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TopoLayout: Multi-Level Graph Layout by
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Abstract— We describe TopoLayout, a feature-based,
multi-level algorithm that draws undirected graphs based
on the topological features they contain. Topological fea-
tures are detected recursively inside the graph, and their
subgraphs are collapsed into single nodes, forming a graph
hierarchy. Each feature is drawn with an algorithm tuned
for its topology. As would be expected from a feature-based
approach, the runtime and visual quality of TopoLayout
depends on the number and types of topological features
present in the graph. We show experimental results com-
paring speed and visual quality for TopoLayout against
four other multi-level algorithms on a variety of datasets
with a range of connectivities and sizes. TopoLayout
frequently improves the results in terms of speed and visual
quality on these datasets.

Index Terms— Information Visualization, Graphs and
Networks, Graph Visualization

I. INTRODUCTION

Recently, multi-level approaches for graph drawing
have been studied to overcome the size and visual qual-
ity limitations of previous work. Multi-level algorithms
typically construct a graph hierarchy with the original
graph at the leaf level and coarser approximations at
higher levels. Current multi-level approaches typically
only exploit local connectivity in the graph and treat
all nodes and edges similarly. The resulting drawings
are uniform, but low-level structure within the high-level
structure of the graph is difficult to see.

We introduce a feature-based approach to multi-level
graph drawing. In this approach, features of interest are
recursively detected in the graph and replaced with meta-
nodes at a coarser level. Appropriate drawing algorithms
for each feature are selected based on the type of fea-
ture detected. Our approach to feature-based, multi-level
graph drawing recursively detects topological features
such as trees, connected components, and biconnected
components, which have been well studied in the litera-
ture. We also detect highly connected clusters: features
of interest in power law or small world graphs. To show
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that we can expand our system beyond strict topological
features, we detect when the high-dimensional embedder
(HDE) [22] algorithm is a suitable choice for layout.
HDE is an efficient algorithm for drawing a specific
subset of general graphs, many of which are grids.

The primary contribution of this work is TopoLay-
out, the first feature-based, multi-level algorithm. Unlike
previous multi-level algorithms, the graph hierarchy is
drawn bottom-up, taking the space required to draw
the features into account at higher levels of the graph
hierarchy. Thus, all of our layout algorithms should be
area-aware; that is, take varying node size into account.
TopoLayout also introduces passes to eliminate all node-
node overlaps and to reduce the number of node-edge
and edge-edge crossings.

The performance of TopoLayout is compared to ex-
isting multi-level algorithms. Although TopoLayout does
have its limitations, the approach is often faster and
better able to illustrate low-level structure in the context
of high-level graph structure.

II. PREVIOUS AND RELATED WORK

Given a general, undirected graph G consisting of
N nodes and E edges, we concern ourselves with the
problem of drawing G in two dimensions. Nodes are
assigned two dimensional coordinates, and if two nodes
share an edge it is drawn between them as a straight line.

The problem of drawing general, undirected graphs
has been well studied. Before the late 1990s, the methods
were primarily focused on force-directed approaches [7],
[10]–[12], [20]. These methods perform well for many
types of graphs, but do not scale to graphs of thou-
sands of nodes. To overcome this limitation, multi-level
approaches and approaches which rely more heavily
on user interaction have been proposed. In addition, a
few previous approaches do exploit topology. We also
describe the HDE approach, so that our HDE detector
can be understood.

In addition to the work presented here, we have also
described some preliminary work on TopoLayout in a
poster [2].
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A. Multi-Level Graph Drawing Algorithms

Multi-level methods for graph drawing have been stud-
ied to improve algorithm run time with drawings of equal
or increased visual quality. The spirit of these multi-level
approaches is to recursively apply a coarsening operator
to divide a very large input graph into a hierarchy of
coarser ones. These techniques exploit the property that
coarser graphs in the hierarchy are representative of the
detailed ones, but can be more quickly laid out. Also,
such decompositions help avoid local minima, allowing
the algorithms to scale to larger datasets, improving both
the running time and the visual quality of the final layout.

In Walshaw [30], an estimate of a solution of the maxi-
mal matching problem is used as a coarsening operator to
construct the hierarchy. The maximal matching problem
is to select the largest possible set of edges in the graph
such that no two edges are incident to the same node.

Harel and Koren [19] recursively apply an approx-
imate solution to the k-centres problem, using graph
theoretic distance as the ideal distance between two
nodes. The k-centres problem groups a set of points into
k clusters where the distance between any pair of points
in the cluster is minimized.

The GRIP algorithm [13] coarsens by applying a
filtration to the node set of the input graph. The filtration
operator recursively constructs a maximal subset at each
level i such that the graph theoretic distance between any
two nodes of the subset is at least 2i−1−1.

The ACE algorithm [21] solves for the eigenvectors of
the Laplacian matrix to determine a suitable projection
of the graph into two, three, or any dimension less than
or equal to the number of eigenvectors of the matrix. The
eigenvectors are computed by constructing a hierarchy of
coarse matrices and computing the eigenvectors of the
coarsest matrix. The solution is recursively used as an
estimate for the eigenvectors one level down until the
eigenvectors of the original matrix have been computed.

The Fast Multipole Multilevel Method, or FM3, algo-
rithm [16] is the first multi-level algorithm for general
graphs with a provable worst case asymptotic runtime of
O(N logN +E). In this approach, the graph is partitioned
into subgraphs called solar systems. These solar systems
are contracted down to single nodes and the process is
repeated to create a hierarchy. The authors show that a
fixed fraction of nodes and edges are present in each
solar system, proving the hierarchy is balanced. Using
this fact, they are able to prove that the final graph
layout can be obtained in O(N logN +E) time. A subse-
quent evaluation of FM3 convincingly demonstrates that
FM3 yields higher visual quality results than previous
work [17].

All the multi-level algorithms described above use
heuristics to construct their graph hierarchies which do
not exploit low-level and high-level features in the data.
The principal advantage of a feature-based approach,
such as TopoLayout, over existing multi-level algorithms
is the visualization of low-level features embedded in the
high-level graph structure. In this case, our features are
primarily topological features.

