
EUROGRAPHICS Symposium on Rendering (2012)
F. Durand and D. Gutierrez (Guest Editors)

Supplemental Document for “Polynomial Optics”

Matthias B. Hullin†1 Johannes Hanika2 Wolfgang Heidrich 1

1The University of British Columbia 2Weta Digital

Abstract
Our paper on Polynomial Optics, presented at the EUROGRAPHICS Symposium on Rendering 2012, describes
the mapping of light rays through an optical system in terms of a system of multivariate polynomials. With this
supplemental document, we provide additional information on two main aspects:

1. Scalar-valued and other functions. In the paper, we focus on the geometric mapping of rays onto rays. As a
matter of fact, other functions of the ray parameters can be treated in a very similar way. This includes the
attenuation of light, for instance by Fresnel terms, absorption or occlusion. We construct an example system
that modulates both geometry and intensity of a light ray.

2. Introduction to the C++ library. Furthermore, we introduce the interface to our C++ implementation of Poly-
nomial Optics. The full code, along with usage examples, is provided on the project homepage,
http://www.cs.ubc.ca/labs/imager/tr/2012/PolynomialOptics/.

1. Ray intensity and other scalar modulation

In our paper on Polynomial Optics, we elaborate on how the
geometric mapping of light rays through an optical system
can be described in terms of polynomial functions. A very
similar approach can also be used to describe scalar func-
tions of the ray paramaters, most prominently the change in
radiance along a ray. Various factors can contribute to such
modulation; the most prominent examples are arguably par-
tial reflection or transmission (Fresnel terms), and occlusion
of the light beam by lens barrels and apertures.

f1

rin
Iin

f3 f5 f6

m1 m2m3m4 m5

rout
Iout

f2 f4

Figure 1: A system consisting of a lens and two apertures,
resulting in the ray mappings (fi) and modulations (mi).

Consider the optical system shown in Figure 1. It consists
of elements that affect both the geometry and intensity of a

† hullin@cs.ubc.ca

ray that passes through it. The ray mappings f1 . . . f6 describe
propagation and refraction of the ray: f{1,3,5,6} are propaga-
tions and f{2,4} spherical refractive interfaces.

The scalar modulation functions m1 . . .m5 describe the
relative change of intensity that an incoming ray experiences
at a given interface, as a function of the ray parameter vector:

m(r) = Iout(r)
Iin

(1)

The total ray mapping of the system is given as:

fsystem(r) = (f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(r) (2)

In order to determine the modulation factor in the various
planes, only a part of this concatenation needs to be evalu-
ated. For instance, if the function m3 describes the Fresnel
transmission through the second lens interface, the attenuat-
ing factor M3 of that surface is computed as:

M3(r) = (m3 ◦ f3 ◦ f2 ◦ f1)(r) (3)

The total attenuation Mtotal is then simply the product of the
individual factors M1 . . .M5.

If analytical expressions are known for all the modula-
tion functions involved, we can determine their product and,

c© The Eurographics Association 2012.

http://www.cs.ubc.ca/labs/imager/tr/2012/PolynomialOptics/


M. Hullin et al. / Polynomial Optics, Supplemental Document

again, approximate it by means of a Taylor expansion:

M(rx,ry,dx,dy) =
∞
∑
a=0

∞
∑
b=0

∞
∑
c=0

∞
∑

d=0
β(a,b,c,d) · r

a
x · rb

y ·dc
x ·dd

y

(4)
This is not always the case; some functions are not continu-
ous and therefore their value has to be computed per ray. A
typical example is occlusion; let us assume that the entrance
pupil of our system, m1, is of round shape with radius R1:

m1(rx,ry,dx,dy) =

{
1 if

√
r2

x + r2
y < R1

0 else
(5)

To determine the total attenuation of our ray from Fresnel
terms, Lambertian cosine and apertures combined, it there-
fore sometimes makes sense to combine both concepts:

Mtotal(r) = M1(r) ·MF(r) ·M4(r) (6)

where MF combines the Fresnel terms m2 and m3 as well as
the Lambertian factor m5 = cos 6 (r, ẑ). The individual terms
are as follows:

M1(r) = m1(r),
MF(r) = ((m2 ◦ f1) · (m3 ◦ f3 ◦ f2 ◦ f1) · (m5 ◦ fsystem))(r),
M4(r) = (m4 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(r).

MF(r) can in principle be Taylor-expanded, but the apertures
M1(r) and M4(r) will need to be evaluated separately for
each ray r, and then multiplied to obtain Mtotal(r).

2. C/C++ Library

Our implementation of polynomial optics is divided in two
layers: a set of classes that provide very general algebraic
functionality, and a library of optical elements that produces
instances of these classes. Additional helper tools assist the
process.

Class templates. The following set of C++ classes is
provided, each templated with the scalar type and the
number of input/output variables:

PolyTerm<scalar,numvars> – A monomial, consisting
of a coefficient, and nonnegative, integer exponents for each
of the variables.
TruncPoly<scalar,numvars> – A truncated polynomial,
consisting of a list of polyTerms and a truncation degree.
TruncPolySystem<scalar,numVarsIn,numVarsOut>

– A system of numVarsOut truncated polynomials, each in
numVarsIn variables of type scalar.

The classes implement basic algebraic functionality in-
cluding inter-class operators where they make sense (e.g.,
addition and multiplication of terms and polynomials). Such
operations are automatically truncated according to the cur-
rent truncation degree of a polynomial.

For the most likely template parameters, predefined types
are provided, such as Term2f (a single-precision monomial

in two variables), Poly3d (a double-precision polynomial in
three variables) and System42f (a system of two equations,
each a single-precision polynomial in four variables).

Library of optical elements. Most optical elements are
abstracted as TruncPolySystem<float,4,4> of degree
5, where input and output are both reduced ray vectors.
Geometric derivation and Taylor expansion of the ray
tracing solution was performed using the symbolic algebra
package Maple, then converted to C/C++.

System44f refract_spherical_5(float R, float

n1, float n2);

System44f reflect_spherical_5(float R);

System44f refract_cylindrical_x_5(float R,

float n1, float n2);

...

System44f propagate_5(float dist);

Rays are often conveniently parameterized by their in-
tersection with two parallel planes. The conversion to re-
duced ray vectors, when done beforehand, can cause ex-
cessive roundoff error if the distance between the planes is
large. The library therefore offers an element that allows the
user to integrate two-plane parameterization into the polyno-
mial system, which resolves such problems in most cases.

System44f two_plane_5(float dist);

Additional helper tools, as well as a database of optical
glasses, complement the library.

Usage example. The following code snippet shows the
construction of a simple biconvex lens from scratch.

OpticalMaterial glass("N-BK7");

float lambda = 550; // nanometers

float n1 = glass.get_index(lambda);

float dist0 = 200, R1 = 100, R2 = -100,

thickness = 10;

System44f system = two_plane(dist0)

>> refract_spherical_5(R1, 1.f, n1)

>> propagate_5(thickness)

>> refract_spherical_5(R2, n1, 1.f);

float focal_dist = find_focus_X(system);

system = system >> propagate_5(focal_dist);

float magni = get_magnification_X(system);

std::cout << system; // output equations

// Define ray as world x y, pupil x y:

float ray_in[4] = {1,2,1,2};

float ray_out[4];

system.evaluate(ray_in, ray_out);

Data export. Coefficients and exponents of the terms in
a polynomial are stored linearly in memory, making it
easy to perform the high-level polynomial handling in C++
and transferring the resulting data over to other computing
frameworks such as OpenCL or CUDA.

c© The Eurographics Association 2012.


