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Abstract

Generating skilled and well-planned behaviours for autonomous agents is a chal-

lenging problem common to both computer animation and robotics. This thesis

presents a system that uses motion graphs for online motion planning, result-

ing in skilled driving behaviours for a dynamic model of a car in a constrained

environment. The result reproduces skilled driving behaviors. It is a partic-

ular challenge to get the cars to produce skidding-into-turn behaviors when

approaching sharp corners, which can achieve the fastest speeds around a track.

The techniques explored in this thesis are potentially generalizable to other

dynamic vehicle behaviours, in computer games or simulations.

We demonstrate that a well-formed move tree or motion graph, created

from the output of a physics-based simulation can be used to produce realistic

steering behaviours on a variety of tracks. We show that a finite-horizon A*

search algorithm is well suited to this task. We have produced a number of

smooth animations that demonstrate considerable anticipation and agility, be

it through acceleration/deceleration around tricky obstacles, or a hard skidding

turn into a corner after approaching at high speed. Finally, we offer a number

of ways that we could speed up the algorithms for future work in this area.



iii

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Autonomous Vehicle Control . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Real World Systems . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Simulated Systems . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Goals and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Motion Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Finding Transitions . . . . . . . . . . . . . . . . . . . . . 10

2.2 More Data Driven Animation Techniques . . . . . . . . . . . . . 11

2.3 Autonomous Behaviours and Planning Algorithms . . . . . . . . 13



Contents iv

3 Vehicle Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Pseudocode Planning Algorithm . . . . . . . . . . . . . . . . . . 19

3.3 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Finding Similar Frames . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Creating and Expanding Routes . . . . . . . . . . . . . . . . . . 21

3.5.1 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Route Selection and Clip Alignment . . . . . . . . . . . . . . . . 23

3.7 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Move Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Long Straight Track with Other Cars . . . . . . . . . . . 27

4.1.2 Cornered Track . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 Cornered Track with Other Cars . . . . . . . . . . . . . . 29

4.2 Large Move Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Long Straight Track with Other Cars . . . . . . . . . . . 31

4.2.2 Cornered Track . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Cornered Track with Other Cars . . . . . . . . . . . . . . 33

4.2.4 Sharp Cornered Track . . . . . . . . . . . . . . . . . . . . 33

4.2.5 Final Track . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Graph Transition Selection . . . . . . . . . . . . . . . . . . . . . 38

5.2 Graph Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Improving A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Simplistic Goal Selection . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Track Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.7 Additional Mobility . . . . . . . . . . . . . . . . . . . . . . . . . 41



Contents v

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A Physics Implementation . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



vi

List of Tables

4.1 Small move tree, long track with cars. . . . . . . . . . . . . . . . 29

4.2 5/7 branch move tree, cornered track. . . . . . . . . . . . . . . . 29

4.3 Small move tree, cornered track with cars. . . . . . . . . . . . . . 31

4.4 Large move tree, long track with cars. . . . . . . . . . . . . . . . 31

4.5 Large move tree, cornered track. . . . . . . . . . . . . . . . . . . 32

4.6 Large move tree, cornered track with cars. . . . . . . . . . . . . . 33

4.7 Large move tree, sharp cornered track. . . . . . . . . . . . . . . . 34

4.8 Large move tree, final track. . . . . . . . . . . . . . . . . . . . . . 34



vii

List of Figures

1.1 Motion Capture example. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Mars Rover artists impression. . . . . . . . . . . . . . . . . . . . 4

1.3 An image from GTR2, a game for the PC, that demonstrates

simulated vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Motion Graph example. . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 The car. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The car velocity comparison. . . . . . . . . . . . . . . . . . . . . 21

3.3 Route tree expansion. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Connecting Motion Clips. . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Collision detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Small Move Tree, 5 and 7 branches. . . . . . . . . . . . . . . . . 27

4.2 Long straight track. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Cornered track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Large Move Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Sharp cornered track. . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Final track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Final track skid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Dense Motion Graph example. . . . . . . . . . . . . . . . . . . . 39

5.2 Dense Motion Graph example 2. . . . . . . . . . . . . . . . . . . 39



viii

Acknowledgements

I would like to thank Michiel van de Panne for considerable help when con-

structing this work, and a continual outpouring of ideas. It would not have

been possible to undertake nor complete this work without his guidance. I

would also like to thank Robert Bridson for being my second reader.

I would also like to thank Marco Monster of the now unfindable Monstrous

Software for providing the code that implements the underlying car physics, as

it was incredibly useful, and it is a shame that I cannot cite him directly. I also

thank everyone who I did cite for allowing me to get up speed in this area of

research.

Finally I would like to thank my friends and family who have supported me

throughout even when it was making me miserable, in particular Katayoon Ka-

saian who had to face the brunt of my difficulties. :)



1

Chapter 1

Introduction

The animation and simulation of autonomous vehicles is a challenging problem,

and the demand for this to be done realistically has increased in recent years.

The topic has foundations in animation, artificial intelligence and robotics. In

particular computer games have pushed the need for real-time generated syn-

thesized animation. Autonomous vehicles will not look or act realistically unless

they are based on some sort of physics model, which directly impacts the mo-

tions observed for high velocity systems. Self-driving vehicles are of interest

to generate realistic simulations of any kind of traffic, and for safer automated

roads where the reduction of human error could save lives.

In this introduction, we discuss why we would study vehicle motion and

present the major goals of our work, along with the contributions that we have

made. An outline of the remainder of this thesis concludes the chapter.

1.1 Motivation

1.1.1 Motion Control

Any system that is controlled, either simulated or real, to produce a desired

motion, can broadly be described as performing motion control. If we look at

human and animal motion, we see incredibly complex systems that work with

a natural grace that is very difficult to reproduce mechanically. We have barely

reached the point where we can get a two legged robot to walk in a graceful

fashion, or place an item on a shelf, let alone reproduce the motion of a cat as

it jumps from wall to wall, or something equally complex. The neuro-muscular
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systems in human and animals are researched in the field of biomechanics, and

we can try and apply these to our robotic designs. However, we might be more

interested in the results than the implementation when studying in the field

of animation, and so we can attempt to reproduce motions without necessarily

modeling the complex underlying details.

There are many applications of motion control. We see robot arms in in-

dustries such as car manufacture. We need robots that can navigate dangerous

environments such as deep underwater, or traversing the surface of other planets

for research. In simulated systems, we have motion capture technology that has

allowed us to reproduce human motion by attaching markers to various points

on the body and recording their position in 3D space, as shown in Figure 1.1.

Figure 1.1: An actor has markers attached to his body, so that his movements

can be recorded and then reproduced for animation. (Courtesy of Wikipedia.)

Motion capture data has allowed extremely lifelike animations to be pro-

duced in games, although is more difficult to use in dynamic environments,

such as when two players collide in a sports game. Dynamic collisions such as

the motion of bodies collapsing after death in a first-person shooter, are better

modelled with ragdoll physics systems. Some recent systems have attempted

to combine the data-driven approaches with physical simulation, as seen in

Mandel[38].
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1.2 Autonomous Vehicle Control

In this thesis our work is directly related to the field of autonomous vehicle

control, for both real and simulated agents. The following two subsections look

at vehicle research in both of these areas.

