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Abstract

We present the PowerSetViewer visualization system for the lattice-based

mining of powersets. Searching for items within the powerset of a universe

occurs in many large dataset knowledge discovery contexts. Using a spatial

layout based on a powerset provides a unified visual framework at three

different levels: data mining on the filtered dataset, browsing the entire

dataset, and comparing multiple datasets sharing the same alphabet. The

features of our system allow users to find appropriate parameter settings for

data mining algorithms through lightweight visual experimentation showing

partial results. We use dynamic constrained frequent set mining as a con-

crete case study to showcase the utility of the system. The key challenge

for spatial layouts based on powerset structure is handling large alphabets,

because the size of the powerset grows exponentially with the size of the

alphabet. We present scalable algorithms for enumerating and displaying

datasets containing between 1.5 and 7 million itemsets, and alphabet sizes

of over 40,000.
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Chapter 1

Introduction

Data mining and information visualization share the same ultimate goal:

identifying trends, patterns, and outliers in a sea of information. Data min-

ing approaches the tasks in a statistical way while information visualization

in a visual way. By combining these two areas, we can achieve the goal more

efficiently and more effectively.

1.1 Motivation

A database is a collection of individual records, where a single item or record

may convey limited information to the user. These records may appear to

be unrelated to each other. The relationships between various items or

records, however, may reveal much more useful information that is critical

to a decision making process. Identifying trends, pattern, and other hid-

den relationships in large databases is the core task of knowledge discovery

and data mining (KDD). Data mining is “the nontrivial extraction of im-

plicit, previously unknown and potential useful information from data in a

database” [10]. In general, data mining techniques have been successfully

applied to commercial domains, such as customer relationship management,

market basket analysis and credit card fraud detection, and to scientific and
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engineering applications.

Most of the data mining tasks involves exploring how objects are related

to each other within a universe of objects. Primary examples include:

• Finding association rules and frequent sets: association rules identify

co-occurring events, and finding frequent sets is the first step to dis-

cover association rules [1]. For example, in a sales transaction dataset,

a typical association rule would be: a certain percentage of customers

who buy milk will also buy bread. A frequent set is a set of items that

are frequently bought together.

• Mining sequential patterns: In many domains, such as finance, data

can be ordered based on certain dimensions, for example, time or lo-

cation. To identify all the subsequences that appear frequently given

that ordering will help us to predict what will happen next [2].

• Building decision trees: Decision trees are used in classification-related

problems [4]. A decision tree is a tree representation of a decision

procedure for assigning a class label to a given example, which dis-

tinguishes one group from another. At each internal node of the tree,

there is a test, and a branch corresponding to each of the possible

outcomes of the test. At each leaf node, there is a class label. A class

label is assigned to an entity by traversing a path from the root to a

leaf.

• Clustering: clustering is a division of data into groups of similar ob-

jects [18]. Information retrieval, web analysis, customer relationship
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management, marketing, medical diagnostics, computational biology,

and many other data mining applications require data to be clustered,

where items in a particular cluster share certain similar properties.

After a close look at these aforementioned tasks, it is obvious that they

all require searching for “interesting” groupings of objects within a search

space, which consists of part or all possible groupings of objects. It is almost

the same as searching sets within a powerset space, which is a collection of

all possible sets. At the same time, analysts may be interested in not only

the individual “interesting” set, but also the inter-set information of the

individual set in the context of other “interesting” set or in the context of the

entire powerset space. The traditional text-based data mining applications

perform quite well when the cardinality of the final result is small. However,

when the number of items returned by the data mining engine exceeds a

certain threshold, typically 20, the traditional text-based application will

probably fail to provide analysts with those contextual information which is

critical to most of the data mining tasks, since the results provided by the

text-based applications are organized in a way that is hard for the analysts

to gain any useful inter-set information.

Information visualization is the use of interactive representations, typi-

cally visual, of abstract data to facilitate humans’ interaction for exploration

and understanding. It is a complex research area that involves information

design, computer graphics, human-computer interaction and cognitive sci-

ence [32]. A primary goal of information visualization is to utilize the high-

bandwidth channel of the human visual system to facilitate the process of
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identifying trends, clusters, gaps, and outliers. The representations offered

by a well-designed information visualization application have the following

advantages over the traditional text-based representations.

First, more information is available to the user given the same screen

space. The information provided by the traditional text-base applications is

limited by the size of the text [14]. In order to show more information on the

display, we have to decrease the size of the text. However, the text becomes

illegible when the size of the text passes a certain threshold. In contrast,

information visualization applications usually use marks to represent records

in the original dataset, where different visual or retinal properties are used

to encode fields of the records. Therefore, a lengthy record in the original

dataset is rendered as a mark on the display. If users are interested in the

original information encoded by a particular mark, users can simply move

the mouse over the mark and the detailed information will be shown in either

a pop up dialogue or a dedicated information panel.

Secondly, an overview of the dataset is available to the user. By allowing

more and more data in the original dataset to be visualized at the same time,

users can get an overview of the dataset, which is vital to many analysis

tasks. Human’s high bandwidth visual system can quickly identify trends,

pattern, or outliers in the dataset. These hidden gems are unlikely to be

easily acquired by looking at thousands of lines of characters.

Last, users are able to fully interact with the data. Users may select an

area of interests and zoom in to investigate the local or detailed information

in that area. Users can also filter out some “uninteresting” data points or

highlight certain “hot” data points, in order to focus their attention to the
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interesting items.

Furthermore, some of the data mining tasks require a number of para-

meters to be set [20]. It is very likely that the final result, which takes hours

if not days to get, is not what the user needed because of the inaccurate

or inappropriate parameter settings. Offering users the ability to not only

explore the search space but also see and steer the computation would help

significantly.

1.2 Thesis statement

The ideal system is able to offer a meaningful visualization based on the

huge search space without losing any important information. The ideal sys-

tem also provides users with the ability to explore in the search space, which

require at least 10 frames per second to ensure good user interaction experi-

ence. Moreover, it is critical for the system to maintain a “fixed” layout of

the groupings, since keeping the relative positions of the groupings enables

users to easily compare different datasets that share the same alphabet.

