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Abstract

Realistic descriptions of surface reflectance have long
been a topic of interest in both computer vision and com-
puter graphics research. In this paper, we describe a novel
and fast approach for the acquisition of bidirectional re-
flectance distribution functions (BRDFs). We develop a
novel theory for directly measuring BRDFs in a basis repre-
sentation by projecting incident light as a sequence of basis
functions from a spherical zone of directions. We derive an
orthonormal basis over spherical zones that is ideally suited
for this task. BRDF values outside the zonal directions are
extrapolated by re-projecting the zonal measurements into a
spherical harmonics basis, or by fitting analytical reflection
models to the data. We verify this approach with a com-
pact optical setup that requires no moving parts and only a
small number of image measurements. Using this approach,
a BRDF can be measured in just a few minutes.

1. Introduction
Accurate descriptions of how light reflects off a sur-

face have long been a topic of research in both computer
vision and computer graphics. Real world materials ex-
hibit characteristic surface reflectance, such as glossy or
specular highlights, anisotropy, or retro-reflection. Descrip-
tions of such effects find their applications for example in
shape from shading algorithms and realistic rendering. The
surface reflectance of a material is formalized by the no-
tion of the Bidirectional Reflectance Distribution Function
(BRDF) [25], which is a 4 dimensional function describing
the response of a surface in a certain exitant direction to
illumination from a certain incident direction over a hemi-
sphere of directions.

Numerous analytical models of BRDFs exist in the liter-
ature [5, 14, 13, 2, 3] that observe the laws of energy con-
servation and reciprocity, and hence are physically plausi-
ble. However, these models generally do not capture the re-
flectance properties of all kinds of materials. Furthermore,
selecting appropriate model parameters for representing dif-
ferent kinds of real-world materials can be a non-intuitive
and time-consuming process. Therefore, acquisition of real
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world BRDF data has been a very active area of research
over the last few years.

The data acquired in such a process is generally not used
directly due to its large size, the noise present in the mea-
surement process, and missing data for certain incident and
exitant directions. Instead, the data is usually either fitted
to an analytical model [33, 17, 24] or projected into a suit-
able basis [35, 31, 4, 23]. This fitting process results in the
loss of some of the captured high frequency details in the
original data, possibly making the high sampling density
of acquisition an overkill. At the same time, reducing the
sampling density during acquisition would result in aliasing
artifacts for sharp features that would then fall below the
Nyquist limit.

In this paper, we propose an alternative approach to the
acquisition of reflectance data where we optically project
the data into a suitable basis function directly during the
capture process. This approach results in optical low-pass
filtering of the data at capture time, and thus addresses alias-
ing issues and minimizes high-frequency noise. An added
benefit is that this prevents any redundancy in data capture
as we can use all of the data we acquire. We focus on a very
fast capture of object appearance for vision and graphics
purposes, and do not seek to replace high-precision mea-
surement devices such as gonio-reflectometers. Our ap-
proach speeds up acquisition time to one or two minutes
compared to a few hours required by previous acquisition
approaches. The main contributions of this paper are:

• The theory behind, and a practical implementation of
the concept of measuring the response of a surface to
a basis function as a way of optically filtering and en-
coding the BRDF data.

• Development of a set of orthogonal basis functions de-
fined over the measurement space, as well as basis
transformation as a way of data extrapolation.

• A novel design for a curved reflector catadioptric
imaging setup resulting in an efficient image based
BRDF acquisition without involving any moving parts.



2. Related Work
As an alternative to analytical BRDF models, one can

use measurements of BRDFs in a rendering system. Such
data is available from many sources, including the Cor-
nell [6], STARR [26], and CUReT [7] databases. For ex-
ample, the BRDF data in the CUReT database represents
256 reflectance measurements uniformly distributed over
the hemisphere of 60 different materials. However, compre-
hensive data is still not readily available for a large number
of day-to-day materials, and thus the development of rapid
new measurement methods has been a focus of research ac-
tivities.
Measurement Setup. The wide availability and decreasing
cost of digital cameras has led researchers to explore var-
ious image based BRDF acquisition approaches. One way
of reducing the number of images that need to be taken is by
using curved surfaces for recovering homogeneous [21, 22],
or spatially varying BRDFs [19]. Generally, these methods
require knowledge of the geometric shape, and are not well-
suited for capturing fabric or sheet materials. Such materi-
als can be measured by wrapping them around a cylinder at
various orientations [24].

