
DimStiller: Workflows for dimensional analysis and reduction
Stephen Ingram, Tamara Munzner∗

University of British Columbia
Veronika Irvine, Melanie Tory†

University of Victoria
Steven Bergner, Torsten Möller‡

Simon Fraser University

ABSTRACT

DimStiller is a system for dimensionality reduction and analysis.
It frames the task of understanding and transforming input dimen-
sions as a series of analysis steps where users transform data ta-
bles by chaining together different techniques, called operators,
into pipelines of expressions. The individual operators have con-
trols and views that are linked together based on the structure of
the expression. Users interact with the operator controls to tune pa-
rameter choices, with immediate visual feedback guiding the explo-
ration of local neighborhoods of the space of possible data tables.
DimStiller also provides global guidance for navigating data-table
space through expression templates called workflows, which permit
re-use of common patterns of analysis.

1 INTRODUCTION

Tables are a common way to organize data that can be interpreted
in terms of cardinality and dimensionality as a set of n points in m
dimensional space. Many practical questions about a high dimen-
sional dataset require understanding how the dimensions and points
relate to each other and to an underlying space: Are my dimensions
meaningful? How do my dimensions relate to each other? Are my
clusters real?

A combination of known statistical and visualization techniques
can help analysts answer the three questions above. For example,
the question “how do my dimensions relate to each other?” may
be answered using Principal Components Analysis and interpreting
the magnitudes of the eigenvalues and eigenvectors of the correla-
tion matrix. Each technique may produce different output with a
corresponding specialized interpretation. The sheer proliferation of
techniques makes navigating this analysis space a daunting prospect
for many users, who do not fully understand how and when to use
these techniques correctly. For instance, what parameter settings
make sense for a particular dataset? When can the output of one
technique be legitimately used as the input for another?

A large class of dimensionality reduction techniques have the
holistic goal of determining a new set of synthetic dimensions that
express most or all of the structure in the input dataset using fewer
total dimensions than the original representation. For example,
Principal Components Analysis (PCA) constructs synthetic dimen-
sions that are a linear combination of some subset of the origi-
nal ones [9], and other methods such as multidimensional scaling
(MDS) use nonlinear combinations [1]. The goal of these tech-
niques is to reveal hidden variables, for example where the phe-
nomenon of interest could only be measured indirectly. In these
cases, the data reside in a lower-dimensional manifold whose coor-
dinate axes are best represented as a linear or nonlinear combina-
tion of the input dimensions. Many dimensionality estimation tech-
niques have been proposed for finding this intrinsic dimensionality
of the dataset, which is typically given as input to a dimensionality
reduction algorithm.

∗e-mail: {sfingram,tmm}@cs.ubc.ca
†e-mail: {vmi,mtory}@uvic.ca
‡e-mail: {sbergner,torsten}@cs.sfu.ca

In contrast to the profusion of previous work proposing better or
faster techniques for specific aspects of dimensional analysis [5, 7],
far less attention has been paid to creating systems that guide users
through the larger process of analyzing high-dimensional data it-
eratively using a combination of techniques. For instance, many
analysts who lack a deep knowledge of dimensional reduction sim-
ply project their data to some 2D space and plot these points us-
ing a scatterplot. However, if the intrinsic dimensionality of the
dataset is larger than two, clusters or orthogonal axes may be pro-
jected on top of each other, occluding relevant structures of inter-
est. Although experts confronted with the problematic result of a
single undifferentiated blob could conjecture that there is a mis-
match between intrinsic dimensionality of the dataset and the space
they chose to project to, less sophisticated users are routinely mis-
led. The reasons for their perplexity include the sheer number of
proposed dimensionality reduction techniques [6], the complexity
of the mathematics underlying them, the widespread availability of
dimensionality reduction tools that create only a single 2D or 3D
scatterplot [10], and the lack of clear characterizations in the liter-
ature of which techniques are suitable for what kinds of data and
tasks. DimStiller was expressly designed to help users avoid this
pitfall, with a dimension reduction workflow that includes an esti-
mation of intrinsic dimensionality of the dataset to guide users in
making an informed choice about how many dimensions to reduce
to, if at all, and having the default view of a table of more than two
dimensions be a scatterplot matrix rather than a single scatterplot.

The first contribution of this paper is the design and implemen-
tation of the DimStiller visualization framework. DimStiller gath-
ers together a variety of techniques from dimensional analysis and
reduction into a coherent framework that emphasizes the underly-
ing dimensions and the relationships between them. For instance,
it guides users through estimating the intrinsic dimensionality of
a dataset before carrying out reduction. The analysis technique
components of DimStiller are outfitted with interactive controls and
linked views, allowing users to see and manipulate intermediate re-
sults at each analysis step. Section 4 describes the task of dimen-
sionality reduction and analysis. We present the DimStiller archi-
tecture in Section 5, and two case studies showing how it can be
used to analyze complex real-world datasets in Section 6.

The second contribution is providing both local and global guid-
ance for analysts engaged in navigating through the space of pos-
sible data tables during dimensional analysis and reduction, using
the abstractions of operations, expressions, and workflows. Expres-
sions instantiate a chaining together, or composition, of transforma-
tion operators on input data tables. Expressions show which opera-
tions have been applied to the data as well as the order in which they
occur. Workflows are templates for exploration that consist of a spe-
cific expression along with the saved parameter values for each op-
erator. Workflows bundle together the sequence of operators of an
expression independent of the data on which they operate, permit-
ting DimStiller users to re-use and share common patterns of anal-
ysis. While mechanisms such as expressions, operators, pipelines,
and macros have been proposed previously in many contexts [4],
the novelty in DimStiller is the way in which these are used to walk
an analyst through a series of operations on data tables, providing
guidance during the analysis process. In Section 2 we discuss the
idea of guidance in further detail, and contrast our approach to pre-
vious work in Section 3.