1.3 Contributions

We present the contributions of our system, which are ordered by their

significance, in this section. They will be discussed in detail in Chapter 4.

• Powerset enumeration: We propose an enumeration of powerset for

PSV that is ordered first by cardinality, then by lexicographical order-

ing. Creating a spatial layout that maps a related family of datasets
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into the same absolute space is a powerful visualization technique,

which enable the user to compare different datasets that share the

same alphabet. We also develop an algorithm for calculating the in-

dex of a powerset in the powerset enumeration that is linear to the

cardinality of the set and independent of the size of the alphabet.

• Scaling to large alphabet: We propose new data structures and de-

velop an algorithm which enables PSV to accommodate large alphabet

of more than 40,000 items, which has 240000 potential sets in the entire

powerset space.

• Rendering and picking in PSV: Real-time interactivity requires

frame rates of at least 10-20 frames per second, which is a challenge

when rendering millions of objects distributed within the sparse pow-

erset space. PSV can handle more than six million records using a new

rendering and traversal algorithm that is optimized for sparse data. As

will be explained in Section 6.2, the rendering time is near-constant

after a threshold data set size has been reached, and this constant time

is very small: 60 milliseconds per scene, allowing over 15 frames per

second even in the worst case.

1.4 Outline of the thesis

This chapter presented the motivation, thesis statement, an overview of our

approach, and the contributions. The remaining chapters of the thesis are

organized as follows. Chapter 2 introduces related work. Chapter 3 gives
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detailed overview of our approach and the features that are supported by

PSV. Chapter 4 explains our approach and implementation issues. Chap-

ter 5 presents a concrete example to showcase the utility of PSV. Chapter 6

details the performance of PSV. Finally, Chapter 7 discusses future work as

well as a conclusion that highlights the contributions of our research. This

document was based in part on a technical report coauthored by Tamara

Munzner, Raymond T. Ng, Jordan Lee, Janek Klawe, Dragana Radulovic,

and Carson K. Leung [22].
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Chapter 2

Related work

In this chapter, we first give a brief introduction to Information Visualization

in Section 2.1. Then, we focus the discussion of related work on three

categories: database visualization systems in Section 2.2, mining results

visualization systems in Section 2.3, and steerable visualization systems in

Section 2.4. Finally, we introduce two applications that are also based on

the Accordion Drawing infrastructure in Section 2.5.

2.1 Information visualization

Information visualization bridges two most powerful information processing

systems: the human mind and the computer. It transforms data into a

visual form and takes advantage of humans’ remarkable abilities in identi-

fying trends, patterns, and outliers. Information visualization systems en-

able users to acquire the information they need through observation, search,

navigation and exploration of the original data. One of the challenges in

Information Visualization is how to design a meaningful spatial mapping

of the original data that is not inherently spatial. A well designed spatial

layout will reveal some useful hidden patterns that is probably unavailable

in the plain representation of the original data. In addition to the spatial
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position, information visualization applications also take advantage of other

visual channels to encode information, such as shape, size, orientation, color,

and texture [7]. However, only part of these visual encodings are helpful for

a given task, which imposes another design challenge. A typical information

visualization application will employ some or all of the following techniques

to help users identify the information they need [25]:

• Overview: Providing an overview of the entire dataset allows users to

understand its global structure.

• Zoom: Users are able to zoom in to have a detailed view of the “in-

teresting” items, which reveals some local information.

• Filter: Users can filter out “uninteresting” items.

• Detail-on-demand: Provides detailed information on selected items

at the user’s request. This technique avoids potential clutter in the

visualization without losing important information.

• Related: Users can view relationships among items.

Information visualization and data mining share the same ultimate goal:

identifying hidden patterns in the datasets. Therefore, visualizing databases

is one of the active areas in the field.
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Figure 2.1: The VisDB system [15], showing a dataset with eight dimensions
and 1000 items. The most relevant record with respect to a query is color
coded in yellow and is centered in the box. The least relevant records are
positioned far away from the center of the box and are colored in black.

2.2 Database visualization systems

VisDB

VisDB [15], shown in Figure 2.1, is a visualization tool that allows users to

explore large multidimensional databases in terms of a query result. The

VisDB system uses pixel-oriented techniques, where each record in the data-

base is represented by a single pixel or a group of pixels. VisDB takes ad-

vantage of spatial encoding and color to indicate the relevance of the data
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Figure 2.2: The Spotfire system [3], showing different types of visualizations
on a sales dataset, which includes a geographical chart and two-dimensional
plots.

items with respect to the query in order to give the user an overview of the

query result. VisDB also supports dynamic query refinement, where users

can use sliders to change the parameters of the query based on the immedi-

ate visual feedback. However, VisDB only provides information about the

relationship between individual items and the query. It does not offer any

information about the relationships among items in the dataset, which is

critical to most of the data mining tasks. Moreover, the size of the dataset

that can be accommodated in VisDB is limited by the number of pixels on

screen. The current version of VisDB only allows an interactive database

exploration for datasets containing up to 50,000 data items [15].
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2.2.1 Spotfire

Spotfire [3], as shown in Figure 2.2, is a database exploration system that em-

ploys several information visualization techniques, including dynamic queries,

brushing and linking, and other interactive graphic techniques. This system

focuses on visualizing the original dataset and uses graphical interface to

help users to identify trends, patterns, and outliers. However, Spotfire does

not provide visualization of any data mining results. The Spotfire system

also suffers from a lack of scalability and cannot handle databases that infor-

mation are summarized using a hierarchical, where users are able to acquire

information with different granularity.

2.2.2 Independence Diagrams

Independence Diagrams [6], as shown in Figure 2.3, help users identify cor-

relations between any two attributes in a particular database. The Inde-

pendence Diagram systems divide each attribute into ranges. For each pair

of attributes, the combination of these ranges forms a two dimensional grid.

Brightness is used to encode the number of data items within that cell.

