
Abstraction of Man-Made Shapes

by

Qingnan Zhou

B.CS., The University of Waterloo, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2009

c© Qingnan Zhou 2009

Abstract

Man-made objects are ubiquitous in the real world and in virtual envi-
ronments. While such objects can be very detailed, capturing every small
feature, they are often identified and characterized by a small set of defining
curves. Compact, abstracted shape descriptions based on such curves are
often visually more appealing than the original models, which can appear
to be visually cluttered. We introduce a novel algorithm for abstracting
three-dimensional geometric models using characteristic curves or contours
as building blocks for the abstraction. Our method robustly handles mod-
els with poor connectivity, including the extreme cases of polygon soups,
common in models of man-made objects taken from online repositories. In
our algorithm, we use a two-step procedure that first approximates the in-
put model using a manifold, closed envelope surface and then extracts from
it a hierarchical abstraction curve network along with suitable normal in-
formation. The constructed curve networks form a compact, yet powerful,
representation for the input shapes, retaining their key shape characteristics
while discarding minor details and irregularities.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgments . x

Dedication . xi

Statement of Co-Authorship . xii

1 Introduction . 1
1.1 Man-made models . 1
1.2 Abstraction of man-made models 2

2 Related Work . 5
2.1 Artistic and human perception of shape 5
2.2 Non-realistic rendering and modeling 6
2.3 Shape analysis and reverse engineering 8

3 Algorithm Overview . 11

4 Envelope . 13
4.1 Initialization . 13
4.2 Iterative fitting . 18

4.2.1 Matching . 18
4.2.2 Deformation . 21
4.2.3 Mesh regularization 22

5 Segmentation . 31

iii

Table of Contents

5.1 Extracting network topology 31
5.2 Extracting network geometry 33
5.3 Network regularization and simplification 37

6 Reconstruction . 40

7 Results . 42

8 Conclusion . 46

Bibliography . 47

iv

List of Tables

7.1 Abstraction statistics. 43

v

List of Figures

1.1 Commonly available man-made models often have multiple
connected components, self-intersections, and triangles with
bad aspect ratios. 1

1.2 (Left to right) Detailed 3D model, an artist’s drawing, a crys-
tal souvenir, and our abstraction of the Eiffel Tower. 2

1.3 (Left to right) Tourist map (courtesy of Arnaud Siminski)
depicting landmark buildings, Picasso’s famous abstraction
of a bull (courtesy of the Museum of Modern Art), and a
wooden toy (courtesy of NOVA68.com)designed by Calder all
make use of distinctive attributes to generate minimalist, yet
powerful, abstractions. 3

1.4 (Left to right) Input model, model simplified to 200 triangles,
simplified envelope surface with 200 triangles. While the sim-
plified envelope surface fares better, it does not preserve the
core features of the Arc de Triomphe. 4

2.1 Eiffel tower rendered using crease lines (left), suggestive con-
tours (middle), and crease lines on our 3D abstraction (right). 6

2.2 Comparison of common NPR line representations. Generated
using the executable provided in [14]. For suggestive contour,
ridges and valleys, and apparent ridges, the outer contours
are overlaid on top as black lines. 7

2.3 Man-made objects may often contain large interior features,
such as the interior wall of the famous Utah teapot. Left:
the original Utah teapot. Right: the same teapot cut in the
middle showing its interior wall. 10

3.1 (Left to right) Input model with 353 components, envelope
surface, vector representation, and reconstructed model. . . . 12

vi

List of Figures

4.1 Iterative envelope generation process: (Top left to bottom
right) original mesh, initial envelope generated (grid size 9 ×
23× 9 and subdivided twice), iteration 1 to 9, and iteration 11. 14

4.2 There might be multiple surfaces that separates the voxel hull
with the non-intersecting voxels. (a): anatomic illustration of
the Arc de Triomphe model which produces two separating
surfaces. The exterior separating surface (yellow) encloses the
input model (red), and the interior separating surface (green)
is enclosed by the input model. (b): (left to right) exterior
separating surface, input model, interior separating surface. . 15

4.3 Cross section of the voxel hull (red). Notice that the input
model lies between the exterior separating surface and the
interior separating surface. 15

4.4 A synthetic model with hidden surfaces that produces multi-
ple interior separating surfaces. 16

4.5 Initial envelope generation. Given an input mesh (a), a grid
of voxels is created to enclose it. (b) The intersecting vox-
els (gold) and the outer layer (blue) is computed. (c) The
exterior region propagates inwards until it reaches the voxel
hull. (d) Lastly, the initial envelope is extracted as the surface
separating the exterior voxels from the voxel hull. 17

4.6 The effect of different grid sizes on the voxel hulls and the
final envelopes. 19

4.7 Concavity not captured in the initial envelope (i.e. w is nar-
rower than the grid resolution) might be captured during
the matching step. Envelope is in red, and original mesh
is in black. Left: the concave feature is captured because
d ≤ 0.5w, and v is mapped to the bottom of the concavity.
Right: if d > 0.5w, v will map to one of the sides, thus the
concavity is removed. 21

4.8 The deformation step, during envelope fitting, smooths out
narrow concavities and suppresses details of the input model. 22

4.9 Effect of mesh regularization. 23
4.10 Local mesh smoothing. 24
4.11 Left: in locally flat regions, all vertex normals of a triangle

are approximately equal. Right: in non-flat regions such as
near a crease, the vertex normals of a triangle could be quite
different. 25

vii

List of Figures

4.12 Cross section view of mesh triangles (solid black lines) and
the smooth surface (dashed black curves) they approximate.
Before smoothing (left), the face normal nf is close to the
vertex normals n0 and n1. After smoothing (right), the new
nf might be very different from the original n0 and n1. . . . 25

4.13 Collapsing any of the 3-loop edges (red) will cause the mesh
to be non-manifold. 26

4.14 The red edge is flipped if θ1 + θ2 > 180◦. 26
4.15 Flipping an edge (red) that fails condition 4.3 may break the

crease (center). Thus, we split such edge into two halves (right). 27
4.16 Left: degenerate triangle (v0,v1,v2) was not fixed by mesh

smoothing and edge flips because condition 4.3 failed. Also,
since none of its edges are excessively long, edge splits did
not fix it either. Center: during degenerate triangle removal
step, edge (v1,v2) is first split. Right: edge (v0,v3) is then
collapsed. 27

4.17 Eiffel Tower (left). Low resolution envelope (middle) is ini-
tialized with grid size 9× 23× 9. The construction converged
in 11 iterations. High resolution envelope (right) is initialized
with grid size 27 × 65 × 27. The construction converged in 7
iterations. 29

4.18 Arc de Triomphe (left). Low resolution envelope (middle)
is initialized with grid size 21 × 35 × 33. The construction
converged in 12 iterations. High resolution envelope (right)
is initialized with grid size 35 × 61 × 57. The construction
converged in 8 iterations. 29

4.19 Empire State Building (left). Low resolution envelope (mid-
dle) is initialized with grid size 7 × 9 × 7. The construction
converged in 6 iterations. High resolution envelope (right)
is initialized with grid size 41 × 141 × 29. The construction
converged in 5 iterations. 30

4.20 Dome of the Rock (left). Low resolution envelope (middle)
is initialized with grid size 37 × 23 × 37. The construction
converged in 10 iterations. High resolution envelope (right)
is initialized with grid size 67 × 43 × 67. The construction
converged in 8 iterations. 30

viii

List of Figures

5.1 Vectorization stages: (Left to right) VSA segmentation, seg-
mentation after boundary improvement, smooth approxima-
tion geometry, extracted regularized curve network, surface
after hierarchical simplification, regularized simplified curve
network. 32

5.2 Left: unsmoothed model. Right: the same model rendered
using smoothed normals. 34

5.3 Left: original partition. Middle: after one iteration of chart
smoothing without boundary curve smoothing. Right: af-
ter one iteration of chart smoothing with boundary curve
smoothing. Chart boundaries are indicated using yellow lines. 35

5.4 Each chart is indicated by a unique color. Top: the tower
model before chart smoothing (left), after per-triangle solve
(center), and after global assembly (right). Bottom: Zoomed
view of the top of the tower before chart smoothing (left),
after per-triangle solve (center), and after global assembly
(right). 36

5.5 Input model, processed segments, vectorized curve network,
and reconstructed abstraction. Zoom panels show section of
curve network, and normals along the curves. Connectivity-
only or virtual edges are marked in brown. For ease of vi-
sualization, normals from same curve loops are marked in
identical colors. 39

7.1 Even for noisy input models, the regularization step allows
creation of quality abstractions. We present abstractions with
2% and 5% (of bounding box diagonal length) noise added to
the dome model. 42

7.2 (Left) Fine topological features are easily combined by our
envelope construction stage. However, once such features are
extracted by a finer grid resolution, we have no easy method
to remove them, independent of their size. (Right) Some
objects, perhaps those less familiar to us, have no obvious
natural abstraction. 44

7.3 Result gallery showing various input models, extracted curve
networks (with normals), and reconstructed abstractions. The
high-resolution abstractions are rendered in yellow, while the
low-resolution ones are in blue. 45

ix

Acknowledgments

First of all, I would like to thank my supervisor Alla Sheffer, without whom
this work would not have been possible. I would also like to thank my
collaborators: Ravish Mehra, Jeremy Long, Niloy J. Mitra, and Amy Gooch.
It was fun and rewarding to work with you guys. In addition, I want to thank
my second reader, Robert Bridson, for his valuable feedback.