2 LOCAL AND GLOBAL GUIDANCE

The analyst engaged in the dimensional analysis and reduction pro-
cess must choose from a vast number of possible transformations
of the data table at every step – but only a relatively small subset
of these transformations will yield meaningful information about
the structure of the input dataset. We define providing guidance
as structuring the exploration process to help users find this small,
meaningful set from the huge space of possible transformations.
We first describe this abstract analysis space, and then explain the
two kinds of guidance, local and global, that DimStiller provides to
support effective navigation in this space.

We model the dimensional analysis and reduction process as
traversing table space, the space of all possible data tables. Con-
ceptually, this space is like a graph where nodes are data tables,
connected by edges representing a transformation. A path through
the space begins at some node representing the input data table. In-
termediate nodes are the tables that result from the transformations
applied by the user, and the path terminates at the output data table.
We thus must consider how to help data analysts locate, explore,
and traverse relevant regions in table space.

At the global level, we guide the analyst who must find a path
that traverses the space from some given start point to a useful end
point. Workflows are a mechanism to represent entire paths in this
space. They represent a chained pipeline of transformations that can
be applied to an input dataset. The built-in workflows are a small
set of paths intended to span the space between a few landmarks of
potential interest. DimStiller is designed to help analysts find new,
useful paths through table space, and save them as new workflows
for later use.

At the local level, analysts also need to explore neighborhoods in
table space: tuning the parameters of an individual transformation
operator corresponds to searching for the most informative data ta-
ble in the region of table space that is reachable with a single trans-
formation that can be carried out by the chosen operator. DimStiller
supports this local exploration through a chain of linked operator
controls and views, so that users have immediate visual feedback
about the effects of parameter tuning.

3 RELATED WORK

Dimensionality reduction and analysis draws from an immense and
varied body of work [6]. Here we focus on the most related work
to our own, software systems that provide users with access to di-
mensionality reduction algorithms and visualizations of the results.

3.1 Programming Environments

We first consider full-fledged programming environments such as
MATLAB [16] or R [12]. One strength of these systems is execu-
tion speed, but at the cost of requiring the user to program. In con-
trast, DimStiller is used through a graphical user interface, where
programming is only required to augment the system’s set of opera-
tor plugins. Another strength of these environments is their flexibil-
ity; in contrast, DimStiller only supports a more specialized set of
operators, but provides both local and global guidance for exploring
table space productively, even for non-expert users.

3.2 Toolkit Solutions

In specialized toolkits, several algorithms have been packaged to-
gether, usually with a GUI front end. For example, the Matlab
Toolbox for Dimensionality Reduction1 gathers together over 30
techniques for dimensionality reduction under one umbrella. An-
other example is the HIVE dataflow toolkit for dimensionality re-
duction [13]. While such tools reduce programmer time by pro-

1homepage.tudelft.nl/19j49/Matlab Toolbox for
Dimensionality Reduction.html last visited on 2/01/2010

viding easy access to a wide variety of analysis techniques, neither
local nor global guidance is provided to the user.

3.3 Visual Dimensionality Analysis Environments

The previous systems most related to DimStiller are full-fledged
environments for visual dimensionality analysis and reduction.

XmdvTool [17] supports interactive visual exploration of mul-
tivariate data sets through many types of views including scatter-
plot matrices, with interactive controls that include sophisticated
linking and brushing techniques. It includes several approaches
to collecting and culling dimensions that are based on hierarchi-
cal clustering of the dimensions using a variety of metrics, such as
DOSFA [19] and VHDR [20]. Its Value and Relation (VaR) tech-
nique [18] does use MDS to create a scatterplot of dimensions, en-
coding information about the dimensions in an information-dense
pixel-oriented glyph at each scatterplot point. However, XmdvTool
is not primarily designed to support the workflows built around re-
duction through synthesizing new dimensions that are the core fo-
cus of DimStiller. In contrast, the GGobi system [2] is a visual-
ization framework for high-dimensional analysis with dimensional-
ity reduction techniques that create synthetic dimensions as a cen-
tral focus, supporting interaction between multiple kinds of linked
views including scatterplot matrices. It also features sophisticated
high-dimensional navigation including projection pursuit and grand
tours, and a plugin architecture for easy connection with R [12].
The limitation of both of these frameworks is that while they im-
plicitly provide ways to access and explore many relevant paths
through table space in useful and novel ways, they lack an explicit
framework for local and global guidance.

The rank-by-feature framework of Seo and Shneiderman [14] al-
lows the user to visually inspect and explore dimensional relation-
ships, but only with subsets of the original dimensions, so the huge
part of table space that can only be reached via constructing syn-
thetic dimensions cannot be explored. The data exploration envi-
ronment of Guo [3] has a component-based architecture for finding
clusters of the data with unique dimensional relationships. Dim-
Stiller is more focused on the overall dimensional relationships of
a selected table in the data rather than analyzing differing rela-
tionships across different subspaces. Moreover, it uses a simpler,
pipeline component architecture with a standardized protocol for
component parameter modification, thus allowing better support for
both local and global guidance.

Johansson and Johansson’s [8] system is the closest in spirit to
ours, since it does indeed embody the concept of guiding the user
through analysis stages. Users can craft quality metrics from com-
binations of correlation, clustering, or other measures and cull di-
mensions according to these measures. However, their system only
supports one hardwired global workflow, where the only flexibility
is in setting parameter values at each local stage. Another limita-
tion is the inability to construct synthetic dimensions. DimStiller
includes this capability at its core, and also permits the user to fac-
tor in dimension culling at any point in a pipeline of dimension
transformations, greatly increasing the scope of analysis tasks that
it supports.