Since Independence Diagrams can only show the relationship between two

attributes at once, users may have to try several times before they can find

the “interesting” pairs. Moreover, users are not able to find any correla-

tions or pattern among these independence diagrams. In contrast, PSV is

designed to put all these “combinations” of dimensions in a single window,

where users can identify individual interesting combinations (any two di-

mensions that are highly correlated or highly independent) as well as the
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Figure 2.3: An Independence Diagram with legend [6], showing a synthetic
dataset. The brightness is used to encode the degree of dependence. A
darker region means that there are less items in it. The two attributes are
independent, except for a range of X-attribute values, where the region is
brighter.

correlations or patterns among them.

2.2.3 Polaris

Polaris [30, 29], as shown in Figure 2.4, is an interactive visual exploration

tool that facilitates exploratory analysis of multidimensional datasets with

rich hierarchical information. Polaris builds a visualization of a grid of small

multiples [31] given a user query. Polaris also provides a visual interface to

help the user formulate complex queries against a multi-dimensional data

cube. By taking advantage of the hierarchical structure of the data cube,

Polaris allows the analyst to drill down or roll up data to get a complete

overview of the entire dataset before focusing on detailed portions of the
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Figure 2.4: The Polaris system [30, 29]. Each chart displays the profit and
sales over time for a hypothetical coffee chain, organized by state.

dataset. However, the utility of Polaris is still limited to processing basic

queries against the data cubes as apposed to offering any supports to explore

powerset space.

In summary, these four systems provide features to arrange and display

data in various forms. However, these systems are not designed to display

data mining results nor could they be easily changed to accommodate pow-

ersets enumeration. The PSV system, in addition to allowing the raw data

to be visualized and explored, provides a unified visual framework to the

user to examine the data mining results as well.
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Figure 2.5: The PBC system [4]. Each sector shows a dimension of the
original dataset, where individual data points are ordered by the values of
the attribute and color coded based on the class label.

2.3 Mining results visualization system

2.3.1 Decision trees

The PBC framework proposed by Ankerst et al. [4], as shown in Figure 2.5,

is not a general visualization system. It focuses on involving the user in the

process of building decision trees, which is based on a pixel-based multidi-

mensional visualization technique and interaction capabilities. The system

overcomes the limitation of most decision trees which are fixed to binary

splits for numerical attributes. However, since the visualization is only used

as an indicator which shows how a split value affects the classification result,

the user is not able to get any information about the individual records in

the original database or the relationships among them.
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2.3.2 Association rules

The rule visualization system developed by Han and Cercone [11] focuses

on the discretization of numeric attributes and discovery of the numerical

association rules for large data set. The system uses a two-dimensional plot

to show the original datasets and parallel coordinates to show the mined

association rules. However, the system only takes two attributes into con-

sideration throughout the mining process. Once the data point is laid out

on the display, users are not able to get the detailed information of the indi-

vidual records. In contrast, PSV allows the user to operate on all attributes

of the records. Hofmann et al. [13] use a variant of mosaic plots, called dou-

ble decker plots, to visualize association rules. Their focus is to help users

understand association rules. PSV instead operates at the level of frequent

sets. Furthermore, unlike the two previous frameworks, PSV supports the

steering of the mining process midstream. Again, the use of a spatial layout

based on a powerset is unique.

2.3.3 Clustering

The visualization method developed by Koren and Harel [18] is designed

for clustering analysis and validation. They integrate a dendrogram, which

contains hierarchical information, and a low dimensional embedding. The

leaf nodes of the dendrogram are well ordered so that similar nodes are

adjacent to each other. The data points in the low dimensional embedding

are drawn exactly below the corresponding leaf node in the dendrogram

so that the user is able to mentally connect the two parts, as shown in
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Figure 2.6. This system is a specific visualization tool for exploring clusters

and provides no information at the level of individual records. Moreover,

the size of the dendrogram is limited by the number of screen pixels, which

limits the utility of this system.

Figure 2.6: The two-way visualization system for clustered data [18].

The visual metaphors of all the mining result visualization systems are

quite different from the PSV system, which uses a spatial layout based on the

powerset of an alphabet. They use dots lines, or rectangles to represent the

data points in the original datasets. These on-screen elements may overlap

with each other when the number of data points exceeds a certain threshold.

However, all these systems fail to offer elegant solutions to occlusion when

large datasets are laid out using these systems, which limit their abilities

in handling large datasets. Moreover, they do not provide users with the

ability to explore the original datasets.
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2.4 Steerable visualization systems

2.4.1 SCIRun

SCIRun [24] is a scientific programming environment that allows user to

refine parameter settings at any phase of the computation based on the vi-

sual representation of the partial result. It offers users the ability to find

the cause-effect relationships within the simulation. However, SCIRun is

designed to provide volumetric representation of the data, such as medical

imaging and scientific simulation, and uses a very different visual represen-

tation than that of PSV.

2.4.2 MDSteer

MDSteer [33] is an interactive visualization tool designed to apply Multi-

dimensional Scaling (MDS) to very large datasets. The user can steer the

computation of the algorithm to the areas of interests by creating a rectan-

gular box on the screen. Figure 2.7 shows a partial layout after 20 seconds

of interactive steering, which successfully reveals the large-scale structure.

2.4.3 Discussion

These two application are not designed to steer data mining engines. In

contrast, PSV can be connected to a data mining engine and allows the user

to explore both the original dataset and the mining result.
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Figure 2.7: The MDSteer system [33], showing a partial layout of a 50, 000
point S-shaped benchmark dataset. Users can steer the computation by
creating boxes.