I would like to give special thanks to Tiberiu Popa, Vladislav Kraevoy,
Xi Chen, Benjamin T. Cecchetto, Derek Bradley, Ian South-Dickinson and
Cody Robson for their help and support. I also want to thanks all my friends
for their companionship, support and encouragement. Thank you Jingwen,
Xi, Xiaofei, Kaida, Yilan, Wei, Mianwei, Hongbo, Lan, Bo, Kwun Kit and
anyone else I have forgotten.

Thank you to my father and mother for all their love, patience, understand-
ing and support. Thank you to my cousin for her sharing and guidance.

Lastly, I would like to thank NOVA68.com, Arnaud Siminski, and Museum
of Modern Arts for granting us to use their images in our figures.

Qingnan Zhou
August 2009

x

Dedication

I would like to dedicate this work to my parents: Jian Zhou and Hua Lu; to
my cousin: Jiajia Li; and to my girlfriend.

xi

Statement of Co-Authorship

The algorithm described in this paper was developed together with Prof. Alla
Sheffer, Prof. Niloy J. Mitra, Prof. Amy Gooch, Ravish Mehra, and Jeremy
Long. Prof. Sheffer and Prof. Mitra supervised the project, and Ravish
and I performed research and implementation. Prof. Gooch and Jeremy
helped us trying out various image-based approaches in the project. The
implementation is mainly built on the CML code base and the Graphite
code base.

xii

Chapter 1

Introduction

1.1 Man-made models

Engineered objects constitute a large fraction of the models populating vir-
tual environments such as games, movies, or simulations. In recent years,
easy access to 3D modeling tools and the rapid growth of online modeling
communities have resulted in large collections of such models. Most models
of man-made objects present in such collections do not satisfy the notion
of “good” geometry processing models [27]. They frequently consist of nu-
merous disconnected components, have self-intersections, and lack accurate
information about part junctions and interconnections. From a processing
point of view, such models can be considered as polygon soups (Figure 1.1).

Models of man-made objects can be very detailed, capturing every hole and
protrusion. However, such shapes are often characterized and identified by
just a few defining features (Figure 1.2). Shape descriptions based on those
features, commonly involving a handful of characteristic curves, potentially
mimic the minimalist representations that we, as humans, possibly store and

Figure 1.1: Commonly available man-made models often have multiple
connected components, self-intersections, and triangles with bad aspect ra-
tios.

1

1.2. Abstraction of man-made models

use for our inference needs [38]. These compact, abstracted descriptions are
visually more appealing than the detailed original ones, which may appear
visually cluttered (Figure 1.2-left). Using this observation, artists frequently
create recognizable images or icons of known objects by employing only a few
brush strokes (see drawing in Figure 1.2). Such stylization is also common
in tourist maps (Figure 1.3), where landmark buildings are depicted by just
a few strokes that highlight their main features (see also [21]).

Figure 1.2: (Left to right) Detailed 3D model, an artist’s drawing, a crystal
souvenir, and our abstraction of the Eiffel Tower.

1.2 Abstraction of man-made models

In this thesis, we introduce a novel algorithm for abstracting three-dimensional
shapes. Inspired by human shape perception literature [4, 13] and artistic
techniques, we use characteristic curves or contours as building blocks for
the abstraction. The choice is motivated by the observation that the shape
of many man-made objects is clearly delineated by contour lines and can
be faithfully modeled as a union of smooth patches welded together along
these junction curves. Specifically, our method extracts a sparse network
of space curves and associated normals as an abstraction of input models.
This compact representation makes explicit the main features of the shape,
which are challenging to identify from a polygon mesh or other low-level
representations.

While shape abstraction can be attempted at the rendering level by devel-
oping suitable NPR tools, applying it directly to the models has a number of
advantages. Model-level abstraction allows consistent rendering of a shape
from a variety of views and is independent of the rendering resolution or

2

1.2. Abstraction of man-made models

Figure 1.3: (Left to right) Tourist map (courtesy of Arnaud Simin-
ski) depicting landmark buildings, Picasso’s famous abstraction of a bull
(courtesy of the Museum of Modern Art), and a wooden toy (courtesy of
NOVA68.com)designed by Calder all make use of distinctive attributes to
generate minimalist, yet powerful, abstractions.

zoom level. The set of extracted curves forms a minimalist representation, or
an icon, of the modeled object. By maintaining the extracted curve network
properties, subsequent processing can generate new models that automati-
cally retain the defining characteristics of the original one [17]. Analogous
to the diffusion curves for images [36], our curve network, along with suit-
able normal information, presents a vectorized representation of the input
models.

Our abstraction method operates in two stages. First, it maps the given
geometry to a voxel grid of suitable resolution, and extract a corresponding
closed, manifold envelope surface, that wraps around the input model while
smoothing out minor details (Figure 3.1 middle). This allows us to robustly
handle non-manifold meshes and multiple component meshes, including the
extreme case of polygon soups. In the second stage, the method extracts a
network of curves or vectors from the envelope. After extracting the network
connectivity using a mesh segmentation approach, it establishes the network
geometry using a combination of regularization and approximation criteria
(Figure 3.1 right).

An alternative approach for filtering out insignificant shape details is sim-
plification, which, operating at triangle-vertex level, aims to reduce polygon
count while controlling the deviation of the simplified object from the origi-
nal one. Unfortunately, in the process, characteristic shape curves are likely
to be disturbed, especially under extreme simplification [19], see Figure 1.4.
Additional artifacts arise when the input is a polygon soup instead of a well-
formed manifold mesh. In contrast, abstraction attempts to directly extract

3

1.2. Abstraction of man-made models

Figure 1.4: (Left to right) Input model, model simplified to 200 triangles,
simplified envelope surface with 200 triangles. While the simplified envelope
surface fares better, it does not preserve the core features of the Arc de
Triomphe.

the high-level structure of objects, intentionally removing insignificant visual
details and potentially allowing significant topological changes.

In addition to the main contribution of providing a method to perform
abstraction of 3D geometric shapes, our two secondary contributions are:
a novel vector-based representation of 3D geometry, which can be used for
a variety of mesh editing tasks; and a simple yet robust mechanism for
approximating polygon soup models by a manifold surface envelope.

4

Chapter 2

Related Work

Abstraction, the process of identifying characteristic properties and extract-
ing their mutual relationships and topology [16], has been studied in many
fields and disciplines including art, non-realistic rendering and modeling,
and human perception, for purposes such as shape analysis, generation of
compact descriptors, and recognition.

2.1 Artistic and human perception of shape

In the twentieth century, artists like Kandinsky, Mondrian, and Picasso
pushed the boundaries of geometric abstraction in 2D representations of the
surrounding world to the extremes. Alexander Calder ingeniously used wires
in addition to sheet metal, wood, and bronze to create abstract 3D sculp-
tures. While automatically generating abstraction levels like those created
by Kandinsky and Mondrian is unrealistic, we draw motivation from the
curve-based abstraction portrayed by Calder in his 3D wire sculptures.

Koenderink and Doorn [26] hypothesized that humans internally represent
shapes as functions that measure the visual complexity of solid shapes.
Later, Nackman and Pizer [33] differentiated between representation and
description of an object where an object representation contains enough
information to enable an approximate reconstruction, while an object de-
scription needs only to contain enough information to identify an object as
a member of some object class, which is exactly what abstraction aims to
do.

5

2.2. Non-realistic rendering and modeling

2.2 Non-realistic rendering and modeling

A major goal of non-photorealistic rendering (NPR) is to highlight or am-
plify defining object characteristics. Since low-level geometry does not pro-
vide a natural prioritization of the shape features (Figure 2.1), NPR tech-
niques strive to identify view-specific important features, which should be
rendered or exaggerated to convey form [12]. Significant research has been
devoted to identifying candidate feature lines including contours, ridge or
valley lines [32], and suggestive contours [14].

Figure 2.1: Eiffel tower rendered using crease lines (left), suggestive con-
tours (middle), and crease lines on our 3D abstraction (right).

Contours 1 (points where the surface normals are orthogonal to the viewing
direction) are the most commonly used feature lines for shape representation
purposes [14, 20, 22, 26]. However, contours alone cannot fully convey even
moderately complex shapes [12]. For instance, as shown in Figure 2.2(c),
the cylindrical features on the front face of the pulley are not captured in the
contour drawing. An important subset of contours, called outer contours or
bounding contours (Figure 2.2(b)), are lines that separate the object from
the background [24]. Outer contours are often combined with other NPR
line representations to convey shape (Figure 2.2(d), 2.2(e), and 2.2(f)).

DeCarlo et al. [14] presented a new set of lines, the suggestive contours,
which contains not only traditional contours but also features that would

1Also called occluding contours [24]. In certain literatures such as [20] and [22], the
term “silhouette” is used instead of “contour”. We will use the term “contour” in this
thesis to avoid confusion.

6

2.2. Non-realistic rendering and modeling

(a) Original model (b) Outer contours (c) Contours

(d) Suggestive contours [14] (e) Ridges and valleys [35] (f) Apparent ridges [24]

Figure 2.2: Comparison of common NPR line representations. Generated
using the executable provided in [14]. For suggestive contour, ridges and
valleys, and apparent ridges, the outer contours are overlaid on top as black
lines.

become contours in a nearby view as shape representations. As shown in
Figure 2.2(d), suggestive contours extend the actual contours and contain
lines that are almost contours. In the presence of noise, suggestive contours
might be unstable and capture excess shallow surface features.

Ridges and valleys are another family of lines commonly used to convey
shape. Conceptually, they capture places where the surface bends sharply.
Formally, they are defined as the extrema of the principle curvatures in the
corresponding curvature directions [35]. In certain situations such as in the
absence of concavities, they yield better results than suggestive contours [12,
14]. However, due to the view-independent nature of ridges and valleys, they
often cause the line representation to exaggerate the sharpness of features.
In order to compensate for this, Na et al. [32] proposed to assign strength
to each ridge and valley line based on the viewing angle. Only the features

7

2.3. Shape analysis and reverse engineering

with significant strengths are displayed in the final rendering.