4 USERS AND TASKS

We now describe in detail the intended target user population for
DimStiller, the questions that DimStiller is designed to help these
users answer, and common techniques currently used to answer
such questions. While these are not the only questions an analyst
might be interested in, we argue that they are a good place to start
when considering a new dataset, especially one with unclear prove-
nance that is not necessarily well curated.



4.1 Target User Population

DimStiller is aimed at bridging the gap between state of the art tech-
niques in visually oriented dimensionality analysis, and the current
practices of many users and potential users who do not already have
deep knowledge of their data and the mathematics of reduction. Al-
though dimensional analysis is sufficiently complex that we do not
target casual users, we argue that this middle ground between ut-
ter novices and fully confident experts is a sizeable group that is
underserved by the current set of available systems.

For example, a visualization researcher called on to help some-
body analyze a dataset may be completely unfamiliar with the
dataset characteristics and the tasks of the researchers at the be-
ginning of the analysis process. Furthermore, the person might be a
visualization generalist rather than a specialist in the mathematical
foundations of high dimensional techniques in particular. Another
example is end users who have expertise in their own domain and
the desire to do some dimensional analysis, but not deep knowledge
of reduction mathematics. They might be developing algorithms to
generate or process the data, and seek to evaluate the quality of their
results or fine-tune parameter settings.

DimStiller is particularly aimed at providing major process im-
provements for analysts who must deal with messy datasets that
may have unclear provenance. By providing both local and global
guidance through table space, we aim to support analyses that might
otherwise seem too daunting and decrease the chances that non-
expert users draw incorrect conclusions, supporting a qualitatively
different analysis process than with previous tools. For those ana-
lysts dealing with curated datasets where the meaning of each row
and column are already fully understood, DimStiller may simply
speed up a previously feasible, but slow, analysis process.

4.2 Are my dimensions meaningful?

Sometimes an input dimension may actually contain little or no use-
ful information at all. Because of this, it is important for an analyst
to be able to characterize the dataset in terms of which dimensions
have useful information versus the “meaningless” ones. This un-
derstanding is not critical for downstream analysis algorithms in the
same analysis session, since the mathematics of dimension reduc-
tion will handle creating the correct lower-dimensional projection.
However, discovering that a given dimension is culled could reveal
problems with the data source, with major upstream consequences
in later iterations of the larger analysis loop: the data might be gath-
ered differently, or the algorithms to generate it might be refined.

One such criterion is simply to check the underlying variance of
the input dimensions and cull those beneath a small noise threshold.
Another possibility is to use an information entropy cutoff.

4.3 How do my dimensions relate to each other?

Much of multivariate statistical analysis is concerned with how the
individual dimensions relate to each other. Many popular met-
rics such as Pearson’s correlation coefficient measure pairwise re-
lationships between individual dimensions. More holistic methods
such as Principal Components Analysis determine how all the di-
mensions may actually express a smaller subset. Other methods
uncover more complex nonlinear relationships between the input
data, such as multidimensional scaling or many of the manifold-
following variants.

4.4 Are my clusters real?

While the previous questions are related to dimensions, the ques-
tion of cluster membership relates to the points. Clustering is the
assignment of a unique label to specific regions of the input data’s
feature space and the points that occupy them. Cluster labels can
be computed from any of a myriad of clustering algorithms.

Clustering relates to the input dimensionality in a reciprocal way.
If the analyst trusts the dimensional basis in which the data is rep-
resented, then point clusters in such a space will be considered real
clusters with higher confidence than without such a trust. Likewise,
if the analyst is given a clustering that is trusted to be real, and the
space in which the data is projected maintains the clustering’s co-
herence, then this result increases confidence in the current dimen-
sions. Thus, a clustering can inform the quality of a dimensionality
reduction, and vice versa.

5 DIMSTILLER ARCHITECTURE

It is clear that an analysis tool that provides users with the ability to
load their data into the system, transform their data with different
analysis techniques, and scrutinize their data before and after these
transformations would help users answer these questions. What is
not clear is how such a tool should organize the results of applying
the transformations or how to link these transformations together
with visualizations to keep users focused on the analysis.

DimStiller organizes dimensionality analysis and reduction as a
pipeline of transformations to a data table and linked views of it
at different pipeline stages, as shown in Figure 1. The DimStiller
model is based on an abstraction called an expression which en-
capsulates a sequence of transformations, called operators, that act
upon tables of data where rows are points and columns are dimen-
sions. Operators transform tables by adding, removing, or chang-
ing points or dimensions. Operators may have control panels and
associated views that provide a visual representation of a table at
that pipeline stage. All views are linked, and selections are propa-
gated up and down the pipeline appropriately. A key aspect of the
DimStiller architecture is the ability to instantiate expressions from
pre-existing workflows that capture useful analysis patterns.

The DimStiller expression and operator abstractions were par-
tially inspired by the Expression and Operator patterns in [4]. How-
ever, DimStiller expressions have a simple, linear topology that
defers processing to the operators in contrast to the general tree
structure suggested by the Expression pattern. Likewise, DimStiller
operators are composable processing units similar to the Operator
pattern, but compute general transformations and not necessarily
visual mappings.

5.1 Input Tables and Dimension Types
DimStiller supports an abstract interface to data via a table model.
Conceptually, a table can represent anything from physical entries
in a disk file, to a cross-network database, or even evaluations of
a simulator. The current implementation only supports simple file-
based tables. There are two kinds of dimensions: Data, and At-
tribute. Data dimensions are either Quantitative or Categorical. In-
ternally, both are represented by floating point values, and Dim-
Stiller maintains a lookup table to map floating point values to cat-
egory symbols for Categorical dimensions. Attribute dimensions
represent values such as color or selection that are used in views
such as scatterplot matrices, but are ignored by purely data-oriented
operators such as variance culling or dimension reduction.