2.5 Accordion Drawing

Accordion drawing is an information visualization technique that features

rubber sheet navigation and guaranteed visibility. Rubber-sheet naviga-

tion allows the user to select any rectangular area to stretch out, showing

more detail there, and that action automatically squishes the rest of the

scene. All stretching and squishing happens with smoothly animated tran-

sitions, so that the user can visually track the motions easily. Parts of

the scene can become highly compressed, showing very high-level aggregate

views in those regions. However, no part of the scene will ever slide out of
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the field of view, following the metaphor that the borders of the malleable

sheet are nailed down. A second critical property of accordion drawing is

the guaranteed visibility of visual landmarks in the scene, even if those

features might be much smaller than a single pixel. Without this guaran-

tee, a user browsing a large dataset cannot know if an area of the screen

is correctly blank because it is truly empty, or if it is misleadingly blank

because marks in that region happen to be smaller than the available screen

resolution.

Accordion drawing was originally proposed for browsing phylogenetic

trees [21, 5], as shown in Figure 2.8, and was then adapted for the task of

visually comparing multiple aligned gene sequences [28], as shown in Fig-

ure 2.9. The powerset-based spatial layout used by PSV was another exten-

sion to the generic accordion drawing framework[27]. This previous work

focuses on dense and static data, while PSV addresses sparse and dynamic

data.
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Figure 2.8: The TreeJuxtaposer system [21], showing a phylogenetic tree
with hierarchical structure. Some subtrees are highlighted due to the user’s
interaction.
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Figure 2.9: The SequenceJuxtaposer system 2.9, showing a set of related
gene sequences. These sequence are vertically aligned for easy comparison.
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Chapter 3

PSV overview

In this chapter, we give a detailed overview of our approach. Sections 3.1.1

through 3.1.4 explain the features that are supported by our system. Sec-

tion 3.2 explains the client-server architecture of PSV. Finally, Section 3.3

introduces PSVproto, an initial prototype, and its limitations.

3.1 Features

PSV provides not only a visual framework for examine individual power-

sets in the context of the entire powerset space, but also an interface where

users are able to find appropriate parameter settings for data mining algo-

rithms through lightweight visual experimentation showing partial results.

This lightweight visual experimentation also shows how various parameter

settings would create a filter for the mined data with respect to the entire

dataset. Moreover, when the mining algorithms are steerable, dynamic dis-

play of intermediate or partial results helps the user decide how to change the

parameters settings of computation in midstream. In our unified framework,

we can support setting the filter parameters to let all items pass through, so

that the entire input dataset is shown to the user. Another benefit of using

the powerset for spatial layout is that users can even meaningfully compare
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images that represent two different datasets that share the same alphabet,

for example by comparing the distribution of purchases between two chain

stores in different geographic regions. Our system provides the following

features to assist users with the frequent set mining.

3.1.1 Visual metaphor

PSV uses the visual metaphor of accordion drawing [27], which is intro-

duced in Section 2.5. Although the absolute on-screen location of an itemset

changes, the relative ordering of the itemset with respect to its neighbors is

always preserved in both the horizontal and vertical directions. Accordion

drawing also allows interactive exploration of datasets that contain many

more itemsets than the fixed number of pixels available in a finite display.

3.1.2 Layout

PSV introduces a novel layout that maps a related family of datasets, those

sharing the same alphabet of available items, into the same absolute space

of all possibilities. That space is created by enumerating the entire powerset

of a finite alphabet as a very long one-dimensional list, where every possible

set has an index in that list. That linear list is wrapped scanline-style

to create a two-dimensional rectangular grid of fixed width, with a small

number of columns and a very large number of rows. We draw a small

box representing a set if it is passed to the the visualizer by the miner,

located at the position in the grid corresponding to its index in this wrapped

enumeration list. Without guaranteed visibility, these boxes would be much

smaller than pixels in the display for alphabets of any significant size because
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of the exponential nature of the powerset. This guarantee is one fundamental

reason why PSV can handle large alphabets.

In areas where there is not enough room to draw one box for each set,

multiple sets are represented by a single aggregate box. The color of this

box is a visual encoding of the number of sets that it represents using satu-

ration: objects representing few sets are pale, and those representing many

are dark and fully saturated. Color is also used in the background to dis-

tinguish between areas where sets of different cardinality are drawn: those

background regions alternate between four unobtrusive, unsaturated colors.

The minimum size of boxes is controllable, from a minimum of one pixel to

a maximum of large blocks that are legible even on high-resolution displays.

In this layout, seeing visual patterns in the same relative spatial region

in the visualization of two different datasets means they have similarities

in their distribution in this absolute powerset space. Side by side visual

comparison of two different datasets sharing the same alphabet is thus a

fruitful endeavor.

3.1.3 Interaction

Interactions that can be accomplished quickly and easily allow more fluid

exploration than those that require significant effort and time to carry out.

The PSV design philosophy is that simple operations should only require

minimal interaction overhead. The rubber-sheet navigation, where the user

sweeps out a box anywhere in the display, and then drags the corner of the

box to stretch or shrink it, is just one example. Mouseover highlighting

occurs whenever the cursor moves, so that the box currently under the
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cursor is highlighted and the names of the items in that highlighted itemset

are shown in a status line below the display. Mouseover highlighting is a

very fast operation that can be carried out many times each second because

it does not require a redraw of the entire scene. Highlighting the superset of

an itemset can be done through the shortcut of a single click on the itemset’s

box.

The layout and rubber-sheet navigation provide a spatial substrate on

which users can explore by coloring sets according to constraints, as de-

scribed above. We do not support changes in the relative spatial position

of itemsets, because it would then be impossible to usefully compare visual

patterns at different times during the interaction. The underlying mecha-

nism for coloring is to assign sets to a group, which has an assignable color.

A group is a collection of sets that satisfy certain constraints. Users can cre-

ate an arbitrary number of colored groups, so they can be a mechanism for

tracking the history of both visualizer and miner constraints, by saving each

interesting constraint choice as a separate group. The priority of groups is

controllable by the user; when a particular set belongs to multiple enabled

groups, the highest priority group color is shown.

3.1.4 Monitoring

As will be discussed in Chapter 5, the visualizer shows several important

status variables which helps the user to adjust the parameter settings:

• total: the total number of itemsets in the raw dataset;

• processed: the number of itemsets processed so far by the miner;



Chapter 3. PSV overview 26

Visualization
Module

(visualizer)

Mining Engine
(miner)

Raw Datasetresult data

data (pass-through)

parameter setting

Figure 3.1: PSV has a client-server architecture, with a visualizer that can
show either the filtered results from the miner or the raw data directly.