Inspired by ridges and valleys, Judd et al. [24] introduced apparent ridges,
which are positions where the surface normal changes at a locally maximal
rate with respect to the image space. Apparent ridges essentially provide a
reweighting scheme that favors regions where the projection foreshortening
is most apparent, making the result view dependent. In the extreme case,
contours have weights near infinity due to the big per pixel normal difference
near those regions. Figure 2.2(e) and 2.2(f) show the result of rendering the
pulley model using ridges and valleys as well as apparent ridges. Although
they are able to represent the shape visually from the given view point, the
lines are inconsistent between viewing directions.

All of the NPR algorithms mentioned above are illustrated in Figure 2.2.
Notice that the lines extracted are often view-specific. While the view de-
pendent nature of NPR line representations helps to convey the shapes vi-
sually, it is hard to use them for 3D abstract representations due to incon-
sistency across views. Moreover, input models often contain surface noise
which causes excess small strokes in line representations and increase the
difficulty for viewers to extract the underlying geometry. In contrast, the
curve networks extracted by our abstraction method can be used to create
view-independent NPR effects, which remain persistent across motion and
animation and are robust against surface noises.

Little work exists for stylizing or creating iconic representations of 3D mod-
els. A notable exception is the research by Gal et al. [18], which creates
3D collages on top of target shapes using a database of objects as primitive
building blocks. The resulting collages, though artistically powerful, are not
intended for other uses.

2.3 Shape analysis and reverse engineering

Motivated by procedural modeling and constructive solid geometry (CSG),
researchers have long proposed to approximate a given 3D model with para-
metric parts [3, 46]. Such parametric descriptions can indicate the struc-
tural composition of the given model, where different abstraction levels could
be obtained by direct part manipulation such as removing some of the parts
while preserving others. For example, in [3], the authors described a hier-
archical segmentation algorithm based on fitting primitives such as planes,
spheres, and cylinders. The paper shows very promising results for decom-

8

2.3. Shape analysis and reverse engineering

posing and denoising CAD models, where the input were primarily com-
posed of those primitive shapes. However, due to the variety of man-made
objects in general, it is hard to pick a pre-defined set of primitives as the
basic building block. Thus, in general, reverse engineering structure and
regularity from 3D geometry is still considered a difficult open problem [37],
with algorithmic solutions unlikely to reach human performance levels in
the near future. Instead, we present a method that uses low-level analysis
of the models to automatically extract the main feature curves, providing a
compact vector representation of the model at a desired abstraction level.
Our approach bypasses the difficult reverse engineering task of detecting the
global structure, while implicitly preserving the main characteristic features
of the models.

In the domain of 2D shapes, it is well known that features that are stable
over scale changes are significant [5, 47]. Since the extrema in a signal and
its derivatives often provide important information (e.g. image edges [10]),
Witkin et al. [47] proposed to detect and track signal extrema at different
scales and introduced scale-space representation. The scale-space concept
has been widely used in computer vision and image analysis. Bengtsson et
al. [5] obtained abstractions by studying contours at different scales.

In 3D settings, finding features that are stable over scale changes is diffi-
cult. It would require to sample the input model at different density levels,
reconstruct surfaces from these sampled point clouds, and analyze features
that are consistent in all reconstructions. In theory, this approach may be
sound, and the resulting stable features could be used for shape abstraction.
However, given that the input could be non-manifold meshes of multiple
components with self-intersections, even surface reconstruction from point
clouds alone could be quite challenging because the points are unlikely to
lie on a manifold surface. Even if the input model is manifold, the sampling
randomness might still cause the final abstraction to miss certain important
details while capturing other undesirable features. Moreover, such algorithm
would rely on sampling to decide the importance of features, where large
but hardly visible features (e.g. the interior wall of the teapot shown in
Figure 2.3) are likely to be kept due to their large surface areas even though
these features have very little contribution to the user perceived shape.

While the general shape analysis problem is difficult even for manifold, con-
nected meshes, we show that for man-made objects, due to their inherent
regularity and structure, creating effective abstraction, even from polygon
soups, is possible. Our abstraction comes in the form of a curve network,

9

2.3. Shape analysis and reverse engineering

Figure 2.3: Man-made objects may often contain large interior features,
such as the interior wall of the famous Utah teapot. Left: the original Utah
teapot. Right: the same teapot cut in the middle showing its interior wall.

which can be used as input for modeling and editing systems. One of
such systems is iWires [17], where the authors used a collection of 1D wires
and their mutual relationship to manipulate a given shape in a structure-
preserving manner. These wires were either extracted from the model based
on dihedral angles or defined by a user to reflect the input structure. The
curve network generated by our abstraction algorithm captures similar struc-
tural information for the reconstructed surface. Therefore, the position of
the curve network can be considered as iWires to allow further manipulation
of the abstracted shape. Another curve based surface modeling system is
FiberMesh [34], where users draw a collection of 3D control curves and a
manifold surface is created to interpolates them. Although both the Fiber-
Mesh control curves and our curve network can be used to define a surface,
they are very different and serve distinct goals. Specifically, FiberMesh con-
trol curves are designed to allow smooth surface interpolation and intuitive
model manipulation. In particular, the default type of FiberMesh control
curves requires the interpolating surface smoothly interpolate the curves,
and there is little correspondence between these control curves and surface
features. In contrast, our curve networks aims to capture those shape defin-
ing features of a given model.

10

Chapter 3

Algorithm Overview

Our goal is to extract a vector representation for three-dimensional shapes,
targeted specifically toward abstraction of man-made objects, i.e., objects
whose main features can be captured by a few smooth surfaces glued to-
gether along characteristic curves. Our representation satisfies the following
properties:

Reconstruction: The network of curves, or vectors, combined with the
normals prescribed along them, is sufficient to define the abstracted shape,
encoding both the connectivity and the geometry of the reconstructed model
(Chapter 6). To describe the connectivity, the network is required to be a
connected B-Rep2 representation, as this significantly simplifies the recon-
struction step. To adequately reconstruct the geometry we define the surface
normals across the model as weighed combinations of the curve normals.

Abstraction: Depending on the desired level of abstraction, our represen-
tation controls which geometric features are appropriate, while smoothing
out the less significant ones.

Structure: Regularity and structure, which lead to simplicity of design,
fabrication, and installation, are properties common to most man-made ob-
jects [29]. Viewers are known to be sensitive to breakup of regular structures
present in the input models when those are processed [27], and they seem
to remember or identify shapes based on symmetry and regularity, ignoring
the deviations [2]. Thus we expect abstractions of man-made shapes to be
as regular or structured as possible. This translates to the curves being lo-
cally as simple as possible, i.e., being planar, linear, circular arcs, etc., while
satisfying global regularity requirements such as symmetry, parallelism, and
orthogonality.

Our abstraction method generates such vector representations in two steps.

2Boundary representation, where a solid shape is represented using the surface bound-
aries.

11

Chapter 3. Algorithm Overview

Figure 3.1: (Left to right) Input model with 353 components, envelope
surface, vector representation, and reconstructed model.

First, it constructs an envelope surface, a closed, manifold surface approxi-
mating or “enveloping” the input model (Chapter 4). The surface provides a
manifold approximation of the potentially poorly-connected data, enabling
subsequent extraction of a meaningful network of curves. It also helps to
approximate the input at a desired degree of abstraction, controlling the
genus of the final model as well as smoothing out minor details (Figure 3.1).

The second step extracts the curve network that serves as the vector rep-
resentation of the input model (Chapter 5) . First it extracts the network
connectivity using mesh segmentation and then establishes the network ge-
ometry using a combination of regularization and approximation criteria.
The geometry computation is performed using an optimization procedure
that simultaneously computes the vector representation and an approxima-
tion of the reconstructed surface obtained from this representation. The
combined computation controls the tradeoff between the smoothness and
regularity of the reconstruction, and the level of approximation of the in-
put.

This project is a collaboration with several other researchers. Therefore, in
this thesis, I will mainly focused on the parts that I contributed. Namely, I
will focus on the envelope generation process (Chapter 4) and the smooth
surface approximation (Section 5.2). The other components are also present
in this thesis for completeness.

12

Chapter 4

Envelope

The envelope construction stage defines a tight manifold approximation of
the input models, providing both a first level of abstraction and a well-
defined domain for further processing. This step can be skipped if the input
model is a priori described by a single manifold surface. However, in this
case the abstracted model will preserve the topology of the input.

While it is conceivable to have an implicit, distance function based approach
followed by isosurface extraction for constructing the envelope [8], such an
approach is ill-suited for our setup, as our input models often contain many
self intersections and may have inconsistent triangle orientation, making
distance computations problematic.

Instead, we start by constructing an initial envelope that contains the input
model and loosely follows its geometry. Using a local refinement process sim-
ilar to iterative closest point (ICP) [7], the envelope is attracted toward the
model to obtain the desired approximation quality (Figure 4.1). The itera-
tive fitting process helps satisfy the potentially conflicting goals of bringing
the envelope mesh close to the input model while maintaining a quality tri-
angulation of the envelope. The fitting process, which provides a tradeoff
between envelope resolution and input approximation, smoothes out narrow
concavities, yielding a first level of abstraction.

Section 4.1 provides details about initializing the envelope construction pro-
cess. Section 4.2 explains the operations performed in each iteration. En-
velopes of various input models are shown at the end of this chapter.