5.2 Operators
Operators are functions that map an n×m table to an n′×m′ ta-
ble. That is, operators may add or delete points or dimensions, or
change the value of any existing cell in the table. In the parlance of
Section 2, they are the edges that connect two nodes in table space.
For example, the Cull:Variance operator removes dimensions
with low variance from an n×m table. If any of the m table di-
mensions has variance below the user-controllable threshold, then
the application of this operator would result in a new n×m′ table
where m′ < m.

Every operator may have an associated control and/or an asso-
ciated view, although neither is mandatory. Operator controls are



Input:File
“data.csv”

Cull:Variance
Threshold = 0

Collect:Pearson
Threshold = 0.9

View:SPLOM

100 X 8

100 X 7

100 X 4

Correlation 
Matrix View

Scatterplot 
View

Variance 
Control

File 
Selection 
Control

Correlation 
Control

Scatterplot 
Control

OPERATORS VIEWSCONTROLS
W

o
rk

fl
o

w
 

S
el

ec
to

r
E

xp
re

ss
io

n 
Tr

ee
O

p
er

at
o

r 
C

o
nt

ro
l V

ie
w

 
W

in
d

o
w

V
ie

w
 

W
in

d
o

w

Figure 1: Left: The anatomy of a simple DimStiller expression. Input data is fed into a pipeline of operators that alter the dimensionality of the
data. Each operator may or may not have controls or views. An Operator’s control is displayed when it is selected in the Expression Tree. An
operator’s view is shown in a separate window, allowing side by side comparison between multiple views. Changing an operator’s parameter
in the control may produce a change to its output that is propagated across the expression using events that may travel both upstream and
downstream from the operator. Right: The DimStiller interface for this expression, showing the Collect:Pearson and View:SPLOM views.
The Cull:Variance expression is selected in the Expression Tree, so its control is visible.

GUI elements that permit users to modify operator parameters. Op-
erator controls afford the user command over local search in table
space. For example, Figure 2 shows the control panel for the above
Cull:Variance operator, which has an interactive plot of the
variance for each input dimension. The threshold parameter for
culling is adjusted by clicking directly on the plot, and this operator
does not have a separate view. Operator views are visualizations
of the data table at that stage of the pipeline. Some operators are
purely view-oriented, and do not transform the data table at all. For
example, the view for the View:SPLOM is a scatterplot matrix,
and its control panel only affects this visual display. In contrast,
the Collect:Pearson operator has both a control panel with a
slider to change the threshold, and a separate view with a matrix
of colored boxes to show the pairwise correlations encoded with a
blue-yellow-red diverging colormap.

The Operator namespace has a two-level structure, where a fam-
ily has specific instances. The set of Operator families and in-
stances, with notation Family:Instance, is:

• Attrib:Color Adds attribute color dim for views
• Collect:Pearson Join highly correlated dims
• Cull:Variance Identify/remove low-variance dims
• Cull:Name Identify/remove dim by name string match
• Data:Norm Normalize input dims
• Input:File Load comma separated value (CSV) file
• Reduce:PCA Estimate/reduce dimensionality with PCA
• Reduce:MDS Estimate/reduce dimensionality with MDS
• View:SPLOM Plot n-dim table using nxn scatterplot matrix
• View:Histo Plot dim distribution with histogram

The current families and operators serve to illustrate the poten-
tial of our approach to system architecture; the set of families is
not exhaustive, nor is the set of operators within any family. The
built-in set of operator families and instances can be extended by
implementing new operators.

5.2.1 Cull and Collect Operator Families
Operators in the Cull family compute a specific criterion for each
dimension and remove those dimensions that do not satisfy it. The
criterion for the Cull:Variance operator is variance, and di-
mensions that fall beneath a user-specified threshold are culled. It
can help users locate and eliminate dimensions whose variability is
zero, or is small but non-zero because of noise. The Cull:Name
operator allows users to selectively remove dimensions manually,
for example to analyze only a subset of the input dimensions.

While the Cull family acts on individual dimensions, operators
in the Collection family use pairwise criteria like covariance and
Pearson’s correlation coefficient. Rather than removing dimensions
whose pairwise measures do not satisfy the threshold, these oper-
ators replace them with a single representative dimension for the
collection, for example the average.

These operators can help users who may need to refine the pro-
cesses used to generate their input dataset, as we discuss in Sec-
tion 4.2. They are also useful for those whose analysis needs pre-
clude the creation of synthetic dimensions.

5.2.2 Reduce Operator Family
A critical design choice in the Dimstiller architecture is that the
Reduce operator family includes estimation of the intrinsic di-
mensionality of the space in addition to actually performing the
reduction. The control for the operator, shown in the lower left
of Figure 4, has a scree plot: a bar chart with the number of di-
mensions on the horizontal axis, and an estimate of the variability
that would not be accounted for if the dataset were reduced to a
space of that size on the vertical axis. The user then can make an
informed choice when selecting the target dimensionality, by click-
ing on the plot at the desired threshold. (The definition of “intrinsic
dimensionality” that we espouse is the smallest dimensionality of
the set of spaces in which the data can be embedded with distor-
tion less than some noise tolerance, rather than zero distortion.)
DimStiller supports users in experimentally determining the cor-
rect noise threshold, which differs between datasets, by interactive



threshold adjustment.
Although scree plots are far from new, most previous toolkits

do not explicitly couple them to the use of a reduction algorithm:
users are simply expected to provide a number as input, with no
guidance. Users who are not experts or are dealing with unfamil-
iar datasets will often have no idea of what a reasonable number
might be. Worse yet, a significant number of reduction technique
implementations are hardwired to blindly reduce to two (or three)
dimensions, with no hint to the user that this choice might be in-
appropriate or misleading. Even the relatively sophisticated analyst
who knows to run an estimator is often provided with the black-box
output of a single number, rather than the detailed information for
each possible number of cumulative dimensions shown in a scree
plot [5]. Our design also has the benefit that users can see different
estimates of intrinsic dimensionality in a lightweight and fast way
with the scree plots, rather than the more heavyweight approach of
reducing and then viewing the results in a scatterplot matrix. A re-
lated design choice is that the View:SPLOM view for showing a
table is a scatterplot matrix rather than a single scatterplot. When
the table has only two dimensions this view does of course show
the case of only a single scatterplot, but when it has more the user
is guided to see all of the information rather than an arbitrary subset.

