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Abstract

In this thesis, we explore ways to make practical extensions to Dimensionality

Reduction, or DR algorithms with the goal of addressing challenging, real-world

cases.

The first case we consider is that of how to provide guidance to those users

employing DR methods in their data analysis. We specifically target users who are

not experts in the mathematical concepts behind DR algorithms. We first identify

two levels of guidance: global and local. Global user guidance helps non-experts

select and arrange a sequence of analysis algorithms. Local user guidance helps

users select appropriate algorithm parameter choices and interpret algorithm out-

put. We then present a software system, DimStiller, that incorporates both types of

guidance, validating it on several use-cases.

The second case we consider is that of using DR to analyze datasets consisting

of documents. In order to modify DR algorithms to handle document datasets

effectively, we first analyze the geometric structure of document datasets. Our

analysis describes the ways document datasets differ from other kinds of datasets.

We then leverage these geometric properties for speed and quality by incorporating

ideas from text querying into DR and other algorithms for data analysis.

We then present the Overview prototype, a proof-of-concept document analysis

system. Overview synthesizes both the goals of designing systems for data analysts

who are DR novices, and performing DR on document data.

The third case we consider is that of costly distance functions, or when the

method used to derive the true proximity between two data points is computation-

ally expensive. Using standard approaches to DR in this important use-case can

result in either unnecessarily protracted runtimes or long periods of user monitor-
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ing. To address the case of costly distances, we develop an algorithm framework,

Glint, which efficiently manages the number of distance function calculations for

the Multidimensional Scaling class of DR algorithms. We then show that Glint im-

plementations of Multidimensional Scaling algorithms achieve substantial speed

improvements or remove the need for human monitoring.
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Chapter 1

Introduction

Data analysis is the act of making interpretive statements from the careful scrutiny

of recorded quantities. A data analyst is the name of one who is engaged in

data analysis regardless of the context, whether professional, educational, or recre-

ational.

A common technique for performing data analysis is to consider the objects un-

der scrutiny to be positioned in space, even when such objects are entities without

any concrete reality. The space in which such objects are placed may be metaphor-

ical, and not the three-dimensional physical space in which we reside. The abstract

space has dimensions that are determined by properties of the data deemed impor-

tant by the data analyst.

For example, when data is organized in a tabular format, its transformation into

a set of points is straightforward. In a table of data, the individual data samples

are assigned to rows, and the different numerical measurements per sample are

assigned to corresponding columns in each row. A single row of such a table then

represents a point of the dataset, while an entire column represents a dimension.

Fisher’s famous iris dataset [33] illustrates this concept nicely: the different irises

being analyzed can be conceived of as points in a “measurement” space.

Another spatial data format is the distance matrix, where rows similarly rep-

resent points. In contrast to tabular data, though, columns no longer represent

dimensions, but distances to other points. The distance matrix therefore purely

catalogues the proximities of points relative to each other, without invoking any di-
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mensional measurements. If the number of data points is large, then these matrices

can be very inefficient to store and compute.

The spatial metaphor aids in the visual analysis of the data. There is sometimes

a direct correspondence between the spatial arrangement of points to meaningful

facts about the data. For example, the data might belong to two classes which

correspond to two separate densities of points in space. Furthermore, the human

visual system can quickly detect complex spatial properties of the data like lin-

ear relationships and clustering. Thus, by positioning objects in a space that we

can visually scrutinize, one can rapidly observe spatial patterns that may provide

underlying truths about the data.

When the number of dimensions are small, as is the case of the aforemen-

tioned iris dataset, then visual scrutiny of the data is straightforward. Even if there

are more than two dimensions, but fewer than a dozen, techniques like scatterplot

matrices and parallel coordinates plots allow for effective visualization of spatial

patterns [7, 60]. But when the number of dimensions exceed a dozen or so, the

number of scatterplots in a matrix or the complexity of the parallel coordinates

plot makes visual analysis of all the linked views cumbersome and confusing.

Dimensionality Reduction, or DR, is a suite of data processing techniques de-

signed to reduce the number of dimensions of a dataset while best preserving the

spatial properties useful for understanding the data. Though DR has broad appli-

cability to a variety of domains and problems, our focus in this thesis is on the use

of DR for visual analysis tasks like data exploration. By reducing the dimensional-

ity of the data to two, many techniques appropriate for low-dimensional data, like

scatterplots, can be applied to high-dimensional cases.

1.1 Dimensionality Reduction
A major proportion of this thesis covers systems and algorithms for DR. As its

name suggests, DR expresses a dataset in a smaller number of dimensions than

originally found in the data. The input for such systems takes the form of a table

representing dataset coordinates or a distance matrix.

Input tables of coordinates are represented as a matrix X with n rows and m

columns. The matrix entry xi j stores the ith point’s jth coordinate value. Each row
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represents an instance of a sampled data point with the m measurements stored in

the corresponding columns. The magnitudes of the values in the different columns

may be distributed at widely varying scales and need to be normalized to a mean-

ingful scale if they are to be combined together.

Distance matrices D hold all the pairs of distances between points, where the

matrix entry di j stores the distance between. Distance matrices are symmetric,

with a zero diagonal representing a zero self-distance, and therefore only a lower

triangle of the matrix need be stored. The distances stored in the matrix are the

resulting output of a non-negative distance function f (i, j), also known as a dis-

tance metric, or similarity or kernel function [79], and are interpreted as a measure

of similarity between the two data points. While the most commonly encountered

distance function is Euclidean, there exist many other possibilities that compute a

more appropriate measure of similarity for a given application [42].

Output from dimensionality reduction is always in the form of a matrix of co-

ordinates Y with a user-controlled number of dimensions. For some methods, like

principal component analysis [64], metadata is available about how the coordinates

are constructed from the high-dimensional input. In all but a few special cases, Y is

invariant to both rotation and reflection. This important fact must be kept in mind

to avoid ascribing meaning to the global locations of clusters and manifolds in Y;

only relative positioning is meaningful.

1.2 Methods and Uses for Dimensionality Reduction
At a high level, the methods of reducing dimensions can be grouped into three

simple classes: culling, collecting, and synthesizing. Culling and collecting tech-

niques assume the input is a table of coordinates, while synthesizing algorithms

generalize to both coordinate and distance data. Here we describe each of these

classes and some of their important practical uses.

Culling dimensions, also called feature selection [46], means removing a subset

of dimensions outright from the dataset. Perhaps the most important reason for

removing a dimension is because it does not contribute any useful information to

the structure of the dataset other than noise. A trivial example is a hypothetical

dataset of two dimensions, one with a bimodal distribution of values, and one with
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a uniform distribution of values. The modes of distribution of the first dimension’s

values permit classification into one of two groups, while the distribution of the

values of the second dimension only work to obscure this grouping. By culling

the second dimension, the useful structure of the first dimension is clearer, both

for visualization and for automated classification. A variety of techniques exist for

manually detecting and culling unimportant dimensions from a dataset [62] as well

as a growing literature for sophisticated automatic-selection methods [77].

Like culling, collecting dimensions is another form of dimension filtering. In-

stead of removing dimensions, though, we combine them together linearly, as a

weighted average. Collecting is appropriate when two dimensions are highly cor-

related, or expressing largely identical relationships to the other dimensions in the

data. For example, in a database of different car models, the overall weight of the

car is highly correlated with the fuel economy of the car. One simple reason for

collecting together highly correlated dimensions is to reduce the number of redun-

dant visual comparisons to other dimensions in scatterplots. Collecting dimensions

can be performed manually, though it is customary to use automatic techniques like

Principal Component Analysis that group together correlated dimensions [64].

The third and final group of dimensionality reduction methods synthesizes new

dimensions from input dimensions. Synthesizing methods create new datasets

whose dimensions are complex, often nonlinear combinations of the original input

dimensions. Synthesizing techniques feature prominently in two broadly defined

use cases of visual high-dimensional analysis [98].

The first use case of synthesizing dimensions from old is that of uncovering

“hidden dimensions,” also called latent or hidden variables. In this case, one hy-

pothesizes that there are a small set of dimensions that account for the observed

behavior of a larger set of dimensions. A classic example of such a use case is

in inferring orientation axes, such as left/right and up/down, from a database of

images of an object. Here the measured dimensions are light intensities at pixel

locations in an P×P image, and the synthesized “hidden dimensions” are the axes

of orientation [21]. As shown in Figure 1.1, image orientation axes are confined

to run along smooth, nonlinear manifolds contained within the larger space of all

possible P× P images. Manifolds such as these cannot be captured by simple

culling or collecting of input dimensions. The meaning and orientation of the hid-
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Figure 1.1: Uncovering “hidden dimensions” in a database of images. Here,
the underlying data points have dimensions describing pixel intensities.
By using a dimensionality reduction technique [21], orientation dimen-
sions can be constructed from the proximity relationships in the data.
c©2009 by Taylor & Francis. Reprinted by permission.

den dimensions is not given by these dimensionality reduction algorithms. Only

by carefully analyzing the changes of the data across the synthesized space can the

orientation and meaning of these dimensions be described [76].

The second use case of dimensionality reduction by synthesizing dimensions

is that of visualizing high-dimensional clusters. A data analyst may not be inter-

ested in the way the input dimensions express the data and instead merely want

a way to visually verify if there is cluster separation of their data. By using di-

mensionality reduction algorithms that preserve distance relationships an analyst

can adequately visualize separate clusters whose numerous separating boundaries

may span across a very large set of input dimensions, for example by using mul-

tidimensional scaling on a document database [57]. The dimensions spanned by

these separating boundaries will be ignored by cull and collect algorithms because

they will contain useful variation and often be uncorrelated. Worse, when the di-

mensions number in the hundreds or thousands, the separating boundaries become

impossible to visualize across a set of scatterplot matrices. Figure 1.2 shows an
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Figure 1.2: Visualizing high-dimensional clusters in a text database described
in Chapter 4. The underlying data points are term-vectors whose dimen-
sions describe the presence or absence of a term in a text. By reducing
to two dimensions, clusters of similar documents become readily appar-
ent. Cluster colors correspond to cluster assignment by non-negative
matrix factorization [101].

example of dimensionality reduction producing a visualization of distinct clusters

of a high-dimensional dataset.

1.3 Thesis Contributions
This doctoral thesis is greatly informed by research done in a previous Master’s

thesis [56]. In that work, I presented a parallel, dimensionality-reduction algo-

rithm, Glimmer, designed to optimize both speed and generality across data sets.

In spite of its intended generality, Glimmer does not address many important di-

mensionality reduction problems that do not fit neatly into its assumptions. The
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components of this thesis were inspired by deep complications that emerged when

Glimmer was applied to real-world cases of high-dimensional data analysis. These

complications are both at a system and algorithm level and our proposed solutions

make up the content of our thesis contributions.

In the remainder of this section, we present our thesis contributions as a set of

research question-answer pairs. In each answer we describe the complication and

how our thesis contribution helps answer the research question and give pointers in

the text for more details.

How do we design systems for high-dimensional analysis aimed at DR
novices? Supplying users with a powerful set of dimensionality reduction algo-

rithms to answer their research questions only creates new questions like, “which

algorithm for what task?” and “which parameter settings?” and “what am I look-

ing at?”. We contribute the design and implementation of a general analysis system

called DimStiller, specifically targeted at non-expert, middle-ground users. Dim-

Stiller is built around the notion of guidance, where sensible parameter selections

are built into the techniques themselves and commonly used compositions of tech-

niques are stored as user-defined workflows. Chapter 3 presents the DimStiller

system.

How do we design efficient DR and clustering algorithms for the important
special case of large document datasets, which have very high dimensionality?
Due to their complex structure, translating text into spatial points results in ab-

stract spaces of very high-dimensionality. Existing dimensionality reduction tech-

niques encounter many algorithm-level and qualitative problems when processing

such data. We contribute a set of design implications for such data sets that takes

careful advantage of the spatial structure of such spaces. The design implications

create a bridge between the field of Information Retrieval and high-dimensional

analysis. We furthermore contribute a set of algorithms implementing these impli-

cations and illustrate and measure their improvement over competing approaches.

Chapter 4 discusses the algorithm design implications induced by the geometry of

large-document datasets.

We also contribute a special-case, high-dimensional analysis system called

the Overview prototype, as part of a collaboration with computational journalists.

Overview targets journalists interested in rapidly exploring large, unlabelled docu-
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ment dumps. These journalists are often unfamiliar with concepts such as cluster-

ing and DR. The prototype presents a set of linked visualizations of text collections

that permit users to annotate different groupings of points and make sense of the

larger text collection. Chapter 5 describes the Overview prototype system.

How do we practically handle costly distance functions? The design of

dimensionality reductions algorithms often ignores the computational cost com-

puting distances, focusing instead on solely reducing the cost of computing new

dimensions from those distances. But, in some important cases, the functions that

produce the distances between points are themselves costly to compute. This spe-

cial case is handled inefficiently by current dimensionality reduction algorithms.

We contribute an algorithm framework, Glint, for performing dimensionality re-

duction efficiently in these cases. Glint is designed to be algorithm agnostic, and

focuses on minimizing the number of distance calculations to achieve a stable lay-

out. Chapter 6 presents the Glint framework.
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Chapter 2

Related Work

In this section, we describe previous work related to the contributions of this the-

sis. Dimensionality reduction algorithms appear in every subsequent chapter, so

we begin by providing a survey of dimensionality reduction algorithm research,

with particular focus on multidimensional scaling algorithms. Because of our fo-

cus on analyzing text data in Chapters 4 and 5, we then describe relevant algorithms

and techniques from information retrieval, nearest-neighbor search, and hierarchi-

cal clustering, with priority given to algorithms designed for processing text data.

Finally, as Chapter 3 describes a software system for facilitating the analysis of

multidimensional data, we survey relevant software systems targeting this use case.

2.1 Dimensionality Reduction Algorithms
We group our survey of dimensionality reduction algorithms into four different

families based on their qualitative objectives: orthogonal projections, global dis-

tances, manifold distances, and probability distributions.

2.1.1 Orthogonal Projections

The family of orthogonal projections includes methods such as principal compo-

nent analysis (PCA) [64] which computes the linear projection of coordinate data

onto an orthonormal basis that best preserves the variance of the data. The transfor-

mation has numerous useful properties, both by being the linear projection of the
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data into the low-dimensional space with least-squared error, and also by providing

a method for back-projection to the original embedding space of the data.

PCA provides useful metadata for analyzing the orthogonal projection. First,

the algorithm outputs a weighted ranking of the orthogonal basis vectors, permit-

ting determination of the most important directions of data dispersion. Second, the

algorithm also supplies vectors, also called loadings, that contain weights describ-

ing the contribution of each input dimension given to each output dimension.

Variants of PCA algorithms exist to address speed and robustness concerns.

For example, PCA can also be computed very efficiently using approximation al-

gorithms of the singular value decomposition of a matrix [47]. Robust PCA [54]

is designed to handle outliers in the data that would distort the proper alignment of

the orthogonal axes.

PCA is implemented as a software component in Chapter 3 and is applied to

processing text for visualization in Chapter 4.

2.1.2 Global Distances

Global distance methods, such as Multidimensional Scaling (MDS) [14], compute

a low-dimensional layout of points with inter-point distances that best match the

input high-dimensional distance matrix.

MDS refers to an entire family of algorithms with different objective functions,

computational complexities, and qualitative results [14, 36]. The common thread is

that they all minimize objectives that are some function of the difference between

the Euclidean distances of the lower-dimensional layout coordinates and the mag-

nitude of the original high-dimensional dissimilarities. The most recurrent function

in the literature is the Stress function, a sum of squared residuals between high and

low dimensional distances and can be written compactly as follows

Stress(D,∆)2 =
||D−∆||2F
||D||2F

where D is the input distance matrix and ∆ is the distance matrix computed from

the low dimensional coordinates, and ||X ||2F represents the square of the Frobenius

norm of the matrix X , or ∑i j x2
i j. Clearly, Stress goes to 0 when the distances of the
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low dimensional coordinates match the input. Stress may be a multimodal function

with many stationary points, making global optimization problematic [44].

Here, we discuss four major classes of MDS algorithms in terms of their short-

comings in handling costly distances. We do not describe the family of non-metric

MDS methods based on distance rankings [69], as these techniques do not factor

into our research.

MDS is used as a software component in both Chapters 3 and 5. In Chapter 4,

we describe some shortcomings of using MDS as a dimensionality reduction tech-

nique for visualizing text datasets. The distinction between the different classes of

MDS algorithms described below are important for understanding the Glint MDS

algorithm framework in Chapter 6.

Analytic Algorithms

The original MDS algorithm, now called Classic MDS [113] or Principal Coordi-

nates Analysis [41], computes a one-step global minimum of an objective function

called Strain, which is expressed as

Strain(X) = ||XXT −B||2

where X is the n× l matrix of low dimensional coordinates and B is the so-called

double-centred distance matrix. Double-centring subtracts the row mean from each

matrix row, the column mean from each matrix column, and the mean of all the

entries in the matrix from each matrix entry. Strain minimizes the discrepancy

between low and high-dimensional inner products, not distances as in the Stress

function. A major benefit of using Strain over Stress is that it is a convex function

whose minimum can be computed without iterative techniques. The algorithm re-

lies on computing the full SVD of a dense N×N matrix. The SVD of a dense,

square matrix requires O(N3) steps [40] and is therefore too computationally com-

plex to be suitable for large datasets or problems with costly distance functions.

Several scalable Classic MDS approximation algorithms based on the Nyström

approximation of the SVD have been presented [85]. For example, both Pivot

MDS [15] and Landmark MDS [30] work by having the user select a number of

“pivot” or “landmark” points. These particular columns in the distance matrix are
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then computed and processed by the algorithm to map the remaining points into

low-dimensional space.

The main drawback to this strategy is the manual nature of selecting the proper

number of landmark points. The Pivot MDS authors suggest a human-in-the-loop

strategy where the user iteratively adds landmarks until visually determining the

stability of the layout. The Landmark MDS authors propose an iterative strategy

based on cross-validation, but do not present any benchmarks for this termination

criterion. Chapter 6 shows a method to automate the selection of the number of

landmarks and removes the human-in-the-loop from these techniques.

Force-Directed Algorithms

The Glimmer [56, 57] algorithm and its antecedent, by Chalmers [19], are MDS

approximation algorithms that minimize Stress that iteratively sample high-dimen-

sional distances and proportionally nudge the layout points in the direction of the

residual distances. The movement of the points is controlled using a dampened

force-directed simulation heuristic. The benefits of the force-directed approach

include a simple implementation and a rapid convergence to a minimum region

of the Stress function in fewer iterations. Force-directed algorithms can also be

very scalable; the Glimmer algorithm achieves considerable speed improvement

on large datasets by GPU parallelization.

Force-directed algorithms also have drawbacks. Their randomness may induce

a visible level of noise in the final layout. Additionally, force-directed methods can

converge to a local minimum of the Stress function that may be vastly inferior to

the global minimum, though hierarchical force-directed techniques like Glimmer

reduce this occurrence.

Force directed algorithms also may compute more distances than are strictly

necessary. The algorithms are designed to compute high-dimensional distances

prior to each force simulation time step, regardless of whether enough distance in-

formation has already been sampled to achieve a quality layout. This oversampling

becomes especially inefficient when distances are costly.
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Gradient Algorithms

Other MDS techniques use exact gradient information to calculate layout coordi-

nates. Some of these algorithms use backtracking gradient descent on the Stress

function [17], while the SMACOF algorithm [29] minimizes a sequence of quadratic

functions that majorize the Stress function. These techniques are costly but the

most flexible, permitting weights and missing values, while also converging to a

lower-error minimum than randomized techniques.

As shown in their application to graph drawing [37, 66], gradient techniques

can harness a sparsely populated distance matrix as input with good results in less

time than using the full distance matrix. However, like analytic approximation

techniques such as Pivot MDS, the precise number of distances to compute in ad-

vance to converge to a quality minimum is left up to the practitioner to deduce.

Coordinate-Only Algorithms

When MDS input takes the form of a table of coordinates, the number of input

dimensions m is often much smaller than the number of points N. The PLMP [83]

and LAMP [63] algorithms build on this assumption to rapidly compute low-Stress

layouts for very large datasets by computing mappings for each point derived from

a subset of “control” points. The profound acceleration that the algorithms achieve

relative to other approaches is hindered when the number of dimensions equals or

exceeds the number of points N, forcing the complexity of computing the individ-

ual mapping to approach O(N2). Thus, methods that rely on the relation m� N

for speed are less suitable than other approaches when the relation does not hold.

2.1.3 Manifold Methods

Manifold distance dimensionality reduction methods preserve distances across lo-

cal surfaces formed by the data in high dimensional space, building a model of

manifold connectivity. Recent work on manifold methods began with the Isomap

algorithm [110], Local Linear Embedding [92], and Laplacian Eigenmaps [8] which

have been followed by many, many other variants [21, 70, 104, 125].

Manifold methods are computationally intensive and often subject to numer-

ous tuning parameters controlling how the local manifold is inferred from the data.
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Furthermore, several methods make assumptions about the sampling density and

number of manifolds generating the data points under analysis. In the ideal case,

most of the methods are targeted at data with smooth, uniformly sampled, non-

linear structures [98]. Such structures can arise from sampling the state space of

dynamical systems as in human motion motion capture [122]. The target datasets

that appear in our research are not generated by uniformly sampled, nonlinear pro-

cesses and therefore unlikely to lie upon a smooth, nonlinear manifold. As a result,

algorithms from the class of manifold methods do not make an appearance in our

thesis.

2.1.4 Probability-based Methods

Probability-based dimensionality reduction methods such as SNE [50], t-SNE [117],

NE [134] and BH-SNE [116] try to minimize the discrepancy between high dimen-

sional and low dimensional probabilities derived from distances. This discrepancy

is measured as the Kullback-Leibler divergence

N

∑
i

N

∑
j

p j|i
p j|i

q j|i

between the two distributions P and Q representing the distributions for the high-

dimensional and low-dimensional cases respectively. Probability methods work

by building conditional probability distributions for each point over the other data

points based on high-dimensional distances, where probability is interpreted as the

likelihood that point i will be chosen as a given point j’s nearest neighbor. This

approach intuitively assigns points with close distances a high probability value,

and points with far distances a low probability value.

The t-SNE probability-based method produces some of the most visually salient

cluster visualizations of high-dimensional data. It accomplishes this salience by

mapping the high-dimensional Gaussian probability distribution to a heavier-tailed

Student-t probability distribution in the low-dimensional space. The mismatch in

tails is specifically designed to address the crowding problem [117], where map-

pings of points within a sphere of radius r high-dimensional space quickly exhaust

the exponentially smaller volume contained within a corresponding sphere with
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identical radius in low-dimensional space. Using the N-body calculation speedup

of SNE originally presented by de Freitas et al. [28], both NE and BH-SNE reduce

the O(N2) iteration complexity of t-SNE to O(N logN) without a quality penalty

in certain cases [116, 134].