4.1 Initialization

The goal of the initialization step is to construct a surface that approximates
the shape of the given model. We embed the input model in a regular grid
and define the voxel hull of the model as the set of all grid voxels that

13

4.1. Initialization

Figure 4.1: Iterative envelope generation process: (Top left to bottom right)
original mesh, initial envelope generated (grid size 9× 23× 9 and subdivided
twice), iteration 1 to 9, and iteration 11.

intersect any of the model triangles. Often, the voxel hull is formed by a
closed layer of grid cells which encompass a space made of non-intersecting
voxels in the middle. As shown in Figure 4.2, such voxel hull may have
multiple disconnected surfaces that separate the intersecting voxels from
the non-intersecting ones. We use the term interior separating surface to
denote the surface that separates regions surrounded by the voxel hull from
the hull, and the term exterior separating surface for the surface between the

14

4.1. Initialization

(a) Anatomic view

(b) Exterior, original, and interior
surfaces

Figure 4.2: There might
be multiple surfaces that sep-
arates the voxel hull with the
non-intersecting voxels. (a):
anatomic illustration of the
Arc de Triomphe model which
produces two separating sur-
faces. The exterior separat-
ing surface (yellow) encloses
the input model (red), and
the interior separating surface
(green) is enclosed by the in-
put model. (b): (left to right)
exterior separating surface, in-
put model, interior separating
surface.

ExteriorInterior

Exterior Separating Surface

Interior Separating Surface

Original Mesh

Figure 4.3: Cross section of
the voxel hull (red). Notice
that the input model lies be-
tween the exterior separating
surface and the interior sepa-
rating surface.

voxel hull and the region outside it (Figure 4.3). We do not use interior
separating surface in our algorithm because there could be several interior
separating surfaces due to hidden surfaces in the input model (Figure 4.4).
In contrast, the exterior separating surface is unique for each component of
the voxel hull. We use the exterior separating surface as the initial envelope
because it loosely approximates the visible structure of the input model.

The initial envelope construction consists of three steps:

15

4.1. Initialization

(a) Input model

Hidden surfaces

(b) Cross section (c) Exterior separating sur-
face

(d) Interior separating surfaces

Figure 4.4: A synthetic model with hidden surfaces that produces multiple
interior separating surfaces.

1. Computing the Voxel Hull: The goal of the computation is to
determine all voxels intersecting the input model. The brute force way
to achieve this is to perform intersection tests of all voxels with every
edge and every triangle. The running time is O (|Vh| · (|E| + |F |)),
where |Vh|, |E|, |F | are the number of voxels, the number of edges,
and the number facets respectively. Such method is very inefficient
especially when there are many non-intersecting voxels (Figure 4.5(c)).

Instead, for each triangle, we perform intersection test only on voxels
within its bounding box, and for each edge, we find intersecting voxels
by ray tracing from one endpoint to the other using the algorithm
described in [1]. The running time for this step is O(m1|F | + m2|E|),
where m1 is the maximum number of voxels in the bounding box of a
facet, and m2 is the maximum number of voxels that intersect an edge.
In all models used in this thesis, both m1 and m2 can be bounded by
a constant number c, which makes the running time O(c|F | + c|E|) ∈
O(|E|). Figure 4.5(b) shows the voxel hull of the tower model.

16

4.1. Initialization

2. Computing the Exterior Voxels: The next step is to find all non-
intersecting voxels that are exterior. The outer most layer of voxels
in the grid is exterior by construction, shown as blue boxes in Fig-
ure 4.5(b). Since any non-intersecting voxels adjacent to an exterior
voxel are also exterior, we expand the exterior region inwards until it
reaches the voxel hull. This operation is O(|Vh|). Figure 4.5(c) shows
the grid with exterior voxels colored blue.

3. Surface Extraction: The final step is to extract the surface that
separates the exterior voxels from the voxel hull. This operation is
O(|Vh|). Figure 4.5(d) gives an example of such extracted surface.

The resulting surface is the initial envelope. Overall, the initialization step
has running time O(|E| + |Vh|). Once the envelope is constructed we refine
the initial coarse mesh using one or two iterations of regular subdivision to
enable better subsequent approximation.

(a) Input mesh (b) Intersecting vox-
els and exterior vox-
els

(c) Exterior region
propagation

(d) Initial envelope

Figure 4.5: Initial envelope generation. Given an input mesh (a), a grid
of voxels is created to enclose it. (b) The intersecting voxels (gold) and the
outer layer (blue) is computed. (c) The exterior region propagates inwards
until it reaches the voxel hull. (d) Lastly, the initial envelope is extracted as
the surface separating the exterior voxels from the voxel hull.

The voxel grid resolution directly determines the topology of the resulting

17

4.2. Iterative fitting

abstraction. Therefore, we allow users to choose a suitable resolution for
each given model. Figure 4.6 shows the effect of different voxel grid resolu-
tion for the Eiffel Tower model.

In addition, the voxel grid resolution plays an important role in determining
the abstraction level of the final envelope. As shown in Figure 4.7, narrow
concavities that are not captured in the initial envelope will remain ab-
stracted in the final envelope as well. See Section 4.2 for detailed discussion.

Besides its effects on the final topology and the abstraction of narrow fea-
tures, the initial envelope only needs to follow the input model geometry
loosely. For instance, both the the center and right voxel hulls of Figure 4.6
capture the cavity in the center of the tower but produce different cavity
shapes. Despite the distinct cavity shapes in these two initial envelopes, the
corresponding final envelopes are very similar.

4.2 Iterative fitting

Once we have an initial envelope that loosely follows the input geometry,
the iterative fitting process will progressively tighten the gap between the
envelope and the input model. Similar to ICP [7], where a model is itera-
tively rotated and translated to align with the given shape, we iteratively
deform the envelope towards the input model while preserving the overall
shape and mesh quality. Each iteration consists of the following steps.

• Matching, which maps the vertices of the envelope to the closest posi-
tions on the input model;

• deformation, which deforms the envelope to better approximate the
input based on the computed matches;

• and mesh regularization, which maintains the quality of the envelope
mesh as it deforms.

The process terminates when the envelope stabilizes or a maximum number
of iterations is reached. We now describe the steps in detail.

4.2.1 Matching

Each vertex of the envelope is matched to the closest position on the input
model. The straight forward matching method is to check the distance

18

4.2. Iterative fitting

(a) Left to right: grid size (9× 23× 9), (17× 41× 17), and (27× 65× 27).

(b) The corresponding envelopes generated with two level of subdivision
(left) and one level of subdivision (center, right).

Figure 4.6: The effect of different grid sizes on the voxel hulls and the final
envelopes.

from an envelope vertex to every facet of the original mesh and find the
shortest distance. This will take O(|Ve| · |F |), where Ve is the set of vertices
of the envelope, and F is the set of facets in the original mesh.

To accelerate this, we observe that the input model is entirely contained
within the voxel hull (Figure 4.3). Since the initial envelope is the exterior
separating surface of the voxel hull, any envelope vertex is at most dcell

away from the input mesh, where dcell is the diagonal length of a voxel. In
addition, each iteration of the fitting step pulls the envelope towards the
input model, so the distance between each individual envelope vertex and
the input mesh is likely to decrease as well. Therefore, when searching for the

19

4.2. Iterative fitting

closest match of a target vertex, we eliminate the checks for facets known
to be further than 2dcell away. We use space subdivision to prune these
unnecessary distance computations. The bounding box of the envelope is
subdivided into a regular grid with the same grid size as in the initialization
step (each cell’s diagonal length is dcell). For each envelope vertex, the grid
cell that contains this vertex is calculated using its coordinates. To find the
closest match, we only check the facets intersecting the same grid cell as the
target vertex plus the neighboring grid cells, which contain all facets within
the 2dcell distance range. Thus, the running time becomes O(|Ve| ·m), where
m is the maximum number of facets intersecting a grid cell. Although, in
the worst case, this algorithm is still O(|Ve| · |F |), each grid cell on average
only intersect a constant number of facets. Therefore, the running time is
roughly linear in |Ve| for most of the input models.

Similar to ICP setup, we discard outlier matches. We use two simple but
effective heuristics to validate each match. First, matched positions too
far from the envelope are likely wrong. This check is implicitly enforced
by the space subdivision algorithm described above, where matches with
distance greater than 2dcell are not considered. Second, since the initial
envelope is strictly outside the input model, we force every envelope vertex
to map inward. More specifically, for each envelope vertex, we enforce its
matched point to be in the opposite direction with respect to its normal.
This requirement works well for the earlier iterations. However, in latter
iterations, the envelope might intersect the input mesh and the mappings
could be in the direction of the normals. Therefore, we only apply this
validation when the envelope is sufficiently far from the input mesh (average
distance is greater than 0.01 times the diagonal of the bounding box).

The matching step plays a key role in removing narrow concavities. A
concavity that is not captured by the initial voxel hull could be captured
during the matching step if an envelope vertex is mapped to the bottom of
the concavity. There are two factors that affect this possibility: the depth
to width ratio of the concavity, and the position of the envelope vertex.
For concavities with depth more than half of its width, it is impossible for
an envelope vertex outside of the concavity to map to the bottom of the
concavity because the boundary of the concavity will always be closer to the
vertex than the bottom (Figure 4.7 right). For other cases, shallow concavity
could be captured if there is an envelope vertex outside of the concavity
that is closer to the concavity bottom than to the boundaries (Figure 4.7
left). Thus, such shallow concavities are more likely to be captured by dense
envelopes than sparse envelopes.