In many cases, planar samples are, however, more conve-
nient. Other researchers have therefore focused on special
optics to cover a large range of incident or exitant light di-
rections for a planar sample in a single photograph. Ward’s
reflective dome design [33] was the first to use this ap-
proach. Malzbender et al. [20] use a dome with attached,
individually controlled light sources to photograph a sur-
face under varying lighting conditions. Han and Perlin [12]
developed a device to capture bidirectional texture functions
(BTFs) based on a kaleidoscope. Dana [8] designed an ac-
quisition device using a parabolic mirror that densely cov-
ers a relatively small solid angle. The system also involves
planer translations of the light source to cover various in-
cident directions and translations of the sample in order to
scan the surface for spatial variations in reflectance. Finally,
Kuthirummal and Nayar [16] have developed a class of ra-
dial imaging systems for image-based acquisition of geom-
etry, texture, and BRDFs. Their BRDF measurement setup
can image 4 radial lines of reflectance of a given material
for a fixed light source direction.

Our work is most closely related to the last two papers.
Like Kuthirummal and Nayar [16], we use a rotationally
symmetric optical design, although ours is not a cylinder or
cone, but a freeform surface. Our design lets us measure
BRDFs over a continuous region of directions, much like
the work of Dana [8]. However, unlike any other previous
work, we use basis function illumination, rather than indi-
vidual point or directional lights, which allows us to very
rapidly acquire BRDFs, including anisotropic ones.
Measurements with Basis Functions. Basis function
approaches have been used in the past for measuring

other visual effects, including light fields [11], reflectance
fields [34] and environment mattes [27]. While similar is
spirit, these approaches measure different physical proper-
ties, and are therefore both mathematically and optically
very different from ours. Our proposed zonal basis illu-
mination is very similar in principle to harmonic lights as
proposed by Sato et al. [32] for encoding the appearance
function of a scene. Hence our optical setup can be seen as
a step towards the realization of such harmonic lights.
BRDF Representations. After the BRDF has been mea-
sured, one can use it directly in tabular form in a rendering
system [21]. However, the data often contains holes and is
noisy, so that some form of post-processing and interpola-
tion is almost always required. Furthermore, the inherent
dimensionality of the BRDF data, and the need to sample
it at a high resolution leads to unwieldy storage problems.
Most researchers therefore represent their BRDFs as either
analytical reflectance models [33, 19, 10], or generic func-
tion bases such as polynomials [15, 20], spherical harmon-
ics [35, 31, 4], or wavelets [18, 23].

The key difference of our work from these approaches is
that we directly acquire the BRDF in a basis representation,
rather than measuring a tabulated representation that is later
fit with the basis functions. The concept of basis function
acquisition, in combination with the optical setup that we
devised, allows for extremely rapid and easy measurement
of BRDFs.

3. Overview
The distinguishing characteristic of our BRDF measure-

ment system is that it captures the response of the surface
to illumination in the form of smooth basis functions, while
existing methods measure impulse response using thin pen-
cils of light that approximate Dirac peaks. For this concept
to be practical, we require an optical setup that allows us
to simultaneously project light onto the sample from a large
range of directions, and likewise to measure the reflected
light distribution over a similarly large range of directions.
Developing such optics also has the advantage that no mov-
ing parts are required, which is one reason for the speed of
our acquisition.

