting for different costs
and constraints. Costs stem from traversing edges or nodes and from
adding additional elements. The engineers use many cost metrics in-
cluding available bandwidth, delay and real-time requirements, path
length, ECU load, reliability, and money: adding new elements might
increase the financial cost of vehicle production. The engineers must
take into account the hard constraints that the physical bus edges and
the ECU nodes have a capacity limit and cannot be overloaded, and
soft constraints such as the goal of load balancing the physical net-
work. Unbalanced communication can lead to communication prob-
lems and does not efficiently use the available resources.

The target users heavily relied on this implicit knowledge about
costs and constraints during the process of proposing, implementing,
and validating changes. If complete and full information about the
cost structure of the problem were to become digitally available, then
the tasks would be fully automatable, and there would be no need for
a visualization tool. However, such knowledge elicitation would be
tricky; the set of considerations at play is sufficiently complex that
there is no current hope of fully automating the process any time soon.

MID-LEVEL SUBTASKS: We identified four specific subtasks that
were carried out as part of traffic optimization:
• locating communication hotspots, heavily travelled edges on

the logical and signalpath networks indicating high traffic.
• finding the number of communication partners for a specific

ECU, by distinguishing between local communicators that only
exchanged signals with a few other ECUs, versus global com-
municators that exchanged signals with nearly all ECUs in the
network.

• characterizing the communication structures between entire bus
systems on the signalpath network, by understanding whether a
bus system is an introvert where most of the traffic is between
elements directly attached to it with little or no communication
with other network sub-systems, or an extrovert that forwards
and receives communication from other buses.

• determining whether a signal is well-directed between just two
ECUs, or wide-spread across many ECUs.

LOW-LEVEL QUERIES AND RELATIONS: We found a way to ex-
press the high- and mid-level tasks as low-level operations: they are all
queries about relations between the elements and networks defined in
Section 4.1. That is, the answer to a query is one or more relations. All
of these queries can be expressed as the operation of filtering based on
a selected element, as outlined in Table 1.

Example queries include: Which ECU is communicating with
which ECU? Which signals do they exchange? Is a specific signal
available on a bus system? What is the path a signal takes? How many
signals does a ECU receive? What signals are sent over a bus system?
What pairs of ECUs do exchange many, little, or no signals? What
signals are exchanged across bus systems?

One factor in query complexity is the number of interacting ele-
ments in the relation: some questions can be answered as a two-way
relation between elements, for example those about the physical net-
work of ECUs and buses. Others require three-way relationships, for
example the triples of the logical network, and four-way relationships,
for example the 4-tuples of the signalpath network. A second factor
is the number of relations returned: while a simple query might return
only a single relation, more complex queries return multiple relations.
The last factor is whether the query encompasses only relations within
a set, such as a particular network, or between two sets, such as map-
pings from one network to another.

NOVEL ASPECTS: These tasks are for the most part very different
from those found in previous network analysis design studies. Many
previously identified tasks are not relevant for this domain, for ex-
ample the cluster identification task common in social network anal-
ysis [17, 20, 21, 45]. The hotspot detection task is interestingly dif-
ferent from finding key actors in social network analysis [20, 21, 45],
because the focus is on edges rather than nodes: that is, finding high-
traffic edges rather than finding highly central nodes.

4.3 Previous Tool Analysis
At the time the design study began, the engineers had access to a set
of four previously created tools that supported visual data exploration.
All were proprietary tools either developed in-house or made by third
parties according to specifications developed in-house. We found that
two were frequently used in daily practice, one was occasionally used,
and one had completely fallen out of use.1

TopoMaps, as shown in Figure 2(a), are manually created static
node-link representations of the physical network that show all ECU
and bus systems. They were used to obtain an overview of the entire
physical network and to understand the wiring of ECUs to bus systems
and reachability between ECUs. TopoMaps were used ubiquitously
and provided a strong mental model: the engineers thought, discussed,
and sketched based on this representation.