20

4.2. Iterative fitting

w

d

v

w

d

v

Figure 4.7: Concavity not captured in the initial envelope (i.e. w is nar-
rower than the grid resolution) might be captured during the matching step.
Envelope is in red, and original mesh is in black. Left: the concave feature is
captured because d ≤ 0.5w, and v is mapped to the bottom of the concavity.
Right: if d > 0.5w, v will map to one of the sides, thus the concavity is
removed.

4.2.2 Deformation

Despite filtering out outliers, the target positions provided by the correspon-
dences established in the matching step can still sometimes be inconsistent,
leading to self-intersections and other mesh degeneracies if strictly enforced.
To avoid such artifacts we introduce a deformation formulation that pro-
vides a tradeoff between enforcing the matches and maintaining the shape
and position of the current envelope. Specifically we optimize

min
vi

∑

i

c1Tl + c2To + c3Tn (4.1)

where Tl =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vi −
1

|(i, j)|

∑

e=(i,j)

vj

 − li

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

,

To = ‖vi − v′
i‖

2,

Tn = ‖vi − wi‖
2,

vi are the new positions of the mesh vertices, v′
i are the current vertex

positions, li are the Laplacian vectors [42] given by (v′
i −

∑

e=(i,j) v
′
j/|(i, j)|)

computed on the current envelope, and wi are the positions proposed by the
matching.

The term Tl is the objective function of many state of the art deformation
algorithms [42], where it is often used to preserve the local details of the

21

4.2. Iterative fitting

Figure 4.8: The deformation step, during envelope fitting, smooths out
narrow concavities and suppresses details of the input model.

mesh. To and Tn pull the envelope towards its original position and its
mapped position respectively. The weights determine the balance between
the original shape and the target mesh shape as well as the speed of the
convergence. We used c1 = 1, c2 = 0.5, c3 = 2 for all the models shown in
this thesis.

The shape preservation terms Tl and To combined with the regularization
step further help smooth over narrow concavities in the input model where
the size of the narrow features is smaller than the initial grid resolution (see
Figure 4.8). This aids the abstraction process by removing potentially deep,
but poorly visible, features.

The resulting linear system is solved using a sparse linear solver [45]. We
choose to use Cholesky factorization to speed up the solving process. The
following option is passed to the TAUCS linear solver.

"taucs.factor.LLT=true","taucs.factor.ordering=metis",NULL

4.2.3 Mesh regularization

As the envelope deforms, the quality of the mesh triangles can increasingly
deteriorate as the initial connectivity may not accurately reflect the fitted
geometry. Such mismatching connectivity can negatively affect the qual-
ity of the approximation (Figure 4.9). Our iterative fitting addresses this
concern by performing mesh regularization after every iteration. The basic

22

4.2. Iterative fitting

Figure 4.9: Zooms of the mesh envelope, for the Dome of the Rock model,
after four iterations of fitting without (left) and with (right) regularization.

regularization step is based on [44] and involves a combination of local mesh
smoothing, edge collapses, edge flips, edge splits, and degenerate triangle
removal operations aimed at maintaining reasonable mesh quality.

Mesh Smoothing. As the envelope deforms, multiple envelope vertices
often maps to the same or close by positions on the input mesh, which
may produce poorly shaped or tiny triangles. The smoothing step improves
the triangle quality by sliding vertices along the surface. Specifically, for
each vertex, we compute the average of its neighbors and use the projection
of this average onto the tangent plane as the new position. As shown in
Figure 4.10, the new position vi of vertex i is

vi = v′
i + t

where t = (p′
i − v′

i) −
(

(p′
i − v′

i) · n
)

n,

v′
i is the position before smoothing, p′

i =
∑

e=(i,j) v
′
j/|(i, j)| is the average

of neighbors of vertex i, and ni is the vertex normal. Note that all vertex
normals are computed as the area weighted average of the facets normals
adjacent to them. Since each vertex stays on its tangent plane, the shrinkage
problem associated with standard mesh smoothing is largely alleviated.

To avoid smoothing out sharp details on the envelope, the following two
metrics [44] are used to determine the flatness of the local neighborhood
around a triangle and the fidelity of the resulting mesh:

Edist = max
i={0,1,2}

arccos(ni · ni+1) < θdist (4.2)

Esmth = max
i={0,1,2}

arccos(nf · ni) < θsmth (4.3)

23

4.2. Iterative fitting

n

v′
i vi

p′
i

Tangent planeTangent plane

t

Figure 4.10: Mesh smoothing: each vertex is moved to the projection of p′
i

onto the tangent plane, where p′
i is the average of neighbors.

where ni are the vertex normal before smoothing, and nf is the face normal
after smoothing. All indices are modulo 3. A vertex is smoothed if and only
if both Edist and Esmth satisfy the corresponding thresholds.

The term Edist measures how flat the surface is locally before smoothing,
and it is defined over the local neighborhood of a triangle (i.e. all triangles
sharing a vertex with the given triangle). Figure 4.11 shows two triangles
along with their local neighborhoods. In relatively flat neighborhoods (left),
all vertices of a triangle have similar normals, and hence Edist is small. On
the other hand, in a non-flat neighborhood (right), Edist is big due to large
normal difference between the triangle vertices. We set the threshold θdist

to 45◦ for all examples shown in this thesis.

In addition to the smoothness criterion, the term Esmth serves as a heuristic
to preserve shape. Consider each envelope triangle as a linear local approx-
imation of a smooth surface, where the vertex normal is the surface normal
at the corresponding vertex, and each triangle approximately coincides with
the local tangent plane. Notice that the triangle normal is an interpolation
of the three vertex normals. Thus, Esmth requires the resulting triangle
normal to remain close to the vertex normals in order to prevent deviation
from the original shape. As shown in Figure 4.12, whenever the resulting
triangle normal differs from any of the vertex normals by a large amount,
θsmth, the smoothing operation is not carried out. For all examples shown
in this thesis, θsmth is set to 30◦.

Edge Collapses. Although the smoothing step greatly improves the trian-
gle shapes, tiny triangles often remain tiny. To eliminate these, we collapse
edges shorter than a given tolerance. Each collapse operation removes an
edge by moving one of its end points (call it s) to the other end point (call

24

4.2. Iterative fitting

v0

v1

v2

n0

n1

n2

v0

v1

v2

n0

n1

n2

Figure 4.11: Left: in locally flat regions, all vertex normals of a triangle
are approximately equal. Right: in non-flat regions such as near a crease,
the vertex normals of a triangle could be quite different.

v0v0

v1v1

n0n0

n1n1

nfnf

Tangent plane

Figure 4.12: Cross section view of mesh triangles (solid black lines) and the
smooth surface (dashed black curves) they approximate. Before smoothing
(left), the face normal nf is close to the vertex normals n0 and n1. After
smoothing (right), the new nf might be very different from the original n0

and n1.

it t). s and t are chosen to minimize the shape difference introduced by this
operation. Specifically, we require

∑

e=(v,s)

180◦ − A(v, s) <=
∑

e=(v,t)

180◦ − A(v, t)

where A(a,b) is the dihedral angle across the edge (a,b).

As usual [44], we avoid producing non-manifold meshes. Specifically, as
shown in Figure 4.13, edges that are part of a 3-loop are not collapsed
regardless of their length. Otherwise, the collapse will cause non-manifold
mesh where an edge could connect more than two triangles. We used one

25

4.2. Iterative fitting

vo

va

vb
vc

Figure 4.13: Collapsing any
of the 3-loop edges (red) will
cause the mesh to be non-
manifold.

vava

vbvb

vcvc

vdvdθ1
θ2

Figure 4.14: The red edge is flipped
if θ1 + θ2 > 180◦.

fifth of the average edge length as the tolerance for edge collapse operation.

Edge Flips. Mesh smoothing improves the geometry of the envelope while
the connectivity is left unchanged. Bad connectivity, such as high or very
low valence vertices, can negatively affect the mesh quality. We therefore use
edge flipping to improve mesh connectivity. In 2D triangulation, edge flips
are used to achieve the Delaunay property [6]: the circumcircle must contain
no other mesh vertices except on its border. In 3D settings, edge flips are
also the basic operation used for generating high quality meshes such as
Delaunay mesh [15]. In our remeshing algorithm, as shown in Figure 4.14,
edges with sum of opposite angles bigger than 180◦ are flipped. Once again,
we use formula (4.3) to check if the result preserves the original shape.
In Figure 4.14, the algorithm will compute Esmth for triangle (va,vb,vd)
and triangle (vb,vc,vd). If either result exceeds the threshold, the flipping
operation will not be carried out. As for smoothing, θsmth is set to 30◦. As
before, to avoid introducing non-manifold regions, we check that the flipped
edge does not exist before performing the flipping operation. For instance,
in the case shown in Figure 4.14, we check that there should not be an edge
connecting vb and vd before the flipping.

Edge splits. Sometimes, an edge become excessively long, but it cannot
be flipped because condition 4.3 fails. Such case typically happen on the
creases of the mesh, where the flipping operation will interrupt the crease

26

4.2. Iterative fitting

Figure 4.15: Flipping an
edge (red) that fails condition
4.3 may break the crease (cen-
ter). Thus, we split such edge
into two halves (right).

v0v0

v1v1v1

v2v2 v2

v3v3

Figure 4.16: Left: degenerate trian-
gle (v0,v1,v2) was not fixed by mesh
smoothing and edge flips because con-
dition 4.3 failed. Also, since none
of its edges are excessively long, edge
splits did not fix it either. Cen-
ter: during degenerate triangle re-
moval step, edge (v1,v2) is first split.
Right: edge (v0,v3) is then collapsed.

(Figure 4.15). We split such edge into two halves. We use 1.5 times the
average edge length as the threshold.