In Chapter 4, we present a method for improving the speed and efficiency of

the NE and BH-SNE algorithms.

2.2 Information Retrieval and the Spatial Analysis of
Text

Chapter 4 discusses Information Retrieval and Spatial Analysis methods for pro-

cessing text data with an emphasis on its high-dimensional structure. Below, we

briefly summarize research related to this discussion, including summaries of In-

formation Retrieval, Nearest-Neighbor Search, and Hierarchical Clustering.

2.3 Information Retrieval
The field of information retrieval studies efficient and accurate methods for query-

ing databases, including text databases [75]. Of the several useful models of text

data, our work focuses on the vector space model, where documents are mapped to

vectors in term space [96]. In particular, the term vectors we study have dimension

values assigned by techniques like TF-IDF [95], which assigns each term dimen-

sion a value proportional to the frequency of the term in the document and then

discounts the value by its frequency of appearance in the database.

Because the number of terms in even a modestly sized database of a few thou-

sand documents often numbers in the tens of thousands, the dimensionality of term

vectors is often equal to or greater than the number of documents themselves. In

spaces of such extreme dimensionality, effects from the so-called curse of dimen-

sionality [9] become readily apparent. Such effects are known to wreak havoc with

spatial search algorithms [55].

Instead, very efficient query algorithms for TF-IDF term vectors eschew spa-

tial metaphors and instead use a data structure called the inverted file [137], thus

named because it represents a sparse transpose of the term-vector matrix. In Chap-

ter 4, we present more details about TF-IDF vectors and discuss the spatial geom-
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etry of inverted file algorithms.

2.4 Nearest-Neighbor Search
Nearest-Neighbor search algorithms find the nearest set of k distinct points to a

query point, where k is a parameter to the algorithm. We first discuss algorithms

for general nearest-neighbor search on any dataset, and then for document-based

nearest-neighbor search using inverted file indices.

2.4.1 General Nearest-Neighbor Search

General nearest-neighbor search algorithms fall into two classes: spatial-partitioning

strategies, and mapping-based techniques.

Spatial partitioning strategies are those techniques that construct hierarchical

structures which partition data space. Examples include balance-box decomposi-

tion trees [4] and vantage point trees [135]. After constructing hierarchical spatial

decompositions of the data space with such methods, a spatial search for nearby

points becomes similar to a generic search tree traversal.

Mapping-based techniques, by contrast, build functions that map data points

close together with high probability. Using this technique, the search is restricted

to the subspace, or set of bins, to which similar points are mapped. The seminal

example of mapping techniques is locality sensitive hashing (LSH) [39], which

uses random projections to divide the input space into a set of bins.

2.4.2 Inverted-File-Based Nearest-Neighbor Search

The exact nearest-neighbor problem has been tackled in the Information Retrieval

and Database literature by using inverted-files as a search data structure. The all-

pairs k-nearest-neighbor problem is referred to as a top-k similarity join in the

Database literature [12]. Initial work in Information Retrieval reduced the search

space of nearest points by partially ordering the inverted file, and then iteratively

computing upper bounds on the remaining documents to be processed [80, 105].

Recent work focused on scaling up similarity calculations to massive datasets also

uses a bound calculation to compute the exact nearest-neighbors, while also build-

ing the inverted file on the fly [6, 129]. In contrast to these exact techniques with
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full traversal of possibly disk-resident, partial inverted files, our work in Chapter 4

performs a partial, impact-ordered traversal of a memory-resident inverted file with

user-based controls over accuracy.

2.5 Hierarchical Clustering
Cluster Analysis is a rich field with numerous active subfields [32]. One such sub-

field that intersects this thesis is hierarchical clustering. A hierarchical clustering

algorithm creates a binary tree where leaves represent the input data points (and

all points are connected to the tree). Agglomerative cluster trees are built from the

bottom up: two nodes are joined when they are the most similar. When the similar-

ity measure is the nearest distance between any pair of child nodes, the algorithm is

called single-link clustering [106]. Single-link clustering has several nice proper-

ties, like computational efficiency [103], and existing algorithms can be augmented

with measures to reduce quality problems like cluster chaining [20, 128]. Special

single-link hierarchical clustering algorithms exist for document datasets [81, 119].

As in nearest neighbor search, these methods utilize inverted file indices for fast

processing of high-dimensional data. Chapter 4 details how an improved traver-

sal of the inverted file can greatly improve the speed of computing a hierarchical

clustering without a penalty to cluster quality.

2.6 Software Systems
This thesis presents two software systems, DimStiller in Chapter 3 and the Overview

prototype in Chapter 5, designed for different applications: high-dimensional anal-

ysis and spatial analysis of text corpora. In this section, we survey other software

systems targeted at addressing these two tasks.

2.6.1 Systems for High-Dimensional Analysis

DimStiller is designed to augment high-dimensional analysis tasks with visual

guidance of algorithm parameter choices and the construction of analysis pipelines.

Many other software systems are designed to be tools for high-dimensional analy-

sis in some shape or another. In this section, we describe those relevant software
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systems that provide users with access to the previously described dimensionality

reduction and clustering algorithms and produce visualizations of the results.

Programming Environments

We first consider full-fledged programming environments such as MATLAB [112]

or R [87]. One strength of these systems is execution speed and breadth of avail-

able graphics and analysis packages [126], but at the cost of requiring the user to

access functionality through a special programming language. Beyond help files

that describe the built-in functions, these systems provide no built-in mechanisms

for guidance to non-expert users.

Toolkit Solutions

In specialized toolkits, several algorithms have been packaged together, usually

with a GUI front end. For example, the Matlab Toolbox for Dimensionality Re-

duction1 gathers together over 30 techniques for dimensionality reduction under

one umbrella. Another example is the HIVE dataflow toolkit for dimensionality

reduction [90]. While such tools reduce programmer time by providing easy ac-

cess to a wide variety of analysis techniques, neither local nor global guidance is

provided to the user.

Visual Dimensionality Analysis Environments

XmdvTool [123] supports interactive visual exploration of multivariate data sets

through many types of views including scatterplot matrices, with interactive con-

trols that include sophisticated linking and brushing techniques. It includes sev-

eral approaches to collecting and culling dimensions that are based on hierarchi-

cal clustering of the dimensions using a variety of metrics, such as DOSFA [130]

and VHDR [131]. Its Value and Relation (VaR) technique [132] does use MDS

to create a scatterplot of dimensions, encoding information about the dimensions

in an information-dense pixel-oriented glyph at each scatterplot point. However,

XmdvTool is not primarily designed to support workflows built around reduction

through synthesizing new dimensions. In contrast, the GGobi system [24] is a visu-

1 homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality Reduction.html last visited on 2/01/2010
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alization framework for high-dimensional analysis with dimensionality reduction

techniques that create synthetic dimensions as a central focus, supporting inter-

action between multiple kinds of linked views including scatterplot matrices. It

also features sophisticated high-dimensional navigation including projection pur-

suit and grand tours, and a plugin architecture for easy connection with R [87].

The limitation of both of these frameworks is that while they implicitly provide

ways to access and explore many relevant paths through table space in useful and

novel ways, they lack an explicit framework for local and global guidance. The

architecture of these systems is sufficiently orthogonal to the notions of guidance

described in this paper that supplying them with such a framework to would require

substantial ground-up development.

The rank-by-feature framework of Seo and Shneiderman [100] allows the user

to visually inspect and explore dimensional relationships, but only with subsets of

the original dimensions, so the huge part of table space that can only be reached

via constructing synthetic dimensions cannot be explored. The data exploration

environment of Guo [45] has a component-based architecture for finding clusters

of the data with unique dimensional relationships.

Johansson and Johansson’s [62] system embodies the concept of guiding the

user through analysis stages. Users can craft quality metrics from combinations of

correlation, clustering, or other measures and cull dimensions according to these

measures. However, their system only supports one hardwired global workflow,

where the only flexibility is in setting parameter values at each local stage. Another

limitation is the inability to construct synthetic dimensions.

2.6.2 Systems for Spatial Analysis of Text Corpora

The Overview prototype, presented in Chapter 5, aids in the analysis of a text

corpus with a pair of linked views presenting a clustering and dimensionality re-

duction of the underlying text corpus. The most relevant previous work is perhaps

the Newdle system by Yang et al. [133]. It is also oriented around hierarchical

clustering of topics and tag-based analysis. Yang et al. do not incorporate linked

dimensionality reduction, and they show only a particular cut through the hierar-

chy at once, whereas our interface is based on a full hierarchy that allows the user
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to explore the entire multiscale structure. Chen et al. [23] also take a sampling

approach to dimensionality reduction for large document collections to produce

layouts that show clear clusters, but do not discuss any sort of interactive browsing

or annotation. Österling et al. compute the contour tree of a density field, which

has some conceptual similarities to the hierarchical clustering [82]. The Overview

prototype uses a point-based visual encoding rather than their landscape-based ap-

proach based on guidelines from previous empirical studies [114, 115].
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Chapter 3

DimStiller: Workflows for
Dimensional Analysis and
Reduction

Many practical questions about a high dimensional dataset require understanding

how the dimensions and points relate to each other and to an underlying space: Are

my dimensions meaningful? How do my dimensions relate to each other? Are my

clusters real?

A combination of known statistical and visualization techniques can help an-

swer the three questions above. For example, the question “how do my dimensions

relate to each other?” may be answered using Principal Components Analysis and

interpreting the magnitudes of the eigenvalues and eigenvectors of the correlation

matrix. Each technique may produce different output with a corresponding spe-

cialized interpretation. The sheer proliferation of techniques makes navigating this

analysis space a daunting prospect for many users, who do not fully understand

how and when to use these techniques correctly. For instance, what parameter set-

tings make sense for a particular dataset? When can the output of one technique be

legitimately used as the input for another?

In contrast to the profusion of previous work proposing better or faster tech-

niques for specific aspects of dimensional analysis [49, 57], far less attention has

been paid to creating systems that guide their users through the larger process of an-
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alyzing high-dimensional data iteratively using a combination of techniques. For

instance, many engaged in data analysis, who lack a deep knowledge of dimen-

sional reduction, simply project their data to some 2D space and plot these points

using a scatterplot. However, if the intrinsic dimensionality of the dataset is larger

than two, clusters or orthogonal axes may be projected on top of each other, occlud-

ing relevant structures of interest. Although experts confronted with the problem-

atic result of a single undifferentiated blob could conjecture that there is a mismatch

between intrinsic dimensionality of the dataset and the space they chose to project

to, less sophisticated users are routinely misled. The reasons for their perplexity

include the sheer number of proposed dimensionality reduction techniques [51],

the complexity of the mathematics underlying them, the widespread availability of

dimensionality reduction tools that create only a single 2D or 3D scatterplot [65],

and the lack of clear characterizations in the literature of which techniques are

suitable for what kinds of data and tasks. DimStiller was expressly designed to

help users avoid this pitfall, with a dimension reduction workflow that includes an

estimation of intrinsic dimensionality of the dataset to guide users in making an

informed choice about how many dimensions to reduce to, if at all, and having the

default view of a table of more than two dimensions be a scatterplot matrix rather

than a single scatterplot.

In this chapter we present the design and implementation of the DimStiller vi-

sualization framework. DimStiller gathers together a variety of techniques from

dimensional analysis and reduction into a coherent framework that emphasizes the

underlying dimensions and the relationships between them. For instance, it guides

users through estimating the intrinsic dimensionality of a dataset before carrying

out reduction. The analysis technique components of DimStiller are outfitted with

interactive controls and linked views, allowing users to see and manipulate inter-

mediate results at each analysis step. Section 3.2 describes the task of dimension-

ality reduction and analysis. We present the DimStiller architecture in Section 3.3,

and two case studies showing how it can be used to analyze complex real-world

datasets in Section 3.4.

The second contribution of this chapter to the thesis is the notion and imple-

mentation of both local and global guidance for navigating through the space of

possible data tables during dimensional analysis and reduction, using the abstrac-
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tions of operations, expressions, and workflows. Expressions instantiate a chaining

together, or composition, of transformation operators on input data tables. Expres-

sions show which operations have been applied to the data as well as the order in

which they occur. Workflows are templates for exploration that consist of a specific

expression along with the saved parameter values for each operator. Workflows

bundle together the sequence of operators of an expression independent of the data

on which they operate, permitting DimStiller users to re-use and share common

patterns of analysis. While mechanisms such as expressions, operators, pipelines,

and macros have been proposed previously in many contexts [48], the novelty in

DimStiller is the way in which these are used to walk through a series of operations

on data tables, providing guidance during the analysis process. In Section 3.1 we

discuss the idea of guidance in further detail, and contrast our approach to previous

work in Section 2.

3.1 Local and Global Guidance
Anyone engaged in the dimensional analysis and reduction process must choose

from a vast number of possible transformations of the data table at every step –

but only a relatively small subset of these transformations will yield meaningful

information about the structure of the input dataset. We define providing guidance

as structuring the exploration process to help users find this small, meaningful set

from the huge space of possible transformations. We first describe this abstract

analysis space, and then explain the two kinds of guidance, local and global, that

DimStiller provides to support effective navigation in this space.

We model the dimensional analysis and reduction process as traversing table

space, the space of all possible data tables. Conceptually, this space is like a graph

where nodes are data tables, connected by edges representing a transformation.

A path through the space begins at some node representing the input data table.

Intermediate nodes are the tables that result from the transformations applied by

the user, and the path terminates at the output data table. We thus must consider

how to help system users locate, explore, and traverse relevant regions in table

space.

At the global level, we guide system users who must find a path that traverses
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the space from some given start point to a useful end point. Workflows are a mech-

anism to represent entire paths in this space. They represent a chained pipeline of

transformations that can be applied to an input dataset. The built-in workflows are

a small set of paths intended to span the space between a few landmarks of poten-

tial interest. DimStiller is designed to help its users find new, useful paths through

table space, and save them as new workflows for later use.

At the local level, users also need to explore neighborhoods in table space: tun-

ing the parameters of an individual transformation operator corresponds to search-

ing for the most informative data table in the region of table space that is reachable

with a single transformation that can be carried out by the chosen operator. Dim-

Stiller supports this local exploration through a chain of linked operator controls

and views, so that users have immediate visual feedback about the effects of pa-

rameter tuning.

3.2 Users and Tasks
We now describe in detail the intended target user population for DimStiller, the

questions that DimStiller is designed to help these users answer, and common tech-

niques currently used to answer such questions. While these are not the only ques-

tions a data analyst might be interested in, we argue that they are a good place to

start when considering a new dataset, especially one with unclear provenance that

is not necessarily well curated.

3.2.1 Target User Population

DimStiller is aimed at bridging the gap between state of the art techniques in vi-

sually oriented dimensionality analysis, and the current practices of many users

and potential users who do not already have deep knowledge of their data and the

mathematics of reduction. Although dimensional analysis is sufficiently complex

that we do not target casual users, we argue that this middle ground between utter

novices and fully confident experts is a sizeable group that is underserved by the

current set of available systems.

For example, a visualization researcher called on to help somebody analyze a

dataset may be completely unfamiliar with the dataset characteristics and the tasks
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of the researchers at the beginning of the analysis process. Furthermore, the per-

son might be a visualization generalist rather than a specialist in the mathematical

foundations of high dimensional techniques in particular. Another example is end

users who have expertise in their own domain and the desire to do some dimen-

sional analysis, but not deep knowledge of reduction mathematics. They might

be developing algorithms to generate or process the data, and seek to evaluate the

quality of their results or fine-tune parameter settings.

DimStiller is particularly aimed at providing major process improvements for

data analysts who must deal with messy datasets that may have unclear prove-

nance. By providing both local and global guidance through table space, we aim to

support analyses that might otherwise seem too daunting and decrease the chances

that non-expert users draw incorrect conclusions, supporting a qualitatively dif-

ferent analysis process than with previous tools. For those data analysts dealing

with curated datasets where the meaning of each row and column are already fully

understood, DimStiller may simply speed up a previously feasible, but slow, anal-

ysis process by automatically supplying a suite of visual results for the analyst to

peruse.

3.2.2 Are My Dimensions Meaningful?

Sometimes an input dimension may actually contain little or no useful information

at all. Because of this, it is important for an data analyst to be able to character-

ize the dataset in terms of which dimensions have useful information versus the

“meaningless” ones. This understanding is not critical for downstream analysis

algorithms in the same analysis session, since the mathematics of dimension re-

duction will handle creating the correct lower-dimensional projection. However,

discovering that a given dimension is culled could reveal problems with the data

source, with major upstream consequences in later iterations of the larger analysis

loop: the data might be gathered differently, or the algorithms to generate it might

be refined.

One such criterion is simply to check the underlying variance of the input di-

mensions and cull those beneath a small noise threshold. Another possibility is to

use an information entropy cutoff.

25



Input:File
“data.csv”

Cull:Variance
Threshold = 0

Collect:Pearson
Threshold = 0.9

View:SPLOM

100 X 8

100 X 7

100 X 4

Correlation 
Matrix View

Scatterplot 
View

Variance 
Control

File 
Selection 
Control

Correlation 
Control

Scatterplot 
Control

OPERATORS VIEWSCONTROLS

W
o

rk
fl

o
w

 
S

el
ec

to
r

E
xp

re
ss

io
n 

Tr
ee

O
p

er
at

o
r 

C
o

nt
ro

l V
ie

w
 

W
in

d
o

w

V
ie

w
 

W
in

d
o

w

Figure 3.1: Left: The anatomy of a simple DimStiller expression. Input data is fed into a pipeline of operators that alter
the dimensionality of the data. Each operator may or may not have controls or views. An Operator’s control is
displayed when it is selected in the Expression Tree. An operator’s view is shown in a separate window, allowing
side by side comparison between multiple views. Changing an operator’s parameter in the control may produce a
change to its output that is propagated across the expression using events that may travel both upstream and down-
stream from the operator. Right: The DimStiller interface for this expression, showing the Collect:Pearson
and View:SPLOM views. The Cull:Variance expression is selected in the Expression Tree, so its control is
visible.
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3.2.3 How Do My Dimensions Relate to Each Other?

Much of multivariate statistical analysis is concerned with how the individual di-

mensions relate to each other. Many popular metrics such as Pearson’s correlation

coefficient measure pairwise relationships between individual dimensions. More

holistic methods such as Principal Components Analysis determine how all the

dimensions may actually express a smaller number of dimensions. Other meth-

ods uncover more complex nonlinear relationships between the input data, such as

multidimensional scaling or many of the manifold-following variants.

3.2.4 Are My Clusters Real?

While the previous questions are related to dimensions, the question of cluster

membership relates to the points. Clustering is the assignment of a unique label to

specific regions of the input data’s feature space and the points that occupy them.

Cluster labels can be computed from any of a myriad of clustering algorithms.

Clustering relates to the input dimensionality in a reciprocal way. If the data

analyst trusts the dimensional basis in which the data is represented, then point

clusters in such a space will be considered real clusters with higher confidence than

without such a trust. Likewise, if the data analyst is given a clustering that is trusted

to be real, and the space in which the data is projected maintains the clustering’s

coherence, then this result increases confidence in the current dimensions. Thus, a

clustering can inform the quality of a dimensionality reduction, and vice versa.

3.3 DimStiller Architecture
It is clear that an analysis tool that provides users with the ability to load their

data into the system, transform their data with different analysis techniques, and

scrutinize their data before and after these transformations would help users answer

these questions. What is not clear is how such a tool should organize the results

of applying the transformations or how to link these transformations together with

visualizations to keep users focused on the analysis.

DimStiller organizes dimensionality analysis and reduction as a pipeline of

transformations to a data table and linked views of it at different pipeline stages, as

shown in Figure 3.1. The DimStiller model is based on an abstraction called an ex-
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pression which encapsulates a sequence of transformations, called operators, that

act upon tables of data where rows are points and columns are dimensions. Op-

erators transform tables by adding, removing, or changing points or dimensions.

Operators may have control panels and associated views that provide a visual rep-

resentation of a table at that pipeline stage. All views are linked, and selections are

propagated up and down the pipeline appropriately. A key aspect of the DimStiller

architecture is the ability to instantiate expressions from pre-existing workflows

that capture useful analysis patterns.

The DimStiller expression and operator abstractions were partially inspired by

the Expression and Operator information visualization design patterns of Heer and

Agrawala [48]. However, DimStiller expressions have a simple, linear topology

that defers processing to the operators in contrast to the general tree structure sug-

gested by the Expression pattern. Likewise, DimStiller operators are composable

processing units similar to the Operator pattern, but compute general transforma-

tions and not necessarily visual mappings.

3.3.1 Input Tables and Dimension Types

DimStiller supports an abstract interface to data via a table model. Conceptually, a

table can represent anything from physical entries in a disk file, to a cross-network

database, or even evaluations of a simulator. The current implementation only

supports simple file-based tables. There are two kinds of dimensions: Data, and

Attribute. Data dimensions are either Quantitative or Categorical. Internally, both

are represented by floating point values, and DimStiller maintains a lookup table

to map floating point values to category symbols for Categorical dimensions. At-

tribute dimensions represent values such as color or selection that are used in views

such as scatterplot matrices, but are ignored by purely data-oriented operators such

as variance culling or dimension reduction.

3.3.2 Operators

Operators are functions that map an n×m table to an n′×m′ table. That is, oper-

ators may add or delete points or dimensions, or change the value of any existing

cell in the table. In the parlance of Section 3.1, they are the edges that connect
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two nodes in table space. For example, the Cull:Variance operator removes

dimensions with low variance from an n×m table. If any of the m table dimen-

sions has variance below the user-controllable threshold, then the application of

this operator would result in a new n×m′ table where m′ < m.

Every operator may have an associated control and/or an associated view, al-

though neither is mandatory. Operator controls are GUI elements that permit users

to modify operator parameters. Operator controls afford the user command over

local search in table space. For example, Figure 3.2 shows the control panel for

the above Cull:Variance operator, which has an interactive plot of the vari-

ance for each input dimension. The threshold parameter for culling is adjusted by

clicking directly on the plot, and this operator does not have a separate view. Op-

erator views are visualizations of the data table at that stage of the pipeline. Some

operators are purely view-oriented, and do not transform the data table at all. For

example, the view for the View:SPLOM is a scatterplot matrix, and its control

panel only affects this visual display. In contrast, the Collect:Pearson oper-

ator has both a control panel with a slider to change the threshold, and a separate

view with a matrix of colored boxes to show the pairwise correlations encoded with

a blue-yellow-red diverging colormap.