• shown: the number of itemsets passed on to the visualizer to display;

• rows: the number of visualizer rows needed so far;

• maxrow: the biggest visualizer row needed so far;

Comparing these numbers helps users make choices: for instance, total

vs. processed is the progress of the miner, and processed vs. shown shows

the amount of filtering done by the miner. The rows and maxrow pair

shows the average distribution density of itemsets. The higher the rows

to maxrow ratio, the denser the distribution, since the higher ratio means

there are less empty rows. Comparing shown with processed gives the user

feedback on whether the miner constraints should be changed to make the

filter tighter or looser.

3.2 Client-server architecture

PSV has a client-server architecture, as shown in Figure 3.1. The server is

a steerable data mining engine, the miner, that is connected through sock-

ets with a client visualization module, the visualizer, that handles graphical
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display. The visualizer client includes interface components for controlling

both itself and the miner server. The client and server communicate us-

ing a simple text protocol: the client sends control messages to the server

and restart. The miner sends partial results to the visualizer as they are

completed, allowing the user to monitor the progress.

3.3 PSVproto

PSVproto, an initial prototype of PSV, had been implemented when this

thesis began. The server-side mining engine was first developed by Carson

Leung and was modified by Dragana Radulovic afterwards so that the engine

was able to communicate with the visualizer via plain text protocol. The

client-side of PSVproto was developed by Jordan Lee. Figure 3.4 shows

the original PSVproto interface. On top is the rendering window, which

supports Accordion Drawing navigation. The lower control panel allows

users to communicate with the data mining engine. In addition to the main

control panel and rendering window, PSVproto also provided the users with

the following panels:

• Grouping panel: as shown in Figure 3.2, users can select a group of

items that satisfy the supplied constraints, and highlight them for

further exploration.

• Visualization panel: as shown in Figure 3.3, users can turn on the

background color so that sets that are of different cardinalities could

be easily identified.
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Figure 3.2: The grouping panel of PSVproto. [19]

Figure 3.3: The visualization panel of PSVproto. [19]
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Figure 3.4: The interface of the PSV prototype. [19]

Those features supported by PSVproto offers users with powerful tool

to explore the datasets. However, PSVproto still suffers from the following

limitations:

• Enumeration: The prototype uses a brute force algorithm to calcu-

late the index of a set in the entire powerset enumeration. Given a set

s, the algorithm traverses the powerset space from the very beginning

of the enumeration until it encounters s. On average, this approach

took 40 milliseconds to compute the index of a set. Since the operation
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was performed every time when a set came into PSVproto, it is not

ideal for processing very large datasets.

• Scalability: The PSV prototype cannot display a dataset with an

alphabet size larger than 30 [19]. Since the PSV prototype uses the

plain Integer type variable as the index of a set in the powerset enu-

meration, the size of the alphabet is in turn limited by the maximum

value of the Integer, which is 231.

• Rendering: Since PSV prototype cannot handle a dataset with an

alphabet size larger than 30, the rendering was not efficient. The PSV

prototype employed a quad-tree data structure. A quad-tree is very

similar to a binary tree, but any node in a quad-tree can contain up to

four children. The quad-tree maintains a hierarchical structure of the

rendering window, where each leaf node corresponds to a set returned

by the server. Since we subdivide the screen as we are traversing from

the root to a leaf node, a large portion of the screen space will not be

used since the distribution of the sets is extremely sparse. Therefore,

quad-tree is not an ideal data structure for rendering any mid-size

or large-size datasets. Moreover, it takes PSVproto half a second to

render a scene that contains only a few thousand items.

In summary, due to the aforementioned limitations of PSVproto, it is obvious

that PSVproto is not suitable to process most real world datasets, whose

alphabet sizes far exceed its limit. In the next chapter, we will explain how

PSV are designed to eliminate those limitations.
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Chapter 4

Approach

As discussed in Chapter 3, our approach can be divided into three parts.

The first part is to map each set to a box on the display, where the relative

positions of the sets should be maintained. The second part is to build and

maintain related data structures to support fast rendering and navigation.

The last part is to render the sets on screen. In this chapter, we discuss

in detail these three parts in section 4.1 to section 4.3 respectively. In

section 4.4, we explain how PSV is designed to handle datasets with large

alphabets.

4.1 Mapping

Mapping is the process of finding the position of a set in the enumeration of

the powersets and using an on-screen box to represent it, so that the relative

position of the set with respect to other sets is maintained.

4.1.1 Challenges

A meaningful ordering of the powerset is critical to the data mining tasks,

because useful hidden patterns will be made available if a meaningful or-

dering of the powerset is chosen. Moreover, each set that comes into PSV
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will go through the mapping process. Therefore, an appropriate yet efficient

algorithm is required to map each set to a position on the screen.

4.1.2 Our Approach

There are many ways to enumerate powersets, but when visually repre-

sented, most do not yield a helpful mental model. The enumeration we use

is ordered first by cardinality, then by lexicographic ordering. All singleton

sets are shown before the two-sets, two-sets before the three-sets, and so on.

The steerable data mining engine that motivated this application uses an

underlying lattice structure, so first sorting by cardinality is a good match.

Within a given cardinality, we choose a lexicographic ordering for alphabet

items, again to match the powerset traversal order of many lattice-based

mining algorithms. For example, an alphabet of {a,b,. . .,z} yields the enu-

meration {a}, {b}, . . ., {z}, {ab}, {ac}, . . ., {yz}, {abc}, . . .. We

assume the underlying alphabet has a canonical lexicographic ordering; for

example, a = 1, b = 2, . . . , z = 26. Another design guideline was to choose

a single spatial layout and allow users to find patterns by changing the col-

ors of data elements. If we used spatial proximity to show membership of

some chosen element, for example by grouping sets containing the element

b, the layout would change drastically and visual patterns from different

times could not be meaningfully compared. The rubber-sheet navigation

can change the absolute position of boxes in space, but preserves relative

ordering of marks in all directions. All computations involving sets assume

that their internal item ordering is also lexicographically sorted.