NetDB, the large, company-wide available database for all data re-
lated to in-car networks, comes with a text-based interface, shown in
Figure 2(b). This interface was heavily used for exploring what we

1The tool names have been sanitized to remove proprietary information.
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Fig. 2. Miniature screenshots of previous tools: (a) Topology map; (b) NetDB frontend allowing for simple queries; (c) Signaller showing signals
between two specified ECUs; (d) The former visualization tool AutoTopo for automatic generation of static visualizations such as topology maps.

call ‘simple connections’: a query for a single element with the re-
sults filtered to show all of its connections to elements of another type.
Example usage included: all signals a specific ECU sends, all ECUs
connected to a specific bus system, and which signals are transported
over a specific bus system. At the time of our collaboration, the NetDB
interface did not allow for direct queries of signal paths; these had to
be pieced together from multiple queries.

Signaller is a plugin for the NetDB interface that some engineers
used occasionally, as shown in Figure 2(c). It allows the user to query
for all signals that flow between two selected ECUs in the logical net-
work. The user can browse a list of send ECUs on the left and recv
ECUs on the right. Selecting a specific sender-receiver pair then shows
all signals that pass between them in the center of the view.

AutoTopo is a previously developed tool for in-car network visu-
alization, shown in Figure 2(d). It showed a semi-automatically cre-
ated static view with the same information as the manually created
TopoMaps described above. The tool was no longer in use, and we
were curious as to why. The proximate cause was a change in NetDB
data export formats, but when we inquired further the ultimate cause
was that AutoTopo had only been rarely used and thus was not missed
in daily working practice after the format change. Although engi-
neers first volunteered positive feedback about AutoTopo, especially
about the automatic topology map creation, further elicitation yielded
four reasons for its abandonment. First, the semi-automatic layout
approach yielded only minor benefits over manual refinement of the
drawings because most diagram changes were minor. Second, there
were many usability issues, most importantly that the manual layout
refinement was lost when data was reloaded. Third, the requirement to
export data from NetDB before using AutoTopo imposed a significant
time cost before the tool could be used. Fourth, the tool did not pro-
vide any novel data exploration capabilities, supporting only the same
usage as the static maps.

The top half of Table 1 summarizes the capabilities of these tools
using the data and task abstractions proposed above.

NEEDS AND CHALLENGES: Understanding connections between
the physical, logical and signalpath networks was the most critical
need. However, most of the engineers felt restricted in exploring these
connections with previous tools. The main limitations stated by the
participants were the restriction to explore only simple connections
between the network elements, the lack of overview for signals, and
the absence of suitable representation techniques for signal paths. One
participant said: “A good solution for better showing signal commu-
nication is most urgent”.2 Another engineer mentioned that “techni-
cally, you can get all information [...] but if you need to understand
more than 1:n connections, you have to manually add up all informa-
tion you get from [NetDB]”. He referred to challenges in understand-
ing more complex connections such as signal paths. In such cases,
engineers had to sequentially conduct multiple queries while either
forming a mental picture of what was going on or using paper and pen
to sketch interactions and connections.

Both TopoMaps and NetDB were invaluable and necessary tools for
our participants, but were not sufficient for their data analysis needs.
Their intrinsic goals were often at a high level, such as “which other

2All quotations translated from German.

elements will be influenced when I change this function” or “what
are the dependencies of this ECU within the entire network”. These
goals had to be translated by the engineers to the set of simple queries
supported by these views, resulting in information snippets that needed
to be manually combined.

VISUAL DATA EXPLORATION NEEDS: The high-level tasks pre-
sented above require major components of manual analysis and
decision-making by experts. Our target users were frequently engaged
in exploratory data analysis of the logical, the physical, and the signal-
path network, particularly in the initial phases of inspecting the current
network configuration as part of creating or evaluating a change pro-
posal. They then used a combination of automatic verification and
manual inspection methods to validate the proposed changes before
releasing a new version of the network specifications.