Degenerate triangle removal. Even with all the operations described
above, the resulting mesh may still contain some very skinny but obtuse
triangles (Figure 4.16), where each edge is longer than the edge collapse
threshold and shorter than the edge split threshold. These triangles are
typically located near the creases where the smoothness requirement (for-
mula 4.3) fails so that mesh smoothing and edge flip operations cannot be
applied. Therefore, as the last step of the regularization, we remove these
degenerate triangles. To be conservative, we define every triangle with the
largest angle greater than 120◦ as a degenerated triangle. In such case, we
first split the longest edge of the triangle even if its length does not exceeds
the threshold (Figure 4.16 center). The split introduces four new edges, and
a regular edge collapse operation is performed on these newly formed edges
(Figure 4.16 right). Notice that the edge collapse operation is designed to
minimize shape changes, thus the algorithm always collapses the vertex not
on the crease toward the vertex on the crease. For instance, in Figure 4.16,
v0 is collapsed to v3, thus the crease is preserved.

Other operations. In addition to remeshing for improving the mesh qual-
ity, in later iterations of the envelope contraction we use heuristic remeshing

27

4.2. Iterative fitting

operations to improve the approximation quality. Specifically, we flip edges
if the mid-point of the flipped edge is closer to the input model than that
of the current edge. If the flip creates poorly shaped triangles, we split the
flipped edge at the midpoint. The order of flipping is determined by the ap-
proximation improvement amount, i.e., the edge for which the improvement
is largest gets flipped first.

Results. The resulting envelope surfaces are manifold triangle meshes
with fair mesh quality that approximate both the topology and the geometry
of the input model up to a desired resolution. The envelope generation step
fills up small through-holes, smooths out narrow concavities, and removes
self-intersections. Figure 4.17, 4.18, 4.19, and 4.20 demonstrate envelope
results for four different models, each with two distinct resolution.

28

4.2. Iterative fitting

Figure 4.17: Eiffel Tower (left). Low resolution envelope (middle) is ini-
tialized with grid size 9×23×9. The construction converged in 11 iterations.
High resolution envelope (right) is initialized with grid size 27×65×27. The
construction converged in 7 iterations.

Figure 4.18: Arc de Triomphe (left). Low resolution envelope (middle)
is initialized with grid size 21 × 35 × 33. The construction converged in
12 iterations. High resolution envelope (right) is initialized with grid size
35 × 61 × 57. The construction converged in 8 iterations.

29

4.2. Iterative fitting

Figure 4.19: Empire State Building (left). Low resolution envelope (mid-
dle) is initialized with grid size 7 × 9 × 7. The construction converged in
6 iterations. High resolution envelope (right) is initialized with grid size
41 × 141 × 29. The construction converged in 5 iterations.

Figure 4.20: Dome of the Rock (left). Low resolution envelope (middle)
is initialized with grid size 37 × 23 × 37. The construction converged in
10 iterations. High resolution envelope (right) is initialized with grid size
67 × 43 × 67. The construction converged in 8 iterations.

30

Chapter 5

Segmentation

Having generated an envelope surface we now proceed to extract the net-
work of curves and associated normals sufficient to reconstruct an abstracted
replica of the envelope and hence the input shape. To avoid storing unnec-
essary geometric information, we distinguish between two types of curves in
our network: regular curves that have a geometric definition (positions and
normals) along the curve, and virtual or connectivity-only curves that have
no such information and which are used solely to define the connectivity of
the network.

The network is extracted in two steps. We first extract the network con-
nectivity using a mesh segmentation mechanism. We then finalize the curve
geometry using smoothing and regularization enforcing spatial, relational,
and metric constraints (Figure 5.1).

5.1 Extracting network topology

We recast the network extraction problem as one of mesh segmentation, with
the curve network defined as the set of chart boundaries. Explicitly aiming at
a segmentation that satisfies the reconstruction and approximation criteria
in Chapter 3 is likely to be rather time consuming, since even evaluating
a chart quality would be computationally expensive. Instead we opt for
a simpler, conservative approach, requiring charts to be relatively planar.
Clearly any chart that satisfies a near-planarity requirement would satisfy
the other two. Though alternative criteria such as chart developability [25]
are likely to work as well, the advantage of the planarity criterion is the
simplicity and speed of the resulting method. While this approach may
initially result in an over-segmented network, the number of charts is later
reduced when the network is hierarchically simplified (Section 5.3).

We employ the Variational Segmentation Algorithm (VSA) [11] to obtain

31

5.1. Extracting network topology

Figure 5.1: Vectorization stages: (Left to right) VSA segmentation, seg-
mentation after boundary improvement, smooth approximation geometry,
extracted regularized curve network, surface after hierarchical simplification,
regularized simplified curve network.

the near-planar segmentation, using the approximation error to control the
number of charts. We start VSA with an initial number of charts (typically
just one) and measure the total approximation error. If the error is above
the user-prescribed threshold we add another chart, using the triangle with
the maximal error as the seed and repeat the process. The segmentation is
improved using a standard post-processing step [25] of straightening bound-
aries and merging small charts with their neighbors, while bounding the
per-chart error (we allow up to 10% increase in per-chart error for straight-
ening and 20% for merging).

In the last step, to create a connected network, we split charts with multiple
boundary loops into simple ones using a bottom-up triangle clustering. The
new boundaries are defined as connectivity-only as they are unnecessary
from a geometry point of view.

32

5.2. Extracting network geometry

5.2 Extracting network geometry

We expect the reconstructed surface to consist of smooth charts bounded
by the prescribed curve network. Hence, our goal is to define positions and
normals along the curves, that enable such a reconstruction. We achieve this
using an optimization that simultaneously edits the chart boundaries and
the chart geometry such that the optimized charts reflect the reconstructed
geometry. The optimization balances the following aspects:

• Surface Smoothness: The normals across each surface chart should
change smoothly. This ensures that the reconstruction using the nor-
mals along the chart boundaries will approximate the optimized charts.

• Approximation: The optimized and hence the reconstructed surface
should remain close to the original one.

• Curve Smoothness: The boundary curves should be smooth. This
helps to regularize the curve network and thus the subsequent recon-
struction result.

Normals being a highly non-linear function of the vertex positions, an opti-
mization functional aiming to simultaneously satisfy the above goals would
be challenging to minimize. Instead we use a solution that decouples the
normals and the positions, splitting the solution into three steps: normal
solve, per-triangle vertex positioning, and, finally, global assembly.

Normal Solve: We first compute new triangle normals which provide a
tradeoff between smoothness and normal-level approximation of the envelope
surface,

min
{ni}

∑

i

‖ni −
1

|N(i)|

∑

j∈N(i)

nj‖
2 + ω1

∑

i

‖ni − n′
i‖

2 (5.1)

where i indexes mesh triangles, N(i) denotes the set of triangles adjacent to
i that belong to the same chart, and ni and n′

i are the new and current trian-
gle normals, respectively. We set ω1 to 0.25 for interior chart triangles, and
to 0.1 for triangles adjacent to chart boundaries. We use a smaller weight
for boundary triangles since their envelope normals often deviate from those
of the input models and hence are less critical to preserve (Figure 5.1 top,
center). Figure 5.2 compares the input envelope with the normal smoothed
envelope, where the effect of normal smoothing is visualized through ren-
dering each facet using the smoothed normal. Notice the new normals yield
a much smoother shading.

33

5.2. Extracting network geometry

Figure 5.2: Left: unsmoothed model. Right: the same model rendered using
smoothed normals.

Per-Triangle Solve: Next we compute the vertex positions that gener-
ate the desired normals while staying close to the original positions. The
computation is performed on a per-triangle basis.

• For interior triangles we solve

min
{vk}

∑

k

‖vk − v′
k‖

2 + ω2(nivk + di)
2,

where k indexes the three triangle vertices and di is the unknown
distance component of the triangle’s plane equation (normal form).
The weight ω2 is set to 1000, effectively ensuring that the new positions
vk satisfy the desired normal ni.

• For boundary triangles, we incorporate an additional boundary curve

smoothness requirement. For every boundary edge eb =
−−−→
v1

bv
2
b of the

triangle, we add an additional component to the minimization:

min
{vk}

∑

k

‖vk − v′
k‖

2 + ω2(nivk + di)
2 + ω3

∑

b

‖eb − sb‖
2,

where sb is the smoothed boundary edge. More specifically, sb has the
same magnitude as eb but its direction aligns with the local average
boundary direction. Such average boundary direction is obtained by

34

5.2. Extracting network geometry

tracing boundary edges to each side of eb, treating each edge as a vec-
tor whose direction is consistent with eb, and compute their weighted
average. The tracing stops if either the midpoint of a boundary edge
is further than r away from the midpoint of eb or an intersection is
reached where three or more charts meet at that point. The weight of
an edge vector e is G(0,0.5r)(d), where G(0,0.5r) is a Gaussian distribu-
tion with mean 0 and standard deviation 0.5r, and d is the distance
from the midpoint of e to the midpoint of eb along the chart bound-
aries. In this thesis, we chose r to be 1.5× the average edge length of
the mesh, and ω3 is set to 2 in all our examples. Figure 5.3 shows the
effect of boundary smoothing.

Figure 5.3: Left: original partition. Middle: after one iteration of
chart smoothing without boundary curve smoothing. Right: after one
iteration of chart smoothing with boundary curve smoothing. Chart
boundaries are indicated using yellow lines.

As shown in Figure 5.4 (top and bottom middle images), the original mesh
is disconnected due to per-triangle solve. Notice that when the original
surface is smooth (along the sides of the tower), triangles approximately
stay at their original position. When the surface is rough (near the tip of
the tower), large gaps are created due to large normal changes.