The Operator namespace has a two-level structure, where a family has specific

instances. The set of Operator families and instances, with notation

Family:Instance, is:

• Attrib:Color Adds attribute color dim for views

• Collect:Pearson Join highly correlated dims

• Cull:Variance Identify/remove low-variance dims

• Cull:Name Identify/remove dim by name string match

• Data:Norm Normalize input dims

• Input:File Load comma separated value (CSV) file

• Reduce:PCA Estimate/reduce dimensionality with PCA

• Reduce:MDS Estimate/reduce dimensionality with MDS

• View:SPLOM Plot n-dim table using nxn scatterplot matrix

• View:Histo Plot dim distribution with histogram
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The current families and operators serve to illustrate the potential of our ap-

proach to system architecture; the set of families is not exhaustive, nor is the set of

operators within any family. The built-in set of operator families and instances can

be extended by implementing new operators.

Cull and Collect Operator Families

Operators in the Cull family compute a specific criterion for each dimension and re-

move those dimensions that do not satisfy it. The criterion for the Cull:Variance

operator is variance, and dimensions that fall beneath a user-specified threshold are

culled. It can help users locate and eliminate dimensions whose variability is zero,

or is small but non-zero because of noise. The Cull:Name operator allows users

to selectively remove dimensions manually, for example to analyze only a subset

of the input dimensions.

While the Cull family acts on individual dimensions, operators in the Collec-

tion family use pairwise criteria like covariance and Pearson’s correlation coeffi-

cient. Rather than removing dimensions whose pairwise measures do not satisfy

the threshold, these operators replace them with a single representative dimension

for the collection, for example the average.

These operators can help users who may need to refine the processes used to

generate their input dataset, as we discuss in Section 3.2.2. They are also useful

for those whose analysis needs preclude the creation of synthetic dimensions.

Reduce Operator Family

A critical design choice in the Dimstiller architecture is that the Reduce operator

family includes estimation of the intrinsic dimensionality of the space in addition

to actually performing the reduction. The control for the operator, shown in the

lower left of Figure 3.4, has a scree plot: a bar chart with the number of dimen-

sions on the horizontal axis, and an estimate of the variability that would not be

accounted for if the dataset were reduced to a space of that size on the vertical

axis. The user then can make an informed choice when selecting the target di-

mensionality, by clicking on the plot at the desired threshold. (The definition of

“intrinsic dimensionality” that we espouse is the smallest dimensionality of the set
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of spaces in which the data can be embedded with distortion less than some noise

tolerance, rather than zero distortion.) DimStiller supports users in experimentally

determining the correct noise threshold, which differs between datasets, by inter-

active threshold adjustment.

Although scree plots are far from new, most previous toolkits do not explic-

itly couple them to the use of a reduction algorithm: users are simply expected

to provide a number as input, with no guidance. Users who are not experts or

are dealing with unfamiliar datasets will often have no idea of what a reasonable

number might be. Worse yet, a significant number of reduction technique imple-

mentations are hardwired to blindly reduce to two (or three) dimensions, with no

hint to the user that this choice might be inappropriate or misleading. Even the rel-

atively sophisticated user who knows to run an estimator is often provided with the

black-box output of a single number, rather than the detailed information for each

possible number of cumulative dimensions shown in a scree plot [49]. Our design

also has the benefit that users can see different estimates of intrinsic dimensionality

in a lightweight and fast way with the scree plots, rather than the more heavyweight

approach of reducing and then viewing the results in a scatterplot matrix. A related

design choice is that the View:SPLOM view for showing a table is a scatterplot

matrix rather than a single scatterplot. When the table has only two dimensions

this view does of course show the case of only a single scatterplot, but when it has

more the user is guided to see all of the information rather than an arbitrary subset.

While designing the architecture, we considered whether to have the estimation

step separate from the reduction step. We ultimately decided that they should be

coupled together into one module in service of the goal of providing guidance for

the non-expert user. Understanding which estimators are appropriate for which

reduction algorithms requires significant knowledge of dimensionality reduction:

for example, nonlinear reduction methods should not be used in conjunction with

linear estimators. Thus, we do not expect the middle-ground user to make that

choice, reserving it for the designer of new operators.

The exact measure shown on the vertical axis of the scree plot depends on

the operator instance. The Reduce:PCA operator shows the eigenvalues, and the

Reduce:MDS shows the stress values of the embedding in each dimension. We

use the CPU implementation of Glimmer [57] for both the MDS reduction and
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estimation.

Attribute and View Operator Families

Attribute operators add attribute dimensions to the output data table of the operator.

Attribute dimensions are interpreted by view and attribute operators and ignored by

other operator families. The Color attribute operator creates an attribute dimension

used for coloring to which it assigns values based on the values of numeric or

categorical dimensions. The assignment of colors is performed either by linearly

interpolating between two endpoint colors or by assigning colors to individual di-

mension values. The default colormap for categorical data, inspired by the work of

Stone [108], has 10 bins; colors are repeated if there are more than 10 values.

View operators provide visualizations of their input data. The two built-in View

operators are View:Hist for showing the distributions of individual dimensions,

and View:SPLOM for showing pairwise relationships between dimensions. Both

the SPLOM and the Histogram views provide global linked selection by creating

an attribute dimension for selection, and displaying points with a nonzero selec-

tion attribute value in a default selection color. SPLOM views also use the color

attribute dimension to color points.

3.3.3 Expressions

A DimStiller expression is the instantiation of an ordered list of operators applied

to an input table. Figure 3.1 Left illustrates the elements of a sample expression,

showing the associated views and controls for each operator. As the expression

progresses, the data entries change value and the output table changes shape as

it is progressively refined. Figure 3.1 Left also shows the relevant pathways for

how information about input, view, and parameter changes moves across the ex-

pression. In our informal description of the table space graph of Section 3.1, the

nodes are data tables and the edges are the transformation operators. However, in

the DimStiller user interface, the more natural representation uses the dual graph,

where operators are the nodes, and the edges represent the data flowing between

them. The user is thus encouraged to focus on manipulating and understanding the

transformations of the data.
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3.3.4 Workflows

Workflows are templates for entire expressions that can be immediately created

with a few clicks. DimStiller has a base set of workflows built in, and users can

create their own by saving the list of operators in any active expression as a work-

flow.

A workflow contains a sequence of individual operator steps, and saved pa-

rameters associated with each operator. When a user instantiates a workflow, a

new expression is produced unique to a given input table. Because many operators

may result in time-consuming computations, only the first operator in a workflow

computes its output upon workflow instantiation, with subsequent operators greyed

out in the user interface. Users choose when to progress to activating the next step,

possibly after adjusting parameters at the current step, with a Step Operator

button. Heavyweight operators downstream will thus only initiate their computa-

tions on data tables that may be much more compact than the input table due to

reduction at upstream stages.

The built-in workflows are designed to help users begin to answer the set of

questions that we identified in Section 3.2.1, as a proof of concept that this style of

guidance can help middle-ground users. We do not claim that they are the only way,

or even the best way in all cases, to answer these questions. Workflows provide

optional global guidance; they are not mandatory. Power users have the flexibility

to build up new expressions directly in DimStiller by choosing individual operators

from the currently loaded set.

The set of workflows built into DimStiller are:

• Reduce:PCA.

– Cull:Variance→
– Data:Normalize →
– Collect:Pearson→
– Reduce:PCA→
– View:SPLOM

• Reduce:MDS.

– Cull:Variance→
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– Data:Normalize →
– Collect:Pearson→
– Reduce:MDS→
– View:SPLOM

• Cluster Verify.

– Attrib:Color→
– Data:Normalize→
– Reduce:PCA→
– View:SPLOM

3.3.5 DimStiller Interface

Figure 3.1 Right shows a screenshot of the DimStiller session containing the ex-

pression diagrammed in Figure 3.1 Left. The visual structure of the DimStiller

interface, with views and controls for each operator, encourages the user to exam-

ine the individual operators, adjust their parameters, and observe the effects on the

resulting transformations in the visual representations.

The DimStiller window on the left contains the Workflow Selector at the

top, with the Expression Tree underneath and an operator control panel on the

bottom. Two view windows are visible on the right, a scatterplot matrix for the

View:SPLOM operator and the correlation matrix for the Collect:Pearson

operator. The Expression Tree shows that the input file dimstillerwide.csv

contained a table with 100 rows of points and 8 columns of dimensions. In this

example dataset, Dim 1 and Dim 2 are independently sampled from a uniform

distribution between 0 and 1, Dim 3 is a scalar multiple of Dim 1, Dim 4 and

Dim 6 are scalar multiples of Dim 2, Dim 5 is set to all zeros, Dim 7 and Dim 8

are linear combinations of both Dim 1 and Dim 2 with a uniform noise term.

The first E1 operator S1 is Cull:Variance. The user has clicked on the

first nonzero dimension in the scree plot, resulting in a threshold value of 0.0007

(rounded to 0.001 for display in the tree). The summary line for S1 in the Ex-

pression Tree shows that the output table of S1 has 7 dimensions as opposed to

the 8 dimensions that were input to the operator, and the expanded details beneath
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show that Dim 5 is the one that was culled. The S2 operator collects dimensions

that are correlated with the threshold of 0.85, resulting in a table of 4 dimensions

whose pairwise correlations are shown with color in the top view. The expanded

details shows Dim 1 and Dim 3 are now represented by new synthetic dimension

S2.D1, and the remaining three are now represented by S2.D2. The last opera-

tor is View:SPLOM, and the bottom view shows the scatterplot matrix. The user

selected some points in one plot, and they are colored red in all of the linked plots.

Workflow Selector

The Workflow Selector displays the available workflows and allows the user to

select one and create a new expression from it. Selecting a workflow fills the

adjacent list box with the sequence of steps for the user to inspect. If the user

chooses to activate that workflow by clicking the Add button, DimStiller applies

the workflow steps to the currently selected expression, making those operators

visible in the Expression Tree.

Expression Tree

The Expression Tree is a three-level tree widget that lists all open expressions. At

the top level, expressions are described by a short text summary where each new

operator X is appended on the right of the text string as→ [X], where X is a very

terse label. When the user drills down to the next level, the individual operators that

comprise the expression are listed with a concise yet complete text summary that

includes the size of the output table produced by the operator in terms of points and

dimensions, as well as any operator parameters that are set to non-default values.

The third and final level of detail is only added if an operator modifies the output

dimensionality, namely the list of the dimensions modified by that operator and

any details that relate the input and output dimensions. For example, in Figure 3.1

the expansion of the Collect:Pearson operator shows two of the synthetic

dimensions and names of the original dimensions collected together.
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Operator Control Panel

Each operator may have a control panel that lets the user adjust its parameters.

Called operator controls, they afford the user with the means to locally search for

a meaningful region in table space. When an operator is selected in the Expres-

sion Tree, its control populates the operator control panel region at the bottom of

the main DimStiller window. Only one operator can be selected at a time. Opera-

tor controls visible in this paper include the Cull:Variance control shown in

Figure 3.1 and the Reduce:PCA control shown in Figures 3.4 and 3.5.

View Windows

Each operator also may have an associated view. When an expression is loaded

or created, the associated views open up as individual windows to support side-

by-side comparison across operators within the same expression or even across

different expressions. All the views are created using the Processing language, but

new operator view plugins could be created using any graphical toolkit that can in-

terface with Java. The built-in operators that have views are the View:Histo, the

View:SPLOM shown in Figures 3.1 and 3.2, and the box matrix showing pairwise

relationships for the Collect:Variance operator in Figures 3.1 and 3.3.

3.4 Case Studies
We now describe how the DimStiller architecture facilitates the task of dimension-

ality reduction and analysis through case studies on real-world data. We use the

built-in workflows to construct expressions that inform users about the character

and relationships of the dimensions and clusters of the datasets1.

3.4.1 Sustainability Simulation: Measuring Variability

Our first case study focuses on a sustainability simulation dataset containing a large

collection of simulated results of government policy decision scenarios [78]. The

294 dataset dimensions represent the environmental and societal indicators affected

by the policy decisions. A first attempt to analyze this data using pre-existing tools

1The video at http://www.cs.ubc.ca/labs/imager/video/2010/dtil4 2.mov shows the look and feel of interactive
sessions with these datasets.
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fell prey to the reduce to 2 and plot pitfall discussed in the introduction to this

chapter. The simulation is agglomerated from many subpieces originally designed

for varying purposes, rather than being carefully constructed from custom compo-

nents that would dovetail seamlessly. The simulation designers thus did not have a

clear idea of the intrinsic dimensionality of this dataset. They did know what their

dimensions were, with meaningful labels for each such as Cost of Living

and Air Quality. However, they thought it was possible that some indicators

always had the same value across the entire dataset. They were also interested in

learning about how the dimensions related to each other: they suspected that many

indicators were highly correlated, but did not know the number of equivalence

classes or which indicators were in each group. They were also curious whether

automatically computed correlation groups would match with their intuitions about

indicator relationships.

The first choice to make when using DimStiller is whether to construct our

own expression from scratch by individually choosing operators, or to instantiate

a workflow from the existing list. Since we are interested in finding the intrinsic

dimensionality of the space as well as any correlations, a workflow in the Reduce

family seems to be a good match, and we start with Reduce:PCA.

Figure 3.2 shows the control of the Cull:Variance operator that plots the

sorted variances of the dimensions, with the log-scale option selected to emphasize

small values. We notice that there are indeed many zero-variance dimensions, and

click the scree control to remove these 34 dimensions, leaving 260 in the output

table. The researchers could now drill down in the Expression Tree to see the

names of the potentially problematic culled dimensions. They now know that either

the input policy choices used in this run of the simulator did not effectively span

the indicator space, or that there are unforeseen interactions between simulator

components.

We click the Step operator button to activate the next workflow step, the

Data:Norm operator. Both reduction workflows include a normalization step to

guide users who may be unaware of the effects of transforming dimensions with

differing scales of variation. The Expression Tree in Figure 3.4 shows that we

chose to normalize using Z scores, so the operator subtracts the mean and divides

by the standard deviation. We then step to activate the Collect:Pearson oper-
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ator, which gathers highly correlated dimensions. Even the most stringent possible

threshold setting of 1.0 for perfect correlation results in a drastic reduction of the

number of dimensions: from 260 to 147. Figure 3.3 Left shows the correlation

matrix view, where only a small fraction of the boxes are visible without scrolling.

Relaxing the threshold to a more reasonable value of 0.8 results in the view shown

in Figure 3.3 Right, where the number of dimensions in the table is reduced to 22.

Again, the simulation designers could now drill down in the Expression Tree to see

the names of which dimensions were collected together, in order to check whether

the automatic computations match their intuitions about the expected behaviour of

the simulator.

Figure 3.2: Interactive DimStiller controls. Left: The Cull:Variance
operator control displays a sorted list of the dimension variances. Many
have zero variance, indicating potential problems in the choice of input
variables to the simulator or the operation of the simulator itself. Log-
scaling of the variances emphasizes small values. Right: The scree plot
for the nonlinear Reduce:MDS shows an intrinsic dimensionality of 12
dimensions, versus the 16 dimensions found by linear methods shown
in Figure 3.4.

Finally, we would like to determine whether the intrinsic dimensionality of this

space is even smaller than the 22 dimensions of the table after culling and collect-

ing, and if so reduce to that space. The Reduce:PCA operator constructs a linear

projection of the data into a subspace that minimizes distortion. Our motivation for

doing the reduction is to observe the distribution of the eigenvalues corresponding

to the major axes of the simulation output in a subsequent scree plot. The control

view in Figure 3.4 shows the scree plot in the PCA control, and we see that the

eigenvalues approach zero between 12 and 18 dimensions. Mousing over dimen-
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Figure 3.3: The DimStiller Collect:Pearson operator view shows the
correlation matrix with a diverging color scale ranging from blue at the
positive end, through yellow for independent pairs, to red for negative
correlation. Left: The perfect correlation threshold of 1.0 reduces the
table from 260 to 147 dimensions. Right: Relaxing to a more reason-
able threshold of 0.8 reduces the number of dimensions to just 22, all
visible without scrolling.

sion 16 shows that it corresponds to a very small noise threshold of 0.001, and we

click to select that value. We then click the Step Operator button and activate

the View:SPLOM operator which brings up the scatterplot matrix view.

In order to facilitate viewing the original lattice structure of the data in the

input space, we insert an Attrib:Color operator into the expression after the

Input:File. The Attrib:Color creates an attribute dimension containing

color information derived from a single, user-selected input dimension. We select

the initial dimension as the dimension from which colors are derived. The resulting

colored SPLOM is shown in Figure 3.4 in the top right view window, labeled

E1:[View:SPLOM].

The original analysis of the dataset was done by projecting the data down to

two dimensions using multidimensional scaling. We quickly replicate this analysis

in DimStiller so that we can compare the results directly. We reload the same

data into a new expression E2, adding a Attrib:Color Operator and using the

Reduce MDS workflow. The operators in this workflow are the same as in the
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previous analysis except for the Reduce operator, and we use the same settings as

before. We check the scree plot for this case, and find that only 12 dimensions

suffice with this nonlinear reduction, as shown in Figure 3.2. Then, to illustrate the

reduce to 2 and plot pitfall, we use the Reduce:MDS Operator to select 2 as the

output dimensionality. The SPLOM view at the bottom right of Figure 3.4 shows

only the single scatterplot. The regular, lattice-like structure visible in the SPLOM

above is completely hidden, and we see only an undifferentiated blob.

This analysis session with DimStiller shows that although the simulator pro-

duces hundreds of outputs, dozens have zero variance, most of the remainder are

highly correlated, and the data can be represented with only around a dozen dimen-

sions without losing information. Although in theory this full analysis could have

been carried out with existing tools like MATLAB, and bits and pieces of it were

done over the course of a few years, in practice we did not have a complete pic-

ture of this messy real-world dataset until we could analyze it with the DimStiller

system.

3.4.2 Computational Chemistry: Evaluating Clusters

We now examine a 30-dimensional computational chemistry dataset. The indi-

vidual dimensions of this data measure physical properties of chemicals such as

molecular weight and the number of bonds they possess. The dataset includes a

cluster membership dimension with 236 clusters of the data produced by a com-

mercial clustering package. The goal of the chemist who work with this dataset is

to evaluate the quality of the clustering.

The Cluster Verify workflow is appropriate for this goal, so we instan-

tiate a DimStiller expression from it. After loading the data, we use the Color

operator control to choose which dimension we use for the categorical colormap.

By default, the color operator culls the dimension by which it colors the points;

including this cluster membership dimension in the downstream analysis would

usually skew the results.

After adjusting color settings, we activate the Data:Norm operator which

normalizes the dimensions to Z scores. We then activate the Reduce:PCA and

observe its control. The scree plot of the eigenvalues, visible in Figure 3.5, shows
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Figure 3.4: DimStiller Reduce:PCA control and scatterplot. The scree plot
in the Reduce:PCA control shows an estimate of the intrinsic dimen-
sionality as between 12 and 18 dimensions, and we have interactively
selected 16 as the threshold. The top scatterplot matrix shows a result
with a visible lattice structure. In contrast, the bottom view shows the
pitfall of reducing to just two dimensions using MDS, where an undif-
ferentiated blob gives a misleading impression of no such structure.

an exponential drop off in magnitudes. This plot strongly suggests that the majority

of the variance of the data resides in a lower dimensional space than the input

dimensionality. Standard practice is to select the “knee” of the value drop-off curve

as a good candidate for target dimensionality. We select 3 and then activate the

View:SPLOM operator.

The resulting scatterplot matrix of the View:SPLOM Operator, also visible in

Figure 3.5, reveals several interesting cluster structures in the data. In the bottom

row of two scatterplots, we observe clear separation of several clusters of points.

In contrast to the spatial separation, some color labels appear to span gaps in the

scatterplots. A single categorical color scheme of course cannot possibly show over

200 clusters with distinguishable colors, so DimStiller uses a repeating palette.
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To check whether some of the adjacent clusters with differing labels might have

the same color by chance, we select the Attrib:Color Operator again in the

Expression Tree to bring up its control. The Permute Colors button permutes

the order in which colors are assigned to categories. After trying a few different

permutations of the color scheme we conclude that the phenomenon we saw was

not just an artifact; several cluster labels do indeed span these observed clusters.

This result gives strong, albeit not conclusive, evidence that there may be better

clusterings.

Figure 3.5: Running the DimStiller Cluster Verifyworkflow on a com-
putational chemistry dataset. The scree plot in the lower left shows
that most of the variability resides in a low dimensional subspace. We
choose a threshold of 3 dimensions at the “knee” in the plot. We see in
the colored SPLOM view that while the clusters are spatially coherent,
they do not reflect the spatial separation in this projection, suggesting
that this clustering is not the most appropriate.

3.5 DimStiller Deployment
DimStiller was produced as part of a larger, multi-pronged research initiative de-

signed to study high-dimensional analysis. In the context this initiative, DimStiller
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was our first attempt to architect a software solution to the major issues that we

believed were facing working data analysts: selecting appropriate methods and

appropriately tuning their parameters. Another key thread of that larger research

initiative was a multi-year qualitative field study in which I participated as a co-

author [98]. This qualitative study provided an ideal opportunity to deploy Dim-

Stiller to working data analysts from a variety of disciplines and informally gauge

the utility of the software to their problems.

To deploy the software, we introduced some of the data analysts in the study

to DimStiller and encouraged them to try to incorporate using the software in their

own data analysis tasks. This limited deployment was instructive in several key

ways. First, it highlighted use cases of high-dimensional analysis where DimStiller

was not an appropriate tool. Second, it brought to our attention incorrect assump-

tions of DR algorithms that needed to be addressed before a tool like DimStiller

could even be applied. Finally, the deployment shed light on external factors that

can greatly affect the success and future development of software systems. In the

reminder of this section, we describe these different results of the deployment in

more detail.

In one deployment use case, detailed more completely in the qualitative field

study as FISHPOP [98], a user applied DR to a technique more appropriate to a dif-

ferent high-dimensional technique called sensitivity analysis. Sensitivity analysis

is outside the scope of the goals of both DimStiller and DR. This case represents

a mismatch between the user’s understanding the goals of existing DR workflows

and the user’s underlying task of gauging the sensitivity of output dimensions val-

ues to small changes in input dimensions.