1.2.1 Real World Systems

Kanakia [26] writes that autonomous vehicles are being researched in the 2007

Defense Advanced Research Projects Agency (DARPA) Grand Challenge, where

a car is sought that can navigate in a simulated urban environment for sixty

miles in less than six hours, without human guidance. This has a $2 million

top prize. For a previous challenge, a 132 mile route across the desert had to

be navigated, with 5 finishers. This new challenge poses new problems, as now

it will have to act reasonably in the face of other traffic. This could include

a variety of new obstacles, such as curbs, holes, cars, bicycles and pedestrians,

and entrants must also obey the traffic laws.

A car like this could save lives as it would have better reactions and senses as

compared to human drivers, and it would never need to stop due to fatigue. It

could drop you off at school or work and then park itself. It could also affect the

speed of traffic, as cars could communicate with each other to maintain a faster

group speed. This vision is a long way from reality at present, however cars are

slowly becoming more autonomous, with systems such as anti-lock brakes, and

we already have positioning systems such as GPS that can guide the driver.

Other recent automated vehicles include Roomba, a disc based robotic vac-

uum cleaner, and PackBot, a small tank-like battlefield robot that can climb

stairs and recover when it falls over, as written by Clark [10]. PackBots have

been used to explore enemy caves and to detect explosives. Clark [10] also writes

about a current project called r-Gator, an unmanned jeep that can shuttle sup-

plies to and from areas of combat.

It is not only on land where robots can perform tasks. They may even prove

to be more useful for undersea operations, where humans find it difficult, and
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at high depths, impossible, to penetrate and explore. [10] tells is about the

Autonomous Underwater Vehicles Laboratory (AUV Lab), which has a vision

of filling the void of the ocean with robots. They developed the Odyssey class

of submarine-like vessels into AUVs that survey offshore oil fields and assist the

U.S. Navy with mine warfare and battlespace preparation. The biggest challenge

in this area is the provision of power, as most systems run on batteries.

In the air we have aircraft that are intelligent, and that can perform au-

tomated take off and landing. These can be more useful in areas where it is

difficult for a land robot to enter, such as dense urban areas, or even simply over

the sea. For many years guided missiles have effectively acted as autonomous

airborne agents.

Figure 1.2: An artists impression of what one of the Mars Rovers could look

like on the surface of the planet. (Image courtesy of NASA.)

An impressive ongoing project involves two robots on Mars (see Figure 1.2).

The two rovers, named ‘Spirit’ and ‘Opportunity’ touched down in 2004 after

having travelled 311 million miles. They have been functioning well for over

2 years, moving slowly across the difficult Martian terrain with directions sent

from Earth. Interesting discoveries have been made as a result, such as the

suggestion from chlorine and bromine deposits that Mars at one time had a

salty sea.
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1.2.2 Simulated Systems

Simulated systems can be seen in many different areas. Many computer games

now exhibit considerable realism of human and vehicle motion, as seen in recent

racing simulation GTR2(Figure 1.3), created by Simbin Development [1], which

shows simulated vehicles. It is a realistic simulation of the FIA GT Series

Championship and features many different cars and tracks. It can even be

attached to MoTec telemetry software, which records real life car performances

on race tracks, or Track-IR which can be attached to the head for panning

around the cockpit. Game developers have been constantly trying to improve the

physics model to make it as realistic as possible, and this version has improved

tire physics at low speeds and better damage modelling. It also has AI routines

that mean that that your opponents can be set to be tough or weak, conservative

or aggressive, to tailor the game to your needs or ability level.

Figure 1.3: An image from GTR2, a game for the PC, that

demonstrates simulated vehicles. (Permission of image use gained from

www.strategyinformer.com)

Crash testing can be an extremely expensive process. It cannot be the

only method used, they can be simulated. Kirkpatrick[28] developed a crash

simulation model for the Ford Crown Victoria. He conducted different simulated
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tests such as the front bumper rigid pole impact test, front door rigid pole

impact test and the vehicle frame rigid wall impact test. The vehicles’ structural

geometry were measured and non-structural components were removed from the

vehicle. The measured surfaces were then fed into a vehicle mesh generation

program called TrueGrid. Simulations of the crashes (and video of real crash

tests), such as a frontal impact into a wall can be seen, and other similar work

can be seen at Pennsylvania State University[55]. Simulation of this type is

extremely useful, as the expense needed to run every type of test would be

enormous, but this is offset by the fact that the simulation must be perfect for

it to succeed.

Other simulations can include training simulations, for flying or driving.

Combat situations for soldiers are also being simulated as a cheaper and easier

alternative to combat training. The U.S. Army has funded development of

its own ‘game’ using the Unreal game engine. It is described in Hachman[21]

as ‘an innovative, realistic computer game providing civilians with an inside

perspective and a virtual role in today’s premiere land force, the U.S. Army’.

Human motion can be seen in many games, movies and simulations, and

there is every reason to believe that animated human motion will be in greater

demand in the future, because they are an essential component of storytelling

or simulating real life situations.

1.3 Goals and Scope

The long-term goal of this work is to create a system, based on motion graphs,

for online motion planning, that produces skilled driving behaviours for a dy-

namic model of a car in a constrained environment. It is a particular challenge

to get the cars to produce highly dynamic behaviours such as skidding-into-turn

behaviours when approaching sharp corners, which can help achieve the fastest

speeds around a track. The techniques developed could be applied to cars but

also for other dynamic vehicle behaviours, in computer games or for intelligent

autonomous vehicles in the future. We wish to gain insight into the key issues
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in the creation of such behaviours, and to determine where we may need to

improve upon and expand this work in the future. The success of our work will

be measured on whether or not we can produce good solutions that can exploit

dynamic behaviours such as skidding, while attempting to keep the computation

time at a reasonable level.

1.4 Contributions

We demonstrate that a well formed move tree or, equivalently, a motion graph,

can be used to produce realistic steering behaviours on a variety of tracks. We

show that an A* search algorithm is well suited to this task, and offer a number

of ways that we could speed up the generation and tree searching for future work

in this area. We have produced a number of smooth animations where our agent

chooses the fastest way to reach its goal, be it through acceleration/deceleration

around tricky obstacles, or a hard skidding turn into a corner after approaching

at speed.

1.5 Thesis Outline

In Chapter 2, we present related work in animation and motion planning. Chap-

ter 3 formulates the problem that we wish to solve, and the mechanisms that

we apply to solve it. Chapter 4 presents the results of this work along with

a discussion of those results. Chapter 5 discusses how this work could be im-

proved upon and extended in the future, including the automation of motion

graph generation. Chapter 6 gives the conclusions that we can take from the

work, and is followed by the bibliography and appendices.
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Chapter 2

Related Work

This chapter reviews work on animation using motion graphs, and related topics.