4.4 Design Requirements

Our problem characterization phase resulted in six top-level design
requirements. The first three are very general, whereas the last three
are specific to this problem.
• INTEGRATE with existing tools, to avoid any time costs of data

export and formatting. Our analysis of the AutoTopo failure fac-
tors showed that even small technical hurdles on this front could
result in the neglect of a tool. Close integration also allows for a
more realistic evaluation in a large company environment [39].

• EXTEND rather than displace current practices. We carefully
identified the strengths of current practice: the strong mental
model of the predominant topology map representation, and the
capability for simple queries. Our goal was to preserve, augment,
and extend them with further data exploration capabilities.

• INTERACTION as a first-class citizen: the tool should support
some aspects of the tasks through its visual encoding, and others
through interaction. While the value of interactive data explo-
ration to amplify cognition is not a new idea for the visualization
community [8, 9, 47], the reliance of the failed AutoTopo project
on static images showed that the potential of interactivity for vi-
sual data analysis was not apparent to this audience.

• RICH exploration of complex relations, not just simple ones,
needs to be supported. The fundamental problem with previ-
ous tools is that the investigation of 2-way relations were well
supported, but there was only limited support for 3-way rela-
tions and no support at all for 4-way relations. This limitation
led to two gulfs: a gulf of execution where users must mentally
break down a complex query into the simpler ones supported by
the tools, and a gulf of evaluation from the need to combine the
multiple query results into a big picture using manual or inter-
nal resources [32]. Our tool should support complex, multi-way
relations, as suggested by the name Relation Explorer.

• Signal PATHS need an explicit visual representation. Previous
tools force the users to manually construct these through multiple
simple queries shown with textual output.

• A logical OVERVIEW is needed, showing signals and their con-
nection to other elements, just as TopoMaps provide an overview
over the physical network. We derived this requirement from the
desires of our participants for an “overview over signals” but



Table 1. Visual encoding comparison between previous tools and RelEx. In the Scope column, normal text indicates selected items, italics indicates
items filtered according to the selections, and bold indicates that all items in the set are shown.

PREVIOUS TOOLS
Name Network Scope Description
TopoMap/AutoTopo Physical ECU, bus 2-way full (both overview and detail)
NetDB any { A, B } 2-way detail: filtered by selection

(NetDB example) Physical { ECU, bus } buses connected to selected ECU
(NetDB example) Logical { ECU, signal } signals sent from selected ECU
(NetDB example) SignalPath { bus, signal } signals sent over selected bus

Signaller Logical { ECU, signal, ECU } 3-way detail: filter signal set by send/receive ECU selection
RELEX

View Network Scope Description
Topology Physical ECU, bus 2-way full; same as TopoMap above
List any { A, B } 2-way detail: filtered by selection; same as NetDB above
Matrix LogicalCount ECU, signalcount, ECU 3-way overview
SignalPath SignalPath { ECU , signal, bus, ECU } 4-way detail: filtered by selected signal

also by considering the gaps in the classification of data explo-
ration capabilities of previous tools, as summarized in the top
half of Table 1.

5 RELEX

RelEx uses multiple coordinated views with linked selection and high-
lighting [33], as is standard practice [48]. Following the INTERAC-
TION requirement, we carefully considered which aspects of the tasks
should be supported by directly visually encoding information, versus
through interaction via view coordination. RelEx was designed for use
with large, high-resolution displays of 1920x1080 pixels.

There are four main views, as shown in Figure 3. The Topology
View shows the physical network of all ECUs connected by buses
with an automatically computed layout designed to be as similar as
possible to the previous TopoMaps. Two List Views show text lists of
all ECUs and signals respectively, featuring carefully designed coor-
dination with other views to support both simple and complex queries.
Following the EXTEND requirement, the Topology View and the List
Views are very similar to heavily used previous views in terms of vi-
sual representation, but are augmented with full interaction capabilities
as integrated linked views. The Matrix View is designed to provide
an overview of signal communication using an adjacency matrix visual
representation. The SignalPath View acts as a node-link detail view
for a filtered set of signal paths traversed by the currently selected sig-
nals. Additional minor views are available for filtering the data at hand
and showing the visual encoding legend.