B. Interactive Exploration of Graph Hierarchies

A few papers have focused on the interactive ex-
ploration of graph hierarchies. These results could be
applied to the hierarchies produced by multi-level al-
gorithms. In most of these techniques, a precomputed
layout of the graph is recursively coarsened into graph
hierarchy using some graph theoretic distance informa-
tion. Interesting views of the graph hierarchy can be
displayed using a fisheye metaphor. The user specifies
a focus region that is shown at its maximum level of
detail. Coarser levels of the hierarchy are displayed at
increasing distances from the focus region, providing
context.

The topological fisheye views of Gansner et al. [14]
constructs the hierarchies based on Delaunay triangula-
tions and relative neighborhood graphs. The compound
fisheye views of Abello et al. [1] constructs hierarchies
based on a binary space partition of the layout or areas
of relatively high connectivity detected using Markov
clustering. The work of van Ham and van Wijk [29]
provides a similar technique for visualizing small world
graphs by merging clusters pairwise based on geometric
distance between the clusters. A force-directed layout
algorithm that reflects the underlying clusters in the
graph is used as an initial step.

These techniques provide insight into the multi-level
structure of graphs. However, in TopoLayout, we are
primarily concerned with displaying as much multi-level
structure as possible in the static layout without resorting
to interaction.

C. Topological Features in Graph Drawing

Graph topology has been exploited previously in graph
drawing, but never in a multi-level context. Two previous
algorithms search for topology in the graph at a single
level, both employing different algorithms depending on
the topology detected.

Niggemann and Stein [25] describe a multi-level
algorithm based on the recursive application of Λ-
maximization clustering. For each recursively clustered
subgraph, the algorithm constructs a feature vector
containing statistics about the subgraph, including the
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number of connected components, biconnected compo-
nents, and Λ-clusters found. An optimal layout for a
feature vector is found through regression learning on
a large database of graphs. Each graph in the database
is drawn with several layout algorithms and evaluated
using a quality metric, then the best drawing is selected.
Although the work produces some visually convincing
results, the largest graph drawn was a thousand nodes.
No explicit performance numbers were given, but the
time required for precomputation is a major limitation.

Six and Tollis [27] decompose the graph into bi-
connected graphs and draw the tree of biconnected
components using a radial tree layout algorithm which is
area-aware. The individual biconnected components are
drawn using a circular layout. However, the only topo-
logical feature type detected is biconnected components,
whereas TopoLayout handles many types.

D. High-Dimensional Embedder (HDE)

In addition to strict topological features, TopoLayout
detects when the High-Dimensional Embedder, or HDE,
algorithm [22] of Harel and Koren is an appropriate
choice. HDE is related to a rich family of mathematical
approaches which have been explored as solutions to
problems ranging from flattening curved surfaces [26]
to texture mapping in computer graphics [31]. These
algorithms select a subset of d points called pivots
and compute the pairwise geodesic or graph theoretic
distance between the pivots and all other points on the
surface. Each pivot corresponds to a dimension, and
the graph theoretic distance between the pivots and all
other points defines a position for each point in a d-
dimensional space. The point set is centred, and principal
component analysis (PCA) or multi-dimensional scaling
(MDS) maps the d-dimensional embedding down to two
or three dimensions.

In HDE, the first pivot of the graph is selected
randomly. The graph theoretic distance between the first
pivot and all other nodes in the graph is computed using
a breadth-first search for unweighted graphs or Dijkstra’s
algorithm for weighted graphs. For the remaining d−1
pivots, the node with furthest graph theoretic distance
from the pivot is selected in order to maximize vari-
ance on each axis. The layout of the graph in the d-
dimensional space is encoded in a n by d matrix (Harel
and Koren used d = 50). PCA maps the drawing into
two dimensions by computing the eigenvectors of the
matrix and selecting the two of largest eigenvalue. These
principal components correspond to the directions of
maximal variance in the high-dimensional space. The
eigenvectors are mapped to the x and y positions of

Fig. 1. TopoLayout algorithm phases.

the nodes to produce the final layout. HDE thus has
a running time of O(d(N logN + E)) or O(d(N + E))
depending on whether breadth-first search or Dijkstra’s
algorithm is used.

III. ALGORITHM

The TopoLayout framework consists of four main
phases as shown in Figure 1. The decomposition phase
is the same as the coarsening operator of multi-level
techniques. It recursively creates our feature hierarchy
and identifies the feature type of each subgraph. The
feature layout phase draws each subgraph in the graph
hierarchy using an appropriate algorithm for the feature
type. The crossing reduction phase reduces, but does
not completely eliminate, the number of node-edge and
edge-edge crossings in the subgraph by rotating nodes
in each subgraph. Finally, the overlap elimination phase
ensures that no two nodes overlap in the final drawing.

Many of the algorithms used in these phases are
directly drawn from previous work, some are slight
modifications of previous work, and some are novel algo-
rithms of our own. In the decomposition phase, we have
not found previous work describing our tree detection
algorithm. In the feature layout phase, we provide a
weighting scheme for HDE [22] and slightly modify
GEM [11] so that they are area-aware. The crossing
reduction phase is new to multi-level algorithms and is
a novel algorithm of our own. The overlap elimination
phase is new to multi-level algorithms, but is a direct
application of previous work. All other algorithms are
straightforward applications of the literature.

A. Decomposition

The decomposition phase consists of a series of topo-
logical feature detection algorithms, which are applied to
the input graph. Upon detection of a topological feature,
the feature is collapsed into a single node. The process is
applied recursively to the graph, constructing our feature
hierarchy.

In this section, we first define some terms which will
be used to describe our decomposition phase. Then,
we describe the general decomposition phase algorithm.
Finally, we describe the individual topological feature
detection algorithms which are applied to the input
graph.
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Fig. 3. Decomposition phase for TopoLayout. Detection algorithms in boxes coloured by feature type as in Figure 2. If a clause on a
horizontal is true, we transition along the arrow. Otherwise, we follow the vertical arrow to save some subgraphs and recursively decompose
others. Bold arrows indicate the recursive cases.