The mapping from a set to a box that is drawn in a display window has
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two main steps:

• convert from an m-set {s1, . . . , sm} to its index e in the enumeration

of the powerset

• convert from the enumeration index e to a (row, column) position in

the grid of boxes

We present an efficient O(m) algorithm for the first stage of computing

an enumeration index e given an arbitrary set. The second stage is straight-

forward: row is e divided by the width of the grid, and column is e modulo

the width. We start with an example of computing the enumeration index

e = 1206 of the 3-set {d,h,k} given an alphabet of size 26.

Given a particular m-set, the computation of the index in the enu-

meration of the powerset is done in two steps. The first step is to com-

pute the total number of k-sets, for all k < m. These are all the sets

with a strictly smaller cardinality. For the {d,h,k} example, the first step

is to compute the total number of 1-sets and 2-sets, which is given by
(26

1

)
+

(26
2

)
= 26 + 325 = 315. The general formula, where A is the size

of the alphabet, is
m−1∑

i=1

(
A

i

)
.

The second step is to compute the the number of sets between the first m-

set in the enumeration and the particular m-set of interest. For the {d,h,k}
example, the second step computes three terms:

• the number of 3-sets beginning with the 1-prefixes {a}, {b}, or {c}:
(26−1

2

)
+

(26−2
2

)
+

(26−3
2

)
= 300 + 276 + 253 = 829. Picking a as a 1-

prefix leaves 2 other choices that yield a 3-set containing a; there are
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25 other items left in the alphabet from which to choose 2. Similarly,

when b is then picked as the 1-prefix, there are only 24 choices left;

since the m-set is internally ordered lexicographically, neither a nor b

are available any more as choices.

• the number of 3-sets beginning with 2-prefixes {d,e}, {d,f}, or {d,g},
which is given by

(26−5
1

)
+

(26−6
1

)
+

(26−7
1

)
= 21 + 20 + 19 = 60; and

• the number of 3-sets between the 3-prefixes {d,h,i} and {d,h,j},
which is

(26−9
0

)
+

(26−10
0

)
= 1 + 1 = 2.

This example suggests a formula of

m∑

i=1

pi−1∑

j=pi−1+1

(
A− j

m− i

)

where pi is the lexicographic index of the ith element of the m-set and p0 is

0. In the worst case, the number of terms required to compute this sum is

linear in the size of the alphabet. However, we can collapse the inner sum

to be just two terms by noticing that

j∑

i=0

(
n− i

k

)
=

(
n + 1
k + 1

)
−

(
n− j

k + 1

)
.

We derive this lemma using the identity
(n
k

)
=

(n−1
k

)
+

(n−1
k−1

)
. The general

formula is thus given by

m∑

i=1

[(
A− pi−1

m− i + 1

)
−

(
A− pi + 1
m− i + 1

)]
(4.1)
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Combining these two steps, we can compute the enumeration index as

m−1∑

i=1

(
A

i

)
+

m∑

i=1

[(
A− pi−1

m− i + 1

)
−

(
A− pi + 1
m− i + 1

)]
(4.2)

The complexity of computing the index of a set can be reduced to O(m),

where m is the cardinality of the set, by using a lookup table instead of ex-

plicitly calculating
(n
k

)
. We compute such a table of size n×k using dynamic

programming in a preprocessing step. As we will discuss in Section 4.4.2, the

maximum set size k needed for these computations is often much less than

the alphabet size n, but we do not want to hardwire any specific limit on

maximum set size. Our time-space tradeoff is to use the lookup table for the

common case of small k, 25 in our current implementation, and explicitly

compute the binomial coefficient for the rare case of a large k.

4.1.3 Knuth’s Algorithm

As discussed in Section 4.1.1, an efficient enumeration algorithm which yields

a meaningful visualization is essential to PSV. In this section we present an

alternative enumeration algorithm proposed by Donald E. Knuth to explore

the possibilities of utilizing different enumeration methods in PSV [16]. We

will compare Knuth’s approach with ours in terms of both complexity and

usefulness.

Knuth’s algorithm uses the following formula to calculate the index of

an arbitrary m-set in the powerset enumeration:

m−1∑

i=1

(
A

i

)
+

m∑

i=1

(
pi − 1

i

)
(4.3)
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Figure 4.1: Two visualizations with different enumeration functions. Top
visualization uses our approach while bottom one uses Knuth’s algorithm.
These two enumeration methods give very similar distributions.
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where A is the size of the alphabet and pi is the lexicographic index of the

ith element of the m-set [16] 1. This algorithm has the same complexity as

ours but the resulting enumeration does not strictly follow the lexicographic

order. For example, given an alphabet of {a,b,c,d,e}, the set {b,c,d}
comes before {a,b,e}. However, this enumeration has a nice property:

any m-set that contains ai comes after all m-sets that are generated using

{a1, a2, . . ., ai−1}, where ai is the ith element in the alphabet. This

process is especially useful when the alphabet size keeps increasing over

time, since the newly generated powersets will be appended at the end of

the powerset enumeration, which will leave the layout of the exiting sets

untouched. As shown in Figure 4.1, Knuth’s approach and ours give two very

similar visualizations of the enrollment dataset, which will be introduced in

Section 5.1.

4.2 SplitLine Hierarchy

Once the index in the enumeration of an itemset has been calculated, we

need to create boundaries as we discuss next.

4.2.1 Challenges

All itemsets will be laid out in a 2-D grid, where each box that represents

an itemset is bounded by four movable lines, which we call SplitLines. The

rubber-sheet navigation is accomplished by moving the SplitLines. The full

powerset space is extremely huge. For example, for a database that has an
1Background material for this approach is discussed in Volume 4 of The Art of Com-

puter Programming [17]
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alphabet size of 50, the total number of powersets is 1.12×1015, which makes

it impossible to create all SplitLines beforehand considering the memory

usage. Moreover, for alphabets of any significant size, the screen space

allocated to each of the boxes would be much smaller than a pixel in the

display because of the cardinality of the powerset. To guarantee visibility,

we need to maintain some aggregation information which will be used by

the rendering engine in the rendering stage.