In this paper, we choose a spherical zone of directions
as the acquisition region for both incident and exitant light
directions. Spherical zones have several advantages over re-
gions of other shape. First, they allow us to develop basis
functions that align nicely with the symmetries present in
many BRDFs, thus minimizing the number of basis func-
tions required to represent a given BRDF. Alignment also
simplifies extrapolation of data into missing regions. Sec-
ond, a zonal setup allows us to design optics that could, in
principle, cover over 98% of the hemisphere, with only a
small hole near the zenith, where BRDF values are usually
smoother compared to more tangential directions. The man-



Figure 1. Left: Physical setup of our reflectance acquisition device.
A camera focused on the mirrored components views a zone of re-
flected directions. A projector illuminates the corresponding zone
of incident directions using a beam splitter. Right: A prototype
demonstrating the concept in 2-D. Here, we focus illumination on
the mirrored components using a laser pointer and observe that the
beam bounces back to its origin.

ufacturing process that we used for our prototype system al-
lowed us to produce a section of that range corresponding
to 51% of the hemisphere.

Figure 1 shows a diagram and a 2D mockup of such an
optical setup. A camera focused on the mirrored compo-
nents can capture the full zone of reflected directions in our
setup. Simultaneously, a projector focused on the the mir-
rored components can cover the corresponding zone of in-
cident directions.

In the following, we will first discuss the theoretical
underpinnings for basis function BRDF acquisition (Sec-
tion 4), and then describe the physical setup (Section 5).
Finally, we present results in Section 6 and conclude with a
discussion in Section 7.

4. Measurement with Basis Functions

In this section, we discuss the mathematical concepts be-
hind a basis function approach for BRDF measurement, and
derive the specific basis that we use in our work. Section 5
then deals with the physical realization of these concepts.

Assume that we want to measure a BRDF fr(ωi,ωo) for
combinations of incident light direction ωi and exitant light
direction ωo restricted to a spherical zone Z centered around
the surface normal. Z corresponds to longitudinal angles
φ ∈ [0 . . .2π] and latitudinal angles θ ∈ [θmin . . .θmax], as
shown in Figure 2.

We would like to approximate the BRDF over this zone
with a linear combination of basis functions {Zk(ωi)} over
the incident light directions. We will include the cosθi term
in this basis representation for convenience and numerical
stability, i.e.

f̂r(ωi,ωo) = fr(ωi,ωo)cosθi ≈∑
k

Zk(ωi)zk(ωo), (1)

Figure 2. The measurement zone Z.

so that we can write the reflected radiance for any outgoing
direction ωo as

Lo(ωo) =
∫

Z
fr(ωi,ωo)Li(ωi)cosθi dωi (2)

≈∑
k

zk(ωo)
∫

Z
Zk(ωi)Li(ωi) dωi. (3)

In this framework, BRDF measurement can be seen as
the process of determining the coefficients zk(ωo) for each
basis Zk and each exitant light direction ωo. If we have
chosen the Zk such that they form an orthonormal basis over
the zone Z, then the coefficients are given as

zk(ωo) =
∫

Z
Zk(ωi) fr(ωi,ωo)cosθi dωi. (4)

In other words, we can measure zk(ωo) by recording the
reflected light along each direction ωo ∈ Z for different in-
cident illumination patterns Zk(ωi). In practice, we sepa-
rately project the positive Z+

k and the negative Z−
k parts of

the basis function Zk, and subtract the resulting coefficients
in software, similar to the work by Goesele et al. [11].

There are several ways in which one can define a suitable
orthonormal basis over Z. In Appendix A we derive the
set of orthonormal Zonal Basis (ZB) functions Zm

l (φ ,θ) ∈
[0,2π]× [θmin,θmax] that we use for our purposes:

Zm
l (θ ,φ) =



√
2K̂m

l cos(mφ)P̂m
l (cosθ) if m > 0

√
2K̂m

l sin(−mφ)P̂−m
l (cosθ) if m < 0

K̂0
l P̂0

l (cosθ) if m = 0

,

(5)
where the zonal normalization constant K̂m

l is

K̂m
l =

√
(2l +1)(l−|m|)!

