

Deformation-Drive Shape Correspondence

Hao (Richard) Zhang¹, Alla Sheffer², Daniel Cohen-Or³, Qingnan Zhou², Oliver van Kaick¹, and Andrea Tagliasacchi¹

The correspondence problem

July 3, 2008, Copenhagen, Denmark

2

A classic problem

- Fundamental to geometry processing
- Many applications
 - Attribute transfer, e.g., texture, animation, geometry

Sumner & Popovic 04]

A classic problem

- Fundamental to geometry processing
- Many applications
 - Attribute transfer, e.g., texture, animation
 - Statistical shape modeling, e.g., SCAPE

July 3, 2008, Copenhagen, Denmark

A classic problem

- Fundamental to geometry processing
- Many applications
 - Attribute transfer, e.g., texture, animation
 - Statistical shape modeling, e.g., SCAPE
 - Object recognition

An intensely studied problem

- Different fields: computer vision, medical image analysis, computer graphics, etc.
- Different shape classes
- Rigid vs. non-rigid
- Discrete vs. continuous
- Global vs. partial

Need to be more specific ...

July 3, 2008, Copenhagen, Denmark

Coarse feature correspondence

 Anchors for continuous mapping, e.g., cross-parameterization, morphing, ...

[Schreiner et al. 04], [Kraevoy & Sheffer 04], [Cohen-Or et al. 98], [Gregory et al. 98], [Alexa et al. 00]

5

Non-rigid correspondence

- Tolerate non-rigid transforms
- Most existing works are on rigid registration

[Gelfand et al. 05], [Li & Guskov 05], [Huber & Hebert 03], [Huang et al. 06], [Gal & Cohen-Or 06]

- Low-dim transform space
- Strict rigidity constraints

Non-rigid

Rigid registration [Gelfand et al. 05]

July 3, 2008, Copenhagen, Denmark

Partial matching

- Matching parts of the shapes
- Higher combinatorial complexity
 - Partial matching set not known
- Most approaches via optimization
 - Hard to define what is the "best"
- Applied in rigid/affine setting ٠

Relaxation labeling: [Rosenfeld et al. 76]+++, Assignment: [Gold & Rangarajan 96]+++, [Funkhouser & Shilane 06], [Gelfand et al. 05], etc.

Partial matching

July 3, 2008, Copenhagen, Denmark

Non-rigid registration

- Overlapping patches: geometry repeats
- Rigidity constraints still useful, e.g., with articulation only
- Precise registration, not coarse feature correspondence

Allow greater geometry variability

10

Not registration ...

July 3, 2008, Copenhagen, Denmark

Other non-rigid works

scaling

- Works in vision, medical imaging

variability

Limited shape variability

[Wang et al. 06]

Deal with symmetry in shape

- Cannot be resolved with purely intrinsic approaches,
 - e.g., use of pair-wise geodesic distances between features in graph matching

- Symmetry breaking calls for user intervention,
 - e.g., SCAPE [Angeulov et al. 05]

sab	08
Symp	esium on try Processing

July 3, 2008, Copenhagen, Denmark

13

A result

Solution: a more global approach

- Local vs. global criteria
 - · Local: feature region similarity
 - Global: global consistency of correspondence
 - Local criterion less reliable with large shape variations
- Emphasis on global via non-rigid mesh deformation

Correspondence cost = effort to deform one mesh into other

July 3, 2008, Copenhagen, Denmark

The deformation idea

- An old idea, e.g., [Sederberg & Greenwood 92]
 - Works in 2D
 - Energy = bending (angle) + stretching (edge length)
 - Others rely on extrinsic criterion or parameterized models [Blanz & Vetter 99], [Sheldon 00], etc
- First time **surface (mesh) deformation** is used to solve general non-rigid (partial) shape correspondence

Our contributions

- Deformation-driven, automatic feature correspondence
 - Handles variations in pose, local scale, part composition, geometric details
- Self distortion cost
 - Deformation energy measured on surface of deformed mesh
 - Feature similarity and geodesic distances do not enter cost
 - Symmetry breaking (surface distortion) + partial matching
- Combinatorial search (priority-driven search)
 - Exploration of large solution space
 - Avoid initial alignment or local minima