Fig. 2. Feature hierarchy after decomposition, with topology
encoded by colour. Top: Layout annotated with bounding boxes to
show hierarchy structure: meta-nodes encompass the subgraphs of
their children. Bottom: Diagram of feature hierarchy, with levels
enumerated and nodes labeled by feature type.

1) Definitions: The decomposition phase recursively
constructs the feature hierarchy. An example feature
hierarchy is shown in Figure 2. The levels of this
hierarchy are defined with containment relationships: a
node at level i is a parent of all the nodes in the feature
it contains at level i+1.

We call the nodes of the input graph leaves as they
terminate all paths in the feature hierarchy. Note that the
computed hierarchy is rarely balanced and leaves can
occur at any level. A meta-node is a node that contains
either leaves of the hierarchy, or other meta-nodes. It
represents a topological feature in TopoLayout. During
the construction of a meta-node n, for the set of edges
adjacent to one node inside of n and one node outside
of n, we create a meta-edge between n and the node
outside of n. A meta-edge contains a list of pointers to

the edges in the input graph which they represent. We
construct this list as the algorithm creates each meta-
node. In Figure 2, meta-nodes are the rectangles in the
diagram. The nodes are coloured by topology type. This
same colour encoding is used for all drawings produced
by TopoLayout for the remainder of this paper.

A connected component is a subgraph where there
exists a path between any pair of nodes in the sub-
graph. They are coloured blue. Trees are subgraphs
without cycles and are coloured red. A biconnected
component is a subgraph where the removal of any
node or edge within the subgraph does not disconnect
it into two or more connected components. Nodes and
edges separating biconnected components are coloured
tan. A complete graph has all possible edges present,
so each node is connected to all others. Nodes and
edges of complete graphs are coloured cyan. A cluster
is a subgraph formed by some clustering algorithm. In
our implementation, we use the strength metric [4] for
clustering. Edges separating clusters are coloured grey.
We then determine if HDE is a suitable algorithm to lay
out the subgraph. If it is, it is coloured purple. Finally, if
the decomposition phase cannot identify the topology of
the subgraph, it is labeled unknown and coloured green.

2) Decomposition Algorithm: Figure 3 describes the
decomposition algorithm in detail with the boxes of the
diagram coloured using the scheme described above.

The first step of the decomposition phase replaces each
connected component with a meta-node. The decompo-
sition operator is recursively applied to each connected
component detected. Connected component decomposi-
tion is never executed again, as subsequent detection
algorithms do not disconnect the graph.

Next, we segment out the trees present in each con-
nected component. Each tree is saved as a subgraph
and replaced by a single meta-node. The graph with all
trees removed and replaced by meta-nodes is passed to
biconnected component detection.

If more than one biconnected component is detected,
the decomposition phase is recursively applied to each of
them. The tree with all biconnected components removed
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and replaced by meta-nodes is saved as a subgraph. This
subgraph must be a tree as explained in Section III-
B.1. If only one biconnected component is present, it
is passed to HDE detection.

If a layout of the subgraph with HDE has the proper-
ties we describe in Section III-A.8, it is saved and area-
aware HDE is used for the subgraph in the final layout.
If the layout does not have these properties, the graph is
passed to complete detection.

If a graph is complete, its subgraph is saved. Other-
wise, the graph is passed to cluster detection.

If more than one cluster is found by the clustering
algorithm, the decomposition operator is recursively ap-
plied to every cluster, and also to the graph which results
from replacing each cluster with a meta-node. If there is
only one cluster, the subgraph is labeled unknown.

If the unknown subgraph has any collapsed features
resulting from this pass of the decomposition operator,
the decomposition operator is recursively applied to the
subgraph. Otherwise, the unknown subgraph is saved and
the decomposition phase terminates.

We experimented with several orderings of the de-
composition algorithms. Our rationale for applying the
detection algorithms in the order presented is as follows.
Connected components of the graph should be detected
first, since if there are multiple components, we can
lay them out independently. Trees need to be detected
before biconnected components because the removal of
any edge or node from a tree would disconnect the tree
into two components. Before we further decompose the
graph using strength clustering, we check to see if HDE
is an appropriate algorithm for layout. Finally, cluster
detection provides a reasonable partition of the graph
into highly connected subgraphs when more meaningful
topological features cannot be found.

3) Connected Components: We detect connected
components using a series of depth-first searches to
compute spanning trees for each component. We refer
the reader to Baase and Van Gelder [5] for details of
this standard algorithm which runs in O(N +E) time.

4) Trees: We detect trees by finding the first cycle
in the graph and selecting a node n on that cycle. If a
cycle is not found, the entire graph is a tree. Otherwise,
starting at n, we perform a depth-first search. When we
visit a node of degree one, we remove it and continue
the depth-first search. The algorithm removes all nodes
of degree one it encounters until there are no more, or
when a maximal tree is detected. The time required for
tree detection is therefore O(N +E) time.

5) Biconnected Components: A good description of
a standard biconnected component detection algorithm
is also given by Baase and Van Gelder [5]. Biconnected

components are detected in the graph by performing a
depth-first search. Edges that point back to higher levels
of the depth-first search are called back edges. When
a subtree s of the depth-first search tree has no back
edges to any ancestor of s, it is a separate biconnected
component. The algorithm takes O(N +E) time.

6) Complete Graphs: We detect complete graphs by
taking the ratio of the number of edges in the graph to the
number of possible edges given the number of nodes. We
could easily detect near-complete graphs by considering
a threshold below 100%. An interesting area for future
work would be to determine an appropriate value that
has a sound theoretical justification, rather than being
determined empirically. If the number of nodes and edges
is known, the ratio is computed in O(1) time.

