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Figure 1: Left, an isosurface of the UNC Head (109×256×256 MRI) shows mostly the skull, and the contour tree is unmanageably large
(1,573,373 edges). Right, a flexible isosurface chosen from a simplified contour tree. The rightmost pane controls the amount of simplification
of the contour tree shown immediately to its left (92 edges as shown). (Annotation and colour chosen to emphasize the structure of the data.)
The interface supports interactive exploration of structures that are hidden in the conventional view.

Abstract

The contour tree, an abstraction of a scalar field that encodes
the nesting relationships of isosurfaces, can be used to accelerate
isosurface extraction, to identify important isovalues for volume-
rendering transfer functions, and to guide exploratory visualization
through a flexible isosurface interface. Many real-world data sets
produce unmanageably large contour trees which require meaning-
ful simplification. We define local geometric measures for individ-
ual contours, such as surface area and contained volume, and pro-
vide an algorithm to compute these measures in a contour tree. We
then use these geometric measures to simplify the contour trees,
suppressing minor topological features of the data. We combine
this with a flexible isosurface interface to allow users to explore
individual contours of a dataset interactively.
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1 Introduction

Isosurfaces, slicing, and volume rendering are the three main tech-
niques for visualizing three-dimensional scalar fields on a two-

dimensional display. A recent survey [Brodlie and Wood 2001] de-
scribes the maturation of these techniques since the mid 1980s. For
example, improved understanding of isosurfaces has produced ro-
bust definitions of watertight surfaces and efficient extraction meth-
ods. We believe that the same improved understanding and struc-
turing leads to new interfaces that give the user better methods to
select isosurfaces of interest and that provide a rich framework for
data-guided exploration of scalar fields.

Although key ideas in this paper apply to both isosurfaces and vol-
ume rendering, the immediate application is to isosurface render-
ing. An isosurface shows the surface for a fixed value (theiso-
value) of the scalar field and is the 3D analogue of equal-height
contour lines on a topographic map. Thecontour treerepresents
the nesting relationships of connected components of isosurfaces,
which we callcontours, and is thus a topological abstraction of a
scalar field. Since genus changes to surfaces do not affect the nest-
ing relationship, they are not represented in the contour tree. Our
contribution is to combine the flexible isosurface interface [Carr
and Snoeyink 2003] with online contour tree simplification guided
by geometric properties of contours to produce a tool for interac-
tive exploration of large noisy experimentally-sampled data sets.
An additional contribution is to draw attention to other potential
applications of simplified contour trees, such as detail-preserving
denoising, automated segmentation, and atlasing.

Figure 1 shows a comparison between a conventional isosurface
and a flexible isosurface extracted from the same data set after con-
tour tree simplification. On the left, the outermost surface (the
skull) occludes other surfaces, making it difficult to study structures
inside the head. Moreover, the contour tree for this data set has over
1 million edges, making it impractical as a visual representation.
On the right is a flexible isosurface constructed using a simplified
contour tree, laid out and coloured to emphasize the structure of the
data set. Of particular interest is that there are no “magic numbers”
embedded in the code. Instead, the surfaces shown were chosen
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Figure 2: The topographic map (2-d scalar field), surface rendering, and contour tree for a volcanic crater lake with a central island. A: a
maximum on the crater edge; B: maximum of island in the lake; F: lake surface; C and D: saddle points.

directly from the simplified contour tree during exploration of this
data set, with the level of simplification being adjusted as needed.

The remainder of this paper is as follows. Section 2 reviews work
on contour trees in visualization. Section 3 shows how to simplify
the contour tree, and the effects on the data. Section 4 shows how to
computelocal geometric measuresefficiently to guide simplifica-
tion. Section 5 gives implementation details, and Section 6 reports
results. Finally, Section 7 gives possible future extensions.

2 Related Work

Most of the relevant work deals with a topological structure called
the contour treethat is becoming increasingly important in visu-
alization. Section 2.1 reviews the contour tree and algorithms to
compute it. Section 2.2 then reviews visualization tools that use the
contour tree, while Section 2.3 reviews work on topological simpli-
fication and on efficient computation of geometric properties.

2.1 The Contour Tree

For a scalar fieldf : IR3 → IR, the level setof an isovalue his the
setL(h) = {(x,y,z) | f (x,y,z) = h}. A contouris a connected com-
ponent of a level set. Ash increases, contours appear at local min-
ima, join or split at saddles, and disappear at local maxima off .
Shrinking each contour to a single point gives thecontour tree,
which tracks this evolution. It is a tree because the domainIR3

is simply-connected; in more general domains we obtain theReeb
graph [Reeb 1946], which is used in Morse theory [Matsumoto
2002; Milnor 1963] to study the topology of manifolds.