In two other different deployment cases, users uncovered incorrect assumptions

in DR algorithms that needed to be addressed before DimStiller could effectively

handle their input. For example, one DimStiller user was a data analyst analyzing

distance-matrices resulting from the co-citation analysis of relevant terms, where

distances between terms were the result of a costly database calculation. Here, the

data analyst was prohibited from doing a full analysis without performing an im-

practical, months-long database calculation. Another user wanted to use DimStiller

to perform DR on vectors derived from document collections. DimStiller was not

equipped to process the extremely high-dimensional datasets resulting from ana-
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lyzing document data. Both of these issues were less about inherent limitations

of DimStiller itself than about DR in general, as any DR algorithm or tool would

encounter similar difficulties when applied to the same data.

For these users, important algorithmic obstacles needed to be surmounted be-

fore applying the workflows for which DimStiller was designed. By applying Dim-

Stiller to perform DR on practical problems, these DimStiller users highlighted the

issues that we tackle in the remainder of this thesis. In the case of the co-citation

analyst, we developed an adaptive algorithm framework to handle the case of cal-

culating DR in the presence of costly distance functions. For the case of Document

Data, we developed DR algorithms to efficiently leverage their high-dimensional

structure. Both of these issues, and the algorithms we developed, are covered in

more detail in Chapters 6 and 4 respectively.

Missing from our deployment were any unambiguous success stories, where

users reported insights and analysis process improvements from using DimStiller.

We believe most users in the deployment did not adopt DimStiller into their anal-

ysis workflow, using the software only during the period of our interviews. This

lack of adoption derives less from the design of the software itself, with which no

user in our deployment had issues, than from two important external factors we

observed: difficulty of software integration and our own lack of evangelism.

By software integration, we refer to the ease with which the inputs and outputs

of software systems connect with other software tools. For example, one of our

collaborators in the qualitative study remarked how she would be more likely to

use and recommend DimStiller if it could be easily incorporated into her R work-

flow [86]. DimStiller was implemented as a standalone Java tool with a single

generic input and output format. Thus, considerable software engineering and Java

expertise is required to build and incorporate new operators to the tool. In the fu-

ture, we believe guidance-oriented analysis tools should integrate themselves into

software platforms with a substantial base of existing techniques and users. Doing

so both mitigates the initial barrier to adoption and maximizes the ease with which

new or existing techniques can be folded into the tool.

Another factor affecting the adoption of systems like DimStiller is the effect of

software evangelism. Beyond the initial deployment and publishing of an article

describing DimStiller [58], we made no further effort to deploy to other communi-
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ties or improve the software, having shifted our research focus on addressing the

issues that appear later in the thesis, such as handling costly distances or document

data. We discuss the effects of software evangelism and other ways to increase the

impact of research more fully in Section 7.3.2 of this thesis.

45



Chapter 4

The Geometry of Fast Document
Queries:
Implications for Visual Analysis
Algorithms

The field of Information Retrieval, or IR, focuses in part on improving the accuracy

and speed of the task of querying document databases [75]. Search querying is

performed by millions of users of varying skill each day. To do so, a user poses

a set of terms to the query engine, which then provides a 1-dimensional list of

results back to the user, sorted in terms of predicted relevance to the query. Search

query results computed on databases of billions of text records are often returned

with processing time in less than a second, making it one of the more popular and

scalable computer algorithms.

One reason Information Retrieval algorithms for search querying can perform

so efficiently lies with an important property of the underlying data. We informally

name this property the Mostly Disconnected property, or MoDisco for short. Put

briefly, MoDisco datasets are those datasets with a large number of dimensions,

but where each point has a nonzero in only a subset of these dimensions, and each

dimension is set to nonzero for only a subset of the points. That is, not only are the
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points sparse, but so are the dimensions themselves.

The MoDisco property has implications for the efficiency and scalability of

query algorithms. High-quality query results can be computed by processing only

a small subset of the total dataset without degradation in quality, by organizing

the data into data structures such as inverted files and traversing these structures in

order of query-term impact [137]. We discuss the MoDisco property in detail and

its relationship with query algorithms in Section 4.1.

In contrast to querying, visual analysis often involves a more open-ended ex-

ploration. The document exploration task remains the purview of expert-level ana-

lysts in fields like intelligence analysis, law, and computational journalism, where

it is important to quickly understand large, unlabelled collections of text docu-

ments [25, 73]. In this context, exploratory methods tend to encounter scaling dif-

ficulties, and the characterization of large is often ascribed to datasets well under

ten thousand documents [52, 133].

We argue that the MoDisco property also has important implications for doc-

ument exploration algorithm design in visualization. By interpreting the MoDisco

property in terms of distance geometry, we can make useful statements about the

construction of distance-based analysis algorithms, like clustering and dimension-

ality reduction, used to explore these large, complex datasets.

As the first contribution of this chapter, we identify and describe the following

three implications for algorithm design in this paper.

• Nearest Neighbor search of MoDisco data can more efficiently be done with

search-index based queries rather than generic distance-based approaches.

• Distance matrices of MoDisco data can be calculated and stored efficiently

with low approximation error.

• Dimensionality Reduction algorithms for MoDisco data should use methods

based on local attraction and global repulsion.

While distance matrices, nearest neighbor search, and dimensionality reduc-

tion are useful in a variety of analysis pipelines [58], it is not self-evident how such

implications can be directly utilized to formulate new algorithms. As a followup
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contribution, we also describe three techniques, two new algorithms and a modifi-

cation of an existing algorithm, for incorporating these implications into the design

of algorithms intended for the visual analysis of documents:

• All Pairs Queries - we present a new algorithm for nearest neighbor search

of MoDisco data, which we use to construct an efficient Distance Matrix

approximation.

• Fast Cluster Tree - we present an algorithm for producing a hierarchical clus-

ter tree from our Distance Matrix approximation in O(N logN) steps.

• MD-SNE - we introduce the MD-SNE algorithm for dimensionality reduc-

tion of MoDisco data.
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Figure 4.1: Chapter diagram describing the relationship between our algorithmic contributions, the previous work used
as algorithm components, and the data structures created and used by these algorithms. Section 4.2 describes the
All-Pairs Query, or APQ, algorithm, which uses impact-sorted inverted file queries to process a set of term vectors
to yield a set of nearest neighbors for each vector. In Section 4.3, we describe how this set of nearest neighbors
can be input into the APQ to Distance Matrix algorithm to produce a Truncated Distance Matrix, a low-space
Distance Matrix approximation. We then demonstrate how to use the Truncated Distance Matrix efficiently with
the DM2CT algorithm which uses the Minimum Spanning Tree (MST) algorithm as a component to produce a
Cluster Tree. Section 4.4 describes the MoDisco-SNE (MD-SNE) algorithm for dimensionality reduction.
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Figure 4.1 summarizes the contributions of this paper with a diagram show-

ing the relationship between our implications, our algorithmic contributions, and

previous work used as algorithm components.

After first defining the MoDisco property and how it relates to document term-

vector datasets in Section 4.1, the remainder of the paper is organized around the

three different algorithm design implications. In each of Sections 4.2, 4.3, and 4.4,

we explain the design implication, present an algorithm incorporating the design,

and compare the results of the algorithm with competing work.

4.1 The Mostly Disconnected Property of Term-Vector
Datasets

Query systems often use the vector space model, storing documents as term vec-

tors [96]. Here, document refers to a string containing the content of a single

text file. The document string can then be broken into terms: n-grams of words.

Term vectors reside in a space whose dimensions are all of the terms in the en-

tire database, and whose weights indicate the importance of a given term in iden-

tifying the underlying document. Using such vectors is not only more efficient

than processing the varying-length document content during a query, but it per-

mits us to conceive of the documents as points residing in term-space. We can

then think about documents spatially, just as we would any other distribution of

high-dimensional data points.

In this section we first describe the method by which documents are trans-

formed into term vectors. We then present a set of term-vector datasets derived

from real-world document corpora. Next, we indicate how the transformation

method induces the mostly disconnected property by measuring properties of our

benchmark datasets. Finally, we explain the method by which query algorithms are

able to extract performance from this property.

4.1.1 Term-Vector Datasets and TF-IDF

An influential method for determining the weights assigned to term-vector dimen-

sions in the IR literature is the TF-IDF method [95]. TF-IDF, short for Term Fre-

quency times Inverse Document Frequency, is a scheme that assigns a large weight
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to terms that appear in a document frequently, but then discounts that weight by

how often the term appears in other documents. The weight of common words is

reduced and unique words increased. Using the probabilistic model of IR, TF-IDF

has already been shown to be an optimal model of document relevance under a

set of simplifying assumptions [89]. In contrast to this probabilistic perspective

regarding document relevance, we develop a spatial intuition of why TF-IDF is

efficient in document queries.

Term vectors are typically normalized to unit length, to control for document

size by forcing long documents with large term frequencies to carry the same

weight as short documents with small term frequencies. This normalization im-

plies that document points reside on the surface of a hypersphere. The fact that

term weights are always nonnegative restricts their distribution further to the posi-

tive orthant of this sphere.

The common distance metric used between term vectors is the cosine distance

metric [95]. The cosine distance between vectors a and b is equal to 1−aT b, or 1

minus the dot product between the vectors. While other related metrics exist, we

focus on the cosine metric due to its simple geometric interpretation as one minus

the length of the linear projection of vector a onto b.

4.1.2 Benchmark Datasets

Our explanation of the Mostly Disconnected property requires demonstrating and

measuring the sparsity characteristics of a set of varying benchmark datasets. The

benchmarks in this paper are run on a set of seven datasets. Four of them are col-

lections of MoDisco term vectors generated using TF-IDF term weights from text

databases; three are real-world datasets and one is synthetic. The metacombine

dataset is produced from metadata tags harvested from a disparate collection of

digital libraries [67]. The warlogs and cables datasets are subsets of docu-

ments from larger Wikileaks collections [59]. The conspiracy dataset is har-

vested from the conspiracy section of a BBS textfile collection1. We include the

synthetic simplex dataset as an extreme example of a MoDisco dataset, which is

a set of 1000 points equally distant from each other in 999-dimensional space. An

1http://www.textfiles.com/ Last visited on July 10, 2013
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Name Points (N) Dims (M) MoDisco?
metacombine 28K 28K Y
cables 7K 66K Y
warlogs 3K 4K Y
conspiracy 1K 33K Y
simplex 1K 1K Y
grid 1K 2 N
mnist 2K 784 N
blobs 6K 5 N

Table 4.1: Benchmark datasets, with size in terms of both points and dimen-
sions. The first five are MoDisco; the second three are not.

(N−1)-dimensional simplex dataset is equivalent to an N×N identity matrix I.

The term vector datasets in this thesis are constructed with the following pipeline.

First the text is split into ordered sets of words. These word sets are then stripped

of a designated list of stop words. The remaining words in the set are then used

to create bigrams, pairs of subsequent words. Term counts for each document are

then constructed by counting the occurrences of each bigram in each document.

These term counts are finally re-weighted by TF-IDF and then normalized to unit

length. Stray has a more detailed description of the term-vector generation process

including justifications for not using alternative approaches, such as entity recog-

nition [109].

For contrast, we also include three datasets that are not MoDisco, also a mix

of real-world and synthetic. As a synthetic example of a linear manifold, or flat

surface, we include a regularly sampled 2-D lattice called grid. The real-world

mnist dataset contains the combined test sets of digits 1 and 2 in the MNIST

handwritten digit dataset2, as an example of a high-dimensional, real-world dataset

with two meaningful clusters. Finally, the synthetic blobs dataset is a collection

of 6 clusters of 1000 points randomly generated from 6 separate 5-dimensional,

Gaussian distributions. Table 4.1 provides the characteristics of these benchmark

datasets in terms of the number of points N, the term space dimensionality M, and

whether it has the MoDisco property.

2downloaded from http://yann.lecun.com/exdb/mnist/ Last visited on July 10, 2013
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4.1.3 The Mostly Disconnected Property

The intuitive definition of the MoDisco property is that each point mostly resides

in a small subspace of the full term space, represented by a small number of key

terms. Furthermore, these same key terms weigh highly with only a small subset of

the other data points. To formally define the MoDisco Property, we first introduce

a descriptive statistic measuring the sparsity of both points and dimensions of the

dataset with N points and M dimensions. First, we define the thresholded sparsity

of a point i to be

Pi(t) = |{xi j|xi j > t, j ≤M}|/M

and the thresholded sparsity of a dimension j to be

D j(t) = |{xi j|xi j > t, i≤ N}|/N

for some threshold 0 < t < 1. The purpose of introducing threshold t is to re-

move vector terms from the data with very low weight. Low-weight terms often

contribute little to the distance calculation between two points, and can potentially

make operationally sparse data appear dense. In our analysis, we select t = 0.1,

but it holds for a wide set of values. We can now define two worst-case sparsity

measures

maxP(t) = max{Pi(t)|∀i ∈ [1,N]}

maxD(t) = max{D j(t)|∀ j ∈ [1,M]}

Given these worst-case thresholded sparsity measures, we now say that a dataset

is MoDisco when both maxP(t) < B and maxD(t) < B. Here, B ∈ (0,1) is some

bound on the desired sparsity of the data; a smaller B imposes stricter sparsity re-

quirements on the data. These two inequalities are descriptive statements about the

worst-case sparsity of any single point and dimension in the data. They implicitly

describe how the design implications we present in this paper hold true and are not

computed explicitly by any of the presented algorithms. As a side note, it is not

meaningful to make statements differentiating the average sparsity of points versus

dimensions of a dataset, because these measures are equivalent.
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Figure 4.2: Plot of MoDisco statistics (maxP(0.1),maxD(0.1)) showing
clear separation between MoDisco datasets (circles) and non-MoDisco
datasets (squares). The boundary B defines the region of MoDisco
datasets, we present two extreme possibilities, B = 0.2 and B = 0.9,
that agree with our datasets. In the MoDisco case, each point has a
small number of nonzero dimensions and each dimension is expressed
by a small number of points.

Figure 4.2 shows a plot of the points (maxP(0.1),maxD(0.1)) for the suite of

7 benchmark datasets. The five MoDisco term-vector datasets, represented as cir-

cles, are distinctly separated from the other 3 non-MoDisco datasets, represented

as squares. Empirically, the worst case sparsity bound B can take values anywhere

between 0.2 and 0.9, demarcated by grey lines on Figure 4.2. Given that we ob-

serve significant separation between MoDisco and non-MoDisco datasets, we do

not prescribe any specific value of B.

There is an intuitive explanation of why term-vector schemes like TF-IDF in-

duce the MoDisco property. The TF component defines the subspace in which
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each vector resides, while the IDF component reduces the subspace weights below

t for those dimensions shared by many vectors, effectively reducing the subspace

dimensionality and disconnecting most vector subspaces from each other (unless

they possess sufficient TF weight to compensate). Without the IDF discounting

factor, most of the set of subspaces in which vectors reside would connect by in-

tersecting across the dimensions representing common terms.

By definition, the MoDisco property implies that the distribution of the set

of cosine distances between points is highly skewed toward 1. Two randomly

sampled documents from a MoDisco data set will share few, if any, terms on

average. This phenomenon has been observed and noted in the IR literature on

query datasets [84]. Figure 4.3 verifies this phenomenon by showing distance his-

tograms for benchmark datasets: the histogram of the MoDisco warlogs dataset

is most similar to the high-dimensional simplex case, rather than the other three

non-MoDisco examples of a regular grid and the two cluster datasets.

4.1.4 Implication for Efficient Queries

MoDisco data are highly amenable to efficient search queries, due to the mapping

of the data into fast, orderable search indices. We now explain how these indices

are constructed, and how the MoDisco property affords efficient lookup of relevant

documents.

An important search data structure is called an Inverted File [137]. It is so

named due to the inversion from the standard term-vector storage that maps a doc-

ument to a list of terms, to a mapping from a single term to a list of documents

that store that term. Query processing using the inverted files need not compare

the query to the entire document corpus, but only to those documents that share the

query terms.

Improved traversal of the inverted file can be done by performing an impact

sort, or simple re-ordering of both the index lists and the order of their traversal.

Impact ordering has been shown to compute higher-scoring query results earlier

than low-scoring queries [3]. The advantage of computing these higher-impact

queries first is that we can truncate the query computation after computing the top-

scoring queries.
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Figure 4.3: Distance Histograms of different dataset types. a) Histograms
of distances (top) and layouts showing dataset geometric structures af-
ter dimensionality reduction (bottom) for non-MoDisco datasets grid
(blue), mnist (yellow), blobs (purple), and the synthetic extreme
MoDisco case of the simplex (green). b) Real-world MoDisco dataset
warlogs (brown) histogram matches the simplex case the best.

The cost of impact-ordered traversal is that the accuracy of the query results

are approximate. Many efficient query-evaluation systems exist that produce exact

results [34]. In this paper, we focus on impact-ordering techniques for their user-

controlled flexibility of the speed and quality tradeoff.

Impact-ordered, inverted file indices exploit the MoDisco property in the fol-

lowing way. The traversal of the documents indexed by the inverted-file terms con-

tained in the query is ordered by the magnitude of their 1-D projections with the

query’s subspace dimensions. This ordering ensures that we first visit the strongly

connected documents, those with large dimension weights intersecting the query

subspace.
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4.2 Nearest-neighbor Search
The computational task of selecting the nearest neighbors of a point applies to

a broad class of problems and is the subject of a significant amount of previous

work [72]. For data with the MoDisco property, we suggest that nearest neigh-

bors are most efficiently computed using index-based queries, rather than the two

other major categories of nearest-neighbor search techniques that are relevant to

our context: spatial partitioning strategies and mapping-based techniques. In this

section we discuss the related work, and then explain how index-based queries can

be expected to out-perform the state of the art. We then present a new algorithm for

all-pairs, approximate k-nearest-neighbor search using an impact-ordered inverted

file and show how it achieves high accuracy results in less time than competing

approaches.

4.2.1 Implication: Nearest-Neighbor Search with an
Impact-Ordered Inverted File

We suggest that when processing MoDisco data for nearest-neighbor search, query

indices are more efficient than either spatial partitioning or mapping based tech-

niques. We provide an intuitive justification for this claim in this section, backed

up with an empirical analysis of the benefits of using query indices in Section 4.2.3.

Each term vector resides in a low-dimensional subspace of term space, and the

inverted file maintains a record of the subspace dimensions for each vector. When

using the terms of a given term vector as a query into the impact-ordered index, we

first encounter those vectors whose projections onto the query’s subspaces dimen-

sions are the largest. These vectors are more likely to be in the set of points closest

to our query. In this way, the impact-sorted, inverted file already acts like a map-

ping function on MoDisco data, but without the need to compute any projections

or hash functions.

Spatial partitioning strategies and mapping based techniques, in contrast, op-

erate with no a priori knowledge of the subspace structure of the data. They must

first resolve the relevant data subspaces by either building the spatial-partitioning

data structure or computing enough mapping functions to effectively discretize the

term space into relevant regions.
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It is instructive to note how using index queries for the general case, when the

data does not have the MoDisco property, will fail to improve over other nearest-

neighborhood search methods. In the general case, there is no guarantee that most

points will reside in a low-dimensional subspace. In the case of a dense dataset, sin-

gle inverted index entries are full, containing references to the entire set of points.

When inverted file entries are full, they provide no useful method for reducing the

search space for neighboring points. Indeed, in the full inverted-index-entry case,

the inverted file devolves into an exhaustive search over all the data points. In the

case of sparse rows, but not sparse columns, we can guarantee that most points

reside in a low-dimensional subspace. However, we still cannot guarantee against

the existence of a full inverted index entry.

4.2.2 Algorithm: APQ

Our All Pairs Queries (APQ) algorithm constructs an approximate set of k-nearest

neighbors without exhaustively computing all the similarities between data points.

We have argued that the fastest way to perform nearest neighbor search on MoDisco

data is with index queries, where the query is constructed from the terms of the

document itself. Thus, to compute the full set of nearest neighbors, we will want

to perform an ensemble of queries across all pairs of data points. Using impact-

ordered processing, we can then truncate the query computation when we produce

the highest scoring, or nearest results.

The APQ algorithm performs an ensemble of queries in an iterative way us-

ing data structures similar to the single query case [137]. The algorithm maintains

several lists of fundamental data structures. First, the term vector dataset V . The

inverted file I, which we store as a list of arrays of document indices, is sorted in

order of term weight. The expression I[i, j] references the document whose weight

for term i is the jth largest among documents possessing that term. Figure 4.4

presents a simple two-document term dataset and its corresponding inverted file.

The third list Q is the set of terms for each point, where each set of terms is orga-

nized as a priority queue. Figure 4.5 describes the values stored in each priority

queue element: the queue item priority used to position the item in the queue, a

term used for indexing a row in the the inverted file, a term pos recording the po-
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Figure 4.4: A sample term vector dataset and its inverted file. The terms in
V become the indices of the rows in I, while the IDs of the documents
forming the rows in V become the indices for the weights stored for each
term in I. The list of weights for each term in I are stored in descending
order of document weight.

sition number of the term in the term vector, and a counter used to index a column

in the inverted file. The accumulators are a list A of hash sets that map document

numbers to accumulated terms. The accumulator A[i, j] stores the accumulated

terms that make up the inner product between document i and j up to the current

iteration. These sets of accumulators A are the output of the algorithm. We discuss

how to interpret A as a distance matrix in section 4.3.1.

The primary difference between our method and the single-query, impact-ordered

algorithm is the introduction of the set of priority queues Q. In the single query

case, impact ordering is achieved by sorting the set of inverted file term entries

using the product of each query term weight and the matching inverted file term

weight as a sort key. The priority queue entry for each document Q replicates the

same sort ordering by making the priority value for each queue entry the same as

the sort key. The priority value for the head queue element is then updated to be

the product of the queue entry weight with the next term in the inverted file, thus

repositioning the item in the queue. Using the priority queues interleaves the sort

ordering and accumulation calculations in a single inner-loop iteration. Figure 4.6

presents the whole APQ algorithm in pseudocode.