2π · (cosθmin − cosθmax) · (l + |m|)!
. (6)

For practical applications, we of course need to extrap-
olate from the data measured over the zone to incident and
exitant directions that have not been measured. This task is
simplified by the global support of our basis functions, and
would be much more difficult for a basis with local sup-
port, such as a Wavelet basis. In general, we would also
like to transform the data into a different representation that



is more convenient for rendering purposes, such as a tensor-
product Spherical Harmonics (SH) basis, or coefficients of
an analytical reflection model. Interestingly, format conver-
sion and extrapolation can be achieved in a single, inexpen-
sive step, as described in the following.

4.1. Basis Conversion to Spherical Harmonics

One way of extrapolating the acquired zonal data in the
zone of missing measurements is by transformation into an
alternative basis such as spherical harmonics. The SH ba-
sis has been used extensively in the past for representing
BRDF data. Unlike the ZB basis functions, however, the re-
strictions of the SH basis functions Y m

l to our measurement
zone Z are not orthonormal, and therefore, the equivalent of
Equation 4 does not hold for spherical harmonics. Instead,
we have

ym
l (ωo) =

∫
Z

Ŷ m
l (ωi) f̂r(ωi,ωo) dωi, (7)

where {Ŷ m
l (ωi)} is the dual basis to the spherical harmonics

over the zone Z, i.e. the basis that fulfills the conditions

∫
Z

Y m
l (ω)Ŷ q

p (ω)dω =

 1 if l = p and m = q

0 otherwise
. (8)

Since {Ŷ m
l (ωi)} is a basis for the same function space as

the SH basis, we also have

Ŷ q
p = ∑

l,m
cm,q

l,p Y m
l . (9)

Equations 8 and 9 together describe a sparse linear sys-
tem that can be solved to obtain the linear weights that de-
fine the duals Ŷ . Conversion from ZB to SH is then a simple
linear transformation of the zonal coefficients zq

p of a func-
tion f̂r by a sparse basis change matrix C into corresponding
SH coefficients ym

l . Each element of this matrix is defined
by

Cm,q
l,p =

∫
Z

Zq
pŶ m

l dω. (10)

Note that we could use the dual functions Ŷ m
l for mea-

surements and directly project the BRDF into a spherical
harmonic basis. However, having a single orthonormal ba-
sis is more convenient for projection into arbitrary function
spaces, including analytical BRDF models, as described
next.

4.2. Fitting Analytical Reflection Models

For relatively low frequency BRDFs, the spherical har-
monic representation produces very good results. For spec-
ular materials, it is well known that basis functions such

as spherical harmonics or our zonal basis suffer from oscil-
lations in the proximity of discontinuities or strong gradi-
ents. These oscillations are visible in the reconstruction as
undesirable ringing artifacts also known as the Gibbs phe-
nomenon (Figure 3, center). Hence, for specular materials,
we cannot directly use the acquired coefficients or transform
them into SH for final use.

Instead, we propose to fit the higher order zonal repre-
sentation of specular BRDFs to an analytical model, thereby
computing a least-squares fit over the spurious oscillations.
Since the Gibbs phenomenon is an oscillation around the
true function value, such a least-squares fit produces a very
good reconstruction (Figure 3, right). In our experiments,
we worked with the distribution based BRDF model by
Ashikhmin [1] due to the simplicity of the fitting proce-
dure. The D-BRDF model is also a generalization of the
Ashikhmin-Shirley-Phong model [3], which was recently
found to be particularly well-suited for fitting to measured
data [24]. However, the measured zonal data can be fitted
to any other suitable analytic model using a numerical pro-
cedure such as Levenberg-Marquardt [29].

Figure 3. An illustration of the suppression of ringing through fit-
ting analytical BRDF models. Left: original acrylic blue paint
BRDF acquired by Matusik et al. [22]. Center: 10th order zonal
reconstruction, rendered after transformation into SH, exhibiting
severe ringing artifacts. Right: Corresponding D-BRDF fit to the
zonal reconstruction.

5. Measurement Setup and Calibration

Figure 4. Photograph of the proposed BRDF acquisition setup in-
cluding a camera, a projector, a beam-splitter, and two curved re-
flectors mounted on a 40 cm×40 cm optical bench.