2.1 Motion Graphs

Most human motions that we make can be described in terms of successive

sequences of actions, many of which are similar in nature. Finding our way

around a building could be seen as a list of different motions, such as walking

forward, opening a door, climbing the stairs, etc. If we could collect each one of

the motions needed to navigate and join them together, then we could create a

stream of motion to navigate any building.

Motion graphs were formalised by Kovar et al.[29]. A commonly used solu-

tion to acquire motions, particularly human motion, is motion capture. Motion

capture technologies include mechanical armatures, magnetic sensors and multi-

camera systems. These systems can accurately reproduce any motion that a

real actor can perform. This is a good way to reproduce motion, however it

can be difficult to modify unless only minor changes are made, such as by mo-

tion warping in Witkin and Popovi[59]. If there is no captured motion that is

similar enough to a needed new motion then the only choice is to collect more

data which can be expensive and time consuming. The motion graph approach

attempts to synthesize new streams of motion while retaining the quality of the

original data. The motion graph itself is a data structure that shows where

transitions can be made between various motion clips. It can be constructed

from unstructured motion data by detecting where these transitions can safely

be made. We can then select which paths we want to follow through the graph
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to produce a new animation, which is called a graph walk.

A motion graph is a directed graph where all edges correspond to clips of

motion. Each node can be considered to be a choice point connecting these

clips.

Figure 2.1: Two views of a motion graph.

In the top half of Figure 2.1 we can see 3 motion clips where each circle

represents a frame in the clip. We can start with a trivial graph containing 2n

nodes, one for the start and end of each motion clip. After computing where

allowable transitions are, we can add nodes and arcs to the graph representing

the points where we can transition from one clip to another. The transitions
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can occur within the same starting clip, as shown by the curved arc at the top of

Figure 2.1. The resulting graph, that has the remaining non-transition frames

abstracted away from its graph edges is shown in the bottom half of Figure 2.1.

A motion graph requires a reasonable amount of connectivity between differ-

ent nodes to provide compelling animation. It is also important to find transi-

tions that will result in the highest quality motion. Smooth transitions between

two motions typically require the use of motion blending as seen in Il Park et

al.[39]. It is also important to find transitions that will result in the highest

quality motion.

Motion graphs have become popular because they can automatically pro-

cess a large motion database into the useful graph structure. However, the

kinematic nature of motion graphs means they may lead to unrealistic behavior

because this type of motion model does not take forces into account in dynamic

environments.

2.1.1 Finding Transitions

Building a good motion graph requires finding an appropriate measure for when

a transition can be reasonably made. This distance metric must ensure that

both the position and velocity of any relevant DOF are close to each other.

For human motion this would include the position of one of the joints, or in

our vehicle model it would be the car angle, position and velocities. Velocities

must be considered, as illustrated by the example of a man walking forwards

and backwards. There will be positions in both walks where they have a similar

pose but we would not want to transition between them, as we would have an

abrupt and unrealistic change in direction. We also have to reorient the data

to local frame coordinates. The data is recorded in global coordinates, but we

need to capture the fact that a left turn while facing north is the same motion

as a left turn while facing east, for example.

If we look at the methodology of Kovar et al.[29], if two frames Ai and Bj

meet the threshold requirements for transition, then they can be blended by
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using frames Ai to Ai+k−1 with frames Bj−k+1 to Bj , after they have been

aligned with one another. In this example, k defines the number of frames over

which to blend. However approaches such as these can violate constraints in

the original motions, especially for the human motions, where feet may slide as

a result of interpolation between two motions.

2.2 More Data Driven Animation Techniques

Motion editing is the process of making changes to motion data. Gleicher [18]

showed individual clips of motion can be edited through retargeting, which maps

motions between characters of different proportions on to a motion clip while

retaining the core constraints. Bruderlin and Williams[8] use signal processing

to reshape the data.

Motion synthesis can be achieved by taking a set of example motions and per-

forming multi-target blends which results in a continuous space of parametized

motion. This can be seen in Wiley and Hahn[57] which uses linear interpola-

tion and Rose et al.[47] which uses radial basis functions. These methods are

concerned with generating parameterizations of clips whereas our work is about

creating a sequence of clips that can be used to control a vehicle with known en-

vironmental constraints. Gleicher et al.[17] created a system which built motion

graphs with a simpler structure by automatically detecting frequently occurring

poses, with transitions appearing at those points, reducing the number of nodes.

Kim et al.[22] took rhythmic data and separated it by using beat analysis, then

uses k-means to cluster and a Markov model to represent transition probabilities

between clusters, meaning new motions could be synthesized that upheld the

rhythmic structure. Lee and Lee[36] controlled motion synthesis in real time

with dynamic programming, precomputing the optimal transition to take from

any node given one of a finite set of goal configurations.

We can also construct statistical models. Pullen and Bregler[42] use kernel-

based probability distributions to synthesize new motion based on the prop-

erties of the example motion. Bowden[5], Galata et al.[16] and Brand and
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Hertzmann[6] all construct abstract states which represent sets of poses. Tran-

sition probabilities between states are used to drive motion synthesis. However

these techniques can lose important details and end up with an unrealistic av-

erage of different motions. The problem with using statistical models in this

case is that it can be very difficult to truly map the statistics of human mo-

tion. Tanco and Hilton[53] use a Hidden Markov Model (HMM) and k-means to

clusters of motion segments. A maximum likelihood algorithm is used to find a

sequence of connecting motion segments between a start and end pose. Pullen

and Bregler[43] break motion capture animations into smaller pieces and use

these to create new ”fill-in” motions.

Other graph based work includes Lamouret and van de Panne[31], which

discussed characters with a low number of degrees of freedom (DOF). Schodl

and Essa[52] apply motion graphs to video images. James and Fatahalian[25]

use physical simulation within deformable objects. Perlin[40] and Perlin and

Goldberg[41] uses rules and blending to connect procedurally generated pieces

of motion into usable streams. Faloutsos et al.[13] use support vector machines

to create motion sequences as compositions of actions generated from a set

of physically based controllers. These were mainly concerned with creating

individual transitions whereas we are planning long sequences of motion.

In the context of games, motion graphs are often referred to as move trees.

The primary difference is that these are generated manually rather than auto-

matically, which is also seen in Perlin[40] and Rose et al.[46]. This thesis uses

manually constructed move trees. Their construction could theoretically be au-

tomated, but our focus was their use in efficiently planning constrained motions

rather than automatic graph construction.

We need to create smooth transitions between motions at transition points.

Perlin[40] interpolates between clips to create a blend. Lee and Shin[37] de-

fine orientation filters that allow blending operations on rotational data. Rose

et al.[47] preserve kinematic constraints and dynamic properties when creating

transitions. Arikan and Forsyth[4] and Lee et al.[35] identify transition loca-

tions based on a distance metric. Perlin and Goldberg[41] use a linear blending
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method. Arikan and Forsyth[4], Pullen and Bregler[42] and Lee et al.[35] use

displacement maps to achieve smooth transitions. Rose et al.[47] use a torque

minimization algorithm. Smooth animations are created in this work by only us-

ing frames that are extremely close for comparison purposes, and do not require

any complex blending procedures.

