- PDF (221 pages)

A graph consists of a set and a binary relation on that set. Each element of the set is a node of the graph, while each element of the binary relation is an edge of the graph that encodes a relationship between two nodes. Graph are pervasive in many areas of science, engineering, and the social sciences: servers on the Internet are connected, proteins interact in large biological systems, social networks encode the relationships between people, and functions call each other in a program. In these domains, the graphs can become very large, consisting of hundreds of thousands of nodes and millions of edges.

Graph drawing approaches endeavour to place these nodes in two or three-dimensional space with the intention of fostering an understanding of the binary relation by a human being examining the image. However, many of these approaches to drawing do not exploit higher-level structures in the graph beyond the nodes and edges. Frequently, these structures can be exploited for drawing. As an example, consider a large computer network where nodes are servers and edges are connections between those servers. If a user would like understand how servers at UBC connect to the rest of the network, a drawing that accentuates the set of nodes representing those servers may be more helpful than an approach where all nodes are drawn in the same way. In a feature-based approach, features are subgraphs exploited for the purposes of drawing. We endeavour to depict not only the binary relation, but the high-level relationships between features.

This thesis extensively explores a feature-based approach to graph visualization and demonstrates the viability of tools that aid in the visualization of large graphs. Our contributions lie in presenting and evaluating novel techniques and algorithms for graph visualization. We implement five systems in order to empirically evaluate these techniques and algorithms, comparing them to previous approaches.