Global Assembly: Finally, to obtain a connected mesh we reconcile the
different per-triangle positions computed for each vertex. At this stage the
shape and orientation of each individual triangle can be viewed as optimal,
hence we aim for new vertex positions such that the per-triangle transforma-

35

5.2. Extracting network geometry

Figure 5.4: Each chart is indicated by a unique color. Top: the tower
model before chart smoothing (left), after per-triangle solve (center), and af-
ter global assembly (right). Bottom: Zoomed view of the top of the tower be-
fore chart smoothing (left), after per-triangle solve (center), and after global
assembly (right).

tion gradient is close to identity. We express this requirement using a similar
formulation to [43]. For each triangle we define Vk = [v3−v0,v3−v1,v3−v2]
where v0,v1,v2 are the three vertices of the triangle computed in the previ-
ous step and v3 = v0 + ni. We define Wk similarly but using the unknown
shared vertex positions w. We optimize over w using

min
{wj}

∑

i

||WiV
′−1
i − I||2F + ω4

∑

j

‖wj − v′
j‖

2

36

5.3. Network regularization and simplification

where F denotes the Frobenius norm, j indexes mesh vertices, and ω4 set
to 10. We iterate the steps until the positions and normals converge, typi-
cally in three to four iterations. After each iteration we perform topological
cleanup, reapplying the segmentation post-processing step (Section 5.1).

Finally, we associate per-chart normals with curve vertices, using the aver-
age normal of the adjacent triangles around the vertex in each chart (see
Figures 5.1 and 5.5).

5.3 Network regularization and simplification

The obtained curve network satisfies the abstraction and reconstruction cri-
teria (Chapter 3). We now further regularize the network to capture struc-
ture, and then simplify it by removing appropriate curves, producing a se-
quence of abstractions.

Regularization. The vector representation we obtain at this stage is suf-
ficient to faithfully reconstruct an approximation of the input. However, our
goal is to create abstractions for man-made objects, highlighting regularity
and structure, while ignoring minor deviations or inconsistencies. Hence,
we regularize individual curves and loops of the network, and enhance their
mutual relations.

Our local regularization replaces near-regular geometric features by perfectly
regular ones, in an effort to retain the essence of shapes while ignoring small
variations. The process considers both positions and normals across the
network. First near-planar curves are made exactly planar using a least
squares plane fit. Curves, once optimized, are kept fixed during the later
iterations, as side constraints for least squares optimization. Subsequently,
near-linear curves are converted to line segments. Similarly, curves that fit
well to circular arc segments are regularized to perfect circular arcs. Such
tests are incremental, where once a curve or a sequence of curves fit into one
of these categories, we incrementally check if consecutive curves sharing the
same boundary loop with the current sequence also fit the same plane, line,
or arc. We use a similar incremental approach to detect sequences of curves
with nearly identical normal values along a shared face loop, indicating a
locally near planar face region and make the normals identical.

In man-made or engineered objects, symmetry and regularity play a dom-
inant role due to aesthetic considerations, as well as convenience in design

37

5.3. Network regularization and simplification

and manufacturing. A good abstraction should capture such relations, mak-
ing them explicit. In the global regularization step we enforce mutual rela-
tions between curve pairs that local processing may have missed. First,
planar loop pairs that are nearly parallel (or orthogonal) are made exactly
so. Such an approach clearly depends on the order in which the loops are
processed. As a (heuristic) solution, we process the loop pairs in a greedy
fashion (i.e., the loop-pair, which is closest to being parallel, is processed
first), taking small steps towards making the loops parallel (or orthogonal),
and iterate until convergence. Most of the examples presented in the paper
converged in less than five rounds. Finally, we detect global reflective and
(discrete) rotational symmetry in the input model [30]. When detected, we
enforce symmetry in the curve network, minimally moving the curves to
make them exactly symmetric using a symmetrization approach [31]. In the
regularization steps, we only update positions and normals without changing
connectivity or topology of the network.

Hierarchical Simplification. Our original method for network topology
extraction is fairly conservative, often resulting in more charts than strictly
necessary for reconstruction purposes. Hence it is often possible to simplify
the network further without compromising the abstraction quality. Simpli-
fication can also be used to create higher levels of abstraction. To define the
hierarchical simplification mechanism we reuse the smoothness and approx-
imation criteria targeted during network geometry extraction.

We compute a per-curve simplification error measuring the impact of remov-
ing the curve from the network using two terms. We use integral dihedral
angle along a curve to measure smoothness error. To quickly estimate the
approximation or reconstruction error, we integrate the deviation of the av-
erage normal along the curve from the arc-length interpolation of the curve
end-point normals at that point. This measure provides a rough estimate of
the difference between the reconstructed surfaces with and without the curve
in question. To control the simplification process we set separate thresholds
on the two terms.

During simplification, rather than removing curves completely, we simply
demote them to connectivity-only discarding all the geometric information
associated with them (Figure 5.5). Leaving the network topology untouched,
helps the reconstruction process while the overhead of storing connectivity-
only curves is negligible. In order to maintain reconstruction consistency,
once a curve is demoted, we update the curve network, re-assigning nor-

38

5.3. Network regularization and simplification

Figure 5.5: Input model, processed segments, vectorized curve network, and
reconstructed abstraction. Zoom panels show section of curve network, and
normals along the curves. Connectivity-only or virtual edges are marked in
brown. For ease of visualization, normals from same curve loops are marked
in identical colors.

mals along the affected edges using our chart optimization (see Section 5.2)
and regularization procedures. Recomputing the surrounding geometry af-
ter each edge removal is expensive. However, the number of curves in our
curve networks is small, allowing such expensive iterations. Thus we get
multiple curve networks and associated reconstructions or abstractions of
the input (see Figure 5.1).

39

Chapter 6

Reconstruction

The reconstruction process constructs the abstracted model shapes from the
vector representation (Figure 3.1-right), establishing both the underlying
mesh connectivity and the actual mesh geometry.

Initial Reconstruction. The reconstruction starts by triangulating the
faces of the curve network, aiming to construct a connectivity that reflects
the target geometry. It first embeds the boundary of each face in the plane,
using Multi-Dimensional Scaling (MDS) [28] aiming to preserve the shape
of the boundary. The MDS embedding best preserves the Euclidean dis-
tances between all pairs of vertices on the boundary, which in case of planar
boundary loops results in preservation of the boundary shape and even for
non-planar boundaries generates a reasonable embedding. As MDS allows
for self intersections, we explicitly check for them. When an intersection
is observed, we embed the loop on a circle using arc-length parameteriza-
tion. Once a planar boundary is computed, its interior is triangulated [41],
providing the desired connectivity reconstruction.

To generate the geometry of the abstracted model we deform the computed
planar meshes, enforcing the boundary vertex positions and normals pre-
scribed by the input vector representation. We use the shape preserving de-
formation method of Popa et al. [39] whose rotation propagation approach
is well suited to our setting. The deformation is applied simultaneously
to clusters of faces connected with connectivity-only network curves as we
expect the normal impact to propagate across them.

Improvement. Although for many surfaces the initial reconstruction pro-
duces satisfactory results, it is not always the case. First, if the normal
differences across a reconstructed face are fairly large, our deformation may
“under-rotate” the triangles involved as it satisfies the normal constraints
only in a least-squares sense. This problem is easily resolved by iterating

40

Chapter 6. Reconstruction

through the deformation step using the current surface as the undeformed
model.

Second, if the initial embedding of the boundary differs significantly from the
“natural” parameterization of the corresponding face, the mesh triangles can
undergo significant deformation leading to visible artifacts. This is resolved
by repeating the connectivity and geometry construction steps. Since we
now have an interior triangulation, we use standard mesh parameterization
methods to find the optimal planar domain, e.g ABF++ [40]. We then
retriangulate the obtained boundary and repeat the deformation as above.

41

Chapter 7

Results

We tested our abstraction algorithm on a variety of man-made models mostly
described by polygon soups. The abstracted models are generated using a
combination of local processing with subsequent consolidation of global re-
lations common in man-made forms. The abstracted shapes, having high-
lighted the mutual relations of parts or curves, are significantly more com-
pact and lightweight compared to any low level representation. Here we
take advantage of the observation that engineered forms are often defined
by a few 1D curves, having relatively low information content compared to
organic objects. The resultant models are extremely concise, while explic-
itly encoding information about relations between parts (see table). For the
models shown in the paper, the average time taken for generating an ab-
straction was less than 2 minutes on a 3GHz machine with 2GB RAM, with
the envelope surface creation phase taking the majority of computing time.

Figure 7.1 indicates how the abstraction result degrades with increasing
noise and ambiguity in the data. Since the input models consist of many
disconnected components, little is achieved by local smoothing. In contrast,
the abstraction results, which enforce local and global regularization, are
stable and capture the characteristic features.

Figure 7.1: Even for noisy input models, the regularization step allows
creation of quality abstractions. We present abstractions with 2% and 5%
(of bounding box diagonal length) noise added to the dome model.

42

Chapter 7. Results

Model # triangles # components level #lines # arcs # curves
Empire State 16k 17 low 34 0 4

high 146 2 4
Eiffel Tower 15.6k 2417 low 47 19 19

high 85 31 24
building 3.7k 89 low 70 0 12

high 288 2 9
Arc-Triomphe 13k 8 low 127 2 10

high 163 16 14
Pagoda 37k 1173 low 64 0 1

high 54 0 22
dome 3.8k 2 low 24 2 0

high 116 23 6
rocking chair 32k 22 low 26 33 39

high 55 35 32
baroque chair 164k 353 low 25 25 16

high 20 33 42

Table 7.1: Abstraction statistics.