Search tree

July 3, 2008, Copenhagen, Denmark

17

Algorithm overview

Step 1: feature extraction

Step 2: combinatorial search

- Priority = distortion cost

- Pruning by feature similarity

and geodesic distance

July 3, 2008, Copenhagen, Denmark

Step 1: Feature extraction

18

- Edge features unstable under articulation
- Our choice: part extremities
 - Most prominent and stable features of parts
 - Critical points of average geodesic distance (AGD) fields [Hilaga et al. 01]
 - Poison disk sampling prioritized by prominence values (AGD)
 - Local maxima: part extremities
 - Local minima: central part of body

Poisson disk radius $\gamma = 0.2$

γ = 0.1

19

All partial

matchings listed in tree

July 3, 2008, Copenhagen, Denmark

Step 2: tree search

- Each node is a potential candidate solution
- Candidates are prioritized by correspondence costs best-first search strategy
- Thresholds on
 - Pair-wise feature similarity via curvature maps [Gatzke et al. 05]
 Collect average curvature in geodesic bins → 1D signature
 - Total geodesic distortions
 - for pruning candidate solutions

July 3, 2008, Copenhagen, Denmark

21

Mesh deformation

- Need efficient and robust mesh deformation
 - Applied to evaluate each candidate solution
- Use the linear differential (rotation-invariant) scheme of
 [Lipman et al. 05]
- Target local frames estimated via rigid alignment of matched vertices and normals

July 3, 2008, Copenhagen, Denmark

Distortion energy/cost

- Measured on deformed mesh self-distortion
- Symmetrize to remove order dependence
- Actual distortion computed via mean-value encoding [Kraevoy & Sheffer 06]
 - Does not depend on rotated normals from rigid alignment
 - More accurate distortion error estimate

Mean-value encoding [Kraevoy & Sheffer 06]

July 3, 2008, Copenhagen, Denmark

Optimal (partial) matching size

22

• Finding the largest jump in correspondence cost

Wrong matching of size 10

Results: articulation only

- Fully automatic: 10 features selected + tree search
- All parameters and thresholds fixed throughout

July 3, 2008, Copenhagen, Denmark

25

Results: shape morphing

• Based on cross-parameterization [Kraevoy & Sheffer 04]

July 3, 2008, Copenhagen, Denmark

Results: shape blending

26

A "prehistoric" pig

Raptor under modern medical practice

• Again, based on dense cross-parameterization

Observe partial matching

27

Limitations

- High search cost: 20 min to > 1 hr
 - Vertex counts: 600 to 3,500
 - Price to pay for full autonomy (conservative parameters and thresholds)
- Reliance on extremity features
- Coarse correspondence
 - Can be refined (even correct local errors)

Limitations

- High search cost: 20 min to > 1 hr
 - Vertex counts: 600 to 3,500
 - Price to pay for full autonomy (conservative parameters and thresho
- Reliance on extremity features
- Coarse correspondence
 - Can be refined (even correct local errors)
- Conflict between local vs. global
 - Deformation criterion not always intuitive

A challenging case

July 3, 2008, Copenhagen, Denmark

33

Lessons learned

- Non-rigid correspondence very difficult
 - Feature extraction
 - High-quality feature similarity helps!
 - stretching/scaling is the problem
 - Combinatorial complexity
 - Price to pay for large shape variations + partial matching

1208 Symposium on

July 3, 2008, Copenhagen, Denmark

Lessons learned

- Non-rigid correspondence very difficult
 - Feature extraction
 - High-quality feature similarity helps!
 - Combinatorial complexity
 - Price to pay for large shape variations + partial matching
- Is un-trained, fully automatic correspondence too much?
 - Incorporation of prior knowledge? How?

Future works

- More robust local shape descriptors
 - Feature-sensitive and part-aware neighborhood traversal
- Incorporation of prior knowledge
- Any fresh idea for shape correspondence
 - Move away from existing optimization-based framework

Acknowledgement

• Co-authors from three institutions:

SFU, UBC, Tel-Aviv

- Funding: NSERC and MITACS
- Mesh models from ISDB and AIM@SHAPE
- Anonymous reviewers

July 3, 2008, Copenhagen, Denmark

37

July 3, 2008, Copenhagen, Denmark

Thank you!