4.2.2 Our Approach

As shown in Figure 4.2 Left, SplitLines are boundaries of boxes which are

to be rendered on the display. All boxes in the same row share the same

upper and lower SplitLines. Two adjacent rows also share a SplitLine that

lies between the two rows. The column case is analogous. Users are able

to change the size of part of the screen by dragging SplitLines that are

boundaries of that region. As shown in Figure 4.2 Right, after the second

horizontal SplitLine being dragged to the left, the region on the left side of

the second horizontal SplitLine is squished, while the size of the region on

the right side of the third horizontal SplitLine remains the same.

A set of SplitLines provides both a linear ordering and a hierarchical

subdivision of space, as in Figure 4.3. Linearly, SplitLine B falls spatially

between A and C. Hierarchically, it splits the region to the left of its parent

SplitLine D in two, and its range is from the minimum SplitLine to the max-

imum of its parent SplitLine D. The diagram here shows only the horizontal

SplitLines; the vertical situation is analogous. Each SplitLine has a split

value, which ranges from 0 to 1. This value indicates the relative position
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Figure 4.2: Left : boxes are bounded by SplitLines. Screen space is evenly
distributed before dragging. Right : the region occupied by the red box
grows bigger by dragging the second horizontal SplitLine left and the second
vertical SplitLine up.

of the SplitLine with respect to the boundary.

Rendering the boxes in the correct position on the display requires calcu-

lating the absolute positions of SplitLines. PRISAD [27], a generic rendering

infrastructure for information visualization applications on top of which PSV

is build, makes use of a hierarchical structure to organize the SplitLines to

support efficient calculation of the absolute positions of the SplitLines on

the fly. When calculating the absolute value of a SplitLine, PRISAD simply

traverse the SplitLine hierarchy from the root to the node that represents

that SplitLine. The complexity of this operation is bounded by the depth

of the tree, which is efficient enough to support real time interaction.

The two major tasks related to the SplitLine hierarchy are construc-

tion and maintenance. PRISAD is responsible for maintaining the correct

hierarchical information once the SplitLine hierarchy has been successfully

constructed. For example, after a user’ navigation, PRISAD will update the

split values when necessary to reflect the users’ interaction. Detail infor-
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Figure 4.3: An example of a SplitLine Hierarchy.

mation on how to maintain the SplitLine hierarchy can be found in James

Slack’s Master’s thesis [26]. The rest of this section focuses on how to con-

struct the SplitLine hierarchy.

Since the potential powerset space is extremely huge, it is infeasible to

instantiate every SplitLine considering the memory usage. Moreover, since

sets are returned by the mining engine on the fly, we do not know which

SplitLine needs to be instantiated until a set arrives in PSV. Therefore,

PSV requires a dynamic hierarchical data structure that efficiently supports

adding new SplitLines. We do so by extending the well-known red-black

tree data structure [9] so that each red-black tree node is associated with a

SplitLine. For each of the horizontal and vertical dimensions, we maintain

a red-black tree. These two trees are fundamentally the same, except that

the number of nodes in the horizontal tree is much smaller than that of the

vertical one. We will use the horizontal tree as an example to demonstrate

how we create and maintain the SplitLine hierarchy.

Construction of the SplitLine hierarchy can be further divided into two

subproblems: (a) when to instantiate a SplitLine and (b) how to update

necessary data structures to maintain the correct hierarchical structure. The

following example gives an overview of the mapping process on a database
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No. Set Index Row Col Lines
1 {a} 0 0 0 1
2 {a, b, c, d, e, f, g, h} 254 31 6 31
3 {b} 1 0 1 -
4 {a, b, c, e} 93 11 5 11, 12
5 {a, b, d, h} 100 12 4 13

Table 4.1: As sets are sent to the visualizer, their enumeration index is
computed and used to find the row and column in the grid where boxes are
drawn.

with an alphabet size of 8. As shown in Table 4.1, as sets are sent to the

visualizer, their enumeration index is computed and used to find the row

and column in the grid where boxes are drawn.

As shown in Figure 4.4 top left, after the first two sets have been loaded,

a single empty row visually separates the two sets, which are the first and

last itemsets in the enumeration. The instantiation of the empty row is

important in that it servers as a visual cue to the user that the first two

sets are not immediately adjacent to each other. A corresponding SplitLine

hierarchy is shown in Figure 4.4 bottom left. Figure 4.4 top right shows the

visualization after all the sets have been loaded. As more sets are added,

the red-black tree stores the SplitLines, rebalances, and changes the root.

The horizontal SplitLines hierarchy would require 25 = 32 nodes if it were

statically allocated, but only 5 are needed when using dynamic allocation.

In summary, we instantiate a SplitLine when and only when (a) it has

not been instantiated and (b) it serves as a boundary of at least one box.

We need to insert a node in the corresponding red-black tree once we

have decided to create a SplitLine. Before we insert the node into the red-

black tree, we must calculate the default relative split position of each line,
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Figure 4.4: Mapping from sets to boxes with alphabet size 8. Bottom left:
After two sets have been loaded, lines 1 and 31 have been instantiated.
Top left: A single empty row visually separates the two sets, which are
the first and last itemsets in the enumeration. Bottom right: As more sets
are added, the red-black tree storing the SplitLines rebalances, changing the
root. Top Right: The grid fills in with boxes, with visual separation between
non-contiguous itemsets in the enumeration.
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which is used to set or reset its initial absolute position so that the lines

look uniformly distributed. If the number of SplitLines were a power of 2,

then we could simply set each one to the split position of 0.5. When the

binary tree is not perfectly balanced, then the correct value for a SplitLine

is the ratio between the regions of its left and right children:

SV = L/(L + R). (4.4)

Inserting a node z into a standard red-black tree with n leaves has a

cost of O(log n). Node insertion is a two-phase process: first, traversing a

path downward from the root node to the correct insertion point at some leaf

node; second, rebalancing the tree via a series of rotations. In our algorithm,

the traversal and rotation functions must also maintain split positions for

the SplitLines attached to the nodes. This additional functionality does not

increase the complexity of the operations.