Figure 2 shows a 2-dimensional scalar field describing a volcanic
crater lake with a central island. The contour tree of this field is
an abstract, but meaningful, depiction of the structure of all local
maxima, minima, and saddle points, and gives clues to interesting
contours. Individual contours are represented uniquely as points on
the contour tree. For example, the isolinesc1, c2, andc3 are all at
2000m, but each has a unique location on the contour tree.

The contour tree has been used for fast isosurface extraction [van
Kreveld et al. 1997; Carr and Snoeyink 2003], to guide mesh sim-
plification [Chiang and Lu 2003], to find important isovalues for
transfer function construction [Takahashi et al. 2004b], to compute
topological parameters of isosurfaces [Kettner et al. 2001], as an
abstract representation of scalar fields [Bajaj et al. 1997], and to
manipulate individual contours [Carr and Snoeyink 2003].

Algorithms to compute the contour tree efficiently in three or more
dimensions have been given for simplicial meshes [van Kreveld
et al. 1997; Tarasov and Vyalyi 1998; Carr et al. 2003; Chiang
et al. 2002; Takahashi et al. 2004b] and for trilinear meshes [Pas-
cucci and Cole-McLaughlin 2002]. Much of this work focusses
on “clean” data from analytic functions or numerical simulation –
see for example [Bajaj et al. 1997; Takahashi et al. 2004b]. All
of the topology in this data is assumed to be important and signifi-
cant effort is expended on representing it accurately using trilinear
interpolants [Pascucci and Cole-McLaughlin 2002] and topology-
preserving simplifications [Chiang and Lu 2003].

In contrast, we are interested in noisy experimentally-acquired data
such as medical datasets. We expect to discard small-scale topolog-
ical features so that we can focus on large-scale features. We have
therefore chosen to work with the well-known Marching Cubes
cases [Lorenson and Cline 1987; Montani et al. 1994], and with ap-
proximate geometric properties. This paper does not turn on these
choices, however, and can also be applied to trilinear interpolants
and exact geometric properties.

2.2 Flexible Isosurfaces

The contour spectrum[Bajaj et al. 1997] uses the contour tree to
represent the topology of a field, alongside global measures of level
sets such as surface area and enclosed volume. In contrast, theflex-
ible isosurfaceinterface [Carr and Snoeyink 2003] uses the contour
tree actively instead of passively. The user selects an individual
contour from the contour tree or from the isosurface display, then
manipulates it. Operations include contour removal and contour
evolution as the isovalue is changed, using the contour tree to track
which contours to display. This interface depends on attaching iso-
surface seeds calledpath seedsto each edge of the contour tree so
that individual contours can be extracted on demand.

A major disadvantage of both these interfaces is that contour trees
with more than a few tens of edges make poor visual abstractions.
A principal contribution of this paper to simplify the contour tree
while preserving the exploratory capabilities of the flexible isosur-
face. This requires that each point in a simplified contour tree rep-
resents an extractable contour. Moreover, extracted contours must
evolve as smoothly as possible when the isovalue is adjusted.

We satisfy these constraint with simplifications that have pre-
dictable effects on the scalar field and geometric measures that iden-
tify unimportant contour tree edges for simplification



2.3 Simplification and Geometric Measures

The distinction between this paper and other work that simplifies
contour trees or Reeb graphs is our emphasis on using tree structure
for local exploration. [Takahashi et al. 2004a] simplify the contour
tree by replacing three edges at a saddle point with a single new
edge, based on the height of the edge. [Takahashi et al. 2004b] use
the approximate volume of the region represented by the subtree
that is discarded. Saddles are processed until only a few remain,
then a transfer function is constructed that emphasizes the isovalues
of those saddles. Our simplification algorithm extends this work to
preserve local information such as isosurface seeds and to compute
arbitrary geometric measures of importance. We also describe the
effects of simplification on the scalar field.

Since removing a leaf of the contour tree cancels out a local ex-
tremum with a saddle, this form of simplification can be shown to
be equivalent to topological persistence [Edelsbrunner et al. 2003;
Edelsbrunner et al. 2002; Bremer et al. 2003] if the geometric mea-
sure used is height. For other measures, such as volume or hyper-
volume, the method described in this paper is necessary to define
these properties, but thereafter, the process can optionally be de-
scribed in terms of persistence.