While designing the architecture, we considered whether to have
the estimation step separate from the reduction step. We ultimately
decided that they should be coupled together into one module in
service of the goal of providing guidance for the non-expert user.
Understanding which estimators are appropriate for which reduc-
tion algorithms requires significant knowledge of dimensionality
reduction: for example, nonlinear reduction methods should not
be used in conjunction with linear estimators. Thus, we do not ex-
pect the middle-ground user to make that choice, reserving it for the
designer of new operators.

The exact measure shown on the vertical axis of the scree plot de-
pends on the operator instance. The Reduce:PCA operator shows
the eigenvalues, and the Reduce:MDS shows the stress values of
the embedding in each dimension. We use the CPU implementation
of Glimmer [7] for both the MDS reduction and estimation.

5.2.3 Attribute and View Operator Families

Attribute operators add attribute dimensions to the output data ta-
ble of the operator. Attribute dimensions are interpreted by view
and attribute operators and ignored by other operator families. The
Color attribute operator creates an attribute dimension used for col-
oring to which it assigns values based on the values of numeric or
categorical dimensions. The assignment of colors is performed ei-
ther by linearly interpolating between two endpoint colors or by
assigning colors to individual dimension values. The default col-
ormap for categorical data, inspired by the work of Stone [15], has
10 bins; colors are repeated if there are more than 10 values.

View operators provide visualizations of their input data. The
two built-in View operators are View:Hist for showing the dis-
tributions of individual dimensions, and View:SPLOM for show-
ing pairwise relationships between dimensions. Both the SPLOM
and the Histogram views provide global linked selection by cre-
ating an attribute dimension for selection, and displaying points
with a nonzero selection attribute value in a default selection color.
SPLOM views also use the color attribute dimension to color points.

5.3 Expressions
A DimStiller expression is the instantiation of an ordered list of
operators applied to an input table. Figure 1 Left illustrates the el-
ements of a sample expression, showing the associated views and
controls for each operator. As the expression progresses, the data
entries change value and the output table changes shape as it is
progressively refined. Figure 1 Left also shows the relevant path-
ways for how information about input, view, and parameter changes

moves across the expression. In our informal description of the
table space graph of Section 2, the nodes are data tables and the
edges are the transformation operators. However, in the DimStiller
user interface, the more natural representation uses the dual graph,
where operators are the nodes, and the edges represent the data
flowing between them. The user is thus encouraged to focus on
manipulating and understanding the transformations of the data.

5.4 Workflows
Workflows are templates for entire expressions that can be immedi-
ately created with a few clicks. DimStiller has a base set of work-
flows built in, and users can create their own by saving the list of
operators in any active expression as a workflow.

A workflow contains a sequence of individual operator steps,
and saved parameters associated with each operator. When a user
instantiates a workflow, a new expression is produced unique to
a given input table. Because many operators may result in time-
consuming computations, only the first operator in a workflow com-
putes its output upon workflow instantiation, with subsequent op-
erators greyed out in the user interface. Users choose when to
progress to activating the next step, possibly after adjusting param-
eters at the current step, with a Step Operator button. Heavy-
weight operators downstream will thus only initiate their computa-
tions on data tables that may be much more compact than the input
table due to reduction at upstream stages.

The built-in workflows are designed to help users begin to an-
swer the set of questions that we identified in Section 4.1, as a
proof of concept that this style of guidance can help middle-ground
users. We do not claim that they are the only way, or even the best
way in all cases, to answer these questions. Workflows provide op-
tional global guidance; they are not mandatory. Power users have
the flexibility to build up new expressions directly in DimStiller by
choosing individual operators from the currently loaded set.

The set of workflows built into DimStiller are:

• Reduce:PCA. Cull:Variance→Data:Normalize
→Collect:Pearson→Reduce:PCA→View:SPLOM

• Reduce:MDS. Cull:Variance→Data:Normalize
→Collect:Pearson→Reduce:MDS→View:SPLOM

• Cluster Verify. Attrib:Color→Data:Normalize→
Reduce:PCA→View:SPLOM

5.5 DimStiller Interface
Figure 1 Right shows a screenshot of the DimStiller session con-
taining the expression diagrammed in Figure 1 Left. The visual
structure of the DimStiller interface, with views and controls for
each operator, encourages the user to examine the individual opera-
tors, adjust their parameters, and observe the effects on the resulting
transformations in the visual representations.

The DimStiller window on the left contains the Workflow
Selector at the top, with the Expression Tree underneath and an
operator control panel on the bottom. Two view windows are
visible on the right, a scatterplot matrix for the View:SPLOM
operator and the correlation matrix for the Collect:Pearson
operator. The Expression Tree shows that the input file
dimstillerwide.csv contained a table with 100 rows of
points and 8 columns of dimensions. In this example dataset,
Dim 1 and Dim 2 are independently sampled from a uniform dis-
tribution between 0 and 1, Dim 3 is a scalar multiple of Dim 1,
Dim 4 and Dim 6 are scalar multiples of Dim 2, Dim 5 is set to
all zeros, Dim 7 and Dim 8 are linear combinations of both Dim 1
and Dim 2 with a uniform noise term.