59



The anatomy of Q elements

0.4 dog 1 1

Term Pos: position of term in term vector

Counter: increment into document list in I

Term: The term used to derive the impact score

Priority: Impact score for this element, 
used as a sort key

Figure 4.5: Anatomy of Priority Queue elements maintained for each doc-
ument. The priority queue Q is used to sequence the computation of
terms in the APQ algorithm in impact order.
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INPUT
V : Term Vector Database
I : Inverted File
maxiter : Maximum number of iterations to run
OUTPUT
A : List of Accumulator Sets
procedure APQ(V, I,maxiter)

for i← 1,M do . Loop over terms
I[i].sort() . Sort each term index.

for i← 1,N do . Loop over documents
for j← length(V [i, ]) do . Loop over terms

t←V [i, j].term . term index
a←V [i, j].weight . document term weight
b← I[t,1].weight . top index term weight
qitem← (a∗b, t, j,1) . Build priority queue item
Q[i].insert(qitem) . Insert priority queue item

while iteration < maxiter do
for i← 1,N do . Loop over documents

. Begin A update
qitem← Q[i].head . Grab the highest priority item
t← qitem[2] . term index
c← qitem[4] . index counter
A[i, I[t,c].docid]+ = qitem[1] . accumulate term

. Begin Q update
qitem[4]← c+1 . increment index counter
j← qitem[3] . term number
qitem[1]← I[t,c].weight ∗V [i, j].weight . update priority
Q[i].update(qitem) . reposition queue item

Figure 4.6: All Pairs Queries algorithm pseudocode.
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How A and Q are updated using V and I 

0.8 cat 2 21Q

STEP 2: Update Q 

0.8 cat 2 2 V1 1 cat 0.9Q

Selects Row in V
Selects Column in V

0.8 cat 2 2
V

1
1 cat 0.9

Q

I cat 0.91

Selects Row in I Selects Column in I

0.52

0.4 cat 2 2
V

1
1 cat 0.9

Q

I cat 0.91

Multiply Weights

Update Q item priority with product

0.52

2.1

2.2

2.3

2.4

Increment counter0.8 cat 2 11Q

STEP 1: Update A 

0.8 cat 2 11Q I cat 0.91

Selects Row in I

Selects Column in I

0.8 cat 2 11Q I cat 0.91

1A 01

Selects Column in A

Selects Row in A

1.1

1.2

1.3

0.8 cat 2 11Q

1A 0.81

Add Priority to A

1.4

Select Head of Q

Figure 4.7: Diagram of the accumulator and priority queue update. The accumulator A and the priority queue Q
associated with each document are updated using the term-vector dataset V and the inverted file I after each
iteration of the APQ algorithm. The left half of the figure diagrams the steps that update A. The right half of the
figure diagrams the steps that update Q.
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The main loop of the APQ algorithm consists of two steps applied to each

document. In the first step, we update the document’s accumulator list and in the

second, we update its priority queue. Figure 4.7 illustrates these two steps using the

example dataset listed in Figure 4.4. The diagram shows the relationship between

the data structures in the pseudocode: the term vector database V, the inverted file

I, the list of priority queues Q, and the list of accumulator sets A. (Technically, the

two-document dataset in the illustration is not MoDisco, but we use this simple

example for clarity.)

The update to a document’s accumulator list, illustrated in the left box in Fig-

ure 4.7, is done in four sub-steps. First, we read the head element from the priority

queue. We then use the term and counter members of the queue element to in-

dex into the inverted file I and reference the appropriate document-id/term-weight

pair. The ID of the document we are currently processing and the ID stored in the

referenced pair provide an index into the appropriate entry in the accumulator file

A. We then add the priority value of the queue element to the value stored in the

accumulator file entry.

After updating the accumulator for a document, we update the priority value

of the head queue element. This update is illustrated in the right box in Figure 4.7.

First, we increment the counter field of queue element. Then, in the next two steps,

entries from V and I are referenced using the queue element’s indexing fields. The

priority value of the queue element is then set to the product of the weight fields

from these referenced entries. After updating the queue item priority, its position in

the queue is updated, possibly shifting its location relative to other queue elements.

Note that, before entering the main loop, we must first initially construct the

priority queue Q[i] of each document with one queue element for each term. The

priority values used by the priority queues are the impact ordering scores. As

shown in the right box of Figure 4.7, the impact ordering scores for queue elements

are computed by taking the product of the term weight and the corresponding term

in the inverted file referenced by the counter of the queue item. At the beginning

of the algorithm, the index counters are all 1 and so we reference the first entry in

the inverted file list for the indexed term.

The algorithm outer loop may terminate over a variety of possible thresholds.

For instance, search engines often simply compute a fixed number of iterations

63



resulting in a small subset of results for the user to peruse, allowing a user to

compute iterations only if interested. This case is presented in the pseudocode in

Figure 4.6. In practice, we use a termination threshold based on the change in the

largest k accumulators.

4.2.3 APQ Results

We compare our APQ algorithm to state-of-the-art representatives from the spatial-

partitioning and mapping classes of nearest-neighbor-search algorithms. For spa-

tial partitioning, we select the Vantage-Point Tree (VPT) algorithm3 [135]. For

mapping algorithms, we select the Locality-Sensitive Hashing (LSH) algorithm4 [39].

We modified both the VPT and LSH implementations to be able to rapidly store

and compute cosine distances of sparse feature vectors.

As a quality measure, we compute the adjusted agreement rate [53] between

the true set of nearest neighbors and the nearest neighbors returned by the approxi-

mate nearest-neighbor algorithm. Agreement rate measures the average size of the

intersection between sets. Adjusted agreement rate subtracts the expected number

of intersections due to chance. The formula for adjusted agreement rate is

ARk =

(
1

kN

N

∑
i=1

ai

)
− k

N−1

where N is the number of points, k is the considered number of neighbors, and

ai is the number of true k-nearest neighbors appearing in the set of the k-nearest

neighbors in the layout.

For APQ, we sample AR5 measure across a range of compute times. Direct

comparison between APQ and the LSH algorithm is complicated by the presence of

two parameters: number of hash tables, and the number of mapping functions per

table. We regularly sample these two parameters at integer locations over a range

between 5 and 80 for hash tables, and 5 and 10 for mapping functions, generating

a set of nearest neighbors for each sample and recording the compute time and

AR5 for each sample. We then compute the efficient frontier of these samples with

3implementation in C++ provided by van der Maaten.
4implementation in C++ as part of the Caltech Large Scale Image Search Toolbox
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Figure 4.8: Speed vs. Accuracy chart for the APQ 5-nearest-neighbor search
algorithm on the warlogs dataset.

respect to time and AR5 to produce a comparison curve. Since VPT is a parameter-

free algorithm, we simply ran it once, recording the resulting AR5 and compute

time.

All result timings in this paper are generated on a 13-inch Macbook Pro running

OS X 10.8 with a 2.5 GHz Intel Core i5 processor supplied with 8GB memory. Our

implementation of APQ and all other implementations in this paper are written in

the C programming language.

Figure 4.8 shows the speed-vs-accuracy tradeoff for APQ, LSH and VPT on

the task of selecting the 5 nearest neighbors on the warlogs dataset. Speed is

measured in CPU time, and accuracy is measured as the fraction of correctly la-

belled nearest neighbors in the 5-nearest-neighbor set. The chart indicates that

APQ achieves the same search accuracy in less time than the LSH or Vantage

Point Tree techniques. We ran the same analysis with other values of k and other
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MoDisco benchmark datasets; the result was identical relative positioning of the

algorithms.

4.3 Distance Matrix Computation and Storage
Distance matrices store the distances between points in a data set. In addition to be-

ing interesting objects of theoretical study, they often serve as input to practical data

analysis algorithms like clustering [1] and dimensionality reduction [118]. Com-

puting and scanning the entire distance matrix is costly due to the O(N2) unique

entries stored in the matrix. In this section we discuss how the MoDisco property

implies that we do not need to compute and store this entire database, leading to

significant savings in cost. We then demonstrate how to use approximate distance

matrices in practice, introducing an algorithm that uses our distance matrix approx-

imation to produce a hierarchical clustering of the input data in less time than using

a full inverted file traversal.

4.3.1 Implication: Truncated Distance Matrices

We can greatly reduce the size of storage required for a distance matrix of MoDisco

data without suffering from excessive approximation errors. We can accomplish

such an approximation by storing distances between term vectors that share high-

impact terms and further assuming the remaining distances are 1. This implica-

tion is a direct consequence of the distribution of weights among term vectors in

MoDisco data where we assume that a vector xi possesses a small number Xi(t)

of high-impact weights, and that the number of vectors Yj(t) that also possess a

high-impact weight for these same dimensions is also small.

An efficient strategy for storing and retrieving these distances is to maintain

a hash table for each data point, where distance matrix values are keyed by point

index. Using such a strategy, any particular distance di j can be computed in O(1)

by checking if the key j exists in the ith table. If it does exist, the stored distance

value is returned; if the key does not exist, it is safe to return 1. We call this efficient

distance matrix data structure a truncated distance matrix.

Finally, the APQ2DMAT method translates the set of accumulator lists A re-

turned by APQ into a truncated distance matrix. First, we initialize the distance
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matrix by constructing an empty hash set for each document. Then, we iterate over

all accumulator entries in each accumulator list, adding 1 minus the value of jth

entry of the ith list to the jth entry of the ith hash set in the distance matrix. To

symmetrize the distance matrix, we also insert the same value to the ith entry of

the jth list.

4.3.2 Algorithm: Fast Cluster Tree Calculation with DM2CT

Cluster dendrograms are diagrams that display hierarchical pairwise relationships

between clusters in the data. They are visual representations of the cluster tree:

a tree whose nodes represent successively higher-density regions of the data, and

is computed using hierarchical clustering algorithms. Single-link clustering is a

classical hierarchical technique that is isomorphic to the Minimum Spanning Tree

(MST) of the complete graph induced by the distance matrix, where edge weights

between points are determined by distances between the same points.

We now present the DM2CT algorithm for computing a single-link cluster tree

from a truncated distance matrix in O(N logN) steps. The first step of DM2CT

is to convert the dataset into a graph. To do this we first construct a set of graph

vertices, one for each document. Then we map the set of distances stored in the

matrix into graph edges, where the distance di j is converted into an undirected edge

between vertex i and j with weight di j. Finally, we perform Kruskal’s algorithm

in O(E logE) steps to generate the MST of this graph [68]. The order in which

edges are added to the MST is the same order that clusters are joined together in

the hierarchy. DM2CT is similar to the Voorhees algorithm for computing exact

cluster trees from inverted files [119], which uses Prim’s MST algorithm with a full

traversal of the inverted file. By using APQ with impact ordering and APQ2DM

to generate our distances, we avoid full traversal while still maintaining a good

approximation of the distance matrix.

4.3.3 Cluster Tree Results

We compare the speed of DM2CT with the method suggested by Voorhees [119],

which performs a full traversal of inverted file structure. We consider the clustering

created by this exact method as the ground truth, and compute a Fowlkes-Mallows
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index score [35] between each clustering pair to check the quality of our approx-

imation in terms of fidelity to this ground truth. Fowlkes-Mallows scores are a

measure of how closely two clusterings correspond for a set number of clusters C.

A score close to zero is poor, with random associations between the two cluster-

ings, while a score close to 1 implies identical cluster assignments. We denote the

Fowlkes-Mallows index for the clusters produced from cutting the tree at the 500th

split as FM500, and for the 1000th split as FM1000.

Our results in Table 4.2 show an order of magnitude improvement in speed

using the approximate truncated distance matrix approach over using the exact

inverted-file method. The quality is roughly equivalent; we observe high Fowlkes-

Mallows scores near 1.0 between the two clusterings, whereas a random clustering

would yield a score of 0.0.

4.4 Dimensionality Reduction
In this section we first summarize the extensive related work regarding dimen-

sionality reduction. We then discuss the implications of the MoDisco property for

performing dimensionality reduction on term-vector data. Finally, we present an

algorithm for scalable dimensionality reduction of term-vector data and measure

layout quality relative to competing dimensionality reduction approaches.

4.4.1 Implication: Dimensionality Reduction through Local
Attraction and Global Repulsion

The unique geometry of MoDisco data presents several challenges to DR algo-

rithms. The MoDisco property implies that points mostly reside in a low dimen-

sional subspace that is orthogonal to most of the subspaces in which the other data

points lie. We would naturally like the local region of a low-dimensional layout of

each point to reflect the nearer points with intersecting subspaces. This requirement

implies a necessary local attraction between a point and its nearest neighbors in

term space. We now consider the distant points with orthogonal subspaces. While

the cosine distance between two points being orthogonal is 1, the semantic mean-

ing of two documents being orthogonal implies that they are unrelated. Therefore,

we argue that it makes more sense for orthogonal points to simply repel each other
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Benchmark N M Distances FM500
fidelity

FM1000
fidelity

DM2CT
time
(ms)

Voorhees
time
(ms)

speedup

metacombine 28K 28K 2597 14323 6 0.94 0.96
cables 7K 66K 2155 114300 53 0.96 0.92
warlogs 3K 4K 531 4608 9 0.92 0.7
conspiracy 1K 33K 715 5839 8 0.74 N/A
Benchmark N M Clustering FM500

fidelity
FM1000
fidelity

DM2CT
time
(ms)

Voorhees
time
(ms)

speedup

metacombine 28K 28K 532 175036 329 0.94 0.96
cables 7K 66K 67 104308 1557 0.96 0.92
warlogs 3K 4K 34 5745 169 0.92 0.7
conspiracy 1K 33K 7 437 62 0.74 N/A

Table 4.2: Comparison of hierarchical clustering timing and accuracy using
the truncated matrix with our approximate DM2CT algorithm vs. using
the inverted file with exact Voorhees method. We divide runtimes of the
two methods into the time it takes to compute the distances and the time
it takes to compute the cluster tree. The fourth and fifth columns give
timings in milliseconds. Column six gives the speedup achieved using
DM2CT over the Voorhees method. The last two columns FM500 and
FM1000 denote the Fowlkes-Mallows indices for clusters at the 500th and
1000th split in the tree respectively; an index score close to 1.0 indicates
high fidelity between the two clusterings. The DM2CT method achieves
orders of magnitude speed improvement while maintaining high fidelity
with the exact ground-truth clustering.
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than to attempt to fit precisely to a unit distance apart. Since most of the points

in a MoDisco dataset are unrelated, we need a DR method that can apply a global
repulsion between all points.

In the remainder of this section, we discuss how the MoDisco property and

the need for local attraction and global repulsion negatively affects the first three

families discussed in Section 2.1 but can be accommodated with the probability-

based family.

Candidate Property: Orthogonal Projections

Orthogonal projections are an ineffective solution for reducing the dimensions of

MoDisco data because the majority of the orthogonal variance in MoDisco data is

captured by the disconnected relationships in the data. Assuming the data is clus-

tered in G clusters, the average distance between these clusters will be 1.0, creating

a G-dimensional simplex. The first G principal components will primarily express

these unit-length, inter-cluster distance relationships, often without resolving any

of the intra-cluster distance relationships that may reside in a subset of orthogonal

dimensions. Because G is often larger than 2 or 3, PCA by itself is an ineffective

tool for producing low-dimensional visualizations of MoDisco data.

Candidate Property: Global Distances

There is surprising variability to the number of MDS techniques [36], but our ar-

guments here hold for any particular MDS algorithm. The problem that MDS

methods have with MoDisco data lies with optimizing the layout to fit the prepon-

derance of unit length distances. MDS methods optimize a function called stress,

which sums the residuals between the high and low dimensional distance matrices.

Buja and Swayne noted the problem of indifferentiation [16] when using MDS

for datasets where distances are clustered around a positive constant, with the ex-

treme case being a perfect simplex: the high-dimensional analog of a tetrahedron,

where every object is equally distant from every other object. In this case, applying

MDS yields low-dimensional layouts with a characteristic shape approximating a

uniform ball: in 2D, it is a circular disk with a sharp edge and a low density in the

center. They caution data analysts to avoid misinterpreting this artifact as mean-
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ingful dataset structure. Figure 4.3 shows the similarity of MoDisco data to their

simplex example; both the simplex and the MoDisco distances are largely skewed

toward a single value. To our knowledge, their observation is the only close con-

nection between the concept of MoDisco data and a Visual Analytics use case;

unfortunately their thoughtful analysis has not percolated into the visualization lit-

erature.

Continuing with this line of analysis, we argue that MDS algorithms spend

most of their time on nearly useless computations when applied to MoDisco data.

Because no simplex can fit without distortion into a low-dimensional projection,

the unit-length distances make up the majority of the error of the objective function.

Unfortunately, these disconnected unit-length distances dominate the computation

in a way that is inversely related to their importance; the important local distances

to their nearest neighbors are not given enough weight.

One strategy to improve MDS maps is to modifying the objective function

using polynomial re-weighting of the terms inversely proportional to distance, as

in Sammon mapping [97]. However, such schemes do not go far enough; they still

retain the need to fit all the distances of unit length in the objective function. Our

results in Section 4.4.3 show the negative impact that fitting the global distances

has on layout quality with MoDisco data.

Candidate Property: Manifold Distances

After observing the deleterious effects of fitting global distances, the notion of

stitching together the local term vectors into a useful layout may seem attrac-

tive. However, in practice, manifold techniques struggle with building an effective

manifold model over MoDisco data. Their connectivity assumptions often do not

hold because the sampling of the different subspaces is very sparse, often lead-

ing to significant distortions. This phenomenon is well documented by van der

Maaten [118], who reports that the performance of manifold methods are consis-

tently thwarted by noisy, real-world examples.
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Candidate Property: Probabilities

Probability-based methods like SNE [50] and t-SNE [117] can accommodate both

local attraction and global repulsion. To achieve local attraction, we fit a Gaussian

probability distribution only over the nearest-neighbor set of each input point. To

achieve global repulsion, we can simply assign a zero probability to points that

we consider to be disconnected from each other. Unlike the previously described

DR techniques, probability methods permit significant flexibility in the relative

placement and handling of zero-probability points. Using a spring-force metaphor,

zero-probability points are attached to a point with an infinite-length spring that

rapidly diminishes in spring force as a function of distance. In contrast, distance-

based methods such as MDS always assign a fixed-length spring between points

that will invariably contract to some finite length, producing an attractive force

between two points that have no meaningful relationship. The crucial property of

this family of methods is the ability to assign zero weight to points in a way that is

consistent with the mathematical framework; developing different approaches that

do not use probabilities to do so would be interesting future work.

In Section 4.4.2 we detail the results of a modified implementation of the BH-

SNE algorithm [116]. We choose the BH-SNE algorithm over other probability-

based DR methods due to empirical evidence of good cluster separation, as well as

its proven O(N logN) iteration cost. Because the NE algorithm [134] is virtually

identical to BH-SNE, the results below remain the same if the NE algorithm is

substituted for BH-SNE.

4.4.2 Algorithm: MD-SNE

Our discussion of Implication 3 notes that the t-SNE algorithm minimizes the di-

vergence between the probabilities of the layout and the data [117]. We now de-

scribe a scalable, efficient way to construct high-quality probability-based layout

of document datasets. We first discuss the implementation details of the BH-SNE

algorithm and its shortcomings, and then describe our own modification to the al-

gorithm to adapt it for MoDisco data.
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BH-SNE

BH-SNE [116] is a modification of the t-SNE algorithm [117], which is itself a

modification of the Stochastic Neighborhood Embedding, or SNE, algorithm [50].

SNE fits Gaussian probability distributions for each point over the other points in

the dataset with variances determined by a single user-selected parameter called

perplexity. It then positions points in low-dimensional space in such a way that

minimizes the Kullback-Leibler divergence (a measure of the difference between

probability distributions) between the high and low dimensional Gaussian distribu-

tions. The t-SNE algorithm improves the cluster separation of the low-dimensional

points by using a Student’s t distribution for the low-dimensional probability model.

The mismatch between the tails in the Gaussian and Student’s t distributions effec-

tively adds more space between dense regions in the layout, reducing the visual

crowding problem. Both SNE and tSNE perform dense operations on the distance

matrix and therefore do not scale well for datasets beyond roughly 10,000 points.

BH-SNE is a technique for approximating t-SNE efficiently on larger datasets.

First, BH-SNE approximates the probability distribution for each point by fitting

the high-dimensional probability distribution to only the k-nearest neighbors of

any given point, and assigning zero probability to the remaining points. In the

published method, nearest neighbor search is performed by first reducing the di-

mensionality with PCA and then using Vantage Point Trees [135] in this reduced

space.

t-SNE optimizes its objective function using a momentum-weighted gradient

descent, requiring O(N2) dense-matrix computations. For BH-SNE to perform this

same optimization efficiently, it re-expresses the gradient of its objective cost func-

tion in two parts: an attractive part and a repulsive part. The attractive part of the

gradient is calculated in O(N) time using the set of nearest neighbors, valid since

the zero-probability points exert no attraction. The repulsive part of the gradient,

which involves all pairs of points, is computed in O(N logN) time using a Barnes-

Hut quadtree approximation. The Barnes-Hut quadtree discretizes space in such a

way that the algorithm can approximate repulsive forces with an accuracy depen-

dent on the distance [5]. This approximation is valid because, in the case of t-SNE,

the magnitude of the repulsive force often decays as a function of distance.
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MD-SNE

Applying BH-SNE directly to MoDisco data is straightforward. The primary short-

coming of the BH-SNE procedure when applied to MoDisco data is its ineffective

nearest-neighbor strategy: using PCA to reduce to 50 dimensions followed by Van-

tage Point Tree (VPT) search. While this method succeeds for small MoDisco

datasets, our results in Section 4.4.3 show that as the size of the term spaces in-

crease, the PCA-VPT method breaks down. Instead, we can use our APQ algo-

rithm to generate a truncated distance matrix of k distances per row, where k is the

number of nearest neighbors requested by BH-SNE. Then, we simply substitute

the indices and distances of the truncated distance matrix in place of the nearest

neighbors set computed using their strategy. The BH-SNE algorithm then pro-

ceeds normally. Unlike the PCA-VPT method, the quality of the APQ method is

independent of the size of the input on MoDisco data.

4.4.3 MD-SNE Results

We compare with representative algorithms from different classes of dimensional-

ity reduction. For linear projection methods, we select Principal Component Anal-

ysis, with eigenvectors computed using a fast SVD algorithm [47]. For distance-

based methods, we select the hierarchical, stochastic Glimmer MDS algorithm [57].

Finally, we compare MD-SNE to results produced by BH-SNE.

The speeds between the different DR methods are commensurate. The MD-

SNE algorithm produced a layout of our largest distance matrix, metacombine,

in approximately 5 minutes. Because of its O(N logN) complexity and fixed-

iteration optimization, it is not unreasonable to expect MD-SNE to handle million-

scale datasets with hour-length processing times.

We claim that probability maps are better suited to produce low-dimensional vi-

sualizations of MoDisco data over competing techniques, and that our MD-SNE al-

gorithm is better suited to MoDisco data than standard BH-SNE. Our argument for

using probability-based methods over other dimensionality reduction techniques

are based on quality, not speed. We validate this claim of quality improvement

both quantitatively and qualitatively.
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Neighborhood Agreement

We first present a quantitative validation, where we compare a single quality mea-

sure across different layouts of the same dataset. Many quantitative evaluations of

DR algorithms use the final Normalized Stress measure [57, 63, 83] when compar-

ing against other algorithms. The Stress measure, however, incorporates all pairs of

distances in its calculation, while we are specifically attempting to remove discon-

nected distances from the equation. Furthermore, metric-oriented objectives like

Stress are concerned with measuring precise distances, while Probability-based

techniques subject these distances to a nonlinear transformation. We thus compare

the rank ordering discrepancy between points using different techniques, rather

than the precise distance discrepancy.