Moreover, work on persistence has focussed on the Morse com-
plex, which is difficult to compute and segments data according to
the gradient of the field. When the boundary of an object such as
an organ is better described by a contour than by drainage, contour
trees are more directly applicable than Morse complexes, and the
additional overhead of working with the Morse complex is unnec-
essary.

[Hilaga et al. 2001] have shown how to simplify the Reeb graph by
progressive quantization of the isovalue to obtain a multi-resolution
Reeb graph. This suffers from several drawbacks, in particular that
it is strictly tied to a function value which is treated as height (or
persistence). Extension to geometric measures of importance such
as volume or hypervolume is therefore problematic. Moreover, the
quantization used imposes serious restrictions on isosurface gener-
ation and the level of simplification, as well as generating artifacts
related to the quantization. In particular, we note that this quan-
tization process limits potential simplification to at most as many
levels as there are bits in each input sample. Finally, this method
is relatively slow: 15s is claimed for a 2-manifold input mesh with
10,000 vertices: extensions to 10,000,000+ sample volumetric data
have not yet been published.

Work also exists on computing geometric measures efficiently in
large data sets. [Bentley 1979] defined problems to bedecompos-
able if their solution could be assembled from the solutions of an
arbitrary decomposition into subproblems. Decomposability has
been used for a variety of problems, including computation of geo-
metric properties of level sets [Bajaj et al. 1997] and extraction of
isosurfaces [Lorenson and Cline 1987]. We use decomposability in
Section 4 to compute local geometric measures.

3 Contour Tree Simplification

Given a contour tree and a scalar field, we apply graph simplifi-
cation to the contour tree. This simplification can then be carried
back to simplify the input data. Alternately, we can use the simpli-
fied contour tree to extract the reduced set of isosurfaces that would
result if we had simplified the data. In this section, we describe
the contour tree structure, the simplification operators, and the al-
gorithms for simplification and isosurface extraction.

3.1 Contour Tree Structure

A contour tree is the result of contracting every contour to a point.
We use a simple tree structure in which every vertex is assigned a
y-coordinate, and every edge is associated with the set of contours
between its vertices. We storepath seedsfor generating individ-
ual contours, as in [Carr and Snoeyink 2003]. That is, we store
a pointer to a monotone path that intersects all contours along the
edge, which then serves as a seed to generate any given contour. In
this section, we assume that each edge has a simplification value
(weight) that indicates the edge’s priority. Low priority edges are
good candidates for simplification.

3.2 Basic Simplification Operations

We simplify the contour tree with two operations:leaf pruningand
vertex reduction. Leaf pruning removes a leaf of the tree, reducing
the complexity of the tree, as shown in Figure 3, where vertex 80 is
pruned from the tree on the left to produce the tree in the middle.
Vertex reduction chooses a vertex with one neighbor above and one
below, and deletes the vertex without changing the essential struc-
ture of the contour tree. This is also illustrated in Figure 3, where
vertex 50 has been removed from the tree in the middle to produce
the tree on the right. Since vertex reductions do not change the es-
sential structure of the contour tree, we prefer them to leaf prunes.
Also, pruning the only up- or down- edge at a saddle is prohibited
to preserve the edge for a later vertex reduction. It is clear that these
operations can simplify the tree to any desired size.

We can also think of these operations as having well-defined effects
on the underlying scalar field: pruning a leaf corresponds to level-
ling off a maximum or minimum, while vertex reduction requires
no changes.

As an example, in Figure 3 we show the result of leaf-pruning ver-
tex 80 and edge 80−50 from the tree. Since 80−50 represents the
left-hand maximum, pruning it flattens out the maximum, as shown
in the middle terrain. Similarly, the right-hand image shows the
results of reducing vertex 50 after the leaf prune. The edges inci-
dent to vertex 50 in the tree correspond to the regions above and
below the contour through vertex 50. Removing vertex 50 merely
combines these two regions into one.

The fact that simplification operations can be interpreted as mod-
ifying the scalar field suggests that one way to assess the cost of
an operation is to measure geometric properties of the change. We
show how this can be done efficiently in Section 4.