The first E1 operator S1 is Cull:Variance. The user has
clicked on the first nonzero dimension in the scree plot, resulting
in a threshold value of 0.0007 (rounded to 0.001 for display in the
tree). The summary line for S1 in the Expression Tree shows that



the output table of S1 has 7 dimensions as opposed to the 8 di-
mensions that were input to the operator, and the expanded details
beneath show that Dim 5 is the one that was culled. The S2 op-
erator collects dimensions that are correlated with the threshold of
0.85, resulting in a table of 4 dimensions whose pairwise correla-
tions are shown with color in the top view. The expanded details
shows Dim 1 and Dim 3 are now represented by new synthetic di-
mension S2.D1, and the remaining three are now represented by
S2.D2. The last operator is View:SPLOM, and the bottom view
shows the scatterplot matrix. The user selected some points in one
plot, and they are colored red in all of the linked plots.

5.5.1 Workflow Selector

The Workflow Selector displays the available workflows and allows
the user to select one and create a new expression from it. Selecting
a workflow fills the adjacent list box with the sequence of steps for
the user to inspect. If the user chooses to activate that workflow by
clicking the Add button, DimStiller applies the workflow steps to
the currently selected expression, making those operators visible in
the Expression Tree.

5.5.2 Expression Tree

The Expression Tree is a three-level tree widget that lists all open
expressions. At the top level, expressions are described by a short
text summary where each new operator X is appended on the right
of the text string as→ [X], where X is a very terse label. When the
user drills down to the next level, the individual operators that com-
prise the expression are listed with a concise yet complete text sum-
mary that includes the size of the output table produced by the oper-
ator in terms of points and dimensions, as well as any operator pa-
rameters that are set to non-default values. The third and final level
of detail is only added if an operator modifies the output dimen-
sionality, namely the list of the dimensions modified by that opera-
tor and any details that relate the input and output dimensions. For
example, in Figure 1 the expansion of the Collect:Pearson
operator shows two of the synthetic dimensions and names of the
original dimensions collected together.

5.5.3 Operator Control Panel

Each operator may have a control panel that lets the user ad-
just its parameters. Called operator controls, they afford the user
with the means to locally search for a meaningful region in ta-
ble space. When an operator is selected in the Expression Tree,
its control populates the operator control panel region at the bot-
tom of the main DimStiller window. Only one operator can be
selected at a time. Operator controls visible in this paper in-
clude the Cull:Variance control shown in Figure 1 and the
Reduce:PCA control shown in Figures 4 and 5.

5.5.4 View Windows

Each operator also may have an associated view. When an ex-
pression is loaded or created, the associated views open up as in-
dividual windows to support side-by-side comparison across oper-
ators within the same expression or even across different expres-
sions. All the views are created using the Processing language,
but new operator view plugins could be created using any graph-
ical toolkit that can interface with Java. The built-in operators that
have views are the View:Histo, the View:SPLOM shown in
Figures 1 and 2, and the box matrix showing pairwise relationships
for the Collect:Variance operator in Figures 1 and 3.

6 CASE STUDIES

We now describe how the DimStiller architecture facilitates the task
of dimensionality reduction and analysis through case studies on

real-world data. We use the built-in workflows to construct expres-
sions that inform users about the character and relationships of the
dimensions and clusters of the datasets2.

6.1 Sustainability Simulation: Measuring Variability
Our first case study focuses on a sustainability simulation dataset
containing a large collection of simulated results of government
policy decision scenarios [11]. The 294 dataset dimensions rep-
resent the environmental and societal indicators affected by the
policy decisions. A first attempt to analyze this data using pre-
existing tools fell prey to the reduce to 2 and plot pitfall discussed
in Section 1 [11]. The simulation is agglomerated from many sub-
pieces originally designed for varying purposes, rather than being
carefully constructed from custom components that would dove-
tail seamlessly. The simulation designers thus did not have a clear
idea of the intrinsic dimensionality of this dataset. They did know
what their dimensions were, with meaningful labels for each such as
Cost of Living and Air Quality. However, they thought
it was possible that some indicators always had the same value
across the entire dataset. They were also interested in learning
about how the dimensions related to each other: they suspected that
many indicators were highly correlated, but did not know the num-
ber of equivalence classes or which indicators were in each group.
They were also curious whether automatically computed correla-
tion groups would match with their intuitions about indicator rela-
tionships.

The first choice to make when using DimStiller is whether to
construct our own expression from scratch by individually choos-
ing operators, or to instantiate a workflow from the existing list.
Since we are interested in finding the intrinsic dimensionality of
the space as well as any correlations, a workflow in the Reduce
family seems to be a good match, and we start with Reduce:PCA.

Figure 2 shows the control of the Cull:Variance operator
that plots the sorted variances of the dimensions, with the log-scale
option selected to emphasize small values. We notice that there are
indeed many zero-variance dimensions, and click the scree control
to remove these 34 dimensions, leaving 260 in the output table. The
researchers could now drill down in the Expression Tree to see the
names of the potentially problematic culled dimensions. They now
know that either the input policy choices used in this run of the
simulator did not effectively span the indicator space, or that there
are unforeseen interactions between simulator components.

We click the Step operator button to activate the next
workflow step, the Data:Norm operator. Both reduction work-
flows include a normalization step to guide users who may be
unaware of the effects of transforming dimensions with differing
scales of variation. The Expression Tree in Figure 4 shows that
we chose to normalize using Z scores, so the operator subtracts the
mean and divides by the standard deviation. We then step to acti-
vate the Collect:Pearson operator, which gathers highly cor-
related dimensions. Even the most stringent possible threshold set-
ting of 1.0 for perfect correlation results in a drastic reduction of the
number of dimensions: from 260 to 147. Figure 3 Left shows the
correlation matrix view, where only a small fraction of the boxes are
visible without scrolling. Relaxing the threshold to more reason-
able value of 0.8 results in the view shown in Figure 3 Right, where
the number of dimensions in the table is reduced to 22. Again, the
simulation designers could now drill down in the Expression Tree
to see the names of which dimensions were collected together, in
order to check whether the automatic computations match their in-
tuitions about the expected behaviour of the simulator.