By default, the Topology View, the Matrix View, and the ECU List
View are shown simultaneously; the Signal List and the minor views
are sequentially available via tabs in the ECU List, and the SignalPath
View can be accessed on demand.

Figure 3 and all subsequent figures show the system with a sanitized
real-world example dataset of roughly 8000 signals specified between
93 ECUs and 9 buses, yielding 3000 unidirectional logicalcount edges.
Additional screenshots as well as a video showing the look and feel of
RelEx on the same dataset are available as supplemental material.

All visual encoding choices in all three of the network-centric views
were informed by the empirical work on the strengths and weaknesses
of matrix versus node-link visual encodings [13]. Three central find-
ings pertain to our design problem. First, node-link encoding is a poor
choice for large dense graphs because they become extremely clut-
tered. Second, matrix encoding does scale well, even for dense graphs.
Third, path tracing is poorly supported by matrix encoding.

The bottom half of Table 1 summarizes the capabilities of each main
view in terms of the data abstractions. We now discuss the capabilities
of and design decisions underlying each of these views in more detail.

5.1 Topology View
The Topology View uses a node-link visual encoding, a perceptually
appropriate choice because the physical network is small and sparse.
The Topology View incorporates an automatic layout algorithm de-
signed to mimic as closely as possible the heavily used manually gen-

erated views that were familiar to the engineers, following the EX-
TEND requirement, in order to maximize our tool’s usability, learn-
ability, and user acceptance. Details about the layout algorithm can be
found in the first author’s dissertation [38].

This choice of automation also follows the INTEGRATE requirement
by ensuring that the drawings reflect the latest database updates, avoid-
ing the barrier of manual drawing updates. Also, the INTERACTION
requirement is more easily met with an automatically constructed view
than with an approach where dynamic information is overlaid upon a
static drawing.

ECUs are represented as labeled rectangles, with a thick black out-
line around gateway ECUs. The central gateway ECU is placed in the
top center, with other ECUs connected to it sorted into vertical stacks
according to their bus connectivity. Buses are drawn with orthogonal
lines, color-coded according to domain conventions, with labels at the
bottom. Although manual drawings sometimes use double stacks with
ECU rectangles on both sides of bus lines, our system creates only a
single stack per group for algorithmic simplicity. The algorithm re-
orders stacks and lines to avoid crossings of bus edges on top of ECU
nodes, and to minimize edge crossings. The view supports navigation
through zooming and panning.

5.2 Matrix View
The Matrix View was designed to fulfill the OVERVIEW requirement
by providing a big-picture view of the logicalcount network, show-
ing the possible communication between send and recv ECUs across
all signals. We chose an adjacency matrix representation because the
logicalcount network is large and dense.

The signal matrix positions send ECUs along the top row and recv
ECUs down the left column. The visual representation of the ECUs
along the outside is with labeled rectangles for consistency with the
Topology View, with the addition of small arrows to clarify the di-
rection of communication. At each crossing of a send column and
a recv row the total number of signals exchanged between that pair
of ECUs are represented by a square whose size encodes the logi-
calcount; we call these communication-boxes. The largest box size
showing counts of over 100 signals also has a thick black outline to
support preattentive search for communication hotspots [43, 16]. The
size coding is documented in a legend at the bottom of the view.

Although the users’ main interest is in overviewing the logical net-
work, we intentionally decided to use the logicalcount aggregation re-
sulting in a simple directed graph for visual overview purposes rather
than trying to directly show the more complex logical multigraph. By
using the logicalcount aggregation, the user can quickly detect whether
edges exist between nodes in the logical multigraph; the individual sig-
nal edges can then be resolved interactively as described below. Our
lead users found this to be an adequate and highly valuable approach
for their data and tasks.