7) Clusters: We compute clusters using the strength
metric [4]. The strength metric partitions the graph into
subgraphs by the number of 3- and 4-cycles shared by
the nodes of the subgraph. For each edge connecting
nodes u and v, we partition nodes adjacent to u and v
into three sets: M(u), those adjacent to u; M(v), those
adjacent to v; and W (u,v), those adjacent to both u and v.
The total number of 3-cycles is the number of elements
in W (u,v). We determine the number of 4-cycles by
checking for the existence of an edge between elements
in any pair of these three sets or two elements in W (u,v).
These edges can be computed in O(r) time where r is
the maximum degree of a node in the graph. We can
thus detect clusters in O(rE) time. For near-complete
graphs, the performance of the algorithm would degrade
to O(N3), but typically, the nodes of the graph are of
bounded degree and there are few high degree nodes.
Thus, in practice, the algorithm can be run on large
graphs.

8) HDE Detection: To determine if HDE is a suit-
able layout algorithm for the subgraph, we analyze the
eigenvalues produced by an HDE layout of the graph.
In PCA, the amount of variance in the data captured by
an eigenvector is its eigenvalue [23]. We first determine
if there is enough variance in the data, or if its largest
eigenvalue is above a minimum threshold value. In our
system, a value of 100 was determined empirically. This
minimum variance is required as some projections place
the majority of their nodes on top of each other. Next, we
compare the percentage of variance accounted for by the
top two eigenvectors. This percentage is computed and
compared to the sum of all eigenvalues. In good two
dimensional layouts, the percentage of variance of the
largest two eigenvalues is nearly the same. If the variance
is not symmetric along these two directions, we only use
HDE in the case when the top three eigenvalues hold all
of the variance, no eigenvalue holds too much of the
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variance, and variance in the third dimension is small.
Threshold values of 60% and 15% respectively were
determined empirically. Since the edges of the graph are
unweighted, our HDE detector uses a breadth-first search
and runs in O(d(N +E)) time.

B. Layout

During the layout phase of level i of a hierarchy, the
features at level i+1 contained by all the meta-nodes at
level i must be laid out first to determine the screen-space
bounds of the meta-node. The required screen space of
the leaves at level i is already known; that is, the original
size of the node. The layout stage, shown in Algorithm
1, draws the topological feature at level i using an
appropriate layout algorithm, rotates meta-nodes of the
hierarchy to reduce crossings, and eliminates all node-
node overlaps in the subgraph.

The initial layout of the features in the graph depends
on the detected feature type. We employ four types
of layout algorithms: tree, circular, HDE, and force-
directed. We also describe passes to reduce the number
of node-edge and edge-edge crossings and to eliminate
all node-node overlaps.

Algorithm 1 Pseudocode for the feature layout phase.
layout (subgraph s)

for all meta-nodes c ∈ s do
c.size ←boundingBox (layout (c.subgraph));

layOutFeature (s);
reduceCrossings (s);
eliminateOverlaps (s);

1) Area-Aware Tree Layout: These algorithms are
used for tree and biconnected component feature types.
Clearly, tree layout algorithms are appropriate for trees,
but the reason to use them to draw biconnected compo-
nents is less obvious.

For a set of biconnected components residing at level i
with their collapsed subgraphs at level i+1, the topology
of the subgraph at level i is a tree; if it were not, there
would be a cycle at level i and all subgraphs on that cycle
would be merged into a single biconnected component
at level i+1.

If the removal of an edge created two biconnected
components, the edge appears as an edge in the tree at
level i. If the removal of a node created two biconnected
components, we use one of the methods suggested by
Six and Tollis [27] and place the node between the
two components. If an internal node of the tree is a
meta-node, its children are sorted radially around the
internal node based on the positions of the nodes at

lower levels in the hierarchy that connect the children
to the meta-node. TopoLayout can use any tree layout
algorithm that is area-aware for drawing. We use the
bubble tree algorithm [15] for trees of low depth and
high branching factor and an area-aware version of the
Walker algorithm [6] for all other trees. The bubble tree
algorithm requires O(N logN) time while the version of
the Walker algorithm runs in O(N) time.

2) Area-Aware Circular Layout: These algorithms
highlight complete graphs by simply placing the nodes of
the graph around a circle. Although circular layouts yield
low visual quality drawings for general graphs because
they have many crossings, they are a good choice for
complete graphs because they provide visual pop-out for
cliques. The algorithm runs in O(N) time.

3) Area-Aware HDE: This algorithm is used to lay
out subgraphs found by our HDE detector. Area-aware
HDE is the standard HDE approach [22] with weighted
edges. The weight of each edge is the maximum radius
of the adjacent nodes, with a minimum weight of one.
Since the graph edges are weighted, area-aware HDE
uses Dijkstra’s algorithm and runs in O(d(N logN +E))
time.

4) Area-Aware GEM: This default algorithm is used
for all other cases. It is similar to the algorithms devel-
oped by Harel and Koren [18] who adapted Fruchterman-
Reingold [12], Kamada-Kawai [20], and combinations of
these algorithms. Area-aware GEM is a modified version
of the GEM algorithm [11] where nodes are considered
charges and the edges are considered springs. The system
is placed in an initial configuration and is released until it
reaches an equilibrium. Oscillations and rotations about
equally optimal positions are dampened.

The forces for area-aware GEM can be defined for a
pair of nodes ni and n j. Let ri and r j be the radii of
the bounding circles of these nodes respectively. Let pi
and p j be their positions, and let l be some ideal spring
length for the distance between the boundaries of the
two nodes. The GEM forces that a node n j exerts on a
node ni are:

frepulsive(ni,n j) =
l + dri + rje

‖pi− p j‖2 (pi− p j) (1)

fattractive(ni,n j) =
‖pi− p j‖

2

l + dri + rje
(p j− pi) (2)

The bold terms in (1) and (2) are the terms we added
to make GEM area-aware. The ceiling of the sum of the
radii is taken so that the forces are still computed purely
with integer arithmetic. Oscillation and rotation control
in the algorithm is the same. The algorithm stops after
the nodes in the graph do not move much in the plane
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Fig. 4. Reducing crossings with torque. (a) Computing the torsional
force τ on c exerted by the edge (no,nc). (b) Applying τ results to
rotate c. Dashed nodes and edges are meta-nodes and meta-edges.
Solid nodes are leaves in the hierarchy. The square box is the centre
of node c.

or N iterations have been completed. Thus, in the worst
case, the complexity of the algorithm remains O(N3).