As with the nearest-neighbor search discussed in Section 4.2.3, we select ad-

justed agreement rate as a suitable, rank-oriented measure given that the target task

is local exploration. Here, we measure the agreement of the local neighborhood of

points in high-dimensional space and in the layout for different neighborhood sizes.

Instead of measuring ARk for a single k, we vary k from 1 to 100 for each layout

method, on each dataset.

The results are displayed in Figure 4.9. Both PCA and MDS report lower

agreement rates on each dataset, while MD-SNE and BH-SNE show similar be-

havior on all benchmarks except for metacombine. For this dataset, BH-SNE

shows worse agreement rates for larger neighborhoods. We hypothesize that this

result is due to the metacombine dataset having a larger feature space than the

other benchmarks; it is an order of magnitude larger than the others. The BH-SNE

nearest-neighbor search technique of reducing to 50 dimensions with PCA before

using Vantage Point Trees is more likely to fail to adequately separate points in

such a large feature space. In contrast, MD-SNE exhibits the same pattern of

neighborhood-agreement behavior as other MoDisco datasets.

The values for agreement rate in Figure 4.9 are much lower than those in Fig-

ure 4.8 on the same dataset. We suspect this discrepancy arises from the challenge

of combining the different point neighborhoods into a single planar region. Despite

the difference in magnitude, the ordering of the different neighborhood-agreement

curves corresponds to the ordering in visual quality between the different tech-
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Figure 4.9: Adjusted agreement rates ARk among dimensionality reduction
techniques on our benchmark datasets over a range of neighborhood
sizes k. Higher numbers indicate higher agreement between the layout
neighborhood and the true neighborhood. MD-SNE and BH-SNE ex-
hibit roughly equivalent performance on smaller MoDisco datasets, but
BH-SNE breaks down on the benchmark with the larger feature space
while MD-SNE maintains performance.

niques.

Visual Quality

We now present a qualitative validation based on discussion of result images. Fig-

ure 4.10 presents layouts of the four MoDisco datasets for each of the four di-

mensionality reduction techniques. The PCA layouts, as expected, have a difficult

time separating points using linear projections, and clusters tend to be expressed

in filament-like structures projected on top of each other. The Glimmer MDS al-

gorithm applied to MoDisco data produces noisy, cloud-like visualizations with

large areas of uniform density, and fails to produce much visual separation between

dense regions.

On the smaller first three datasets, BH-SNE and MD-SNE both produce ac-

ceptable layouts, and we see a tradeoff between cluster separation and local fidelity.

On the cables and warlogs dataset, BH-SNE produces excellent cluster sepa-

ration, but within the local cluster region MD-SNE layouts show better neighbor-

hood agreement. However, with the larger metacombine result, there is a clear

quality improvement for MD-SNE over BH-SNE: the BH-SNE nearest neighbor

strategy fails to achieve the same cluster cohesion as MD-SNE approach.
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Figure 4.10: 2D layouts of the four MoDisco benchmark datasets across
the four tested dimensionality reduction algorithms. PCA yields too
much overplotting and Glimmer fails to provide clear cluster separa-
tion. BH-SNE and MD-SNE both produce acceptable layouts for the
first three smaller datasets, but BH-SNE breaks down with the large
metacombine dataset.
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Chapter 5

Overview Prototype

Chapter 3 presented a software system designed with the goal of providing guid-

ance to non-expert users and Chapter 4 presented a set of algorithm guidelines with

the goal of efficiently processing text data for visual analysis. In this chapter, we

combine these two goals to present a software system, the Overview Prototype,

designed to provide guidance to journalists who are analyzing large text datasets.

In the course of designing this tool, we worked in close collaboration with a jour-

nalist from the Associated Press who was specifically interested in helping other

journalists to understand a large set of documents of mostly unknown content,

when indices, summaries, and other knowledge organization aids are not available.

We define the underlying task of our target users as document set exploration:

the computer-assisted human construction of a categorization that is instance-spec-

ific, that is, tailored to a specific use of a specific document set. We assume that full

text search of the dataset is available to users, but not completely helpful because

they do not know precisely what they are looking for. Our target users are not

strictly confined to journalism, and may also arise in fields such as business, law

and intelligence.

To process and categorize our document set, we must encode documents in

some way that preserves semantics. The vector space representation of documents

described in Chapter 4 yields very high dimensional spaces with thousands or tens

of thousands of dimensions, corresponding to the natural language vocabulary of

the document set. Many automatic clustering algorithms that carry out computa-
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tions in these spaces have been proposed [10] as ways to categorize large document

collections. The output of these algorithms is a list of the documents in each clus-

ter, which does not necessarily provide a sense of the overall semantic structure of

the document set. Nor is it obvious whether any particular clustering, out of the

combinatorially huge number of partitions of objects into disjoint sets, captures

the application-specific semantics of interest. For this reason, many sensemaking

systems attempt to directly visualize the high-dimensional cluster structure of the

documents through low-dimensional layouts created with dimensionality reduction

(DR) techniques [127] [23]. Our first attempt at such a system involved a single

interactive layout of a document dataset using a modification of the Glimmer algo-

rithm.

However, we found that users of DR for document set visualization, includ-

ing our collaborator, have the persistent unease that there is often but not always

structure in their datasets that is not revealed; that is, that they see false negatives

in many cases but true negatives in others. In the case of document sets, struc-

ture most often means clusterings of related documents. But due to the extremely

high-dimensional nature of the underlying data, the dimensionally reduced plot

can become crowded, with local densities of documents resulting from chance (a

false positive). In a similar way, true densities of related documents may be “in-

terrupted” by spurious, unrelated documents (a false negative). The tool developed

in this chapter, the Overview prototype, is designed to mitigate these two related

problems by augmenting and complementing a dimensionally reduced view of the

data with additional information in the form of a hierarchical decomposition of the

data and an infrastructure for manual annotation.

The remainder of this chapter is organized as follows: we first describe the

Overview prototype application that combines a hierarchical clustering dendro-

gram and an MDS view to support text analysts in exploring and annotating docu-

ment collections through tagging clusters. We then justify our design by discussing

how the different prototype components work to support our target analysis task.

Next, we show the prototype at work in two separate data analysis cases; the first

case demonstrates a hypothetical use of the tool, and the second case describes the

results of actually giving the tool to a real-world data analyst. Finally, we describe

the results of the tool’s public deployment to users outside of the experimental
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setting.

5.1 Overview Protoype Description
The Overview prototype, shown with labeled components in Figure 5.1, is a proof-

of-concept application to address computer-assisted human classification through

tagging items. It is based on interactively combining clustering, tagging, and di-

mensionality reduction. In this section we describe the different data views and

how to interact with the prototype.

Disconnected Component Tree Tags View Items Plot

Item Viewer

Active Set List

Figure 5.1: The components of the Overview prototype. The Overview pro-
totype consists of five main components, indicated in this figure with
blue labels. The Disconnected Component Tree displays an
interactive dendrogram, the Tags View displays and manages user-
created tags, the Items Plot displays a scatterplot of the data, the
Active Set List displays the tags and clusters contained in the
current selection, and the Item Viewer presents the text of the high-
lighted item in the selection.

In the top half of the application are three different views of the data. The

left cluster view features an interactive representation of the hierarchical clustering
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dendrogram (hereafter called the Disconnected Component Tree, or Dis-

coTree), and the right DR view, called the Items Plot, shows a 2D scatterplot

of a low-dimensional embedding created with the Glimmer MDS technique [57].

The Tags View in the middle allows tags to be created or highlighted. The views

are all linked to support cross-filtering [124].

Below these views is the Active Set List. The active set is the set of

documents highlighted by the user and their associated nodes. The active set is

constructed through a selection interaction, such as clicking a node or lassoing a

set of items, within a particular view. The Active Set List shows DiscoTree

nodes on the left and items on the right, where the labels are the top terms within

a document, or of all documents within the cluster. At the very bottom is Item

Viewer, which displays the underlying text of a specific item selected in the right

items list of the Active Set List.

A user interacts with the prototype by selecting nodes in the DiscoTree, by

highlighting regions of the Items Plot, or by clicking a Tag in the Tags View.

This brings all items and nodes that match the selection criteria into the Active

Set List. The user can then peruse the items that make up the selection in the

Item Viewer. Finally, having collected related items into an active set, the user

can apply a tag to those items in the Tags View. Section 5.3 provides more de-

tails on how to use the different components of the prototype by walking through an

analysis task on a real-world dataset. As a supplement, our collaborator produced

an online tutorial video explaining the different components of the software1.

5.2 Clustering, Tagging, and DR for Sensemaking
We now justify the design of the Overview prototype by articulating the docu-

ment set exploration task more precisely as supporting text analysts in building

an application-specific hierarchical categorization schema through tagging, start-

ing from the scaffolding of a schema automatically created through hierarchical

clustering. Dimensionality reduction fits into this workflow both to enable direct

visualization of document set structure, where possible, and as a way to evaluate

1http://overview.ap.org/blog/2012/03/video-document-mining-with-the-overview-prototype/ Last
accessed July 17th, 2013

81

http://overview.ap.org/blog/2012/03/video-document-mining-with-the-overview-prototype/


the relationship between the distance metric used in algorithmic clustering and the

semantic content of the dataset.

5.2.1 Why Clustering?

Clusters of points in high-dimensional data sets are interesting because they often

have meaning; that is, cluster structure frequently represents semantics of interest

to the user. This statement posits a strong connection between a mathematical

property and an abstract, high-level notion of human knowledge.

The idea of representing document collections as point sets in high-dimensional

space began with the work of Luhn in the 1950s [74] and was developed into the

vector space model by Salton et al. [96], originally designed for information re-

trieval tasks. Section 4.1 contains a thorough description of the vector space model.

Information retrieval and dimensionality reduction applications rely on a simi-

larity or distance function, defined over every pair of documents, which gives rise

to a metric space and associated topology. Spatially compact clusters of document

vectors in cosine distance space were recognized by early information retrieval re-

searchers as semantically interesting structures, giving rise to the cluster hypothe-

sis [61], a modern version of which is articulated as “documents in the same cluster

behave similarly with respect to relevance to information needs” [75]. The cluster

hypothesis is widely assumed and has been shown to hold in the case of web-scale

information retrieval [26].

Sensemaking differs from information retrieval in that the user does not know

beforehand what type of information is sought [94]. However, because the docu-

ments within a cluster are conceptually similar, representing a document corpus by

its clusters may be a useful form of information reduction. The intuition is that if

the text analyst has read a few documents in a cluster, they can assume that the rest

will contain a similar type of information.

5.2.2 Why Tagging?

A cluster is, in the end, just a set of documents. While there is evidence that

machine-extracted clusters capture interesting semantics, that does not help the

user to understand what any given cluster means, much less a tree which may
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include hundreds of clusters and sub-clusters. Cluster labeling is the crucial next

step in sensemaking.

There have been many more or less sophisticated attempts at automatic cluster

labeling, ranging from displaying the most frequently occurring words to attempt-

ing to extract a single key sentence from a text corpus [136]. A related prob-

lem is the naming of topics extracted by topic modeling algorithms such as Latent

Dirichelet Analysis (LDA) [11]. Each topic found by such an algorithm is a proba-

bility distribution over words, sometimes visualized with a word cloud as shown by

the TextFlow tool of Cui et al. [27]. Yet a word cloud is not a substitute for a good

topic name, as researchers working with LDA-based methods tacitly acknowledge

when they compose short, human-generated labels to refer to the semantics of ex-

tracted word distributions.

A deeper problem is the suitability of the classification schema implied by the

distance metric. In what sense are two documents really “similar”? In practice

similarity depends on the context of the analysis. For example, should the docu-

ments be grouped by location, specific event, type of incident, or actors involved?

There is no reason to assume that the particular encoding and distance metric used

to generate clusters necessarily partitions the documents in the most semantically

useful way, especially given that, for the sensemaking task, the user may not know

beforehand what ways are going to be interesting.

Grimmer and King approach this problem by visualizing the space of all pos-

sible clusterings, populated by executing a variety of clustering algorithms on the

same data [43]. They are able to directly explore some of the different semantically

interesting categorizations on the same set of documents.

In principle, the sensemaking loop should include adjustments to the vector en-

coding and distance metrics so as to explore different categorization schemas, but

very little is known about how to automatically make these adjustments. Instead,

we consider the automatically-generated clusters as starting points for human clas-

sification. We argue for a tagging system that allows the user to summarize and

annotate the content of a cluster, by applying a label to some or all of its docu-

ments. These tags allow the construction of a manual classification scheme that

follows or cuts across the cluster structure as desired, and has greater or lesser

resolution around particular concepts and subtrees.
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5.2.3 Why Dimensionality Reduction?

Dimensionality reduction methods such as MDS also use distance metrics, just as

k-means and other clustering methods do, to map items to a lower dimensional

space. The promise of MDS and other DR methods is visual confirmation of the

existence and size of clusters. MDS as a visualization technique is often used

to verify a proposed clustering by coloring the points according to the clusters

and checking if the spatial proximity relationships in the low dimensional view

match up the coloring, or to visually check for cluster structure in unclassified data

by noticing if there are any visually separated clusters in the view. The visual

display of dimensionality reduction results allows the user to cross-check whether

the relationships between the visible clusters that arise from the distance metric

match their mental model of semantic content.

5.2.4 Why All Three?

In this framework, the sensemaking task is the construction of a set of tags which

capture the concepts of interest — perhaps newly discovered — in the document

collection. The tags, presented in the tool in the Tags View, act as an annotation

layer to get human semantic understanding into the exploration loop. An automati-

cally created clustering, which can be navigated and examined in the DiscoTree

View, serves to accelerate the process of constructing meaningful annotations.

Finally, dimensionality reduction, as presented in the Items Plot, provides a

parallax view of the cluster structures.

The Overview prototype then combines these three capabilities as three very

different linked views of the document dataset. Using the views, an Overview

user cycles between examining clusters, writing annotations, and examining local

neighborhoods and outliers until the process converges to a satisfactory categoriza-

tion of the document dataset.

5.3 Overview Prototype Results
We show results of using the Overview Prototype with two real-world journalism

datasets from WikiLeaks, Warlogs and Cables. In both, documents were en-

coded as a vector using the TF-IDF term weighting scheme [96] applied to all
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vocabulary words plus automatically detected common two-word phrases, or bi-

grams.

5.3.1 Afghan War Logs

Figure 5.2: The Overview Prototype loaded with the Warlogs dataset and
having five nodes of the DiscoTree tagged. The colors reveal that
the documents they contain fall into local neighborhoods in the MDS
Items Plot, but most of this structure cannot be seen from proxim-
ity relationships alone because there is no visible separation from the
other data points.

The Warlogs dataset is the subset of the WikiLeaks Afghan Warlogs dataset

from July 2009. It contains 3077 points and 4286 dimensions, where a single point

corresponds to a document from the dataset. These documents are military after-

action reports with an extremely terse format and specialized jargon, so they are

not trivial for non-experts to read.

Figure 5.2 shows the results. We began with the most compact pruning level

where only nodes of 64 or more items are visible in the DiscoTree, revealing seven

main clusters. Exploring those with the combination of quickly reading labels

in the Active Set List and using the Item Viewer to read the full text

of documents led us to quickly confirm five of these as semantically meaningful

categories and tag them with the following names and colors: found ieds (purple),

insurgent engagements (brown), fire missions (pink), missions containing a saltur

report (size, activity, location, time, unit, result) following an enemy contact (gold),
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and detainee transfers (teal).

We can see that these groups do form neighborhoods in the MDS Items

Plot, but would be difficult to identify without the coloring because the regions

are not visually separated from the rest of the points by regions of low density. The

exception is the well separated detainee transfers.

Figure 5.3: The DiscoTree control at different prune levels. Using the prune
controll at the bottom of the DiscoTree View permits the user to
see the cluster tree at several levels of abstraction. Here we show the
view of the Cables dataset at prune level 8 (left) and 16 (right).

For clarity, the DiscoTree View is interactively prunable so that only nodes

past a particular size are visible, using the logarithmic Show Nodes >= but-

tons along the bottom. Figure 5.3 shows the DiscoTree View of the Cables

dataset at varying prune levels. Each node in the DiscoTree contains many doc-

ument items, and due to the hierarchical clustering the same item will appear in

every node along a path from the singleton leaf node at the bottom of the tree up

to the root. When an item is selected through one of the other views, this entire

branch is highlighted through an edge color.

The user can use the Tags View to create and assign an arbitrary set of

named and colored tags. Clicking on a tag’s name selects all items which have

been assigned to that tag. While the user interface supports the useful shortcut of

tagging all items in a node, in general tags may be arbitrarily distributed across

items. Nodes are assigned a tag’s color when all items within that node contain

that tag. Due to the hierarchical nature of the tree, once a node is colored in, all of

its child nodes will also be filled in.
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Each item in the MDS Items Plot is a single document, represented by a

point. An individual item can have many tags attached to it, and a node has many

items and thus many tags as well. We do not attempt to show all tags at once with

any sort of glyph, since items and nodes cover small regions of the screen. Instead,

the last selection color takes priority over the others.

5.3.2 Caracas Cables

The Cables dataset comes from a different WikiLeaks source, the diplomatic

cables. We analyzed the subset consisting of cables sent to or from the US Embassy

in Caracas, Venezuela, or containing the word “Caracas”. It has 6849 points and

65,777 dimensions.

Figure 5.4: Cable alleging Iranian drone plans. The journalist found a cable
alleging Iranian plans to ship unmanned aerial vehicles to Venezuela.

We provided this dataset and the Overview prototype to the Associated Press

Caracas bureau chief, who created several dozen tags over a session of a few hours.

These tags, listed in Table 5.1, cross-cut the data in different ways including ge-

ography, politics, and events; the supplemental video2 shows the prototype with

each of these three tags sets. Figure 5.4 shows a different subset of ten interesting

2http://www.cs.ubc.ca/labs/imager/video/2012/modiscotag.mov Last accessed July 17th, 2013
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Tag Name # Tagged
Colombia/rebels 570
Ven Opposition 424
Oil industry 428
Chavez politics 383
Finance 382
extradition 678
vatican 283
China 64
Caribbean politics 923
Peru 1405
Portugal 109
Banks 59
Elections 138
Argentina 72
Cuba 66
ALBA countries 213
Nicaragua 357
Ecuador 728
Airlines 99
Chile 104
Honduras 234
Jamaica 99
Colombia politics 207

Tag Name # Tagged
RCTV 89
Student protests 64
Suriname/Dutch territories 287
Paraguay 95
Human trafficking/child labor 236
land seizures 43
weapons 79
food supply 93
Russia 117
Brazil 180
Guyana 143
Jewish community 108
extrajudicial killings/human rights 374
Afro-Colombians 94
health care 39
education 39
nationalizations 64
Spain 86
El Salvador 113
Israel 39
Trinidad 39
water/drought 44
Belarus 39

Table 5.1: List of manually constructed document tags applied to the
Cables dataset.

tags. Tags are applied to documents, not nodes, because the automatically gener-

ated tree does not necessarily categorize the documents in a way that is meaningful

to the user. For example, several different branches contain documents concerning

Ecuador in Figure 5.5. Figure 5.6 shows hierarchical cluster structure, where the

parent-child relationships between the branch tagged with Finance and its children

about banking and oil are also visible as spatial nesting in the MDS view.

The journalist found several topics that he had not previously found through

unassisted inspection of the dataset, including arms shipments to Ecuador shown

in Figure 5.7. He noted that the application allowed him to quickly spot subject
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Figure 5.5: The Cables dataset, with the full set of categories listed in Ta-
ble 5.1 from the AP Caracas Bureau Chief.

(a) (b) (c) (d)

Figure 5.6: Hierarchical structure in the Disconnected Component
Tree and Items Plot. The branch tagged with Finance has children
concerning banking and oil. DiscoTree View detail when finance
tag selected (a) and one child node selected (b); Item View detail for
finance alone (c) and child (d).

areas that could be of greater news interest, such as information on Colombian

rebels. The tool also helped him find several interesting individual documents, for

example claims that Chavez was giving millions to a particular Jamaican politi-

cian’s election campaign shown in Figure 5.8, and the cable alleging Iranian plans

to ship unmanned aerial vehicles to Venezuela shown in Figure 5.4.

5.4 Overview Deployment
The Overview prototype was deployed on a website maintained by the Associated

Press3. The deployment was evangelized by our collaborator, Jonathan Stray, who

promoted the tool through social media and journalism conferences, and built a

3http://overview.ap.org Last accessed July 17th, 2013
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Figure 5.7: Cable with description of alleged arms trafficking. The journalist
found cables with a description of such trafficking in Ecuador.

comprehensive tutorial video of the tool on the website4. The prototype was then

converted to a public, web-based analysis tool5, complete with user accounts for

saving document analyses, and the ability to import data from DocumentCloud, a

public document repository for warehousing primary sources. In its various incar-

nations, Overview has been used by working journalists to assist in published news

stories. Here, we briefly present two such use-cases as further validation of our

design.

The first use-case is that of reporter Jarrel Wade, working for the Tulsa World

newspaper [120]. He used Overview to analyze a collection of emails from the

Tulsa Police Department revealing problems with the in-car computer system pur-

chased by the department. In his detailed user experience writeup6, Wade describes

4http://overview.ap.org/blog/2012/03/video-document-mining-with-the-overview-prototype/ Last
accessed July 17th, 2013

5overviewproject.org Last accessed July 17th, 2013
6http://overview.ap.org/blog/2012/09/how-i-used-overview-to-report-on-8000-police-department-emails/
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Figure 5.8: Cable alleging Venezuelan influence in Jamaican politics. The
journalist found cables alleging campaign financing of a Jamaican po-
litical candidate by Chavez.

using the tool as a method not for avoiding reading all the documents, but for or-

ganizing his reading of the email conversations into categories. He praises the

efficacy of Overview, stating, “In the end, I‘m guessing it would have taken four

reporters splitting up emails into stacks of a few thousand to do the work I did in

two weeks.”