The default ordering of the ECUs within the matrix is alphabetical
by name. The user can instead choose bus-sorted mode, where the
ECUs are ordered by bus connectivity, and alternating groups of bus



Fig. 3. RelEx with the four main views opened: Topology View (upper left), List View with the Signal tab active (lower left), SignalPath View (lower
middle), and the Matrix View (right side). The annotations in the matrix sorted by bus systems show (a) a crossbeam, (b) communication hotspots,
(c) the bus system communication introvert pattern – most of the communication-boxes are within the white square on the diagonal indicating
communication within a bus, (d) the extrovert pattern – many boxes are outside the diagonal square indicating communication with other buses.

systems have light blue backgrounds to create visually distinguishable
stripes. Because gateway ECUs are connected to more than one bus,
in this mode we had to decide between representing them redundantly
or leaving out all but one bus connection, a decision also faced by
the designers of Constellation [29] and NodeTrix [19]. We chose to
show them redundantly based on feedback from the lead users. We
maintain awareness of the redundancy by simultaneously highlighting
all instances of the same node on hover or selection.

This view supports navigation through panning and constrained
zooming to inspect regions in more detail. Zooming is constrained
to be a single-step increase of magnification to a fixed level, and the
relevant labels on the periphery are pinned to stay visible at all times as
the user pans. These interaction choices were influenced and refined
by the heuristic usability study we conducted and by feedback from
our lead users.

5.3 SignalPath View
Following the PATH requirement, the SignalPath View, as the name
implies, supports path tracing tasks, and thus a node-link visual en-
coding is the most appropriate choice. Because the signalpath network
is very dense, we do not attempt to show an overview representation
of the whole network. This view is a detail view, showing only the
signal paths corresponding to a selected signal. It can be considered
to be a view of the signalpath network filtered by the selected signal,
containing only the edges and nodes traversed by it.

The style is visually consistent with the Topology View in terms of
shapes, colors, and labels, and the layout shares many features such as
orthogonal edge routing and vertical stacks. However, it is important
to note that it shows a completely different data abstraction: a filtered
version of the signalpath network rather than the physical network.

We observed many participants sketching this kind of view for
themselves on paper, after internally synthesizing the results of a se-
quence of simple queries. They typically created a left-right orthogo-
nal node-link view with vertical stacking of elements according to bus
systems, following the visual conventions of the Topology View. We
developed an automatic layout algorithm that is faithful to this style,
following the EXTEND requirement.

5.4 List Views and Other Views

The List View can show one of its four tabs at any time. The main
two tabs are text-based detail browsers, the ECU List and the Signal
List. The lists are alphabetically ordered by the name of the ECU and
signal respectively and provide detailed information as well as related
elements such as, for instance, sending or receiving ECUs of a par-
ticular signal in the Signal List. They therefore allow for conducting
traditional simple queries supporting the EXTEND requirement.

In addition, each List View includes a search box that can be used
to filter the lists. Selecting a list item results in highlighting not only
that item, but also related elements in all other views, as described in
more detail below. In the other direction, selection in any of the other
views automatically initiates a search request in the List Views.

A third tab holds the Filter View that allows users to interactively
filter elements out so that they are completely excluded from the visual
exploration and representation in all views – as opposed to List View
filtering. The fourth tab holds the Legend View that provides a com-
plete legend of all visual encodings used, most importantly all color
codings. These two views were created in response to direct requests
from the lead users.

5.5 View Coordination

The brushing and linking between the views was carefully designed to
support rich exploration of connections in the network (RICH). The
core operations for this purpose are hover and select operations, as
lighter and heavier weight ways to indicate choice.

The visual encoding for highlighting ECU and signal elements is
orange for hover and light red for selection in all visualization views.
Where send and recv ECUs need to be distinguished, they are colored
with saturated blue and red respectively. These colors follow domain
conventions and were determined based on feedback from the engi-
neers. Highlighting bus system elements is done by increasing the
linewidth in order to retain their color information.

Hover and selection of an element not only highlights the element
itself in all views, but also all elements directly connected to the cho-
sen element, in a way that depends on the element type:



• ECU: Hover/select in Topology, SignalPath, Matrix, List Views.
In the Matrix View, horizontal and vertical lines “beam” out from
the location of the chosen ECU along the periphery at the top and
left, where all communication-boxes along these lines are high-
lighted. The resulting crossbeam, which spans the matrix, will
be centered on the diagonal, as shown in Figure 3(a). These lines
draw attention to all the signals sent or received by the chosen
ECU. If the chosen element appears more than once because the
matrix is bus-sorted, multiple crossbeams will appear.