5) Crossing Reduction: We introduce a heuristic to
rotate meta-nodes in our hierarchy, reducing crossings of
edges in the original graph connecting nodes in different
subgraphs as shown in Figure 4. The heuristic does
not guarantee an elimination of node-edge or edge-edge
crossings, but it reduces their number in most cases
and also shortens edge length between subgraphs. Our
approach is similar to that of Symeonidis and Tollis [28]
who provide a solution to this problem by minimizing
what they call inter-group crossings. In their approach,
an energy function is minimized to apply a good rotation
to their circular drawings to reduce the number of cross-
ings. This approach is analogous to Kamada-Kawai [20]
in graph layout. In contrast, our approach is similar to
GEM [11] and includes oscillation control.

Let o and c be meta-nodes in a subgraph at level i
of our graph hierarchy. Let no and nc be leaves in our
graph hierarchy. We use the positions of no and nc in the
coordinate frame in the subgraph at level i to compute
the torque τ . The nodes of no and nc are not necessarily
at level i+1 and can be nested in several levels of meta-
nodes, each with their own relative coordinate frames.
For the moment, we assume the location of the nodes no
and nc is known in the coordinate frame of the subgraph
at level i and show later how these positions can be
computed efficiently.

The torque computed is physically inspired, but is
not physically realistic. Let the force vector ~f be a unit
force along the edge (no,nc). Let ~r be the radius vector
from the centre of node c to the node nc. The function
sg(~x) returns the sign of the normal perpendicular to the
embedding plane. The torque exerted by (no,nc) on c is

given by Equation (3).

τ =
π
2

sg(~r× ~f )(~r · ~f ) (3)

Analogous to that of force-directed graph drawing
techniques, our solution to the problem is incremental.
The average value of τ is computed for all edges in
the list of edges contained in the meta-edge (o,c). The
process is repeated, computing an average τ for each
meta-node in the subgraph containing o and c, using their
incident meta-edges. Once the average τ is computed
for all meta-nodes in the subgraph, it is applied to the
cumulative rotation of each meta-node.

Meta-nodes can oscillate around equally good orienta-
tions. Our approach to dampening oscillations is similar
to that of GEM [11]. We store the torque for each meta-
node applied during the previous iteration and compare it
with the torque computed during the current iteration. If
the signs of the torque in the two iterations are opposite,
we are oscillating around an optimal orientation, and a
damping factor is applied. Currently, this factor is the
fraction of completed iterations to the Ni iterations which
will be executed, where Ni is the number of meta-nodes
in the subgraph at level i.

Computing the positions of the no and nc nodes in the
coordinate frame of the subgraph at level i is relatively
straightforward if every node in the graph hierarchy has
a pointer to the meta-node which contains it. This in-
formation can be saved in the decomposition phase with
no asymptotic runtime penalty when we construct meta-
nodes. Each meta-edge has a list of edges it represents,
so each no and nc involved in a torque computation can
be determined in constant time. We traverse the hierarchy
up to the subgraph at level i composing translations and
rotations to determine the positions of no and nc in the
subgraph at level i. If no or nc is at a depth of i+L, this
traversal takes O(L) time. Since each edge is involved
in at most one torque computation and Ni iterations of
torque are executed, the overall asymptotic complexity
of the crossing reduction phase is O(LNiE).

6) Overlap Elimination: In TopoLayout, although the
area-aware tree and circular layout algorithms guarantee
no node-node overlaps, neither area-aware GEM nor
area-aware HDE does. To ensure that pairs of nodes do
not overlap in our final layout, we perform a pass to
eliminate these overlaps.

We experimented with several algorithms to reduce
or eliminate node overlaps in the drawing. In all cases,
we tried overlap reduction two ways: separately for each
subgraph of the hierarchy, or a single pass on the entire
final drawing after TopoLayout had executed all other
phases. We found that the former approach was best,
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because a single pass on the final drawing causes overlap
between topological features.

First, we tested the naive approach of considering
every pair of nodes to determine the set of overlaps.
If two nodes overlapped, they were shrunk down in
size until no overlap was present. Although this O(N2)
method was slow, it does guarantee a drawing free
of node-node overlaps and produced drawings of high
visual quality for many types of graphs.

We also implemented the Cluster Buster algorithm of
Lyons et al. [24], which computes the Voronoi diagram
of the node set and iteratively pulls the nodes towards
the centroid of each Voronoi cell. For a constant number
of iterations, the algorithm runs in O(N logN) time.
Unfortunately, this method does not guarantee no node
overlaps in the final drawing, and the results were usually
of low visual quality.

We obtained the best results from implementing the
fast node overlap removal algorithm without Lagrange
multipliers [8], which is discussed in detail in Dwyer et
al’s technical report [9]. In this work, two separate passes
along the x-axis and the y-axis eliminate all node over-
laps in the graph. The algorithm constructs a weighted,
directed constraint graph along each dimension and uses
quadratic programming to minimize node displacement.
Assuming that each node in the graph overlaps with a
constant number of nodes, the algorithm is O(N logN).
This method guarantees no overlaps in the final drawing
and was applied to every subgraph of the hierarchy to
produce the results in Section V.

The overlap elimination phase is always executed
on graphs drawn with HDE and area-aware GEM,
since these algorithms do not guarantee the absence of
overlaps. As the fast overlap removal algorithm only
considers axis aligned nodes, the axis aligned bounding
box of the rotated meta-node is computed.

IV. ALGORITHM COMPLEXITY

The worst-case complexity of our algorithm is O(N3)
if no topological features are found and area-aware GEM
is used. However, the algorithm in practice runs faster
in most cases.