Figure 5. Iterative process for designing the profile of the reflective
dome for a fixed convex parabolic reflector.

The primary components of our image-based acquisition
setup are a convex parabolic mirror suspended inside a mir-
rored dome. This optical setup can cover a zone of incident
as well as exitant directions of measurement. In addition to
the mirrored components, the acquisition system consists of
a FireWire machine vision camera (Prosilica EC 1350C), an
LED RGB PocketProjector (Mitsubishi PK1), and a beam
splitter. The camera has a resolution of 1360× 1024 and
an acquisition rate of 15 frames per second at 12-bits per
color channel. The projector has a resolution of 800× 600
with peak illumination intensity specified at 200 Lux. An
external 350 mm lens was used to focus the projector at
the required focal distance. All reflectance measurements
are performed with multiple exposures [9] for high dynamic
range (HDR) acquisition.

Our optical setup consists of two mirrored components,
a convex parabola and a concave reflective dome as shown
in Figures 1 and 5. The dome has a rotationally symmetric
shape with a freeform profile, as detailed in the following.
Dome Shape: For a fixed configuration of parabola, sam-
ple, camera, and projector, the freeform profile of the dome
is determined as follows. First, the location of the dome’s
rim D1 is found by intersecting a camera ray reflecting off
the bottom edge P1 of the paraboloid with the tangent plane
of the sample (Figure 5, left). The surface normal at the
rim defines a tangent plane in D1. For the next camera ray
reflecting of P2, we compute the intersection D2 of the re-
flected ray with the tangent plane of D1 (Figure 5, center).
The normal in D2 defines a new tangent plane that we can
use in the same way to obtain the next point on the dome.
Proceeding iteratively with this approach, we can determine
the full shape of the dome (Figure 5, right) in what amounts
to an Euler integration procedure. Note that these simula-
tions are run at orders of magnitude higher resolution than
actual camera or projector pixel resolution.
Design Simulations: The design parameters, i.e. the spa-
tial location of parabola, sample, camera, and projector,
were optimized using detailed simulations with a ray-tracer.
We modeled the camera and projector as thin lens devices.

Our simulations took into account various parameters such
as focal distances, finite apertures and pixel resolutions of
cameras and projectors, and stability under minor misalign-
ments of the various optical components to the optical axis.
Final Design: After extensive simulations, we decided on a
design that lets us project over 100 pixels between the vertex
and the tangent of the parabolic mirror in order to provide
at least 1 measurement per degree along the latitudinal di-
rections. For this setup, the distance between the center of
projection of the camera and the vertex of the parabolic mir-
ror is 27 cm, and the distance between the parabola vertex
and the sample at the bottom is 13.5 cm. The dimensions
of the full dome are 11”× 11”× 10” for this setup. Our
design provides us > 1 pixel/degree measurements over the
full measurement zone. The full dome as simulated in Fig-
ure 5 would cover the zone from 9◦ to 90◦ off the normal to
the sample. This range corresponds to over 98% of the full
hemisphere.
Physical Implementation: For the manufacturing of the
dome and parabola, we chose electroforming process, in
which a mandrel of the dome is first machined and polished,
and then the actual dome is deposited on this mandrel in an
electrolyte bath. This process allows the production of opti-
cal quality free-form surfaces at moderate cost. However, a
downside of this approach is that it only allows for convex
holes, since the mandrel has to be removed after the elec-
troforming process. For this reason, we were only able to
build a dome covering the zone from 9◦ to 57◦ off normal,
corresponding to about 51% of the hemisphere (Figure 4).