• Bus: Hover/select in Topology, SignalPath Views.
In the Topology View, all ECUs connected to a chosen bus are
also highlighted, as shown with the orange ECUs connected to
the thick black line of the SF-CAN bus in the upper left of Fig-
ure 3. This highlighting supports faster detection of all connected
ECUs, especially if the ECUs of a bus are connected to more than
one bus and therefore located in different columns.

• Signal: Select in List View.
Selecting a signal from the Signal List View highlights all ele-
ments directly involved in the corresponding signal paths for its
routing in all views, and optionally also opens a SignalPath View
showing those signal paths explicitly. The highlighted elements
include all ECUs that send or receive the signal and all bus sys-
tems that transport it; thus, the highlighting in the Topology View
provides a quick way to see what subset of the familiar phys-
ical network is affected by the chosen signal. The highlighted
elements also include all communication-boxes that incorporate
the chosen signal in the Matrix View, in addition to the affected
ECUs that are connected with vertical blue (send) and horizon-
tal red (recv) crossbeam lines. Figure 4 shows the Matrix View
highlighting a single wide-spread signal that touches many ECUs
on the network.

• Communication-box: Hover/select in Matrix View.
Choosing a communication-box in the Matrix View, representing
signal exchange between a pair of ECUs, creates a crossbeam
centered at that chosen box as described for signals. Sending
and receiving ECU and transporting bus are highlighted in the
Topology View, and the Signal List is filtered to show the loading
of the selected signalcount edge.

Thus, although the visual encoding in some of the views is straight-
forward, the interaction design through view coordination allows users
to quickly explore with both simple and more complex connection
queries following the RICH requirement. For example, selecting a bus
system in the Topology Map automatically shows all signals that are
sent via this bus in the Signal List and all connected ECUs in the ECU
List. Selecting a communication-box in the Matrix View updates the
lists with sending and receiving ECUs, as well as all signals that are
sent between these ECUs.

We added many other features in response to requests from the
users. Most notably, we support multiple selections and allow the user
to choose between combining them into AND or OR filtering opera-
tions; we also added a simple wizard to support for editing elements
directly within RelEx without the need to change to another tool.

5.6 Implementation
We implemented RelEx in Java using Eclipse’s Plug-in Development
Environments [11]. The sophisticated window management frame-
work of Eclipse works well for building a multiple coordinated view
systems. We further integrated RelEx as an plugin into NetDB-2, the
experimental new NetDB version. This close integration, following
the INTEGRATE requirement, allowed everybody involved in testing
the new database, including all of our collaborators, to use RelEx with-
out any additional time overhead. For users without access to this test
version and for users at supplier companies, we also provided a stan-
dalone version that works with exported data.

6 RESULTS AND VALIDATION

Our particular efforts to validate the utility of RelEx focused on two as-
pects: first, determining whether the carefully designed coordination
of our multiple views provided benefits to the engineers, compared

Fig. 4. The Matrix View reveals a pattern of a wide-spread signal that
touches many of the ECUs in the network.

to their previous tools; and second, whether the novel Matrix View
overview was helpful for engineers’ tasks. Following previously sug-
gested guidelines for validating design studies [27, 28], we present
usage examples we found where our participants successfully used
RelEx for their daily work, feedback and subjective ratings, and dis-
cuss the adoption of RelEx in daily engineering practice both during
and after the longitudinal studies. These results summarize all forma-
tive and summative studies discussed in Section 3.

6.1 Usage Examples

From our longitudinal field studies, we derived several usage examples
that show how RelEx helped our participants in conducting daily tasks,
and how they gained novel insights into the data by using it.