Figure 5 shows the time complexity of the algorithms
we use in TopoLayout. We report the number of op-
erations performed on each subgraph of the hierarchy:
Ni is the number of nodes in a subgraph, and Ei is the
number of edges in a subgraph at level i. The maximum
degree of a node in the subgraph at level i is ri. The
value of d is the dimensionality of the high-dimensional
space of the HDE algorithm, which is fifty. The value
of L is the number of levels we must traverse up the

Algorithm Complexity
Detection

Tree O(Ni +Ei)
Biconnected Component O(Ni +Ei)
Connected Component O(Ni +Ei)
HDE O(d(Ni +Ei))
Complete O(1)
Cluster O(riEi)

Initial Layout
Bubble Tree O(Ni logNi)
Walker Tree O(Ni)
Area-Aware Circular O(Ni)
Area-Aware GEM O(N3

i )
Area-Aware HDE O(d(Ni logNi +Ei))

Refinement
Crossing Reduction O(LNiE)
Overlap Elimination O(Ni logNi)

Fig. 5. Time complexity of TopoLayout framework components, for
each hierarchical level.

hierarchy to compute the level i positions of no and nc
when computing torques.

V. EMPIRICAL EVALUATION

We implemented the TopoLayout framework on top of
the Tulip [3] graph visualization system and have tested
it against other multi-level algorithms on datasets with a
range of connectivities and sizes. All benchmarks were
run on a 3.0GHz Pentium IV with 3.0GB of memory
running SuSE Linux with a 2.6.5-7.151 kernel.

Four multi-level algorithms were tested against Topo-
Layout. The code for GRIP∗, ACE†, and HDE‡ was
available online and was incorporated into the Tulip
framework. Stefan Hachul kindly supplied the FM3 code,
which was also incorporated into Tulip for testing. Harel
and Koren’s multi-level approach [19] was not tested.
The source code for this implementation was unavail-
able. As our observed running times and visual quality
results were very similar to those in Hachul and Jünger’s
empirical study [17], one can refer to their results for a
comparison.

We allowed TopoLayout to colour topological features
in the graph, using the scheme defined in Section III-A.1.
Since the other graph drawing algorithms do not detect
topological features automatically, the comparison is fair
and demonstrates another advantage of our approach.

Our experiment was divided into two phases. Synthetic
Data primarily consisted of benchmark datasets taken

∗www.cs.arizona.edu/˜kobourov/GRIP
†research.att.com/˜yehuda/programs/ace.zip
‡research.att.com/˜yehuda/programs/embedder.zip
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from the graph drawing literature. These preliminary
tests provided a baseline for the comparison of multi-
level algorithms. Real World Data mostly consisted of
datasets deemed real world in previous empirical eval-
uations. We added two additional datasets which came
from real world data sources.

A. Synthetic Data

All but one of the synthetic graphs we study came
from the Hachul and Jünger empirical evaluation [17]
of multi-level algorithms. Crack is a standard graph
drawing dataset part of the Walshaw Graph Partition
Archive§. It was categorized as a real world graph in
their study. The 6-ary, Snowflake, Spider, and
Flower datasets are each of the medium sized chal-
lenging artificial graphs of their study. The 6-ary tree
dataset is simply a 6-ary tree of depth five. Snowflake
is a tree of very high variance in degree. Spider has
a subset of nodes S which consists of 25% of the nodes
in the graph. The elements of S are each connected to
twelve unique members of S. The remaining nodes are
rooted at a single node along eight paths of equal length.
Flower has a relatively high edge density. It consists of
joining six circular chains of the graph K30, a complete
graph of thirty nodes, at a single instance of K30. The last
graph we test, bi walsh, did not appear in the study.
It is thirteen datasets from the Walshaw Graph Partition
Archive connected by twelve single edges into one
component. The purpose of this dataset is to demonstrate
that our HDE detection algorithm works well and that
other multi-level algorithms, including HDE and ACE,
have difficulty drawing this dataset. The results of this
part of the empirical evaluation are shown in Figure 6.

B. Real World Data

In addition to synthetic data, we use data that was
considered real world in other empirical evaluations. The
first three datasets are challenging real world graphs
in Hachul and Jünger’s empirical evaluation [17]. The
ug 380 and dg 1087 graphs are from the AT&T Graph
Library¶. The Add32 dataset is from the Walshaw Graph
Partition Archive. The graph is representative of the
underlying hardware structure of a thirty-two bit adder.
In addition to these datasets, we added two more. UBC
is the hyperlink structure of the department of computer
science at the University of British Columbia’s web site
acquired using a depth-first search cut off at about 40,000
nodes. IMDB 1999 is a subset of the Internet Movie

§staffweb.cms.gre.ac.uk/˜c.walshaw/partition
¶www.graphdrawing.org

Database‖. It shows all actors in movies and television
shows released in 1999 who are three or fewer hops from
Jake Gyllenhaal in the movie October Sky. We select this
actor because he has a relatively low branching factor
in that year. The results of this part of the empirical
evaluation are shown in Figure 7.

VI. DISCUSSION

Since most of the data for these tests came from the
Hachul and Jünger empirical evaluation [17], we are
able to compare the results of this evaluation with their
findings. For the most part, we have reproduced their
results. For some of the images produced by GRIP in
the study of Hachul and Jünger, it seems that a three
dimensional layout had been selected. In this empirical
evaluation we use only two-dimensional layouts. We will
highlight where this makes a major difference between
the results of the two studies when we discuss the
drawings of each of the datasets.

In general, three of the drawing algorithms performed
well on all of the datasets: GRIP, FM3, and TopoLayout.
The ACE and HDE algorithms did not perform well on
any of the datasets in this evaluation with the exception
of Crack. ACE and HDE appear to only work well on
graphs which are mesh-like in structure. As a result of
this finding, we focus our attention on GRIP, FM3, and
TopoLayout for the remainder of this discussion and will
only show the results for these three algorithms on the
real world data.

A. Synthetic Data

In summary, TopoLayout was consistently faster than
FM3 on this data and had similar running times to that
of GRIP. The only two exceptions are Spider graphs
and Flower graphs where TopoLayout was on the order
of a couple of minutes while FM3 and GRIP were on
the order of seconds. This time delay was due to GEM
and the cluster detection algorithm, the slowest parts of
TopoLayout. TopoLayout produced drawings of equal or
improved visual quality on all datasets in these tests.