The second use-case story we describe occurred during the 2012 US Presiden-

tial election campaign. Reporter Jack Gillum used Overview in building a story to

reveal that vice-presidential candidate Paul Ryan requested and used federal money

from government programs he publicly criticized [38]. Gillum describes his use of

the tool in a writeup by Jonathan Stray on the Overview website7. In contrast to

Wade using Overview’s clustering as an organizational tool, Gillum reports using

Last accessed July 17th 2013
7http://overview.ap.org/blog/2012/11/document-mining-shows-paul-ryan-relying-on-the-the-programs-he-criticizes/

Last accessed July 17th, 2013
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the clustering as a filtering tool to specifically avoid having to read all the doc-

uments in his analysis. Gillum knew that large swaths of the documents in the

dataset contained no useful information for his story, and so he used the clustering

algorithm to identify and cull these swaths.

These two use-cases provide evidence that our tool design accelerated the target

task of document analysis for non-experts users: working journalists having no ex-

perience with high-dimensional analysis. We were encouraged that these analyses

led to published articles. Furthermore, we discovered our design is flexible enough

to accommodate different analysis styles of our target users. As future work, we

plan to present a detailed account of several different use-cases of the Overview

tool, with the hopes of improving the design of analysis tools for non-expert users.
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Chapter 6

Glint: An MDS Framework for
Costly Distance Functions

All MDS algorithms work by minimizing an objective function quantifying the

distortion of the points in the low-dimensional space relative to their original input

configuration. Though the different MDS algorithms compute coordinates in a

wide variety of ways, in each case the computational work can be divided into two

parts: distance calculation, where the inter-point distances are calculated from the

input points, and layout calculation, which reads the computed high-dimensional

distances and positions the points in the low-dimensional space.

The focus of this chapter is Glint, an iterative algorithm framework for au-

tomatically minimizing distance calculation in MDS. Structurally, Glint forms an

outer loop around a modified MDS algorithm. It starts with an empty distance

matrix, densifying the matrix as the outer loop iterates, automatically terminating

when the MDS layout is stable. Glint separates the distance calculation portion of

the MDS algorithm from layout calculations and provides an automated termina-

tion procedure.

The time cost of individual high-dimensional distance calculations have a pro-

found effect on the run time of an MDS algorithm. Even for an efficient metric like

the 10-dimensional Euclidean distance function, the time spent calculating high-

dimensional distances occupies almost 80% of the algorithm run time using the

Glimmer force-directed MDS algorithm [57]. Many real-world problems where
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MDS is used require more costly distance functions than the Euclidean case. In

these more expensive cases, total distance costs occupy more than 99% of MDS

run time using the same algorithm. Thus, an efficient MDS algorithm should seek

to minimize the total work done, minimizing the sum of both the distance and

layout work.

Previous work has assumed that individual distance computations are fast to

calculate and thus has not sought to automatically resolve the balance between dis-

tance and layout work. Current fast MDS algorithms that handle distance matrices

either compute many more distances than necessary [57], or leave the total number

of distances to compute as a tuning parameter and so do not have a fully automatic

way to terminate [15, 30]. The Glimmer algorithm is an example of the overcompu-

tation shortcoming [57]. It computes an iterative MDS approximation using force-

directed heuristics. The Glimmer minimization strategy defines a cheap iteration

and then iterates until convergence is detected. Within each iteration, both distance

calculations and layout calculations are done. Glimmer automatically chooses the

number of distance calculations to make before terminating, but computes more

than are strictly necessary. The Pivot MDS algorithm is an example of the termina-

tion shortcoming [15]. It computes a one-step analytic MDS approximation. The

MDS work is cleanly divided between distance calculation up front followed by a

single contiguous layout calculation. Pivot MDS computes all the distances it uses

up front, but does not know how many to select.

The above examples motivate a synthesis of the benefits of the two algorithms,

keeping the automatic termination of algorithms like Glimmer while separating the

distance work from the layout work as in algorithms like Pivot MDS. The goal of

Glint is thus to not only compute far fewer distances than the iterative approxima-

tion, but also to remove the tuning parameter from the analytic approximation.

To demonstrate the generality and robustness of the Glint approach, we de-

vise Glint instantiations for three very different classes of MDS algorithm: force-

directed, analytic, and gradient-based. We present the design of the Glint compo-

nents for each instantiation, where each is tailored to the requirements of the un-

derlying MDS algorithm. We then show that these Glint instantiations drastically

reduce total run time on datasets with costly distance functions without penalizing

the final layout quality.
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6.1 Distances In MDS
The distances between the points in a low-dimensional MDS solution are intended

to closely model those in the high-dimensional input dataset. The core premise of

MDS is that the input contains redundant information, allowing for correct output

even with an incomplete set of distances as input. Glint exploits this redundancy

by iteratively constructing a subset of distances that is as small as possible. This

section describes two issues concerning these distances: the existence and effect of

expensive distance functions, and how sparse the input distance matrix can be.

6.1.1 Expensive Distance Functions

Minimizing the total number of distances computed is especially important when

the time spent computing distances dominates the time spent computing the layout.

Many real-world applications involve datasets with expensive distance functions.

Even the straightforward Euclidean distance metric can be costly if the number

of dimensions is large enough, for example in the millions. In image processing,

the Earth Mover’s Distance, or EMD, compares the similarity of color distribu-

tions between images and is useful for ranking images for querying and nearest-

neighbor-type calculations [93]. Its calculation requires solving a linear program,

often a costly operation relative to the layout calculation per point. Computa-

tional complexity is not the only reason for distance calculation cost. Distances

based on database lookups are costly due to the relative speed of disk I/O to mem-

ory reads. Distances that involve elicitation of human judgement can be the most

costly of all, because the time scales of human response are so much longer than

of automatic computation. Human-elicited distances are of interest in many do-

mains; in a marketing example, a single distance is derived from the averaged

similarity judgements elicited from survey takers comparing two items [71]; in a

psychophysics example, distances are derived from just noticeable differences in

haptic stimuli [111].

In all of these cases, distance calculations can comprise well over 99.9% of the

total time to compute the MDS layout. We will show that using the Glint frame-

work can drastically reduce the time spent computing distances without compro-

mising the final quality of the MDS layout.
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6.1.2 Experimental Analysis of Sparse MDS Solutions

Spence and Domoney conducted a series of data experiments to determine if there

could be an a priori way to select an optimal subset of distance matrix entries

to compute prior to MDS layout [107]. Their experiments investigated the effect

of controlling three factors pertaining to layout quality. The first two factors, the

amount of noise in the distance measurement and the number of input data points,

cannot be manipulated by an MDS algorithm. The last experimental factor they

tested, which an algorithm can indeed control in practice, is distance matrix density,

or how densely sampled the approximation of the distance matrix is compared to

the full version.

The experiments resulted in two key findings that pertain to our work. First,

only a fraction of the matrix, ranging from 20% to 60% of the distances on their ex-

ample data, needed to be computed to accurately approximate the full layout. This

finding verifies that the goal of minimizing distance computations is a reasonable

one. Second, their results imply that there is no direct way to assess in advance

exactly how many distances need to be computed. We thus designed Glint to run

online, determining the optimal number of distances to compute on the fly.

6.2 Glint Algorithm Framework
Glint is an algorithm framework: an algorithm with modular components that are

themselves algorithms. Figure 6.1 shows a diagram of these three components;

each corresponds to a step in the Glint outer loop. Glint starts with an empty

distance matrix and a random layout and then loops over the following three main

steps to determine a final layout. First, in the Densify Matrix step, it selects a new

subset of the distance matrix to compute with the distance matrix densification

strategy DS and then updates the matrix with the computed values. In the Lay Out

Points step, it updates the layout using the new distance information as input to the

MDS layout algorithm M. Finally, in the Check Convergence step, it checks to see

if the change in the objective function S is below a threshold ε . If convergence is

detected, the last layout is returned, otherwise the loop repeats.

The MDS layout algorithm M takes as input a low-dimensional point configu-

ration as the starting point and a sparse distance matrix. To qualify for use in Glint,
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Densify Matrix (DS) Lay Out Points (M) Check Convergence (S)

D't D't+1 layoutt layoutt+1 St St+1

eps

iteration

dS

Glint Outer Loop

Figure 6.1: Diagram of Glint execution.

M must possess three characteristics. First, it must be able to compute a layout

given a distance matrix. Next, it must be able to handle an incomplete – that is,

sparse – distance matrix, given the Glint strategy of gradual densification. Finally,

M must compute a layout from a given starting position rather than starting from

scratch each time, so that subsequent outer loop iterations start M from a state

closer to the final layout configuration. We discuss M further in Section 6.3.1.

Controlling the density rate and pattern of the distance matrix is the job of the

densification strategy DS. Some MDS algorithms, such as Pivot MDS and Land-

mark MDS are able to compute layouts with incomplete matrices, but the precise

sparsity pattern of the incomplete distance matrix may be constrained. Because

matrix sparsity pattern requirements vary from algorithm to algorithm, we must

tailor the selection of computed distances DS to the MDS algorithm M. We dis-

cuss DS further in Section 6.3.2.

Glint requires a cheap, monotonic objective function S in order to measure

layout convergence; it must also be tailored to the MDS algorithm M. It should

not invoke a costly full stress function that requires computing all the high- and

low-dimensional distances, which would obviate all performance benefits of the

system. We discuss S further in Section 6.3.3.
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6.2.1 Glint Outer Loop

Algorithm 1 Pseudocode for Glint, with variable definitions.
function GLINT(ε)

layout0 ← RANDOMLAYOUT

t← 0
sold ← MAXVALUE

while !converged do

Pt+1 ← DS( Pt )
D′t+1← DISTANCE( D′t , Pt+1, d )

layoutt+1← M(D′t+1, layoutt)

snew← S(Pt , D′t+1, layoutt+1)
converged← |sold− snew|/sold < ε

sold ← S(Pt+1, D′t+1, layoutt+1)
t← t +1

return layout

Variable Description
t the current Glint iteration
ε termination threshold

MAXVALUE maximum possible value for scalar objective function
d the distance metric d(i, j)

sold scalar objective function value on the previous layout
snew scalar objective function value on the current layout

layoutt layout coordinates at iteration t
Pt the set of computed point pairs at iteration t
D′t the sparse distance matrix with nonzeros specified by Pt

The Glint algorithm consists of a single threshold-controlled loop, similar to

algorithms like gradient descent where the algorithm loops until the change in

measured progress becomes very small. Figure 1 lists pseudocode for Glint. The

algorithm initializes with a random configuration of points layout and then iter-

ates through the main loop. In the main loop, we first call the densification strategy

DS. On the first call it constructs the initial sparsity pattern Pt of the distance ma-

trix D′t , and on subsequent calls it densifies the pattern by filling in more nonzero

entries. Specifically, the sparsity pattern Pt contains the set of nonzero indices of
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the D′t at time t. After selecting the precise entries to change, Glint updates the

sparse distance matrix D′t by invoking the distance function for each pair of points

contained in Pt . Next, the MDS algorithm M runs to termination with the starting

point layout and the input distance matrix D′. Glint itself terminates when the

change in the objective function S is less than the termination threshold ε .

The objective function S takes three parameters: the sparsity pattern P that

specifies the pairs of points over which we compare high-D and low-D distances,

the distance matrix D′ from which we read the distances specified by pairs in P, and

the low-dimensional layout coordinates layout from which we compute the low-

D distances. The reason for including the pattern P as an input instead of simply

summing over the entirety of D′ is subtle, but important. Glint terminates when the

objective function converges; that is, when it stops changing between subsequent

iterations. Thus, the objective function must compare results at time t+1 to results

at time t. However, not only do the points in the layout change between iterations,

but the number of terms in the distance function changes, because there are more

nonzero entries in D′t+1 than in D′t . To properly measure convergence, we need to

compare functions with the same number of terms. Including the same sparsity

pattern in the objective calculation ensures that we compare objective functions

with equivalent terms at each iteration, by specifying which entries of the matrix

to use. Thus, in the Algorithm 1 pseudocode, snew is computed with the sparsity

pattern from the previous iteration, Pt , to determine which entries to include in the

computation, while using the actual values derived from the current layout at time

t +1.

6.3 Glint Instantiations
A Glint instantiation substitutes implementations of three concrete components

into the abstract framework of the Glint algorithm. We describe three Glint instan-

tiations, one for each of the three different MDS algorithm families described in

Section 2.1.2: force-directed, analytic, and gradient.

Several of the Glint instantiations require choosing input parameters, as dis-

cussed in detail below. Table 6.1 summarizes the default value of each parameter

and our method for selecting it. It also includes our analysis of the tradeoffs, with
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the results for setting the parameter too small or too big.
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Parameter Name Instantiation Default Selection Method If Too Small If Too Big
ε all 0.001 benchmark T:slower Q:better T:faster Q:worse
numIters gradient-

based
100 benchmark LT:faster DT:slower LT:slower DT:faster

numDists all logN parameter doubling T:faster Q:worse T:slower Q:better
numRunsF force-

directed
5 benchmark LT:faster Q:worse LT:slower Q:better

numRunsA analytic 10 benchmark LT:faster Q:worse LT:slower Q:better
trainSize force-

directed,
analytic

3 benchmark T:faster Q:worse T:slower Q:better

Table 6.1: Parameters used in Glint instantiations, their default values, how they were chosen, and the tradeoffs in
setting them too small or too big. T is total time, LT is layout time, DT is distance calculation time, and Q is layout
quality.
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6.3.1 Component M: MDS Algorithm

The M component takes as input the low-dimensional input coordinates and places

them in a new configuration based on the current distance matrix D′ as output. For

the analytic instantiation we substituted the Pivot MDS algorithm [15] for M, and

for the gradient implementation we substituted the SMACOF algorithm [29] for

M. The Pivot MDS algorithm is used without change, but the other instantiations

require algorithm parameter choices or internal modifications which we detail in

the following subsections.

Gradient-Based Instantiation

For the gradient-based instantiation, the SMACOF MDS algorithm has two tuning

parameters: the inner termination threshold, ε , and the maximum number of inner-

loop iterations before termination, numIters. We use the same value for ε as in

the main Glint algorithm.

We observed that the gradient of the stress function for very sparse input ma-

trices quickly shrinks in proximity to a minimum. Setting numIters too large

results in over-optimizing with incomplete distance information, while setting it

too small leads to computing more distances than are necessary. We select 100 as

a good balance over all our benchmarks between these two extremes.

Force-Directed Instantiation

In the force-directed instantiation, we substitute a modified version of the Glim-

mer [56, 57] algorithm for M. We used the version of Glimmer that supports dis-

tance matrix calculations in addition to handling points [56]. To make the Glimmer

algorithm suitable as the M component, we must alter the randomized sampling

regime used by the algorithm. In Glimmer, sampling is uniform and unconstrained

over the entire distance matrix. Glint, however, only feeds a sparse subset of the

distance matrix D′ to M for each outer loop iteration. To compensate, we constrain

Glimmer sampling to be uniform over the given nonzeros of the sparse distance

matrix D′.
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6.3.2 Component DS: Densification Strategy

The DS component determines which distances to compute at each Glint iteration.

For each instantiation, we follow a strategy of adding numDists new distances

per point to the matrix D′. By default, the numDists parameter is initially set to

dlog10 Ne.
Setting the numDists parameter to an overly small value would result in an

objective function S change that is less than the termination threshold ε and thus

an incorrect algorithm termination after the first iteration. A small numDists

is analogous to performing gradient descent with too small a gradient step-size.

To ensure numDists is large enough, we follow a simple strategy of doubling

numDists during the first iteration until we achieve a change in the objective

function S greater than ε .

The distribution of new distances across the matrix D′ varies for each instanti-

ation. We describe these distributions on a per-instantiation basis.

Gradient Instantiation

The gradient instantiation DS is the simplest of the densification strategies. At

each iteration, the DS uniformly samples numDists distances per point without

replacement.

Force-Directed Instantiation

The force-directed DS is similar to the gradient instantiation, except for a single

modification addressing Glimmer point hierarchies. The Glimmer algorithm di-

vides points into a pyramid of levels, with the fewest points contained in the top

level and increasingly larger sets of points at lower levels [57]. Sampling uniformly

without replacement from the distance matrix would often lead to the case that, at

the top level, several points will not have any distances computed between any of

the other points in the top level, only distances computed to points in lower lev-

els. To solve this problem, the force-directed DS samples numDists distances

without replacement once for the points contained in each level. The sampling for

a given level is constrained to be uniform over only the points contained in that

level.
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Analytic Instantiation

Pivot MDS works by operating on a subset of complete columns of the distance

matrix. The uniform sampling of distances per point used by the other instantia-

tions would violate this constraint by allowing zeros within columns. We instead

compute numDists new columns of the distance matrix at each iteration. New

columns are chosen using the MaxMin strategy described in the Pivot MDS pa-

per [15] starting from a single column chosen uniformly at random.

6.3.3 Component S: Objective Function

Glint objective functions S are fast approximations of the true objective functions

F that are far more costly. In each of the Glint instantiations, S fits the following

template:

S < hi, low,sel > (P,D, layout) =
∑(i, j)∈sel(P)(lo(i, j)−hi(i, j))2

∑(i, j)∈sel(P) hi(i, j)2

Here we use the < · > template notation from the C++ language to indicate

parameters to S that do not change at runtime. The template parameters hi(i, j)

and lo(i, j) are functions defining the high and low-dimensional distances between

points i and j. The hi function varies from dataset to dataset, while lo is always

the Euclidean distance function operating on the layout input parameter. The sel

template parameter is an index-selection function that selects a subset from the set

of nonzero distance matrix indices P. Intuitively, this function just measures the

normalized sum of distance residuals between the layout points and the data, but

only for a small set of point pairs instead of all pairs of points.

Because they are stress-based techniques that minimize distance residuals, the

force-directed and gradient-based instantiations use D′i j for hi(i, j) and the low-

dimensional Euclidean distance for lo(i, j). The analytic instantiation is strain-

based, minimizing the inner-product residuals. To measure strain, we set hi(i, j)

to be the inner product of ith and jth rows of the double-centered matrix C and

set lo(i, j) to be the inner product of the ith and jth layout coordinates. The inter-

ested reader should refer to the original Pivot MDS paper for more details on the

definition of double-centering and the efficient computation of C [15].
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For the analytic and gradient-based instantiations, the index-selection function

sel selects the entirety of the nonzero matrix indices P. In contrast, the force-

directed instantiation selects a subset of P. The precise subset of P is the set of

point indices contained in the union of per-point random sample caches used by

the Glimmer algorithm.

Each instantiation employs randomized sampling of new distance matrix in-

dices after each Glint iteration, as mentioned in Section 6.3.2. In the case of the

gradient-based instantiation, this random sampling does not impart enough random

noise to the observed values of S to induce an unexpected termination. However,

in the force-directed and analytic cases, we observed enough noise in the sequence

of S values that early termination was regularly observed. The sequence noise was

observed to be Gaussian distributed (we confirmed normality with a Shapiro-Wilk

test result of p = 0.55 [102]). In this section we describe our strategy for creating

a smooth S from the noisy series of raw objective function values.

The obvious first choice for smoothing in Glint would be to convolve the signal

with a noise filter, as is done in the force-directed Glimmer algorithm. However,

while that approach works well for Glimmer, it is not adequate for detecting con-

vergence reliably within Glint. First, the smoothing filter size used in Glimmer is

much bigger than the expected number of outer loop iterations. Reducing the filter

window size would change the frequency response of the filter, allowing noise to

leak into the signal. Furthermore, moving averages correspond to an impulse re-

sponse filter that is finite. However, the noise in the sparse stress signal is Gaussian

white noise, with equal power across all frequencies, so it will manifest itself after

filtering any bandwidth.

Rather than attempt to filter our the noise using convolution or averaging, we

instead take a more direct approach and model the observed noise in the sparse

stress signal explicitly. Stochastic processes where any subset of process samples

are normally distributed are known as Gaussian processes and can be accurately

modelled by the machinery of Gaussian process regression (GPR) [88].

In order to perform GPR we must select the forms of the two functions that

completely determine a Gaussian process, the mean and the covariance function.

The mean of the Gaussian process encodes information about the shape of the un-

derlying process, for example whether it is linear or constant. We chose a mean
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prior of zero, indicating that we have no advance knowledge about the signal. We

select the squared exponential function, one of the most commonly chosen covari-

ance functions [88], because it models smooth transitions between adjacent values

of S, a behavior that matches our expectations for the convergence curve.

We can improve our smooth estimate of the mean of S by increasing the num-

ber of samples computed at each outer loop iteration. In the force-directed case,

we compute more samples by restarting M with the same initial layout and a dif-

ferent random seed. Since the analytic case proceeds deterministically, the same

technique cannot be used. To compute a set of random samples for the analytic

case we were inspired by bootstrap resampling methods [31]. In order produce a

single sample we select numDists columns uniformly at random to leave out of

P.

For the parameter designating the number of computed samples per Glint itera-

tion, there is a parameter tradeoff between the fidelity of the estimated mean, which

affects the likelihood of observing a false termination, and the speed of algorithm.

We empirically find that computing 5 runs for the force-directed numRunsF pa-

rameter and 10 runs for the analytic and numRunsA parameter yields good results

over all our benchmark datasets.

Using GPR requires initialization of the so-called process hyperparameters of

the squared exponential covariance function. These include the length scale, or

degree of smoothness, and the noise level. The hyperparameters can be efficiently

learned from a small set of observations computed during the first trainSize

iterations of the Glint outer loop, by optimizing a likelihood function using conju-

gate gradients. We empirically find that using 3 iterations for training yields good

results over all our benchmark datasets.

6.3.4 Instantiation Design Summary

Table 6.2 summarizes the Glint component design decisions, emphasizing the un-

derlying algorithm features that crosscut the three instantiations. Consideration of

these features could guide designers of future instantiations. For example, an algo-

rithm using the entire sparse input distance matrix, like Pivot MDS and SMACOF,

can remain unaltered for M. Algorithms with objective functions S that are noisy,
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Alg. Class M DS S
force-directed altered sampling uniform pointwise

for each hierarchy
GPR smoothed stress-
based across sample-
cache sets

gradient-based unchanged uniform pointwise stress-based across P
analytic unchanged uniform columnwise GPR smoothed strain-

based across P

Table 6.2: Glint component design summary for each MDS algorithm class.

such as Pivot MDS and Glimmer, can employ GPR smoothing.

6.4 Results
We present the results in terms of a benchmark performance comparison and an

assessment of convergence. We first describe the benchmark datasets in detail.

We compare the efficiency and quality of Glint instantiations against the standard

algorithms in terms of time and stress using these benchmarks. We then discuss

convergence issues and demonstrate convergence behavior of each instantiation.