In terms of how our multiple view approach extended previous ex-
ploration practices, we found that all participants were able to quickly
learn all interactions and to productively use them to simplify or speed
up some of their tasks. For instance, three engineers used RelEx for
replacing ECUs with other ECUs in four ways. They used it to iden-
tify and adapt all communication partners. They also used it to decide
whether two ECUs might be consolidated or not by investigating dif-
ferences and connections between the ECUs in question. Furthermore,
they used RelEx for finding out to which bus to connect a novel ECU,
and for deciding how to re-route signals over the network. Another
engineer who was relatively new in the area of in-car network engi-
neering, with only two months of experience, used RelEx frequently
to familiarize himself with the network topology and communication
processes in the network, and especially to understand the intensity
of communication between particular ECU pairs. Furthermore, RelEx
was used for exploring the current network specification and to under-
stand how to improve it by gaining new insights into the data, as we
discuss below. Finally, our prototype was used for ordinary tasks such
as to identify all communication partners of an ECU, to investigate
gateway communication, to explain decisions and facts to colleagues,
or simply to refer to the topology map if a printed version was not near
to hand.

We documented four mid-level subtasks of complex traffic op-
timization, as described in our task analysis, in which the matrix
overview provided benefits to the engineers. In the first three cases, the
task of finding these configurations was at least partially supported by
previous tools, but carrying it out was slow, tedious, and error-prone.
In the last case, the task was not supported at all by previous tools.

Communication hotspots: The Matrix View supported fast detec-
tion of communication hotspots, namely heavily travelled pathways



between ECUs, because of the size coding of the communication
boxes and highly visible black frame around the largest ones, as shown
in Figure 3(b). Hotspot detection was known to be an important prob-
lem, but using previous tools users had either to know a priori where
hotspots might be, or to identify them via sequential browsing using
simple textual queries in a slow and error-prone process. In contrast,
the matrix allowed for a robust and fast identification of these hotspots.

Local/global communicator ECUs: The combination of the Ma-
trix View and hover/select highlighting capabilities made it easy to
understand the number of communication partners for a specific ECU.
It was easy to spot local communicators that only exchanged signals
with a few other ECUs, versus global communicators that exchanged
signals with nearly all ECUs in the network, as shown by the red high-
lighted cross in Figure 3. The fast detection of global communicators
helped our participants to estimate potential impacts of changing or
replacing this ECU. Just as with the above example, identifying these
patterns was far faster with RelEx than with the simple queries sup-
ported by previous tools. The benefits of matrix views for distinguish-
ing local from global were previously noted in a use case of analyzing
call graph matrices of large software projects [44].

Well-directed/wide-spread signals: The Matrix View also helped
the engineers to quickly get an impression of the importance of a se-
lected signal. Well-directed signals exchanging information between
two dedicated ECUs result in only one or two communication-boxes
being highlighted in the Matrix View when that signal is selected. In
contrast, wide-spread signals jump out because many communication-
boxes are highlighted, as shown by the several dozen crossbeams in
Figure 4; the red horizontal beams emanate from the send ECUs, and
the blue vertical beams from the recv ones. Our participants preferred
to use the much faster RelEx than the previous tools for this purpose.

Introvert/extrovert bus systems: The Matrix View also helped en-
gineers understand communication structures between entire bus sys-
tems. Sorting the Matrix View by bus helped engineers to distinguish
between introvert bus systems that have little or no communication
with other network sub-systems, as shown in Figure 3(c), and extro-
vert bus systems that communicate with many others, as shown in
Figure 3(d). The easy access to all signals that are exchanged across
different bus systems turned out to be particularly helpful in network
optimization undertakings. All participants mentioned that communi-
cation across bus systems is expensive and that the Matrix View pro-
vided a good starting point for hypothesizing about traffic optimization
in terms of reducing gateway communication costs. Previous tools did
not support this kind of analysis at all.

6.2 Feedback and Subjective Ratings
During our think-aloud studies, we explicitly focused on comparing
RelEx with the heavily used previous tools TopoMaps and NetDB. In
doing so, we triggered more discussions about room for future im-
provement and possible extensions of the RelEx approach. When in-
terpreting these results we were careful to keep in mind experimental
demand characteristics, namely that study participants are often eager
to please researchers [6, 23].