2.3 Autonomous Behaviours and Planning

Algorithms

The behaviour of flocks, herds and schools are discussed in Reynolds[45], as the

BOIDS model. This allows the programming of large animal groups to act in

support of a group goal, while also demonstrating realistic individual variability.

Scripting the path of each individual member of the group is time consuming and

in many cases downright tedious. The work of Reynolds[45] applies three local

behavioural rules to each member of the group: collision avoidance, velocity

matching and flock centering (staying close to nearby flockmates). Some of the

most interesting motion occurs when the flock is forced to interact with and

avoid objects in its environment.

As an extension of BOIDS, Go et al.[19] tackle the problem of animating the

behaviour of vehicles within interactive simulations. However individual vehicles

generally do not have the same mentalities as flocks, and the dynamics mean

that they have complicated control models and high velocities. They combine

online search with steering behaviours, seen in [44], to guide the search function.

For interactive games, speed is generally preferred to high accuracy, and so

the motion must be generated rapidly. They focus on extending the steering

behaviour control model and combine it with online path planning techniques,

in an attempt to create more goal-driven synthesized vehicle animations. It

is claimed to be suitable for not only space, water and land based vehicles,

but also birds, bicycles or any other simulated entity with significant dynamics.

Behaviours are designed in a manner that means they can apply it to the motions
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of multiple entities. The key components of this work are the interface for

steering behaviours, a visually plausible control model, the pre-integration of

dynamic trajectories to enable real time performance, and a search algorithm

designed to operate with limited time and information.

Steering behaviours are denoted by the type of motion it produces, such

as seeking or wandering. A major advantage is that no matter what input is

given, the output is always a vector of desired velocity. These behaviors can be

mathematically combined and mean that there is a weak dependence between

the control model and the behavior. However combining behaviours can result

in nonsense behaviour. They are also not well suited to nonholonomic (wheeled)

vehicles with inherent drift in their system dynamics, as computed paths may

not be representative of the actual path taken.

Most planning methods currently assume full knowledge of the environ-

ment. A popular path planning method was developed by LaValle[33][34], called

Rapidly-exploring Random Trees (RRTs), that can be used for many types of

dynamic system. This technique is successfully applied by Yamane et al.[60],

who synthesized animations of human manipulation tasks, such as placing a box

on a shelf, and also by Bruce and Veloso[7] who implement a real-time robot

replanning system.

Reynolds[44] uses a different approach that uses local information. Steering

behaviours use a time-local approximation of steering forces that depend on

desired behaviors. Steering forces are efficient to compute, but behaviours can

get stuck in local minima or behaviour loops because they only consider local

information.

Witkin and Kass[58] globally optimize a set of control inputs subject to

specified constraints and defined optimization criteria. van de Panne et al.[56]

compute an optimal control policy for small environments and for objects with

simple dynamics using state space controllers. Grzeszczuk and Terzopoulos[20]

use simulated dynamic entities control spaces to create local behaviour con-

trollers.

Frazzoli et al.[15] and Feron et al.[14] use trim trajectories to control a he-
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licopter. This is a similar problem to our work in terms of vehicle control,

but has further complexity from being in a dynamic environment, so we will

discuss this work in more depth. Trim trajectories are predefined manoeuvres

that are invariant with respect to some state variables. For example, they are

useful because they allow a high level planner to efficiently reason about local

state reachability. The operation of an autonomous vehicle in an unknown,

dynamic and hostile environment is an extremely complex problem when the

vehicle is required to use its full maneuvering capabilities. To deal with such

a system they decompose activities into a hierarchy and introduce control and

decision layers. Some systems are continuous while decision making systems

are likely to be discrete, which means this system is referred to as a hybrid

system. Such a controller is responsible for both the generation and execution

of a flight plan. To reduce complexity they base planning upon a quantization

of the system dynamics, restricting the feasible system trajectories to a family

of time-parametrized curves, which as a whole constitute a maneuver library.

This reduces the search space for solution, now not a continuous space. Their

system tries to capture the relevant characteristics of the vehicle dynamics and

allow the creation of complex behaviours for the interconnection of primitives,

to produce good approximations of optimal solutions. This piecewise assembly

of trajectories is similar in essence to the system we propose. However they

track the actual trajectories that occur given the input trajectories primitives,

to ensure that they are close to each other based on the outside factors such

as noise and unmodelled dynamics, whereas we directly assemble and play our

stored animations.

Our work is directly related to the field of vehicle control, for both real

and simulated agents. Latombe[32] describes motion planning methods, that

use a trajectory-planning stage and trajectory-tracking scheme. The scheme

is meant to avoid obstacles and enforce the non-holonomic constraints of the

vehicle. Bullo and Murray[9] evaluate various linear and non-linear designs for

trajectory tracking. Divelbiss and Wen[12] looked at the problem of parallel

parking non-holonomic vehicles that had between zero and two trailers. Trajec-
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tories are planned offline and a linear quadratic regulator tracks the trajectory.

Saffiotti[50] focuses on the control of autonomous robots and the presence of

uncertainty in real-world environments. Rosenblatt[48] proposes a distributed

architecture which combines information from different sources each voting on

the best way to complete there personal goals. Santana[51] aims to ensure safe

local navigation for a robot. Kelly and Nagy[27] determine a control input in

real-time to bring a vehicle from a start point to a goal. Most of these are

dependent upon knowing a world model.

Other work is based upon policy search methods. For the truck backing-up

problem, Koza[30] assumes knowledge of the global state of the truck and used

genetic programming. Hougen et al.[23] learn a controller on a real tractor-

trailer robot, and give the self organising neural network controller access to

the angle of the last trailer with respect to the goal state. Hougen et al.[24]

continue from this to look at the more difficult problem of backing up a double

trailer truck in simulation mode.

Temporal Difference (TD) learning can be seen in Coulom[11], which cre-

ated a policy in the now defunct Robot Automobile Racing Simulation (RARS),

which was a race between programmers to produce the best car controller. Ac-

tions are learned based upon the cars position and velocity in relation the local

track features, and also the curvilinear distance from the start line. A newer ver-

sion of the RARS championship can be seen in The Open Racing Car Simulator

(TORCS)[54].

In Alton[2] and Alton and van de Panne[3], the motion of the vehicle is

controlled by reinforcement learning and policy search. Two non-holonomic

vehicle types are tested, a car, and truck with a trailer, with different control

problems involving going forwards and backwards. They do not use a physics

system to model car sliding as in our work. A policy search framework is used

to solve the motion control problem. The control policies use a nearest-neighbor

function approximator (NNFA) to determine which policy will be chosen at any

particular time point. A particular challenge is the design of the reward function,

where it is hard to work out what weights to give to various factors such as
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energy efficiency, time efficiency, closeness to goal. Other notions of optimality,

such as the smoothness of trajectories, are rewarded as those trajectories will

tend to be the ones that make maximum progress.
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Chapter 3

Vehicle Steering

In this chapter, we develop a technique for efficiently planning the dynamic

motion of a physics-based car simulation around highly constrained dynamic

environments.