It has been hypothesized that abstract shapes are easier to recognize and
classify compared to detailed ones [23]. Besides adding highlights for NPR
applications, curves or feature lines are also used for detecting partial sym-
metries [9], for shape editing [17], etc. Such methods usually work on man-
ifold, connected geometric models or rely on edges with sharp dihedral an-
gles to identify feature edges, and thus cannot be readily applied to polygon
soups or noisy models. Our abstraction procedure, which robustly generates
a curve network capturing the high-level features of the model while ignoring
finer details or deviations, provides an abstraction network that can used as
auxiliary information by the above mentioned algorithms.

Limitations. Our method’s ability to remove topological details is cur-
rently strongly linked to the resolution of the envelope. Once the envelope
separates features like the fine diagonal bars in the water tower in Figure 7.2,
they persist throughout the algorithm stages, independent of size. Topology
level abstraction, removing such features is an important topic to address
in future research.

On a more perceptual note, not all objects around us have well-defined, rec-
ognizable abstract representations. For instance, the Burj Al-Arab building
in Figure 7.2 is not yet well-known enough for its abstract representation to

43

Chapter 7. Results

be recognizable.

Figure 7.2: (Left) Fine topological features are easily combined by our
envelope construction stage. However, once such features are extracted by a
finer grid resolution, we have no easy method to remove them, independent
of their size. (Right) Some objects, perhaps those less familiar to us, have
no obvious natural abstraction.

44

Chapter 7. Results

Figure 7.3: Result gallery showing various input models, extracted
curve networks (with normals), and reconstructed abstractions. The high-
resolution abstractions are rendered in yellow, while the low-resolution ones
are in blue.

45

Chapter 8

Conclusion

We presented an algorithm for creating abstractions of 3D geometric shapes,
specifically targeting man-made objects, using hierarchical curve networks
that capture the defining characteristics of the inputs. Our method is robust,
designed to handle models with disconnected components, self-intersections
and noise, and uses a regularization step to make specific both individual
and mutual curve relations. The curve networks, along with the associated
normal information, can be used to reconstruct clean manifold meshes re-
taining the essence of the input forms. We believe that the extracted curve
network provides a powerful handle to the input shape, since the represen-
tation contains specific and explicit global information about the shape of
object parts and the relations between them.

46

Bibliography

[1] John Amanatides and Andrew Woo. A fast voxel traversal algorithm
for ray tracing. In Eurographics ’87, pages 3–10, 1987.

[2] Rudolf Arnheim. Art and Visual Perception: A Psychology of the Cre-
ative Eye. Faber and Faber, 1956.

[3] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical
mesh segmentation based on fitting primitives. The Visual Computer,
22(3):181–193, 2006.

[4] Fred Attneave. Some informational aspects of visual perception. Psy-
chological review, 61(3):183–193, 1954.

[5] A. Bengtsson and J.-O. Eklundh. Shape representation by multiscale
contour approximation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 13(1):85–93, Jan 1991.

[6] M. Bern and D. Eppstein. Mesh generation and optimal triangulation.
Computing in Euclidean geometry, 1:23–90, 1992.

[7] Paul J. Besl and Neil D. McKay. A method for registration of 3-d
shapes. IEEE Trans. PAMI, 14(2):239–256, 1992.

[8] Stephan Bischoff, Darko Pavic, and Leif Kobbelt. Automatic restora-
tion of polygon models. ACM Trans. Graph., 24(4), 2005.

[9] Martin Bokeloh, Alexander Berner, Michael Wand, Hans-Peter Seidel,
and Andreas Schilling. Symmetry detection using line features. Com-
puter Graphics Forum (Proc. EUROGRAPHICS), 28(2):697–706, 2009.

[10] John Canny. A computational approach to edge detection. PAMI-
8(6):679–698, 1986.

47

Chapter 8. Bibliography

[11] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. ACM Transactions on Graphics. Special issue
for SIGGRAPH conference, pages 905–914, 2004.

[12] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stod-
dart Barros, Adam Finkelstein, Thomas Funkhouser, and Szymon
Rusinkiewicz. Where do people draw lines? ACM Trans. on Graphics,
pages #88, 1–11, 2008.

[13] Luciano Costa and Roberto Marcondes Cesar. Shape Analysis and Clas-
sification: Theory and Practice. CRC Press, 2001.

[14] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony
Santella. Suggestive contours for conveying shape. ACM Transactions
on Graphics, 22(3):848–855, July 2003.

[15] R. Dyer, H. Zhang, and T. Möller. Delaunay mesh construction. In
ACM Symposium on Geometry Processing, pages 271–282, 2007.

[16] B. Falcidieno and M. Spagnuolo. A shape abstraction paradigm for
modelling geometry and semantics. pages 646–656, 1998.

[17] Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. iwires:
An analyze-and-edit approach to shape manipulation. ACM Transac-
tions on Graphics, 28(3), 2009. to appear.

[18] Ran Gal, Olga Sorkine, Tiberiu Popa, Alla Sheffer, and Daniel Cohen-
Or. 3d collage: expressive non-realistic modeling. In NPAR ’07: Pro-
ceedings of the 5th international symposium on non-photorealistic ani-
mation and rendering, pages 7–14, New York, NY, USA, 2007. ACM.

[19] Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Proc. SIGGRAPH, pages 209–216, 1997.

[20] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and
Richard Riesenfeld. Interactive technical illustration. In I3D ’99: Pro-
ceedings of the 1999 symposium on Interactive 3D graphics, pages 31–
38, New York, NY, USA, 1999. ACM.

[21] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner, and Mark
Pauly. Automatic generation of tourist maps. ACM Trans. Graph.,
27(3):1–11, 2008.

48

Chapter 8. Bibliography

[22] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In
SIGGRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 517–526, New York,
NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[23] Suyu Hou and Karthik Ramani. Structure-oriented contour repre-
sentation and matching for engineering shapes. Comput. Aided Des.,
40(1):94–108, 2008.

[24] Tilke Judd, Frédo Durand, and Edward Adelson. Apparent ridges for
line drawing. ACM Trans. Graph., 26(3):19, 2007.

[25] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-
developable mesh segmentation, 2005.

[26] J. J. Koenderink and A. J. van Doorn. The internal representation
of solid shape with respect to vision. Journal Biological Cybernetics,
32(4):211–216, 1979.

[27] Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-Or.
Non-homogeneous resizing of complex models. ACM Trans. Graph.,
27(5):1–9, 2008.

[28] J. B. Kruskal and M. Wish. Multidimensional scaling. Sage University
Paper series on Quantitative Application in the Social Sciences, 07-011,
1978.

[29] Paul Merrell and Dinesh Manocha. Continuous model synthesis. ACM
Trans. Graph., 27(5):1–7, 2008.

[30] N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate sym-
metry detection for 3d geometry. In ACM Transactions on Graphics,
volume 25, pages 560–568, 2006.

[31] N. J. Mitra, L. Guibas, and M. Pauly. Symmetrization. In ACM Trans-
actions on Graphics, volume 26, pages #63, 1–8, 2007.

[32] Kyung Na, Moon Jung, Jongwan Lee, and Chang Geun Songa. Re-
deeming valleys and ridges for line-drawing. pages 327–228, 2005.

[33] L.R. Nackman and S.M. Pizer. Three-dimensional shape description
using the symmetric axis transform. IEEE PAMI, 7(2):187–201, 1985.

49

Chapter 8. Bibliography

[34] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Fiber-
mesh: designing freeform surfaces with 3d curves. ACM Trans. Graph.,
26(3):41, 2007.

[35] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Ridge-
valley lines on meshes via implicit surface fitting. ACM Trans. Graph.,
23(3):609–612, 2004.

[36] Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal
Barla, Joëlle Thollot, and David Salesin. Diffusion curves: A vector
representation for smooth-shaded images. In ACM Trans. Graph., vol-
ume 27, 2008.

[37] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. Guibas. Dis-
covering structural regularity in 3D geometry. ACM Transactions on
Graphics, 27(3):#43, 1–11, 2008.

[38] Tomaso Poggio, Vincent Torre, and Christof Koch. Computational
vision and regularization theory. Nature, 317:314 – 319, 1985.

[39] Tiberiu Popa, Dan Julius, and Alla Sheffer. Material-aware mesh de-
formations. In SMI, page 22, 2006.

[40] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bo-
gomyakov. Abf++: fast and robust angle based flattening. ACM Trans.
Graph., 24(2):311–330, 2005.

[41] Jonathan Shewchuk. Triangle: Engineering a 2D Quality Mesh Gener-
ator and Delaunay Triangulator. In Applied Computational Geometry:
Towards Geometric Engineering, volume 1148, pages 203–222. Springer-
Verlag, 1996.

[42] Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa, Christian
Rössl, and Hans-Peter Seidel. Laplacian surface editing. In Symposium
on Geometry Processing, pages 179–188, 2004.

[43] Robert W. Sumner and Jovan Popović. Deformation transfer for trian-
gle meshes. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages
399–405, 2004.

[44] Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In
Symposium on Geometry Processing, pages 17–28, 2003.

50

Chapter 8. Bibliography

[45] S. Toledo. Taucs: A library of sparse linear solvers,
version 2.2, http://www.tau.ac.il/ stoledo/taucs, 2003.
http://www.tau.ac.il/ stoledo/taucs.

[46] T. Várady and R. R. Martin. Reverse engineering. In G. Farin,
J. Hoschek, and M. S. Kim, editors, Handbook of Computer Aided Ge-
ometric Design, pages 651–681. Springer, 2002.

[47] A.P. Witkin et al. Scale-space filtering, April 14 1987. US Patent
4,658,372.

51