Finally, we would like to determine whether the intrinsic dimen-
sionality of this space is even smaller than the 22 dimensions of the
table after culling and collecting, and if so reduce to that space. The

2The accompanying video shows the look and feel of interactive sessions
with these datasets.



Figure 2: Left: The Cull:Variance operator control displays a
sorted list of the dimension variances. Many have zero variance,
indicating potential problems in the choice of input variables to the
simulator or the operation of the simulator itself. Log-scaling of the
variances emphasizes small values. Right: The scree plot for the
nonlinear Reduce:MDS shows an intrinsic dimensionality of 12 di-
mensions, versus the 16 dimensions found by linear methods shown
in Figure 4.

Figure 3: The Collect:Pearson operator view shows the corre-
lation matrix with a diverging color scale ranging from blue at the
positive end, through yellow for independent pairs, to red for negative
correlation. Left: The perfect correlation threshold of 1.0 reduces the
table from 260 to 147 dimensions. Right: Relaxing to a more reason-
able threshold of 0.8 reduces the number of dimensions to just 22,
all visible without scrolling.

Reduce:PCA operator constructs a linear projection of the data
into a subspace that minimizes distortion. Our motivation for doing
the reduction is to observe the structure of the major axes of the
simulation output in a subsequent scree plot. The control view in
Figure 4 shows the scree plot in the PCA control, and we see that the
eigenvalues approach zero between 12 and 18 dimensions. Mous-
ing over dimension 16 shows that it corresponds to a very small
noise threshold of 0.001, and we click to select that value. We then
click the Step Operator button and activate the View:SPLOM
operator which brings up the scatterplot matrix view.

In order to facilitate viewing the original structure of the data
in the input space, we insert an Attrib:Color operator into
the expression after the Input:File and select the initial di-
mension as the dimension to color by. The resulting colored
SPLOM is shown in Figure 4 in the top right view window, labeled
E1:[View:SPLOM].

The original analysis of the dataset was done by projecting the
data down to two dimensions using multidimensional scaling. We
quickly replicate this analysis in DimStiller so that we can compare
the results directly. We reload the same data into a new expression
E2, adding a Attrib:Color Operator and using the Reduce
MDS workflow. The operators in this workflow are the same as
in the previous analysis except for the Reduce operator, and we
use the same settings as before. We check the scree plot for this
case, and find that only 12 dimensions suffice with this nonlinear
reduction, as shown in Figure 2. Then, to illustrate the reduce to
2 and plot pitfall, we use the Reduce:MDS Operator to select 2
as the output dimensionality. The SPLOM view at the bottom right

of Figure 4 shows only the single scatterplot. The structure visible
in the SPLOM above is completely hidden, and we see only an
undifferentiated blob.

This analysis session with DimStiller shows that although the
simulator produces hundreds of outputs, dozens have zero variance,
most of the remainder are highly correlated, and the full structure of
the data can be represented with only around a dozen dimensions.
Although in theory this full analysis could have been carried out
with existing tools like MATLAB, and bits and pieces of it were
done over the course of a few years, in practice we did not have
a complete picture of this messy real-world dataset until we could
analyze it with the DimStiller system.

Figure 4: The scree plot in the Reduce:PCA control shows an es-
timate of the intrinsic dimensionality as between 12 and 18 dimen-
sions, and we have interactively selected 16 as the threshold. The
top scatterplot matrix shows a result with visible structure. In con-
trast, the bottom view shows the pitfall of reducing to just two dimen-
sions using MDS, where an undifferentiated blob gives a misleading
impression of no structure.

6.2 Computational Chemistry: Evaluating Clusters
We now examine a 30-dimensional computational chemistry
dataset. The individual dimensions of this data measure physical
properties of chemicals such as molecular weight and the number
of bonds they possess. The dataset includes a cluster membership
dimension with 236 clusters of the data produced by a commercial
clustering package. The goal of the analysts who work with this
dataset is to evaluate the quality of the clustering.

The Cluster Verify workflow is appropriate for this goal,
so we instantiate a DimStiller expression from it. After loading
the data, we use the Color operator control to choose which di-
mension we use for the categorical colormap. By default, the color
operator culls the dimension by which it colors the points; includ-
ing this cluster membership dimension in the downstream analysis
would usually skew the results.

After adjusting color settings, we activate the Data:Norm op-
erator which normalizes the dimensions to Z scores. We then acti-
vate the Reduce:PCA and observe its control. The scree plot of
the eigenvalues, visible in Figure 5, shows an exponential drop off
in magnitudes. This plot strongly suggests that the majority of the
variance of the data resides in a lower dimensional space than the
input dimensionality. Standard practice is to select the “knee” of the
value drop-off curve as a good candidate for target dimensionality.
We select 3 and then activate the View:SPLOM operator.

The resulting scatterplot matrix of the View:SPLOM Operator,
also visible in Figure 5, reveals several interesting structures in the
data. In the bottom row of two scatterplots, we observe clear separa-
tion of several clusters of points. In contrast to the spatial structure,



some color labels appear to span gaps in the scatterplots. A single
categorical color scheme of course cannot possibly show over 200
clusters with distinguishable colors, so DimStiller uses a repeating
palette. To check whether some of the adjacent clusters with dif-
fering labels might have the same color by chance, we select the
Attrib:Color Operator again in the Expression Tree to bring
up its control. The Permute Colors button permutes the order
in which colors are assigned to categories. After trying a few dif-
ferent permutations of the color scheme we conclude that the phe-
nomenon we saw was not just an artifact; several cluster labels do
indeed span these observed clusters. This result gives strong, albeit
not conclusive, evidence that there may be better clusterings.