3.1 Vehicle Model

Figure 3.1: The car.

The main problem we are trying to solve is that of driving a car around a

track at speed using clips from a motion graph. This agent has a 6 dimensional

state space:

S = [x, y, θ, ẋ, ẏ, θ̇]

where x, y are coordinates and θ is the angle the agent is facing, and ẋ, ẏ and

θ̇ are the velocities of these. The agent has a steering angle as input, represented

graphically by the direction the tires are pointing, which we will call s. The agent

itself has a physics based model for movement, which is affected by the weight of
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the agent, the size of the agent, etc. This takes into account a large number of

variables in order to work out the position of the agent for the next frame, and

constants such as drag, resistance and friction. The agent itself is described by

several constant parameters including front/rear axle distance, and also mass

(in kg) and inertia (in kg per meter). In order to compute the position of the

agent for the next frame, the velocity in world coordinates is transformed to

the agent reference frame. Next the lateral force on the wheels is calculated.

Forces and torque are applied to compute the current acceleration. Finally, the

accelerations are integrated to obtain an updated velocity and position. The

full implementation of the sliding physics is given in Appendix A.

3.2 Pseudocode Planning Algorithm

Our overall algorithm, which runs for each frame, is shown below. We discuss

it in detail in the remainder of the chapter.

for (each frame) {

if (current frame is a transition point) {

initialize route tree and add unexpanded start node to list

while (there are unexpanded nodes and node limit has not been reached) {

select next node

if (path between current node and next node does not collide with wall) {

expand node and add new unexpanded nodes to list

}

}

create a list of all possible paths from end points

find the best path by heuristic

if (best path is not current path) {

set current path to best path

} } }
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3.3 Data Generation

In order to develop a motion graph (or move tree), we first need to collect

relevant motion data. A ‘Logitech Dual Action’ (i.e. PS2 style) control pad

is used to interactively control turns of different curvature and speeds. The

steering angle is mapped to the left analog control stick, and acceleration and

braking are mapped to buttons1. These turns are all made using the physics

model but there is no interaction with scene objects, i.e. no bouncing off walls,

apart from direct collisions with walls which reduce velocities to zero. Many

clips of animation were recorded of a user driving around tracks or with no

track, to experiment with making soft and hard turns, and the best of these

were selected for use to try and represent as many of the most useful types of

movement and cornering as possible. Only clips that did not contain collisions

were selected. Clips were not doubled up using symmetry, each clip in use is of

an actual left or right turn.

3.4 Finding Similar Frames

In order to construct a motion graph from the data, we need to identify potential

transition points, either manually or automatically. The automatic identifica-

tion of transition points requires finding similar frames. Before we can compare

two frames f1 and f2, we must rotate them so they are in the same coordinate

system. We compare the velocities in the local coordinate frame of the car rather

than in world coordinates, because the global position and global orientation

are irrelevant.

Next, we need to find a metric for frame comparison. There are various ways

we could go about this, but the final goal is come up with a single value that

measures the similarity of the state or ‘situation’ of the car (Figure 3.2).

We use uf to describe velocity of frame f in x, vf to describe velocity of
1the right analog stick, or the up down axis of the left analog stick would have been viable

alternatives.
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frame f in y, and ωf to describe angular velocity of frame f, which gives the

following function:

d = |u1 − u2|+ |v1 − v2|+ |ω1 − ω2|

Figure 3.2: The car velocity comparison.

We then use a threshold of d < ε to detect frames that we can mark as being

sufficiently similar to support a motion transition.

Using similar frames we can now begin construction of a Route Tree that

gives possible paths for the agent to take. A route tree is a map of routes that

the car can choose from based on its current location. This can be expanded to

various search depths to give a richer selection of paths. A route tree represents

a specific instantiation of the move tree or motion graph that enumerates all

the paths forward from the current state.

3.5 Creating and Expanding Routes

This section explains how the route tree in this work is created and expanded.

A route tree is created when there are multiple choices available for the next

motion clip at the current frame. The next node to be expanded is chosen via an

algorithm, which after some experimentation was chosen to be A* search. We

use a finite search horizon expressed as a fixed planning time duration. Also, a
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memory bounded value is given to limit the total number of nodes searched for

larger expansions.

Figure 3.3: A route tree enumerates possible future paths from a particular

state. In this example, there are three choices at each decision point. The

magenta line at the top right is a line from the selected best node to the current

goal. The best path is shown in red.

3.5.1 A* Search

A* search is a widely used search algorithm, which is based upon best-first

search, as seen in Russell and Norvig[49]. Best first search incorporates strate-

gies that choose to expand the current ‘best’ node, where the metric used to

define ‘best’ is given by a heuristic. A common example of a cost-to-go heuristic

for motion planning is the straight line distance, where the next node that is

expanded is chosen to be the one that is currently closest to the goal. Just us-

ing cost-to-go can be inefficient, given that it ignores the ability to cull solution

paths based on the cost-to-date.
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A better approach combines the straight line distance h(n) with the cost to

reach the node g(n).

f(n) = g(n) + h(n)

This sum gives us an estimate of the cheapest solution that goes through

node n. The straight-line distance-to-goal never underestimates the cost to reach

the goal and therefore defines an admissible heuristic. The A* search therefore

finds the optimal solution if run to completion. In order to optionally further

constrain the search we can bound each search to a maximum number of nodes,

meaning that for larger searches we may not achieve an optimal solution, but

smaller searches can be performed in real time. The number of nodes expanded

for each search is discussed further in the results section.

In order to implement A* search efficiently, a data structure must be chosen

to place the items in a priority queue in a much faster manner. A heap is ideally

suited to this task, in this case a min-heap. A min-heap is one which is partially

ordered with the lowest value at the top. This allows us to store values in an

order and release the highest priority (lowest value) node when needed.

3.6 Route Selection and Clip Alignment

When the agent reaches a decision point in the route tree, it finds which one

of the corresponding branches is on the best path to the goal, as determined

by the A* search and sets its new start frame accordingly. This frame must

be translated and rotated into the agent’s current coordinate frame. Given a

current agent coordinate frame of A, the agent coordinate frame at the beginning

of the current clip as A´, the new playback clip coordinate frame B´, and the

current frame in that playback clip of B, we can compute the agents position as

driven by the transformed motion clip. This is shown in Figure 3.4.
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Figure 3.4: Motion clip B’ is rotated into place in order to provide the next

frames of motion for car A.

3.7 Collision Detection

The agent needs knowledge of its environment in order to plan its motion. This

is done by intersecting the potential paths, as defined by the route tree, with

the environment. Collision detection with 2D track walls is made by comparing

the agents sides to every track or car obstacle line at multiple points within

each motion clip. For a straight clip the lines between the start frame and the

final frame are the only ones tested, but for a sharp turn up to three separate

in-between frames are tested, as shown in Figure 3.5.
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Figure 3.5: Collision detection tests, which is much more accurate given more

frames. (a) shows detection between the two end points of a curve, which is less

accurate than (b) given 2 extra frames.
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Chapter 4

Results

This chapter describes the results of our work.