3.3 Simplification Algorithm

To simplify the contour tree, we apply the following rules:

1. Always perform vertex reduction where possible.

2. Always choose the least important leaf to prune.

3. Never prune the last up- or down- leaf at an interior vertex.

We implement this with a priority queue to keep track of the leaves
of the tree with their associated pruning cost. We assume that for
each edgee of the tree, we know two costs:up(e) for pruning
the edge from the bottom up: i.e. collapsing the edge to its up-
per vertex, anddown(e) for the cost of pruning the edge from the
top downwards. We add each leaf to the priority queue, with prior-
ity of up(e) for a lower leaf anddown(e) for an upper leaf. We then
repeatedly remove the lowest cost leaf edge from the priority queue
and prune it. If this pruning causes a vertex to become reducible,
we do so immediately.
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When a vertex is reduced, two edgese1 ande2 are merged into a
simplified edged. The cost of pruningd is based on the costs of
the two reduced edges. Sinceup(d) is the cost of pruningd up-
wards, we set it toup(e1), the cost of pruning the upper edge up-
wards. Similarly, we setdown(d) to down(e2), the cost of pruning
the lower edge downwards. Ifd is a leaf edge, we add it to the prior-
ity queue. To simplify queue handling, we mark the reduced edges
for lazy deletion. When a marked edge reaches the front of the pri-
ority queue, we discard it immediately. Similarly, when the edge
removed from the queue is the last up- or down- edge at its interior
vertex, we discard it, preserving it for a later vertex reduction.

A few observations on this algorithm: First, any desired level of
simplification of the tree can be achieved in a number of queue
operations linear int, the size of the original tree. Since at least half
the nodes are leaves, this bound is tight. And if the contour tree is
stored as nodes with circular linked lists of upwards and downwards
edges, every operation except (de)queueing takes constant time. As
a result, the asymptotic cost of this algorithm is dominated by the
O(t log(t)) cost of maintaining the priority queue.

Second, the simplified contour tree can still be used to extract iso-
surface contours. Vertex reductions build monotone paths corre-
sponding to the simplified edges, while leaf prunes discard entire
monotone paths. Thus, any edge in a simplified contour tree cor-
responds to a monotone path through the original contour tree. To
generate the contour at a given isovalue on a simplified edge, we
perform a binary search along the contour tree edges that make up
the monotone path for that simplified edge. This search identifies
the unique contour tree edge that spans the desired isovalue, and we
use the path seed associated with that edge to generate the contour.

Third, we extract contours from seeds as before. Instead of simpli-
fying individual contours, we reduce the set of contours that can be
extracted. Surface simplification of contours is a separate task.

Finally, up(e) anddown(e) actually need not be set except at leaves
of the tree. As a leaf is pruned and vertex reduced, new values can
be computed using information from the old nodes and edges. It is
not hard to show by induction that any desired level of simplifica-
tion of the tree can be achieved. And, since leaf pruning and vertex
reduction are the only two operations, the net result can also be a
meaningful simplification of the underlying scalar field, assuming
that a reasonable geometric measure is used to guide the simplifi-
cation. We therefore next discuss geometric measures.

4 Local Geometric Measures

[Bajaj et al. 1997] compute global geometric properties, and display
them alongside the contour tree in thecontour spectrum. [Pascucci
and Cole-McLaughlin 2002] propagate topological indices called
theBetti numbersalong branches of the contour tree, based on pre-

vious work by [Pascucci 2001]. We bring these two ideas together
to computelocal geometric measuresfor individual contours.

In 2D scalar fields, the geometric properties we could compute
include the following contour properties: line length (perimeter),
cross-sectional area (area of region enclosed by the contour), vol-
ume (of the region enclosed), and surface area (of the function over
the region). In 3D scalar fields, there are analogous properties that
include isosurface area, cross-sectional volume (the volume of the
region enclosed by the isosurface), and hypervolume (the integral
of the scalar field over the enclosed volume).

Figure 4: Contours Sweeping Past a Saddle Point

Consider a plane sweeping through the field in Figure 2 from high
to low isovalues. At any isovalueh, the plane divides the field into
regions above and below the plane. As the isovalue decreases, the
region above the plane grows, sweeping past the vertices of the
mesh one at a time. Geometric properties of this region can be
written as functions of the isovalueh. Such properties are decom-
posable over the cells of the input data – for each cell we compute
a piecewise polynomial function, and sum them to obtain a piece-
wise polynomial function for the entire region. [Bajaj et al. 1997]
compute these functions by sweeping through the isovalues, alter-
ing the function as each vertex is passed. Figure 4 illustrates this
process, showing the contours immediately above and below a ver-
texs. As the plane sweeps pasts, the function is unchanged in cells
outside the neighbourhood ofs, but changes inside the neighbour-
hood ofs. This sweep computes global geometric properties for
the region above the sweep plane. Reversing the direction of the
sweep computes global geometric properties for the region below
the sweep plane.