6.4.1 Dataset and Distance Function Description

The molecule dataset contains 661 points representing polymer-based nanocom-

posites. The distance function is cheap: it is the Euclidean distance metric where

the number of dimensions m is 10. We include this dataset as a baseline where

the Glint requirements are not met and unmodified algorithms should be employed

instead. The 4000 points in the concept dataset are biomedical terms where the

distance function to determine their co-occurrence in journal articles requires run-

ning database queries. The Flickr dataset contains 1925 images culled from the

author’s public photo collection, with distances computed using the Earth Mover’s

Distance (EMD) [93]. The BRDF dataset is an example from the computer graph-

ics literature, where computations involving 100 points representing images use

the Euclidean distance function. The number of dimensions m is four million [76];

this function is expensive despite being Euclidean because of the huge number

of dimensions. The videogame dataset was created by gathering human judge-
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ments in response to survey of questions about 96 games. While the exact timing

information for the judgments was not reported [71], our conservative estimate is

that the sum of the response times of the human participants took an average of

10 seconds for each pairwise comparison. Table 6.3 summarizes our benchmark

distance functions and costs.

d cost (sec) Distance Calculation Benchmark
0.00001 Euclidean m = 10 molecule
0.001 DB Query concept
0.01 Earth Mover 83 signature flickr
1.0 Euclidean m = 4M brdf

10.0 Human Elicited videogame

Table 6.3: The cost d of a single distance calculation for the benchmark
datasets in seconds rounded to the nearest power of 10. Here m repre-
sents the number of dimensions of the input data in the case of using a
Euclidean distance function.

6.4.2 Benchmark Speed and Quality Comparison

We validate Glint by comparing the benchmark performance of our implementa-

tions against the previous work in terms of speed and quality. Speed is measured in

seconds to termination and quality is measured in terms of the full objective func-

tion F using the entire distance matrix D. For the force-directed and gradient-based

instantiations, F is the full normalized stress function [13]. For the analytic instanti-

ation, F is the full normalized strain function. We compute F only for performance

validation; it is never computed in practice. All recorded values are averaged over

5 runs on an Intel Core 2 QX6700 2.66 GHz CPU with 2 GB of memory.

For the original approach in the force-directed and gradient-based performance

comparison, we ran the Glimmer and SMACOF algorithms, respectively, with the

same ε for these as used in Glint. For the original approach used in the analytic

performance comparison, we know of no algorithms with termination criteria. In-

stead, we used a human-in-the-loop Pivot MDS setup, where the first author added

numDists pivots at a time with a keystroke, and manually halted the process after

visually assessing layout convergence. The Pivot MDS algorithm is unable to han-

108



dle incomplete distance matrix columns, so we omit the videogame benchmark,

which possesses many missing matrix entries, from the analytic results.

Figure 6.2 and Table 6.4 compare the execution time and final layout quality of

Glint to the original approaches.

The speedup of the force-directed instantiation ranges from 20 to 115 for the

costly target cases, while the original Glimmer algorithm is several times faster for

the cheap baseline. The main benefit of the fully automatic analytic Glint instan-

tiation is the elimination of the need for manual monitoring and intervention. The

Glint instantiation was faster than Pivot MDS with a manual operator in the loop

for molecule and flickr, but slower for concept and brdf. The speedup

of the gradient-based Glint instantiation is dramatic: several orders of magnitude

in the target cases, and a factor of two in the baseline case of molecule where

the distance function is cheap.

The quality values for Glint are roughly the same magnitude and variability for

each benchmark in the force-directed case. For the analytic instantiation, the qual-

ity values are equal or better than the manual Pivot MDS method. In the gradient

case, most of the final quality values, except molecule, are slightly worse than

the standard approach using the full distance matrix. The gradient Glint instanti-

ation provides a speed and quality compromise between the extremely costly but

accurate full gradient approach, and the fast but approximate force-directed Glint

instantiation.

6.4.3 Convergence

We illustrate the convergence behavior of each Glint instantiation in Figure 6.3.

Each log-scale plot displays two curves: the blue curve represents the value of the

full, slow objective function F of the layout after each Glint iteration, while the

orange curve shows the value of the smoothed, fast objective S. For those instan-

tiations that employ GPR smoothing, we also plot the random samples used in the

regression as gray dots. Similarly, for those instantiations that employ an itera-

tive layout algorithm M, we plot the values of S after each M iteration. As in the

benchmark comparison, F is the full normalized stress function for Glimmer and

SMACOF, and F is the full strain function for Pivot MDS.
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Benchmark Glint
F

Orig.
F

Glint
Time

Orig.
Time

Speed
up

Force-Dir.
molecule 0.03 0.03 14 4 0.2
concept 0.18 0.18 49 1016 20
flickr 0.08 0.09 2.4K 98K 40
brdf 0.03 0.04 3K 304K 115

videogame 0.45 0.45 23K 482K 20
Analytic
molecule 0.35 0.42 3 23 9
concept 0.93 0.94 96 63 0.7
flickr 0.48 0.59 1.2K 2.9K 2
brdf 0.078 0.233 40K 6K 0.2

Gradient
molecule 0.01 0.03 360 700 1.9
concept 0.18 0.18 0.1K 113K 880
flickr 0.06 0.04 8K 71M 8.8K
brdf 0.008 0.005 4K 859K 200

videogame 0.16 0.13 19K 430K 220

Table 6.4: Comparison of full objective functions, time (in seconds), and
speedup between Glint instantiations and original MDS algorithms.

The magnitude of the change in the cheap objective S approximates that of the

change in costly F function. In the case of Pivot MDS, the smoothed S series is

slightly offset from the gray random samples due to the effect of using sparsity

patterns from the previous iteration. These benchmarks validate the claim that set-

ting ε to a given termination threshold will terminate Glint when the corresponding

change in F falls below the threshold modulo some sampling noise.
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bars.

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

S
tr

es
s 

(L
og

 S
ca

le
)

Force−Directed Iterations

Force−Directed

10 15 20 25 30
10

−6

10
−4

10
−2

10
0

S
tr

ai
n 

(L
og

 S
ca

le
)

Analytic Iterations

Analytic

0 500 1000
10

−4

10
−2

10
0

S
tr

es
s 

(L
og

 S
ca

le
)

Gradient−Based Iterations

Gradient−Based

Figure 6.3: Log-scale Glint convergence curves on each instantiation gener-
ated using the brdf dataset. The orange S curve is derived from the
noisy grey samples. S is designed to match the convergence behavior of
the costly F series in blue.
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Chapter 7

Conclusion and Future Work

We conclude the thesis by summarizing the finer points of the different thesis chap-

ters. We then describe a set of future research directions that build upon and expand

our work. We draw the thesis to a close with a set of lessons learned from our re-

search.

7.1 Conclusions
Difficulties arise when dimensionality reduction is applied to the important use-

cases of non-expert users, document data, and costly distance functions. In this

thesis we identified the obstacles associated with each of these cases and explored

ways to address the underlying problems. For non-expert users of dimensionality

reduction, we identified the need for two kinds of user guidance, local and global,

and designed a system, DimStiller, that encapsulates both. In the case of docu-

ment data, we have identified the mostly-disconnected property of the data and its

connection with query algorithms from Information Retrieval. We then presented

algorithms for high-dimensional analysis, including dimensionality reduction, that

take advantage of the mostly disconnected-property for improved efficiency and

accuracy. For the case of costly distance functions, we identified an inefficiency

in the design of multidimensional scaling algorithms with respect to this case and

presented an algorithm framework, Glint, to minimize total running time without a

penalty to output quality.
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7.1.1 DimStiller

In Chapter 3, we presented DimStiller, a data analysis system that uses a set of

abstractions to structure and navigate dimensional analysis and reduction: data re-

sides in tables, operators modify and visualize tables, expressions chain together

operators, and workflows permit pattern re-use. DimStiller uses these mechanisms

to provide both local and global guidance through the analysis space of possible

data tables. In both of the presented case studies in Section 3.4, we showed how

individual operators probe the input dimensions and produce values like variance,

correlations, and principal components and visualizations such as scree plots and

scatterplots. It is the data analyst’s task to turn these quantitative figures into an-

swers to qualitative questions about the data. DimStiller builds target users’ trust

in these answers by providing an intuitive pipeline architecture that visually guides

users through making algorithm and parameter choices.

7.1.2 Algorithms for the Visual Analysis of MoDisco Data

Chapter 4 showed how the MoDisco property of real-world document datasets is

an important consideration in the design of algorithms for data analysis. This prop-

erty has not been previously addressed in the visualization literature; we generalize

algorithms and data structures originally designed for information retrieval for vi-

sualization applications. MoDisco data has both sparse vector columns and rows;

this property has important implications for the design of search query algorithms.

We showed how impact-ordered query algorithms implicitly use this property to

compute the higher-scoring queries faster. When data analysis algorithms, such

as dimensionality reduction, target TF-IDF document data, they can leverage the

MoDisco property to efficiently compute important data structures for data explo-

ration: nearest-neighbor sets, distance matrices, cluster trees, and 2D layout coor-

dinates. We then presented three scalable algorithms for computing each of these

important data structures, with results that improve over the state-of-the-art.

7.1.3 Overview

In Chapter 5, we presented the Overview prototype application for this task that

combines a hierarchical clustering view and a traditional MDS view. We vali-
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dated the application with two complex, real-world datasets from the journalism

domain: subsets of the diplomatic cables and Afghan war logs from WikiLeaks.

The Overview prototype application allowed direct comparison of different item

encoding, clustering, and layout algorithms with respect to each other and a fixed

set of human-assigned tags, opening up a line of research into the semantic relation-

ships between these different algorithmic stages in the visual exploration pipeline.

7.1.4 Glint

Chapter 6 illustrated how expensive distance calculations change the efficiency of

existing MDS algorithms like Glimmer and SMACOF. Such algorithms compute

more distances than are required for an existing quality of layout, while analytic

algorithms require manually tuning the number of distances to compute as an input

parameter. We solve both these problems with Glint, an algorithm framework with

three components: a distance matrix densification strategy DS, an algorithm M,

and an inexpensive objective measure S. Given these components, Glint samples

distances from the distance matrix in fixed batches, updating the low-dimensional

layout with new information until the layout quality converges. We showed how

careful design of termination criteria can overcome the noise effect of random sam-

pling on convergence. We presented and validated Glint instantiations for three

separate types of previous MDS algorithms: the force-directed Glimmer, the ana-

lytic Pivot MDS, and the gradient-based SMACOF.

The Glint instantiations presented give essentially equivalent layout quality in

all cases. The analytic instantiation was roughly equal in time performance to Pivot

PDS, with some cases of speedup and some of slowdown; the main contribution of

Glint in this situation is to remove the need for manual monitoring and interven-

tion. The iterative instantiations showed substantial speedups against Glimmer and

SMACOF in all of our target cases with costly distance functions, ranging from 20

to 115 with the force-directed Glint instantiation and from 200 to 8800 with the

gradient-based Glint instantiation.
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7.2 Future Work
We now present a series of stepping-off points for future research based on the

contents of this thesis.

7.2.1 User Guidance

A form of guidance not yet explicitly provided by DimStiller is to help the user

fully understand the inner workings of the supported operators. For example, users

could be given visual feedback highlighting relevant regions of scree plots in the

reduce operator control panels. While the DimStiller architecture should in theory

support this kind of targeted exploration, it would require significant future work

to design a system that truly sheds light on all black-box algorithms. Another

direction of future work will be to add more encoding and interaction techniques

previously shown to be effective for high-dimensional analysis, for example sorting

the Collect operator matrix view for the rank by feature capability suggested by

Seo and Shneiderman [100].

7.2.2 Efficient DR with Costly Distances

The Glint system specifically targeted MDS algorithms. As discussed in sec-

tion 2.1, there are other types of dimensionality reduction algorithms, like proba-

bility based methods, that also rely on distance information. It would be interesting

work to apply the Glint framework to these other types of DR algorithms.

Another interesting avenue of future work is to explore different types of densi-

fication strategies. The examples we provide in Glint all use uniform sampling, but

a more sophisticated sampling based on proximities of points in low-dimensional

space might also be employed to good effect.

7.2.3 Mostly Disconnected Data

There are several different avenues for possible future work with respect to the

the analysis of mostly-disconnected data. One is to determine if data other than

term-vector databases can exhibit the MoDisco property. We conjecture that us-

ing an IDF-like transformation of high-dimensional vector data in other domains

could induce MoDisco structure for great effect. Another area for future work is
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modification of the APQ nearest-neighbor algorithm to include other innovations

from query algorithms like impact transformations of the input data and accumu-

lator limiting and pruning [2]. It may also be fruitful to devise ways to incorporate

efficient use of truncated distance matrices and inverted files into other clustering

algorithms like k-medoids [91].

7.3 Lessons Learned
Shifting the discussion to a higher level of abstraction, we end the thesis with a

discussion of some of the overarching lessons learned about conducting interdisci-

plinary research in the course of writing this thesis.

Many of the projects in this thesis involve bringing together techniques from

different disciplines. For example, Chapter 4 draws connections between Infor-

mation Retrieval and Visualization. The Overview prototype combine ideas from

data mining, visualization, and data journalism. Glint attempts to build an algo-

rithm framework that crosscuts algorithm work in Visualization and Statistics. Di-

mensionality Reduction itself is a subject of interest in several different research

communities: Statistics, Machine Learning, Data Mining, and Visualization. Each

of these disciplines functions like a lens, focusing on those aspects of algorithm

design most beneficial to their own particular objectives.

Below, we first relate the experience of drawing connections between the algo-

rithmic foci of two different research communities. Then, we discuss what factors

of an interdisciplinary collaboration can aid in the dissemination of research, lead-

ing to greater impact.

7.3.1 Making an Algorithmic Connection

Revealing algorithmic connections between High-dimensional data analysis and

Information Retrieval was one of the more challenging and intellectually satisfying

aspects of this thesis. In this section, we recount the somewhat roundabout story

of how these connections were made. It is our hope that this story functions as

an informative exercise in revealing how research across disciplines is often a mix

of wrong-turns, back-tracking, and (hopefully) breakthroughs. This contrasts with

the standard academic presentation of work as a finished product resulting from a

116



set of ordered, logical conclusions. We then discuss how a multifaceted research

process can actually work to create multiple connections between different fields

and enrich the underlying algorithms developed along the way.

Glimmer and Sparse Docs

One of the more compelling set of results produced from our validation of the

Glimmer MDS algorithm was from the docs dataset [57]. This dataset, referred

to as metacombine in Chapter 4, was our first encounter with analyzing term-

vector data using techniques from high-dimensional analysis. The discrepancy

between the docs result from PivotMDS, a Classical Scaling algorithm, and the

result from Glimmer, a Distance Scaling algorithm, motivated an in-depth analysis

of when Distance Scaling algorithms are more appropriate than Classical Scaling

algorithms. Our intuition was that docs was so intrinsically high-dimensional,

that its structure was largely simplicial. Therefore, linear projection techniques like

Classical Scaling were inappropriate for producing dimensionally reduced layouts

because much of the data variance was orthogonal.

Power Transformations and Local Graph Layout

Our success with using Glimmer to produce large document dataset layouts with

visible clustering attracted our collaborator, Jonathan Stray, who was interested in

producing the tool that would become Overview. We began experimenting with

using Glimmer on what would become the warlogs dataset in Chapter 5. These

experiments revealed that improved cluster structure could be observed with power

transformations of the distance function, as described by Buja et al [16]. But one

troubling visual artifact of using Glimmer on our data was the persistence of an

overall circular layout, inside which the clusters were being forced together. Fur-

ther analysis of the data revealed this circularity to be an artifact of the predomi-

nance of unit length distances in the data.

Unit distances are a result of the cosine distance between two data points shar-

ing no features. Semantically, though, the purpose of a unit distance is actually

to imply no connection at all, not a connection of a specific length as was be-

ing reported by the cosine distance function. Our next strategy was to attempt to
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visually encode the absence of a connection between documents. This encoding

was achieved by replacing unit length distances with infinite distances and employ

a Box-Cox transformed version of the stress function as specified by Chen and

Buja [22]. But this strategy of replacing distances led to many practical compli-

cations: the data often broke into multiple disconnected components which would

repel each other in the layout, the energy model optimization was prone to get-

ting stuck in inferior local minima, and the Box-Cox force model itself had many

sensitive parameters.

Contour Trees and DiscoTrees

At this point, we shifted our focus away from finding a better layout engine, and to-

ward visually encoding the different densities of points in high-dimensional space.

Focusing on densities was directly informed by the observation that removing all

unit length “edges” in the graph constructed from the distance matrix often resulted

in meaningful disconnected components. The disconnected components were in

fact densities of points separated by an appreciable distance in terms-space. If den-

sities separated by unit-distance were meaningful, we surmised that many other

distances could produce meaningful decompositions. We set about answering the

question of whether there are even more interesting component decompositions of

the data determined by gradually relaxing the distance threshold.

In our first analysis of the problem, we considered the Contour Tree [18] of

the distance field. If one imposes a distance field over the high-dimensional data

space, then the value at each point in space is determined by its distance to the

nearest data point. Our unit-length decomposition of the data then resulted from

the disjoint sets of points contained in the iso-contours of the distance field at a

threshold of 1. The Contour Tree then represents all possible sets of components

produced by the union of all iso-contour values between one and zero. We then set

about computing and visualizing this decomposition.

The DiscoTree described in Chapter 5 is the result of an approximate algorithm

to calculate this Contour Tree. Our DiscoTree algorithm hinged upon the observa-

tion that the maximum distance between points within a contour is bounded by the

value of the contour [59]. By comparing the Contour Tree generated by this pro-
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cess to other hierarchical decompositions of points, we then concluded that there

is an isomorphism between this Contour Tree of a scalar distance field and the

hierarchy produced by Single-Link clustering.

Single-Link to Impact-Ordered Inverted Files

Realizing that our DiscoTree algorithm efficiently computes a Single-Link hierar-

chy, we set about comparing our strategy to previous work computing single-link

hierarchies. This comparison revealed a subset of clustering work using inverted-

file index structures when clustering documents [81]. Rather than simply compare

against this work, we examined current techniques for building and processing in-

verted files [137]. It was in this deeper comparison that we were able to draw

the connection between the approximations we made in our DiscoTree algorithm

with approximations made by impact-ordered, inverted-file indices. The connec-

tion between inverted files and high-dimensional space then permitted us to connect

many of the previously-visited dots and suggest the algorithm design implications

in Chapter 4.

Making Connections: Breadth-First vs. Depth-First Research

In developing new techniques, there is a tension between a breadth-first and depth-

first approach to researching a solution to a problem. In the breadth-first approach,

a researcher constructs an abstract description of their problem and then makes a

broad survey of possible techniques, selecting the best overall fit for the solution at

hand. In the depth-first approach, the researcher picks a familiar technique, devel-

oping and deepening its features until it is appropriate for solving the underlying

problem. Both approaches have their merits and risks. Breadth-first connects the

problem to a tried and true solution to a similar problem, but at the risk of making

only a superficial connection between problem and algorithm. Depth-first often

leads to novel work, pushing the frontiers of a technique to new venues, but at the

risk of being inferior to algorithms in alternative fields.

Our experience shows there may be benefit in combining both breadth and

depth. For example, our work in making modifications to Glimmer and the Contour

Tree algorithm were a depth-oriented approach, taking spatial approaches from
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visualization and computer graphics and deepening them to better analyze high-

dimensional term-vector data. Simultaneously, our drawing connections across

dimensionality reduction, hierarchical clustering and information retrieval were

breadth-oriented, selecting algorithms appropriate for the tasks of layout-generation,

groupings, and querying respectively. The utilization of these two styles simulta-

neously allowed us to organize a set of disparate fields together (breadth) and then

draw low-level connections between them (depth), ultimately leading to deeper

insights and improved results.

7.3.2 Research Impact and Collaboration

The other high-level lesson learned in the course of developing this thesis was that

of the benefits of a cross-domain collaboration, especially with respect to research

impact. Real-world impact, where non-experts derive benefit from the insights or

results of research, can be difficult to achieve. A paper by Wagstaff [121], address-

ing research impact in Machine Learning, suggested that impact is greatly affected

by follow-through, loosely defined as both “Publicize results to relevant user com-

munity” and “Persuade users to adopt technique.” In this section, we discuss our

experiences with collaborators in developing software systems, and how a collabo-

rator’s own goals can have significant effect on the impact of one’s research. Sedl-

mair et al. have presented a detailed approach to collaborator selection during the

course of visualization design studies [99]. Our discussion here is focused specifi-

cally on impact through user adoption, and can be considered a complementary set

of suggestions.

DimStiller Collaboration

In Chapter 3, we presented a high-dimensional analysis tool, DimStiller, aimed

at providing non-expert data-analysts with guidance in using sophisticated tools

and workflows. After developing this software, we collaborated with different re-

searchers and elicited their questions and analysis needs in response to the tool.

The motivations and goals of these collaborators were focused on solving their do-

main analysis problems under aggressive time constraints. For them, taking part in

an iterative design process might do more harm than good if the tool doesn’t have
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immediate benefits to their work process. Our collaboration with these domain

analysts led to insights in other research projects [98], but did not lead to further

development of the tool, or any popular adoption of the DimStiller software.

Overview Collaboration

Our collaboration with Jonathan Stray on the Overview project contrasts with the

DimStiller collaboration. In particular, as a Knight Foundation grant recipient,

he was motivated to see our collaboration succeed. In addition, his profile was

aligned with two aspects of follow-through highlighted by Wagstaff: publicizing

results, and evangelizing the technique for adoption. That is, he had access to

high-profile venues, such as the PBS Idea Lab website1, and he was professionally

well-connected enough with our target group to make headway evangelizing the

technique to real journalists. As a result, we were able to see the tool put to use by

journalists outside of our collaboration. We detailed some of this use in Section 5.4

of the thesis.

Ingredients of High-Impact Collaboration

The Overview project then presents a study in some of the right ingredients for

high-impact research. We summarize these ingredients as:

• Collaborator has a stake in the positive outcome of the project.

• Collaborator has a noted platform for publicizing good results.

• Collaborator is well-connected to high-profile users in the community.

Our collaborations on the DimStiller project possessed none of these ingredients,

making user adoption more unlikely through this specific collaboration. In our ex-

perience, if the ultimate goal of a project is community adoption of a tool, we sur-

mise that project collaborations without these ingredients face an uphill struggle.

We do not claim that these factors are either necessary or sufficient for high-impact

research. To do so would cynically suggest only seeking out community leaders for

1http://www.pbs.org/idealab/2013/04/how-a-computer-can-organize-thousands-of-documents-for-a-reporter110.
html Last accessed July 17th, 2013
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any collaboration. But we do mean to imply that, in our experience, the existence

of any or all three of these facets can go a long way toward seeing greater adoption

rates in a target community.
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