First a move tree with a 5-way branching factor is constructed that guar-

antees continuity of position. This move tree does not necessarily have smooth

transitions in terms of forward velocity. Second, we develop a large move tree

with smoother and more realistic transitions between these. Finally we discuss

the implications of these results.

We use a goal location of x=0,y=100000, as measured in metres, where the

xy plane represents the driving surface. It would also be possible to implement

a dynamic goal to allow the agent to drive around circular style tracks. We use

the cost metric developed in Chapter 3.

4.1 Move Tree

Two small hand constructed move trees are created from data recorded using the

joypad. Figure 4.1 shows schematic views of the two trees. Roughly speaking,

the trees consist of varying degrees of left and right turns. For simplicity of

construction, velocities are not enforced to be perfectly continuous between

successive animation clips. Lateral components of the velocities are very close

by design and because of the car physics. The agent will thus not suddenly

lurch sideways when entering a new animation. However, it may speed up or

slow down quicker than true physics would allow.

The larger move tree is the same as the first, except it has two more branches

allowing for slightly sharper turns. Each one of the clips could be used after

the end of any previous clip, and they were all 25 frames long (1 second of the
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Figure 4.1: This is a figure of the small move trees, with a) 5 and b) 7 branches,

showing the possible transitions and approximate trajectories from the only

possible state. Each clip is 25 frames in length.

final movie). The 5 and 7 branch move trees were tested against each other to

see how they performed on a variety of tracks. We now describe the results on

a variety of environments.

4.1.1 Long Straight Track with Other Cars

The straight track shown in Figure 4.2 is designed to test the ability to avoid

other moving cars on a long straight road, using various search depths. The

test is conducted with the 5 branch tree, which does not offer many choices

for movement, but is useful on this style of track where most movements will

be straight. The performance for various levels of ‘look ahead’ or depth were

evaluated.

The results1 of these tests shown in Table 4.1 show the benefit of longer time-

horizon planning. Looking ahead one or two clips results in both cars avoiding

obstacles at the last possible moment and both collide quickly. Looking three

or four clips ahead fared better but both still crashed, although they showed

a greater degree of anticipation of future car movements. Looking ahead five

clips (124 frames) allowed the car to not crash during two minutes of driving.

1See www.cs.ubc.ca/∼andyadam for videos.



Chapter 4. Results 28

Figure 4.2: Long straight track. The equally-spaced tilted rectangles on track

represent cars moving at constant speed that act as dynamic obstacles.

Whenever the agent does decide to turn, it makes only slight movements that

allow it to get through the gaps among the cars at maximum speed. This

does not prove that this planning depth is sufficient for all possible tracks and

obstacle placements.

4.1.2 Cornered Track

The cornered track, as shown in Figure 4.3, is designed to test the ability to

travel around a more interesting track with a variety of corner angles.

This produced a number of interesting behaviours. Firstly, the test that

plans only 2 clips moves forward quickly, but only reacts when it reaches a wall.

This is caused by only having a few different options for movement, with no fast

yet slight turn available.

The animation using a 4 clip planning horizon performs better. However the

search may result in a slower time to the goal despite searching further ahead

as a result of our choice to bound the node search to the first 15000 nodes

encountered. This phenomenon repeats itself with the two deeper searches using
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depth(frames/nodes) times (secs)

24/1 10 sec crash

49/2 17 sec crash

74/3 57 sec crash

99/4 110 sec crash

124/5 no crash after 2 mins

Table 4.1: The results for the small 5 branch move tree on the long track with

other cars.

depth(frames/nodes) branch node limit time to finish line (secs)

149/6 5 15000 33

299/12 5 45000 39

49/2 7 15000 35.5

99/4 7 15000 31.5

149/6 7 15000 35

Table 4.2: The results for the 5 and 7 branch move trees on the cornered track.

the 5 branch tree, where the search of 6 clips and 15000 nodes performs much

better than the search of 12 clips of 45000 nodes.

4.1.3 Cornered Track with Other Cars

The same track as above is used but with a collection of other cars that serve

as moving obstacles. The majority of tests are conducted here as this problem

is the most interesting and difficult.

A variety of tests were run with the 5 branch tree, but all of them end in

collision, most of them in the same tricky area of track. The 7 branch tree with

a planning horizon of 2 clips cannot avoid the cars in time and make it around

the corner, and collides with a wall. As the planning depth increases, the agent

manages to improve its performance, i.e. to get to the goal faster.
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Figure 4.3: Cornered track. The car begins at the bottom and its goal is to

drive towards the top.

Two tests are run at a depth of 6 clips, one with each planning step bounded

to 15000 nodes and another bounded to 45000 nodes. Surprisingly the 45000

node version was slower. The only reason for this can be that a more optimal

(faster) decision earlier in the track results in it having to follow a slightly slower

path later, perhaps getting held up in ‘traffic’.

4.2 Large Move Tree

A more expansive move tree is constructed in order to produce animations with

more realistic transitions while avoiding the need for blending. This is shown

in Figure 4.4.

The tree was given three main states from which a number of different turns

could be performed - a Stop state, a Medium state and a Fast state. In order

to make it easier to maintain a constant speed and make decisions about going

fast or slow at any point, two in-between states were added between each main

state. This allows the agent to speed up and slow down without having to go all

the way up to commit to moving to Fast and then back to Medium, needing a
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depth(frames/nodes) branch node limit times (secs)

149/6 5 45000 crash

199/8 5 45000 crash

299/12 5 15000 crash

299/12 5 45000 crash

49/2 7 15000 crash

99/4 7 15000 41

149/6 7 15000 38

299/12 7 15000 33.5

299/12 7 45000 35

Table 4.3: The results for the small move trees on the cornered track with other

cars.

large section of straight track. The car can speed up to mf1 and then slow down

to Medium again, gaining speed but not being stuck in one long acceleration or

deceleration animation.

4.2.1 Long Straight Track with Other Cars

depth(frames) node limit times

299 45000 still going 2 min

Table 4.4: Results for the large move tree on the long track with other cars.

A test was run on the long track with other cars moving as obstacles. The

agent tends to hug the wall, making slight speed adjustments, and very slight

turns, to keep it aligned with the gaps between the cars. It also shows that the

agent is always attempting to go straight and not randomly choosing to turn

for an unnecessary purpose.
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Figure 4.4: A large move tree showing a total of seven speeds.

4.2.2 Cornered Track

depth(frames) node limit time to finish line (secs)

49 45000 44

Table 4.5: Results for the large move tree on the cornered track.

One test was run on the cornered track to ensure it produced a good an-

imation. The animation, though being expectedly slower than those with the

smaller tree, which was ignoring physics, was much smoother than those ani-

mations and also intelligently anticipated upcoming corners.
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4.2.3 Cornered Track with Other Cars

depth(frames) node limit time to finish line (secs)

400 15000 45.5

400 45000 50

400 250000 46

700 250000 45.5

Table 4.6: Results for the large move tree on the cornered track with other cars.