In Figure 2, the region above the sweep plane at 2000m consists
of two connected components, one defined by contoursc1 andc2,
the other byc3. To compute properties for these components, we
sweep along an edge of the contour tree, representing a single con-
tour sweeping through the data. This lets us compute functions for



the central maximum atB. For the crater rim defined by contours
c1 andc2, we use inclusion/exclusion. We sweep one contour at
a time, computing properties for the region inside the contour,in-
cluding regions above and below the isovalue of the contour. The
area of the crater rim can then be computed by subtracting the area
inside contourc2 from the area inside contourc1.

We definelocal geometric measuresto be geometric properties of
regions bounded by a contour. We compute these measures in a
manner similar to the global sweep of [Bajaj et al. 1997], but by
sweeping contours along contour tree edges.

4.1 Local Geometric Measures

To define local geometric measures attached to contour tree edges,
we must be careful with terminology.Aboveandbelowdo not apply
to the region insidec1 in Figure 2, since part of the region is above
the contour and part is below. Nor doinsideandoutside, which lose
their meaning for contours that intersect the boundary. We therefore
defineupstartanddownstartregions of a contour. An upstart region
is a region reachable from the contour by paths that initially ascend
from the contour and never return to it. For contourc1, there is
one upstart region (inside) and one downstart region (outside). At
saddles such asD, there may be several upstart regions. Since each
such region corresponds to an edge in the contour tree, we refer, for
example, to the upstart region atD for arcCD.

We now defineupstart and downstart functions: functions com-
puted for upstart or downstart regions. Note that the upstart and
downstart functions do not have to be the same. For example, the
length of a contour line is independent of sweep direction, so the
upstart and downstart functions for contour length in 2D are identi-
cal. But the area enclosed by a contour depends on sweep direction,
so the upstart and downstart functions will be different.

Since upstart and downstart functions describe geometric properties
local to a contour, we refer to them collectively aslocal geomet-
ric measures. These measures are piecewise polynomial since they
are piecewise polynomial in each cell. Because we need to track
connectivity for inclusion/exclusion, they are not strictly decom-
posable. Stated another way, in order to make them decomposable,
we need to know the connectivity during the local sweep. We are
fortunate that the contour tree encodes this connectivity.

For regular data, we approximate region size with vertex count as
in [Takahashi et al. 2004b]. For the integral off over regionR,
we sum the sample values to getΣx∈R f (x): the correct integral is
the limit of this sum as sample spacing approaches zero. When
we prune a leaf to a saddle at heighth, the integral over the region
flattened isΣx∈R( f (x)−h) = (∑x∈R f (x))−AhwhereA is the area
of regionR.

In three dimensions, vertex counting measuresvolume, and sum-
ming the samples giveshypervolume. This geometric measure is
quite effective on the data sets we have tested in Section 6.

4.2 Combining Local Geometric Measures

To compute local geometric measures, we must be able tocombine
upstart functions as we sweep a set of contours past a vertex. In
Figure 4, we must combine the upstart functions for contoursc1, c2
andc3 before sweeping pasts. We must thenupdatethe combined
upstart function as we sweep past the vertex.

After sweeping pasts, we know the combined upstart functiond for
contoursd1, d2 andd3. We removethe upstart functions ford1 and
d2 from d to obtain the upstart function ford3.

We assume that we have recursively computed the upstart functions
for d1 andd2 by computing the downstart functions and theninvert-
ing them. Let us illustrate inversion, combination and removal for
two local geometric measures in two dimensions.

Contour Length: Contour length is independent of sweep direc-
tion, so these operations are simple: Inversion is the identity opera-
tion, combination sums the lengths of the individual contours, and
contours are removed by subtracting their lengths.

Area: Area depends on sweep direction, so inversion subtracts the
function from the area of the entire field. Combining upstart func-
tions at a saddle depends on whether the corresponding edges as-
cend or descend from the saddle. For ascending edges the upstart
regions are disjoint, and the upstart functions are summed. For de-
scending edges the upstart regions overlap, and the upstart func-
tions are combined by inverting to downstart functions, summing,
and re-inverting. Removing upstart functions reverses combination.

Consider Figure 4 once more. The upstart region ofd1 contains
s, as well as contoursc1, c2 andc3. Similarly, the upstart regions
of d2 andd3 contains and contoursc1, c2 andc3. However, the
downstart regions ofd1, d2 andd3 are disjoint, and can be summed,
then inverted to obtain the combination of the upstart regions.