1) Crack: All three algorithms produced drawings
of similar visual quality for this mesh dataset. This result
differs from the Hachul and Jünger empirical evaluation
in that GRIP does not have any folds in the layout.

2) 6-ary: On this 6-ary tree of depth five, Topo-
Layout produced the drawing which clarified the most
high-level and low-level structure, followed by FM3, and
GRIP. In the TopoLayout drawing, we can see both high-
level and low-level structure in the tree as the tree is

‖www.imdb.com
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ACE HDE GRIP FM3 TopoLayout

PSfrag replacements

Crack
N=10,240
E=30,380

0.35

PSfrag replacements

0.14

PSfrag replacements

2.43

PSfrag replacements

21.99

PSfrag replacements

3.35

PSfrag replacements

6-ary
N=9,331
E=9,330

0.72

PSfrag replacements

0.08

PSfrag replacements

1.02

PSfrag replacements

17.09

PSfrag replacements

0.97

Snowflake
N=9,701
E=9,700

(T)

PSfrag replacements

0.09

PSfrag replacements

2.16

PSfrag replacements

17.46

PSfrag replacements

1.02

PSfrag replacements

Spider
N=10,000
E=20,000

8.2

PSfrag replacements

0.10

PSfrag replacements

2.96

PSfrag replacements

16.41

PSfrag replacements

403.88

PSfrag replacements

Flower
N=9,030
E=131,241

0.15

PSfrag replacements

0.15

PSfrag replacements

4.40

PSfrag replacements

11.37

PSfrag replacements

70.00

PSfrag replacements

bi walsh
N=77,251
E=183,945

46.83

PSfrag replacements

0.79 (E)

PSfrag replacements

134.28

PSfrag replacements

25.73

Fig. 6. Layouts of several datasets using ACE, HDE, GRIP, FM3, and TopoLayout for the synthetic data described in Section V-A. For
all rows, blank squares indicate no drawing produced. Dataset name, number of nodes, and number of edges appear in the top left hand
corner of the leftmost column. Times in seconds, or reasons for no drawing, appear in the upper right corner of each entry. (T) indicates
no drawing produced after a timeout of four hours of program execution. (E) indicates no drawing produced due to an execution-time error.
Insets show roughly the same set of nodes.

detected and drawn using bubble tree. For FM3, the
high-level structure of the tree is apparent, but the low-

level structure is obscured by many node-node overlaps
and edge crossings. With GRIP, part of the high-level
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GRIP FM3 TopoLayout

PSfrag replacements

ug 380
N=1,104
E=3,231

0.22

PSfrag replacements

2.12

PSfrag replacements

10.23

PSfrag replacements

dg 1087
N=7,602
E=7,601

3.29

PSfrag replacements

17.48

PSfrag replacements

0.78

PSfrag replacements

Add32
N=4,960
E=9,462

0.91

PSfrag replacements

11.99

PSfrag replacements

14.02

UBC
N=40,011
E=191,659

(E)

PSfrag replacements

84.56

PSfrag replacements

220.79

PSfrag replacements

IMDB 1999
N=1,181
E=31,527

0.78

PSfrag replacements

2.64

PSfrag replacements

75.62

Fig. 7. Layouts of several datasets using GRIP, FM3, and TopoLayout for the real world data described in Section V-B. For all rows,
blank squares indicate no drawing produced. Dataset name, number of nodes, and number of edges appear in the top left hand corner of
the leftmost column. Times in seconds, or reasons for no drawing, appear in the upper right corner of each entry. (E) indicates no drawing
produced due to an execution-time error. Insets show roughly the same set of nodes.

structure is obscured because a few of the main branches
of the tree overlap. Low-level structure is not apparent

due to many node-node overlaps.
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3) Snowflake: The Snowflake graph is a tree. It
has a high-level deep tree structure with a low level
core of many single nodes connected to the tree root.
TopoLayout detects this tree and uses bubble tree to
draw it without node-node or node-edge overlaps. It
also shows the core with a clearly visible fan-out of
the single nodes connected to the root on the lower left
of the drawing. FM3 was also able to draw the high-
level structure and low-level structure in the tree to some
degree. However, it is very difficult to understand how
the single nodes clumped around the root are connected
and it is very hard to see this feature at a high level. GRIP
was able to draw only part of the high-level structure and
part of the low-level structure around the root of the tree.
There are many overlaps, making the drawing difficult
to understand.

4) Spider: All three algorithms drew this dataset
with a similar level of visual quality. The high-level
structures of the well-connected head and the eight
long paths or legs are visible in all three drawings. In
TopoLayout, at a high level, it is hard to see the legs
as they have been detected as two deep trees. The low-
level structures in this graph are drawn with a similar
level of visual quality. The drawing produced by GRIP of
this dataset differs from the Hachul and Jünger empirical
evaluation in that the legs do not cross.

5) Flower: TopoLayout and FM3 are able to draw
most of the high-level and low-level structures in this
dataset while GRIP is only able to draw parts of both.
TopoLayout draws each of the K30 cliques with circular
layout, for a visual indication that the graphs are com-
plete. Using HDE, TopoLayout draws each of the six
symmetric loops. The K30 at the centre of the drawing,
when removed, separates the graph into six connected
components. Thus, the highest level structure is a set
of six biconnected components drawn with the bubble
tree drawing algorithm. This dataset gives promise for
a feature-based approach, where several different algo-
rithms can be integrated smoothly into one drawing. FM3

does well on the high-level structure of Flower, but
two of the loops cross. In terms of low-level structure,
it is difficult to tell if the K30 subgraphs are actually
complete as there are many node overlaps in the drawing.
GRIP is unable to draw five of the loops of the high-
level structure. As with the FM3 drawing, it is also very
difficult to tell if the K30 subgraphs are complete.