Tests were run on the cornered track with other cars. With a 15000 node

planning horizon a reasonable time and smooth animation is produced, but at

45000 we see a slower performing result. To show that this is not the result of a

potential coding error, an additional test was run with a 250000 node planning

horizon. This produced a similar time to the first test. It seemed that the agent

had to sit behind other cars occasionally, probably because it had deduced that

it could not speed up and slow down in time to get around the car and also the

following corner. All of the animations were realistic and smooth.

4.2.4 Sharp Cornered Track

Figure 4.5: Sharp cornered track.

Despite producing smooth animations on the track above, we have not pro-

vided the system any need to use the hard slides provided within the move tree.
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In order to do this a track (Figure 4.5) was created with long straight sections

and sharp hard turns, which should ensure that the fastest (if not only) way to

get around the corner would be to skid into it, as shown in Figure 4.7)

depth(frames) node limit

200 15000

400 15000

Table 4.7: The results for the large move tree on the sharp cornered track.

The results proved successful. In all cases the agent used the skid to get

around the corner. For the depth 200 version the particular instantiation of

the skid causes it to leave the corner slowly. This could perhaps be rectified

by having hard skids that leave the agent at different angles at the conclusion.

However all of the skids allow the agent to reach high speed going into the corner

and escape effectively.

4.2.5 Final Track

The final track (Figure 4.6) was produced to show all of the above elements.

It contains normal turns, a sharp turn, and many obstacle cars driving in the

large center area. Figure 4.7 shows the skid. For a better representation of the

results see the online videos.

depth node limit time to finish line (secs)

200 5000 48.5

400 250000 51

Table 4.8: The results for the large move tree on the final track.

A small lookahead was used with a low node limit, and the animation was

created in around 3-4 minutes, which results in around 5 seconds of computation
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Figure 4.6: Final track.

per frame. Looking further ahead and taking much longer to process did not

produce significantly better results in this case, but the number and closeness

of opposition cars was increased. The low node limit could not find a path

through, but the larger search produced a smooth animation and path through

the track, making it look easy. These final movies show the culmination of all

of the above elements, to show that they all work as one.

4.3 Discussion

We have learned various things of interest from these tests. First, interesting

local minima exist. Simply increasing the number of nodes we search does not

automatically mean that we are going to achieve a better performing result.

This is because a slightly faster earlier route may yet slow the agent down at

a later point. Despite this we can still see from other examples that longer

planning horizons are more likely to produce a good animation and in all cases
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Figure 4.7: A resulting skid on the final track.

reduce the possibility of a collision. There is also clear evidence that searching

too far ahead while not searching enough nodes gives us poor results.

The way we structure our motion tree greatly affects the quality of animation

we can produce, and can be tailored to individual tracks. The 5 branch graph

worked well on the straight track at avoiding other agents, however it performs

poorly on the curved track that forced it to negotiate tight corners at exact

angles. Adding just two more turns to the tree allows it to get around the

track, and planning further ahead allows it to negotiate the track in a much

faster time.

While the 5 and 7 branch trees prove useful for testing aspects of move

trees, the animations they produced are not smooth and do not conform to

the physics constraints. Producing a move tree that ensures transitions are

very close to each other in terms of velocities allows us to produce smoother

animations and come closer to meeting the goals of this work, namely to produce

animations conforming to a physical system. However the computation time

for these smaller trees is real time in some cases, as opposed to hours for the

largest tests conducted. Most mid range tests, which produce almost as good

or occasionally better results than the really large tests, take around 10-20

minutes when using the large move tree, depending upon the number of track
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obstacles, and whether the whole tree could be expanded and each step. Tight

corridors resulted in much shorter computation times as large sections of the

motion become highly constrained. These computation times could be improved

significantly by the implementation of some of the suggestions made in the next

chapter.

When comparing the results produced to those produced by a human using a

joypad, with practice it was possible for a human to get around all tracks, but it

is very difficult to reproduce the dynamic skidding behaviours for tight corners,

with virtually every attempt at high speed skids resulting in crashes into the

wall, or ending up short of the corner. Similar problems occur when trying

to avoid car obstacles, resulting in crashes or slow routes taken after twitch

based movements to avoid cars at the last seconds. In particular they could not

reproduce the long sections of straight driving seen when the agent is driving

on the straight track against other cars. The agent could be much more exact

about its movements, whereas a person may get lucky on a tricky track but will

usually require multiple attempts to even get through tricky areas at a decent

speed. Overall human control produced motions that were less smooth and were

often unsuccessful, although perhaps they could come close with a refined control

system and sufficient practice. Two instances can be given where human control

resulted in better animations. Firstly, this occurs when very simple tracks were

given, and much practice made at cornering exactly to limits, and secondly when

the agent had a lot of scope for a path to take and ended up in a suboptimal

area later in the track, it is possible that a human could realise this mistake and

choose a better route based upon their past experience. In the first case, the

planning result depends on how rich or how suited the move tree we give is to

that particular track and set of obstacles.

The overall conclusion is that the agent based animations are much more

likely to succeed and produce nice smooth driving animations. By using the

methods in this thesis we can get the car to produce highly dynamic manoeuvres

such as skidding behaviours in order to achieve the goal of navigating a track

in minimal time.
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Chapter 5

Discussion

In this chapter we discuss various limitations of our work and how the methods

and results might be improved.

5.1 Graph Transition Selection

The move trees used to obtain our results were hand constructed. Developing

good move trees is a time consuming and painstaking process. Motion graphs

can be used to automate this process. However the use of motion graphs is

potentially problematic for our problem in several ways. If we identify suitable

transitions by comparing every frame with every other frame, we can end up

with an extremely dense motion graph. This can happen whenever two similar

motions occur in a clip. Figure 5.1 shows where connections are made for two

frames n and m, but connections are also made at n+1 and m+1, n+2 and

m+2, etc. Many of these connections can be removed without any significant

loss of functionality. One choice is to not compare the frame with the next kc

frames that occur after it. This figure can be adjusted by the user for each set

of motion graphs to give optimal results.

This primary problem can also occur when we have sections of very similar

data. For example, if there are portions of the motion data that have the agent

driving straight at a constant speed, we can end up with an huge increase in the

number of connections between all the similar frames of the agent going straight

(Figure 5.2). This can be tackled by not comparing against the next ks frames

that occur after the last similar frame that we have found. Once again, this

value can be adjusted by the user to give the best results for the data they are
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Figure 5.1: A dense, degenerate motion graph can arise from the occurrence of

highly similar motions.

using.

Figure 5.2: Another type of degeneracy in motion graphs.

5.2 Graph Pruning

To avoid creating a motion graph that is overly dense, we need to able to strip

away motions that provide us with minimal or repeated animations. A good
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example of this would be where we end up many repeated connections where

the agent is simply driving straight. It may be possible to match all of the

closest frames to each other, but apply some sort of algorithm that removes

any animation clips that add little to the overall possibilities of movement.

Edges can also be eliminated when they are not part of the strongly connected

components of the graph.