In general, measures of contour size are independent of sweep di-
rection and their computation follows the pattern of 2D contour
length. Such measures include surface area in three dimensions,
and hypersurface volume in four dimensions. Measures of region
size depend on sweep direction and their computation follows the
pattern of 2D cross-sectional area. Such measures include surface
area and volume in two dimensions, and isosurface cross-sectional
volume and hypervolume in three dimensions.

Input : Fully Augmented Contour TreeC
A local geometric measuref with operations
Combine( f1, . . . , fm) local geometric measures
Update( f ,v) that updatesf for sweep pastv
Remove( f , f1, . . . , fm) local geometric measures
Invert() from down(e) to up(e) or vice versa
Output : down(e) andup(e) for each edgee in C

Make a copyC′ of C1
for each vertexv do2

If v is a leaf ofC, enqueuev3

while NumberOfArcs(C′) > 0 do4

Dequeuev and retrieve edgee= (u,v) from C′5
Without loss of generality, assumeeascends fromv6
Let d1, . . . ,dk be downward arcs atv in C7
Let upBelow= Combine(down(d1), . . . ,down(dk)8
Let upAbove= Update(upBelow,v)9
Let e1, . . . ,em be upwards arcs atv in C, with e1 = e10
Let fi = Invert(down(ei)) for i = 2, . . . ,m11
Let up(e) = Remove(upAbove, f2, . . . , fm)12
Let down(e) = Invert(up(e))13

Deletee from C′14

If u is now a leaf ofC′, enqueueu15

Algorithm 1: Computing Local Geometric Measures

4.3 Computing Local Geometric Measures

Algorithm 1 shows how to compute edge prioritiesup(e) and
down(e) for a given local geometric measure. This algorithm re-
lies onCombine(), Update(), Invert(), andRemove() having been



(a) Reduced by Height (Persistence) (b) Reduced by Volume (Vertex Count) (c) Reduced by Hypervolume (Riemann Sum)

Figure 5: Comparison of Simplification Using Three Local Geometric Measures. In each case, the UNC Head data set has been simplified to
92 edges using the specified measure. Each trees were laid out using thedot tool, with no manual adjustment.

suitably defined, and can be integrated into the merge phase of the
contour tree algorithm in [Carr et al. 2003].

The algorithm builds a queue of leaf edges in Step 2, then works
inwards, pruning edges as it goes. At each vertex, including regular
points, the computation described in Section 4.2 is performed, and
the edge is deleted from the tree. In this way, an edge is processed
only when one of its vertices is reduced to a leaf: i.e. when all other
edges at that vertex have already been processed.

Unlike simplification, Algorithm 1 requires thefully augmented
contour tree, which is obtained by adding every vertex in the in-
put mesh to the contour tree. This makes the algorithm linear in the
input sizen rather than the tree sizet: it cannot be used with the
algorithms of [Pascucci and Cole-McLaughlin 2002] and [Chiang
et al. 2002], which reduce running time by ignoring regular points.

4.4 Comparison of Local Geometric Measures

In Figure 5, we show the results of simplifying the UNC Head data
set with three different geometric measures: height (persistence),
volume, and hypervolume. In each case, the contour tree has been
reduced to 92 edges and laid out usingdot with no manual inter-
vention.

In the left-hand image, height (persistence) is used as the geometric
measure. All of the edges shown are tall as a result, but on in-
spection, many of these edges are caused by high-intensity voxels
in the skull or in blood vessels. Most of the corresponding objects
are quite small, while genuine objects of interest such as the eyes,
ventricular cavities and nasal cavity have already been suppressed,
because they are defined by limited ranges of voxel intensity. Also,
on the corresponding simplification curve, we observe that there
are a relatively large number of objects with large intensity ranges:
again, on further inspection, these tended to be fragments of larger
objects, particularly the skull.

In comparison, the middle image shows the results of using volume
(i.e. vertex count) as the geometric measure. Not only does this
focus attention on a few objects of relatively large spatial extent,
but the simplification curve shows a much more rapid drop-off, im-
plying that there are fewer objects of large volume than there are of
large height. Objects such as the eyeballs are represented, as they
have relatively large regions despite having small height. However,

we note that there are a large number of small-height edges at the
bottom of the contour tree. These edges turn out to be caused by
noise and artifacts outside the skull in the original CT scan, in which
large regions are either slightly higher or lower in isovalue than the
surrounding regions.