6) bi walsh: TopoLayout and FM3 draw the high-
level biconnected structure of this dataset well. TopoLay-
out detects the high-level biconnected structure present
in this graph and draws it using bubble tree. It uses HDE
to draw each of the thirteen mesh-like datasets present in
the graph. FM3 is able to draw the high-level biconnected

structure well. However, it is difficult to see the mesh-
like graphs in each of the individual components. GRIP
was unable to produce a drawing for this dataset due to
an internal error.

B. Real World Data

On the real world datasets, the TopoLayout running
times were usually of a similar order of magnitude
as FM3. The only exception was IMDB 1999 where
TopoLayout took just over a minute and FM3 took two
seconds. GRIP was faster than all algorithms, but it fre-
quently yielded results of lower visual quality. Overall,
TopoLayout either improved or had similar visual quality
results on all of the graphs in the evaluation.

1) ug 380: This dataset contains a single node of
very high degree with some interesting topological struc-
ture at some graph theoretic distance from this central
node. The high-level structure could be improved in all
three drawings. However, TopoLayout is able to provide
an interesting insight into the high-level structure of this
dataset at the central core. It is able to segment out
the high degree node at the centre of the drawing and
suggests that the topology of the central core is actually
two components rather than one. TopoLayout is also able
to draw some of the low-level structure present in the
dataset. The FM3 drawing is unable to segment out the
core into these two components. It is very difficult to
determine which node is the high degree node in the
drawing. The topology of the core is unclear as the
majority of the nodes and edges are placed at the centre
of the drawing. It is also very hard to make out the low-
level structure which exists in the graph, but the drawing
is more uniform and compact. The drawing produced by
GRIP is of similar visual quality to that of FM3.

2) dg 1087: This dataset is topologically a tree with
a very high degree node at the root. TopoLayout detects
this tree and draws it with bubble tree, producing a
drawing free of node-edge and node-node overlaps. It
is very difficult to tell in the FM3 drawing if this graph
is indeed a tree. Many of the nodes are clumped into the
central area of the drawing and it is difficult to see how
they interconnect. Thus, the high-level structure of the
tree is drawn well whereas the algorithm has difficulty
clarifying the low-level structure in the dataset. FM3

does, however, have the advantage of a more compact
drawing. GRIP is able to draw some of the high-level
structure, but much of it is hidden by many overlaps. It
is very hard to see the low-level structure of this dataset
using GRIP.

3) Add32: In this TopoLayout drawing we see
promise in our feature-based approach on real world
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data. The high-level biconnected structure of the adder is
clearly visible in tan and is drawn with bubble tree. The
low-level structure of the adder is integrated smoothly
into the drawing using tree drawing and force-directed
algorithms locally. Thus, we are able to see most of the
low-level structure and high-level structure in the dataset.
The FM3 drawing does reveal some of the high-level
structure in the dataset, but some of it is obscured by
edge and node occlusion. It is quite difficult to see low-
level structure in the dataset. With the GRIP drawing,
some of the high-level tree structure is visible, but it is
less apparent.

4) UBC: TopoLayout is able to draw the high-level
tree structure of this dataset. This tree structure is
expected as the dataset was acquired using breadth-
first search. In addition to the high-level structure, the
algorithm is able to visualize some of the low-level
structure in the more strongly connected left part of the
drawing. FM3 is also able to draw the high-level tree
structure in the dataset, but it has difficulty drawing the
low-level structure present in the upper left corner. GRIP
was unable to produce a drawing of this dataset due to
an internal error.

5) IMDB 1999: This IMDB subset is a very hard
dataset to draw because of its high connectivity. All
three algorithms have difficulty in revealing the high-
level structure in the dataset. TopoLayout is able to
reveal some of the high-level structure, but much of it is
obscured by large swathes of edges. It is, however, able
to segment out and draw the complete cliques of actors
in this dataset. These cliques correspond to movies: any
actor in a movie acts with all other actors in that movie.
The strength metric was able to clearly segment these
movies out and TopoLayout was able to draw them with
circular layout. In the FM3 and GRIP drawings of this
dataset, it is hard to see either the high-level or low-level
structure in the drawing as many of the nodes and edges
are placed in the same area.

VII. FUTURE WORK

One obvious way to improve our results is to have
faster detection and drawing algorithms which produce
results of higher or equal visual quality. Figure 5 shows
that strength decomposition is the slowest detection
algorithm and GEM is the slowest drawing algorithm.
These complexity results are reflected in the running
times of TopoLayout on Spider and Flower in Sec-
tion V-A. To improve Spider, we would implement an
area-aware version of the FM3 algorithm. The adaption
of Fruchterman and Reingold used by the algorithm
should be straightforward, but making the multi-level
solar system hierarchy area-aware would be non-trivial.

To improve Flower, we could use faster clustering
algorithms or improve the running time of the strength
metric. Considering these two algorithms execute when
no features are found, we should also investigate new
types of features that can be found in graphs.

We will continue to improve upon our detection al-
gorithm for HDE components and possibly introduce a
detection algorithm for ACE. Our HDE detector is very
good at finding mesh-like graphs with a two dimensional
structure, but not ones with a three dimensional structure
or a small number of nodes. We note that TopoLayout
does not perform well on three of the challenging
real world datasets in the Hachul and Jünger empiri-
cal evaluation [17]: bcsstk33, bcsstk31 con, and
bcsstk32. The structure of these datasets is very mesh-
like and either ACE or HDE seems to perform well on
at least two them. Thus, discovering more efficient and
accurate ACE and HDE detectors would be beneficial.

It would also be fruitful to adapt one of the recent
approaches to interactive exploration [1], [14], [29] to
work with the TopoLayout framework. We believe that
this work would help clarify the multi-level structure of
feature based hierarchies, especially when the amount of
edge occlusion is high.

VIII. CONCLUSION

We have presented TopoLayout, a multi-level algo-
rithm for drawing large graphs. The approach of Topo-
Layout is feature-based. It detects topological features in
the graph and can determine when the HDE algorithm
is an appropriate algorithm for layout. The experimen-
tal results comparing TopoLayout to four other multi-
level approaches show that a feature-based approach has
promise in drawing low-level and high-level structure in
large graphs.
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