5.1. Calibration

Geometric calibration is necessary in order to align the
camera and the projector to the optical axis of the acquisi-
tion setup. We also need to perform photometric calibration
in order to recover the absolute scaling factors for our mea-
surements with respect to some known reflectance standard.
Optical Axis Calibration: The optical axis of the camera
and projector need to be aligned with that of the parabolic
mirror and dome. We mount the dome on an optical table,
and mark its optical axis with crosses that are attached to the
dome with precision mounts. The camera is moved with a
manual translation stage until all crosses line up. Likewise,
the projector is moved manually until the shadows of all
crosses line up.
Sample Mounting: Due to the large aperture of our optical
system, the depth-of-field is very shallow, about 2 mm. As a
result, the material samples have to be mounted with fairly
high precision, which is easily achieved with a mechanical
stop.
Projector Flat-Fielding: We account for any spatial varia-
tion of the projector illumination by acquiring an HDR pho-
tograph of a full screen image set to medium gray, projected
on to a diffuse white screen at the required focal distance of



Figure 6. The Audi-TT model rendered with acquired BRDFs of
2 different paint samples. The BRDFs were acquired using 25 4th

order basis functions as defined in this paper, and then rendered
with a basis transformation into spherical harmonics. Left: Metal-
lic teal automotive paint. Right: KrylonTM true blue paint. In each
case, the time taken for the entire BRDF measurement process in-
cluding data capture and re-projection into the spherical harmonic
basis was about one minute.

28cm. All the basis images are then modulated by this im-
age.
Reflectance Calibration: An important aspect of the cali-
bration is to recover the relative scaling factors for our mea-
surements with respect to some known reflectance standard.
For this, we take advantage of an 18 % diffuse gray card
commonly used in photography. We measure the diffuse
reflectance of the gray card with our setup using low order
zonal basis functions [30]. The relative scaling factors for
each color channel are obtained by white-balancing the re-
sults of the gray card measurements.

6. Results

Using our prototype setup, we have acquired the BRDFs
of various types of materials, including velvet, anisotropic
synthetic, silk and satin fabrics, leather, various kinds of
glossy and shiny papers, paint and plastic samples, printer
toners, wax, highly specular metal foil wrapping papers,
and anisotropic samples such as a guitar pick and a copper
coin. Figure 7 presents a selection of BRDFs as rendered
on a sphere under a directional light source. Most of the
materials were acquired using lower order (l ≤ 6) zonal ba-
sis functions. The silk and satin fabrics, and the guitar pick
were acquired with order l = 8 zonal basis function, while
the shiny wrapping papers and anisotropic copper coin re-
quired acquisition with order l = 10 zonal basis function.
The total number of images acquired for an order l acquisi-
tion is (l +1)2×2×3, with 2 separate positive and negative
parts, and 3 exposures for HDR imaging. The entire acqui-
sition process takes just a few minutes to complete even for
higher order zonal basis functions.

Figure 6 presents the BRDFs of 2 different paint sam-
ples that we acquired using 4th order zonal basis functions,
rendered on the Audi-TT car model, and illuminated by
an HDR environment map using the Physically Based Ray
Tracing system [28].

Figure 8. Specular chocolate wrapping papers acquired using
higher order zonal basis functions, and then fit to an analytical
model for rendering. Left: Red KitKatTM wrapping paper. Right:
Copper colored LindtTM chocolate wrapping paper.

Figure 9. Visual comparison of two kinds of acquired satin sam-
ples wrapped around a cylinder as lit by a point source against real
photographs. Left column: Photographs of the red and blue satin
samples. Right column: Rendering of the D-BRDF fits.

A representative set of the BRDFs acquired using lower
order (l ≤ 6) zonal basis functions is shown in Figure 10.
For this class of materials, the entire process of acquisition
followed by a basis transformation into the SH basis took
under three minutes.

Figure 8 demonstrates the specular materials, in this case
shiny metal foil chocolate wrapping papers, which we then
fit to the D-BRDF analytical model. The D-BRDF fit-
ting procedure consists of constructing the distribution of
the half-vector ωh between the incident light direction ωi
and exitant viewing direction ωo as a function of the back-
scattering direction measurements, i.e, the directions where
ωi = ωo. In our case, we extract the zonal half-vector dis-
tribution from the measured data, and then extrapolate that
to cover the full hemisphere of half-vector directions. The
entire acquisition and fitting procedure took only a few min-
utes to complete in all examples. Similarly, we also fit D-
BRDFs to the anisotropic guitar pick, the copper coin and