Finally, the right-hand image shows the results of using hypervol-
ume (the sum of sample values, as discussed above). In this case,
we see a very rapid dropoff of importance in the simplification
curve, with only 100 or so regions having significance. We note that
this measure preserves small-height features such as the eyeballs,
while eliminating most of the apparent noise edges at the bottom
of the tree, although at the expense of representing more skull frag-
ments than the volume measure. In general we have found that this
measure is better for data exploration than either height or volume,
since it balances representation of tall objects with representation
of large objects.

We do not claim that this measure is universally ideal: the choice
of simplification measure should be driven by domain-dependent
information. However, no matter what measure is chosen, the basic
mechanism of simplification remains.

5 Implementation

We have combined simplification with the flexible isosurface in-
terface of [Carr and Snoeyink 2003], which uses the contour tree
as a visual index to contours. The interface window, shown in Fig-
ures 1, 6, and 7, is divided into data, contour tree, and simplification
curve panels. The data panel displays the set of contours marked in
the contour tree panel. Contours can be selected in either panel,
then deleted, isolated, or have their isovalue adjusted. The simplifi-
cation curve panel shows a log-log plot of contour tree size against
“feature size”: the highest cost of any edge pruned to reach the
given level of simplification. Selecting a point on this curve deter-
mines the detail shown in the contour tree panel.

For efficiency, we compute contour trees for the surfaces given by
the Marching Cubes cases of [Montani et al. 1994] instead of a sim-
plicial or trilinear mesh, because these surfaces generate roughly
60% fewer triangles than even a minimal simplicial subdivision
of the voxels, with none of the directional biases identified by
[Carr et al. 2001], and because they are significantly simpler to



compute than the trilinear interpolant used by [Pascucci and Cole-
McLaughlin 2002]. There is a loss of accuracy, but since our sim-
plification discards small-scale details of the topology anyway, little
would be gained from more complex interpolants.

Finally, as in [Carr et al. 2003; Pascucci and Cole-McLaughlin
2002; Chiang et al. 2002], we use simulation of simplicity [Edels-
brunner and M̈ucke 1990] to guarantee uniqueness of isovalues,
then collapse zero-height edges in the tree. Implementation details
can be found in [Carr 2004].

6 Results and Discussion

We used a variety of data sets to test these methods, including re-
sults from numerical simulations (Nucleon, Silicium, Fuel, Neghip,
Hydrogen), analytical methods (ML, Shockwave), CT-scans (Lob-
ster, Engine, Statue, Teapot, Bonsai), and X-rays (Aneurysm, Foot,
Skull). Table 1 lists the size of each data set, the size of the unsim-
plified contour tree, the time for constructing the unsimplified con-
tour tree, and the simplification time. Times were obtained using a
3 GHz Pentium 4 with 2 GB RAM, and thehypervolumemeasure.

Data Set Data Tree
Size Size CT (s) ST (s)

Nucleon 41× 41× 41 49 0.28 0.01
ML 41× 41× 41 695 0.25 0.01
Silicium 98× 34× 34 225 0.41 0.01
Fuel 64× 64× 64 129 0.72 0.01
Neghip 64× 64× 64 248 0.90 0.01
Shockwave 64× 64×512 31 5.07 0.01
Hydrogen 128×128×128 8 5.60 0.01
Lobster 301×324× 56 77,349 19.22 0.10
Engine 256×256×128 134,642 31.51 0.18
Statue 341×341× 93 120,668 32.20 0.15
Teapot 256×256×178 20,777 33.14 0.02
Aneurysm 256×256×256 36,667 41.83 0.04
Bonsai 256×256×256 82,876 49.71 0.11
Foot 256×256×256 508,854 67.20 0.74
Skull 256×256×256 931,348 109.73 1.47
CT Head 106×256×256 92,434 21.30 0.12
UNC Head 109×256×256 1,573,373 91.23 2.48
Tooth 161×256×256 338,300 39.65 0.48
Rat 240×256×256 2,943,748 233.33 4.97

Table 1: Data sets, unsimplified contour tree sizes, and contour tree
construction time (CT) and simplification time (ST) in seconds.

The size of the contour tree is proportional to the number of local
extrema in the input data. For analytic and simulated data sets, such
as the ones shown in the upper half of Table 1, this is much smaller
than the input size. For noisy experimentally acquired data, such as
the ones shown in the lower half of Table 1, the size of the contour
tree is roughly proportional to the input size. The time required to
simplify the contour tree using local geometric measures is typi-
cally less than one percent of the time of constructing the original
contour tree, plus the additional cost of pre-computing these mea-
sures during contour tree construction.