Figure 5: Running the Cluster Verify workflow on a computa-
tional chemistry dataset. The scree plot in the lower left shows that
most of the variability resides in a low dimensional subspace. We
choose a threshold of 3 dimensions at the “knee” in the plot. We
see in the colored SPLOM view that while the clusters are spatially
coherent, they do not reflect the spatial structure in this projection,
suggesting that this clustering is not the most appropriate.

7 CONCLUSIONS AND FUTURE WORK

DimStiller uses a set of abstractions to structure and navigate di-
mensional analysis and reduction: data resides in tables, operators
modify and visualize tables, expressions chain together operators,
and workflows permit pattern re-use. DimStiller uses these mecha-
nisms to provide both local and global guidance through the anal-
ysis space of possible data tables. In both of our case studies we
showed how individual operators probe the input dimensions and
produce values like variance, correlations, and principal compo-
nents and visualizations such as scree plots and scatterplots. It is
the analyst’s task to turn these quantitative figures into answers to
qualitative questions about the data. DimStiller brings target users
to these answers quickly by providing a simple pipeline architec-
ture that users can rapidly step through after making adjustments to
their data.

A form of guidance not yet explicitly provided by DimStiller
is to help the user fully understand the inner workings of the sup-
ported operators. For example, users could be given visual feedback
highlighting relevant regions of scree plots in the reduce operator
control panels. While the DimStiller architecture should in theory
support this kind of targeted exploration, it would require signif-
icant future work to design a system that truly sheds light on all
black-box algorithms.

The most obvious direction for future work is to observe how
users in several different application domains use DimStiller, both
to help us understand how to improve the tool, and to obtain fur-
ther insight into the tasks and workflows that comprise real-world
dimensional analysis. The first deployment has been to researchers
at the Department of Fisheries and Oceans, who are using the sys-
tem to analyze both simulated and measured high-dimensional data

with preliminary positive results. Another direction of future work
will be to add more encoding and interaction techniques previously
shown to be effective for high-dimensional analysis, for example
sorting the Collect operator matrix view for the rank by feature
capability suggested by Seo and Shneiderman [14].

ACKNOWLEDGEMENTS

This work was supported by the NSERC Strategic Grant “Visually
Enhanced Exploration of High-Dimensional Data”.

REFERENCES

[1] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory
and Applications. Springer, 2005.

[2] D. Cook and D. F. Swayne. Interactive and Dynamic Graphics for
Data Analysis: With Examples Using R and GGobi. Springer, 2007.

[3] D. Guo. Coordinating computational and visual approaches for inter-
active feature selection and multivariate clustering. Information Visu-
alization, 2(4):232–246, 2003.

[4] J. Heer and M. Agrawala. Software design patterns for informa-
tion visualization. IEEE Transactions on Visualization and Computer
Graphics (Proc. InfoVis 2006), 12(5):853–860, 2006.

[5] M. Hein and J.-Y. Audibert. Intrinsic dimensionality estimation of
submanifolds in Rd . In Proc. Intl. Conf Machine Learning (ICML),
pages 289–296. ACM, 2005.

[6] R. Holbrey. Dimension reduction algorithms for data mining and
visualization. http://www.comp.leeds.ac.uk/richardh/
astro, 2006.

[7] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS on
the GPU. IEEE Trans. Visualization and Computer Graphics (TVCG),
15(2):249–261, 2009.

[8] S. Johansson and J. Johansson. Interactive dimensionality reduction
through user-defined combinations of quality metrics. IEEE Trans.
Visualization and Computer Graphics (Proc. InfoVis 09), 15(6):993–
1000, 2009.

[9] I. T. Jolliffe. Principal Component Analysis, 2nd ed. Springer, 2002.
[10] F. Jourdan and G. Melancon. Multiscale hybrid MDS. In Proc. Intl.

Conf. on Information Visualization (IV’04), pages 388–393, 2004.
[11] T. Munzner, A. Barsky, and M. Williams. Reflections on QuestVis: A

visualization system for an environmental sustainability model. Tech-
nical Report TR-2009-24, UBC Computer Science, Nov. 2009.

[12] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. Vienna, Austria, 2008.

[13] G. Ross and M. Chalmers. A visual workspace for hybrid multidi-
mensional scaling algorithms. In Proc. IEEE Symp. Information Visu-
alization (InfoVis), pages 91–96, 2003.

[14] J. Seo and B. Shneiderman. A rank-by-feature framework for interac-
tive exploration of multidimensional data. Information Visualization,
4(2):99–113, 2005.

[15] M. Stone. Color in information display. IEEE Visualization 2006
Course Notes. http://www.stonesc.com/Vis06, Oct 2006.

[16] The MathWorks Inc. MATLAB. Natick, Massachusetts, 2010.
[17] M. O. Ward. XmdvTool: Integrating multiple methods for visualizing

multivariate data. In Proc. IEEE Conf. Visualization (Vis), pages 326–
333, 1994.

[18] J. Yang, A. Patro, S. Huang, N. Mehta, M. O. Ward, and E. A. Runden-
steiner. Value and relation display for interactive exploration of high
dimensional datasets. In Proc. IEEE Symp. Information Visualization
(InfoVis), pages 73–80, 2004.

[19] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive
hierarchical dimension ordering, spacing and filtering for exploration
of high dimensional datasets. In Proc. IEEE Symp. Information Visu-
alization (InfoVis), pages 105–112, 2003.

[20] J. Yang, M. O. Ward, E. A. Rundensteiner, and S. Huang. Visual
hierarchical dimension reduction for exploration of high dimensional
datasets. In Proc. Eurographics/IEEE Symp. Visualization (VisSym),
pages 19–28, 2003.