5.3 Improving A*

The heuristic for expanding nodes using A* could be improved by weighting

in factors such as the agents current speed and angle. It would be possible to

work out an approximate figure for the time the agent needs to turn, face the

goal, and reach maximum velocity from any orientation/velocity combination.

This may improve the order that nodes are expanded, and reduce the number

of nodes that we need to expand in order to find an optimal or close to optimal

solution.

5.4 Simplistic Goal Selection

At the moment we employ a goal which simply tells the agent to maximize its y

value at any point. This does not allow us to traverse looped tracks. It would be

easy to implement a system that updates the goal based on the current corner

the agent is at, but a more fluid system would allow the agent to set its own

goal at any point.

5.5 Track Generation

All of the tracks used in this project were hand constructed which was time

consuming. An automation of this process would be preferable as long as it

could be done in a way that gave the user a reasonable level of control over
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what is produced, in terms of length, number of corners, sharpness of corners

etc.

5.6 Collision Detection

The collision detection algorithm could be significantly improved. The trajec-

tory of the car is represented using piecewise line segments, and every such

segment is tested against every single line segment representing the environ-

ment. This can be made significantly more efficient.

5.7 Additional Mobility

An interesting further application of this work would be to provide the vehi-

cle with the ability to reverse. This would allow the agent to move through

extremely tight sections of track and should greatly reduce the chance of the

agent becoming trapped.
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Chapter 6

Conclusions

We have demonstrated that a well formed move tree based on motion clips de-

rived from a physics-based system can be used to perform motion planning that

exhibits considerable anticipation. The move tree is expanded and searched

using A* search to produce realistic steering behaviours. We have provided

results on various tracks using different search trees, node limits and planning

horizons. We have produced a number of smooth animations where our agent

demonstrates skilled dynamic behavior in reaching its goal, be it through ac-

celeration/deceleration around tricky obstacles, or a hard skidding turn into a

corner after approaching at speed.

The work can be repeated on general tracks and obstacles other than those

tested upon here, and with any simple or complex, hand-constructed or auto-

matically derived move tree. It may also be useful for other physical systems that

could base their movements upon motion graphs. It is not as suitable for envi-

ronments with rugged terrain, where movement may be affected by the surface

of movement, but in a smooth open environment, including space/air/water,

the ideas here should be just as applicable, and could be extended into three

dimensions. As long as the move tree given to the agent is suited to the track,

or rich in content, then on average the animations produced will be more skilled

or better performing than those produced by human control.

The most notable success of this work is the production of highly dynamic

planned motions such as skidding behaviours, which to our knowledge have not

been demonstrated in equivalent path finding procedures.

Planning and control of highly dynamic motions very much remains an open
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area of research in animation and robotics.
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Appendix A

Physics Implementation

This is the implementation of the sliding physics1.

// global constants

// These constants are arbitrary values, not realistic ones.

DRAG = 4.0 // factor for air resistance (drag)

RESISTANCE = 20.0 // factor for rolling resistance

CAR = -4.20 // cornering stiffness

CAF = -4.0 // cornering stiffness

MAXGRIP = 3.0 // maximum (normalised) friction force, =diameter of friction circle

carb = 1; // distance from CG to front axle in metres

carc = 1; // idem to rear axle in metres

carwb = carb + carc; // car wheelbase in metres

carm = 1500; // car mass in kg

cari = 1500; // car inertia in kg per metre

// global variables

gX, gY, gA; // car position and angle

gvX, gvY, gvA; // velocities of car

cars; // steering angle

carthr, carbra; // car throttle and brakes (throttle used but brakes not)

dt; // delta t, time interval

1Originally developed by Marco Monster of Monstrous Software - unfortunately since it

was found, all references to it have disappeared and the website has shut down.
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// local variables

fvX, vY; // velocity

fawcX, awcY; // acceleration in world coordinates

ffX, fY; // force

frsX, rsY; // resistance

faX, aY; // acceleration

fftX, ftY; // traction

fflatfX, flatfY, flatrX, flatrY; // flat

fwheelbase; // wheelbase

ra; // rotation angle

ss; // sideslip

saf, sar; // slip angle front and rear

t; // torque

aa; // angular acceleration

sn, cs; // sine and cosine, of car angle

y; // yawspeed

w; // weight

sn = sin( gA )

cs = cos( gA )

// x is to the front of the car, y is to the right, z is down

// transform velocity in world reference frame to velocity in car reference frame

vX = cs * gvY + sn * gvX

vY = -sn * gvY + cs * gvX

// Lateral force on wheels

// Resulting velocity of the wheels as result of the yaw rate of the car body

// v = yawrate * r where r is distance of wheel to CG (approx. half wheel base)

// yawrate (ang.velocity) must be in rad/s

yawspeed = wheelbase * 0.5 * gvA
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if( vX = 0 ) ra = 0

else ra = atan2( ys, vX )

// Calculate the side slip angle of the car (a.k.a. beta)

if( vX = 0 ) ss = 0

else ss = atan2( vY, vX )

// Calculate slip angles for front and rear wheels (a.k.a. alpha)

saf = ss + ra - cars

sar = ss - ra

// weight per axle = half car mass times 1G (=9.8m/s2̂)

w = carm * 9.8 * 0.5

// lateral force on front wheels = (Ca * slip angle) capped to friction circle * load

flatfX = 0

flatfY = CAF * saf

flatfY = lower value of ( MAXGRIP, flatfY )

flatfY = higher value of ( -MAXGRIP, flatfY )

flatfY = flatfY* w

// lateral force on rear wheels

flatrX = 0

flatrY = CAR * sar

flatrY = lower value of ( MAXGRIP and flatrY )

flatrY = higher value of ( -MAXGRIP and flatrY )

flatrY = flatrY * w

// longtitudinal force on rear wheels - very simple traction model

ftX = 100 * ( cartho - carbra * ([vX]/[vX]) ) )

ftY = 0

// Forces and torque on body

// drag and rolling resistance

rsX = -( RESISTANCE*vX + DRAG*vX*[vX] )

rsY = -( RESISTANCE*vY + DRAG*vY*[vY] )
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// sum forces

fX = ftX + sin( cars ) * flatfX + flatrX + rsX

fY = ftY + cos( cars ) * flatfY + flatrY + rsY

// torque on body from lateral forces

t = carb * flatfY - carc * flatrY

// Acceleration

// Newton F = m.a, therefore a = F/m

aX = fX / carm

aY = fY / carm

aa = t / cari

// Velocity and position

// transform acceleration from car reference frame to world reference frame

awcX = cs * aY + sn * aX

awcY = -sn * aY + cs * aX

// velocity is integrated acceleration

gvX = gvX + ( dt * awcX )

gvY = gvY + ( dt * awcY )

// position is integrated velocity

gX = gX + ( dt * gvX )

gY = gY + ( dt * gvY )

// Angular velocity and heading

// integrate angular acceleration to get angular velocity

gvA = gvA + ( dt * aa )

// integrate angular velocity to get angular orientation

gA = gA + ( dt * gvA )
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