6.1 Examples of Data Exploration

Figure 1 shows the result of exploring of the UNC Head data set
using simplified contour trees. An appropriate level of simplifica-
tion was chosen on the simplification curve and individual contours
explored until the image shown was produced. Surfaces identifiable
as part of the skull were not chosen because they occluded the view

of internal organs, although two contours for the ventricular system
were chosen despite being occluded by the brain surrounding them.
The flexible isosurface interface is particularly useful in this context
because it lets one manipulate a single contour at a time, as shown
in the video submitted with this paper.

embryo gut?

lungs

eyes
brain

windpipe?
shoulder
blades

breastbone

Figure 6: A Pregnant Rat MRI (240×256×256). Despite low qual-
ity data, simplifying the contour tree from 2,943,748 to 125 edges
allows identification of several anatomical features.

spinal column

spinal cord

ventricles

spinal cord

spinal column

ventricles

Figure 7: CT of a Skull (256× 256× 106). Simplification of the
contour tree from 92,434 to 20 edges isolates the ventricular cavity,
spinal cord and spinal column.

Similarly, Figure 6 shows the result of a similar exploration of a
240× 256× 256, low-quality MRI scan of a rat from theWhole
Frog Project at http://www-itg.lbl.gov/ITG.hm.pg.docs/
Whole.Frog/Whole.Frog.html. Again, simplification reduces
the contour tree to a useful size. Figure 7 shows a spinal column,
spinal cord and ventricular cavity identified in a 256× 256× 106
CT data set from the University of Erlangen-Nuremberg. Other ex-
amples may be seen on the accompanying video.

Each of these images took less than 10 minutes to produce af-
ter all pre-processing, using thedot tool from the graphviz pack-
age (http://www.research.att.com/sw/tools/graphviz/)
to lay out the contour tree: we generally then made a few adjust-
ments to the node positions for clarity. Althoughdot produces rea-
sonable layouts for trees with 100 – 200 nodes, it is slow, sometimes
taking several minutes, and the layout computed usually becomes
unsatisfactory as edges are added or subtracted from the tree.

Note that in none of these cases was any special constant embedded
in the code – the result is purely a function of the topology of the
isosurfaces of the input data.



7 Conclusions and Future Work

We have presented a novel algorithm for the simplification of con-
tour trees based on local geometric measures. The algorithm ison-
line, meaning that simplifications can be done and undone at any
time. This addresses the scalability problems of the contour tree
in exploratory visualization of 3D scalar fields. The simplification
can also be reflected back onto the input data to produce an on-line
simplified scalar field. The algorithm is driven by local geometric
measures such as area and volume, which make the simplifications
meaningful. Moreover, the simplifications can be tailored to a par-
ticular application or data set.

We intend to explore several future directions. We could compute a
multi-dimensional feature vector of local geometric measures, and
allow user-directed simplification of the contour tree, with different
measures being applied in different regions of the function.

The simplified contour tree also provides a data structure for
queries. With local feature vectors one could efficiently answer
queries such as “Find all contours with volume of at least 10 units
and an approximate surface-area-to-volume ratio of 5.” If informa-
tion about spatial extents (e.g., bounding boxes) is computed, then
spatial constraints can also be included. Inverse problems could
also be posed – given examples of a feature (e.g., a tumor), what
should the query constraints be to find such features?

Some interface issues still need resolution, such as finding a fast
contour tree layout that is clear over a wide range of levels of sim-
plification but which also respects the convention that the y-position
depends on the isovalue. We would also like to annotate contours
using the flexible isosurface interface, rather than after the fact as
we have done in Figure 1 and Figures 6 – 7, and to enable local
simplification of the contour tree rather than the single-parameter
simplification presented here.

Isosurfaces are not the only way of visualizing volumetric data.
Other methods include boundary propagation using level set meth-
ods or T-snakes. We believe that simplified contour trees can pro-
vide seeds for these methods, either automatically or through user
interaction. We are adapting the flexible isosurface interface to gen-
erate transfer functions for volume rendering. These transfer func-
tions would add spatial locality to volume rendering, based on the
regions corresponding to edges of the simplified contour tree.

Another possible direction is to develop more local geometric mea-
sure for multilinear interpolants. Lastly, the algorithms we describe
work in arbitrary dimensions, but special consideration should be
given to simplification of contour trees for time-varying data.
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