We were particularly interested in comparing our automatic Topol-
ogy View layout to manually drawn TopoMaps. The general feedback
was more positive than we expected given the known limitations of
automatic layout algorithms, with the mean similarity ranked as 1.8
and clear arrangement as 2.1, on a scale where 1 is best and 5 worst.
We were also given many suggestions for improvement. Some partici-
pants complained that the position of our ECUs is not exactly the same
as the position in the original maps. Others suggested that all gateways
should be positioned more centrally, and that the layout should support
the representation of mutually exclusive ECUs just as manually drawn
layouts do.

When comparing RelEx to NetDB, the feedback was highly posi-
tive, with better ratings for 95% of all tasks tested. This result is heart-
ening but not surprising, given that RelEx was designed to support
complex connection exploration while the NetDB interface was de-
veloped for data management purposes and simple exploration tasks.
The major benefits of RelEx most frequently stated by our participants

were the overview RelEx provides, the rich and usable exploration
opportunities, its comprehensibility, the ability to easily communicate
with colleagues using RelEx, and the ability to speed up and simplify a
variety of their daily tasks. Four participants also particularly stressed
the value of the SignalPath View as it shows all relevant elements of
signal paths in an easily understandable and usable way, while with
previous tools this information had to be derived with a manual step-
by-step process. Several participants even advocated replacing Sig-
naller with RelEx as soon as possible for company-wide use.

The main limitation of RelEx was the lack of support for aspects of
communication that are not currently addressed in the tool at all, most
notably a networking layer in which signals are packed and unpacked
into combined message units. We intentionally abstained from adding
this additional layer of information based on feedback from our lead
users during the user-centered design process. Our lead users argued
that a solution for signals, ECUs and bus systems was most urgent and
should be implemented and validated before extending it to further
elements.

6.3 Adoption
It is usually difficult to convince users to spend time learning novel
solutions in domains with strong time and cost restrictions, especially
when they are strongly accustomed to and effective with previous tools
[39]. Given the strong restrictions on the available time of engineers in
our company setting, we were pleasantly surprised by how frequently
our participants used RelEx in their routine work practice during the
study: 5 participants used it weekly, and 2 participants used it daily.
Most of our participants also continued to use RelEx after the study
and recommended it to colleagues for usage, resulting in a user base
of approximately 15 engineers a few months after the study’s end.

7 CONCLUSION AND FUTURE WORK

The RelEx visualization system was successful in speeding up the
work carried out by its target users, engineers actively changing a com-
plex combination of overlay communication networks. It was created
as part of a full user-centered design cycle that featured close con-
tact with the target users at every step, including pre-design observa-
tion in the field, formative feedback during iterative development, and
summative post-deployment field studies. The latter is the first post-
deployment study of a matrix-based visualization and provides direct
evidence of their benefits in the field for real-world tasks.

A further major contribution of this design study is the data and
task abstraction that is fundamentally different from previous design
studies in network visualization, leading to different implications for
network visualization design. While previous work mainly focused
on cluster and node centrality analysis, our work supports the tasks
of actively changing the data, routing communication, and optimizing
traffic. Rather than focusing on a single network, our data abstraction
is an overlay communication network where a logical layer expressing
communication paths is mapped onto a physical layer with physical
edges. In our application the true problem lies in exploring path scala-
bility. In contrast, most of the previous work has concentrated on node
scalability. We argue that such differences can be found in many other
application domains beyond in-car network development.

We provide this design study as one step towards broadening the vi-
sualization community’s knowledge about the tasks and data involved
in visual network analysis, but there is still far to go. We call for more
such studies in the future across a disparate set of application domains,
in order to build up a more complete understanding of the space of task
and data abstractions, and their implications for visualization design.
Eventually, a solid understanding of the diversity of tasks in network
analysis will help us to develop broadly applicable network visualiza-
tion techniques with widespread impact.
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