Figure 7. Various BRDFs acquired with our prototype setup using zonal basis functions. Top row: from left to right - bright orange paper,
red velvet, maroon synthetic fabric, brown leather, coated brown envelope, red printer toner, blue rubber band, glossy red paper, glossy
blue-gray paper, LindtTM chocolate box paper. Center row: from left to right - magenta plastic with grain finish, retro-reflective plastic,
dark brown plastic coffee lid, KrylonTM banner red paint, KrylonTM true blue paint, metallic teal automotive paint, chrome gold dust
automotive paint, purple anisotropic silk fabric, blue anisotropic silk fabric. Bottom row: from left to right - glossy succulent plant leaf, red
wax, shiny blue paper, shiny golden paper, red KitKatTM wrapping paper, copper colored LindtTM chocolate wrapping paper, anisotropic
plastic guitar pick, anisotropic copper coin, anisotropic red satin.

the satin samples (Figure 7, bottom row).
Finally, as a way of validating our measurement and fit-

ting approach, we photographed two satin samples wrapped
around a cylinder in a dark room and lit by a collimated
point light source. Figure 9 presents the comparisons of
these photographs with the corresponding renderings of the
D-BRDF fits to these samples. The highlights in the ren-
dered images are a close match to the real photographs val-
idating our approach.

As an additional step towards quantitative validation, we
used an 18% gray card as a diffuse reflectance standard, and
compared the recovered coefficients to the ones expected
for a diffuse target. For low order basis functions, the error
is within a few percent of the expected value.

Figure 10. Representative set of BRDFs acquired with lower order
zonal basis functions rendered under directional lighting. From
left to right: red velvet, red printer toner, magenta plastic sheet,
chrome gold dust automotive paint.

7. Conclusions
In this paper, we have presented a novel basis function

approach to BRDF measurement. Our contributions include
a novel theory for basis function BRDF acquisition, the de-

velopment of an orthonormal basis for spherical zones, and
the design of an optical setup that allows for basis function
illumination of BRDF samples.

The dome we use in our prototype setup covers a suf-
ficient percentage of the hemisphere to obtain high quality
BRDF measurements with our basis function approach. To
further increase quality by reducing the amount of extrap-
olation, a dome with a larger coverage could be used. We
are currently looking into manufacturing techniques that are
able to produce such domes.

Due to the basis function approach and the dispensing
of all moving parts, BRDF measurement with our setup is
very fast, reducing the acquisition time to a few minutes
even for high-frequency materials. Moreover, the physical
dimensions of the setup are quite compact, so that the whole
apparatus could be enclosed in a small box for mobile on-
site acquisitions.
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A. Orthonormal Zonal Basis
Our Zonal Basis (ZB), like the Spherical Harmonic ba-

sis, is derived from the Associated Legendre Polynomi-
als (ALP) Pm

l (x),m ∈ {0, . . . , l}, which are orthogonal over
x ∈ [−1,1] with∫ 1

−1
Pm

l (x)Pm
l′ (x)dx =

2(l + |m|)!
(2l +1)(l−|m|)!

δll′ . (11)

For defining spherical harmonics Y m
l , the Pm

l are scaled
so that they are orthogonal over [0,π], with

Y m
l (θ ,φ) =



√
2Km

l cos(mφ)Pm
l (cosθ) if m > 0

√
2Km

l sin(−mφ)P−m
l (cosθ) if m < 0

K0
l P0

l (cosθ) if m = 0

,

(12)
where Km

l is the SH normalization constant:

Km
l =

√
(2l +1)(l−|m|)!

4π(l + |m|)!
. (13)

For our zonal basis, we follow the same principle, and
rescale the ALP to the range [θmin . . .θmax].

P̂m
l (x) = Pm

l (n1 · x−n2), (14)

with

n1 =
2

cosθmin − cosθmax
, n2 =

2cosθmin

cosθmin − cosθmax
−1.

The ZB functions Zm
l (φ ,θ) ∈ [0,2π]× [θmin,θmax] are

then given by Equations 5 and 6 in Section 4.