Phase 1: At each node in the red-black tree, we store the number of its

left descendants L and right descendants R. When inserting a node into the

tree we increment the counters on the appropriate path. The sorting crite-

rion for nodes is based on a key computed from the canonical enumeration

of a powerset, as in Section 4.1.2. We also calculate the default relative split

positions for all nodes traversed.

If the change in the split position for a line is the result of navigation, we

preserve the visible configuration of lines, and update the default split posi-

tion for use the next time the line positions are reset. Otherwise, when no

user navigation has occurred, we want to make room for the newly inserted
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line, uniformly distributing the available space between the set of SplitLines.

In this case we do update both the split position and the absolute position

using the new default.

Phase 2: During a rotation on a node x, there are four cases to

consider: x could be either a left or a right child, and there could be a left

or right rotation. Figure 4.5 Right shows the right-left case: when doing a

left rotation on a node E which is a right child of its parent D, we only need

to update the relative split positions of E and its right child F, because for

each node in the subtrees α, β, γ, and B, its descendants and ancestors are

preserved. Maintaining the L and R counts is straightforward, as described

above. However, we cannot simply update the relative split positions of

E and F using Equation 4.4 when the relative split positions have been

changed by user navigation. Instead, we compute the new relative split

positions based on the old one using Equations 4.5 and 4.6. The absolute

positions of E and F remain the same after the rotation, preserving the

correct SplitLine hierarchy. The remaining three cases are analogous to this

one. The bookkeeping operations are local and can be done in constant

time.

SVF
′ = (1− SVE) ∗ SVF + SVE (4.5)

SVE
′ = SVE/SVF

′ (4.6)
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Figure 4.5: Maintaining SplitLine values through red-black tree node rota-
tion. Here we show the case of a left rotation on node E which is a right
child of its parent. Nodes are labelled with a relative split positions if those
values change as a result of the rotation. The resulting absolute positions
of E and F are the same as those before the rotation, which preserves the
visual configuration of SplitLines.

4.3 Rendering and picking

After all the necessary SplitLines have been instantiated, the boundaries

of a particular box can be computed by traversing the SplitLine hierarchy.

Therefore, we can start to draw these boxes on the display.

4.3.1 Challenges

The challenges for rendering comes from two parts, underdrawing and over-

drawing. Overdrawing happens when several items fall into the same block

on the screen. A näıve rendering algorithm will simply redraw that block

over and over again, which will dramatically increase the rendering time. At

the other end of the spectrum is underdrawing. Certain boxes that should

be rendered on display are missing. To avoid underdrawing while minimize

overdrawing, we developed an O(log(n)∗bv ∗c) rendering algorithm for PSV,
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where n is the total number of items on the screen, bv is the number of blocks

in the vertical dimension, and c is the number of columns.

4.3.2 Our Approach

Rendering

Rendering in PSV strictly follows the rendering pipeline which is described

in PRISAD [27]. The rendering process consists of three steps: partitioning,

seeding, and drawing. Partitioning is a discretization process that maps the

infinite-precision drawing of rectangular boxes to the desired block-level.

In other words, we divide the world space into small regions of equal size,

where the number of regions is determined by the number of pixels available

on the display and the size of the on-screen blocks. If a particular region

contains only one set, we simply draw a box on the screen to represent the

set. When a region contains more than one set, which is the most common

case, we need to use other visual channels to encode aggregate information in

addition to drawing a box on the display. Since SplitLines also serve as the

boundary of boxes, the discretization process in PSV is done by dividing the

SplitLines into small regions. When the discretization process is finished,

we enqueue all the boxes that need to be rendered. Finally, we just traverse

the rendering queue to render the boxes one at a time.

We maintain a red-black tree, NodeTree, for each column. The item set

that is mapped to a column will be attached to a node in the corresponding

red-black tree, where the index of the node is the row number of that item

set.
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Figure 4.6: A NodeTree of Column 1.

The NodeTree provides both a linear ordering and a hierarchical orga-

nization of the item sets, as shown in Figure 4.6, which is similar to the

SplitLine hierarchy. Linearly, Node 5 falls spatially between 4 and 7. Hi-

erarchically, it splits the region to the left of its parent Node 4 in two.

Moreover, Node 5 covers the region from the upper boundary of itself to the

lower boundary of node 7. For a node n, we cache the following variables

that are used to facilitate traversal.

• leftChild: a reference to the left child of n;

• rightChild: a reference to the right child of n;

• parent: a reference to the parent node of n;

• descendant: an integer that records how many descendants n has.

• minLine: a reference to one of the SplitLine in the vertical SplitLine,

which is the upper boundary of n;
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• maxLine: a reference to one of the SplitLine in the vertical SplitLine,

which is the lower boundary of n;

• aggregate: a boolean value that indicates whether n represents more

than one box;

• aggregateNumber: an integer that keeps record of how many boxes n

represents;

• fixed: a boolean value that indicates whether n should be drawn in

a fix size or in its actually size;

In addition, we compute the following variables on the fly using standard

tree traversal algorithms:

• nodeRange: the region that is split by node n. As shown in Figure 4.6,

nodeRange of node 5 begins from the upper boundary of node 4 to the

lower boundary of node 7;

• nodeCoverage: the region that is covered by node n. As shown in

Figure 4.6, nodeCoverage of node 5 begins from the upper boundary

of node 5 to the lower boundary of node 7.

We perform a recursive binary subdivision on the NodeTree hierarchy.

Recursion is dependent on either the world-space criterion that the Node

has no children, or the image-space criterion that the Node’s range currently

subtends less than one block.

Figure 4.7 illustrates the three cases that determine whether the recur-

sion should terminate or continue. In case 1, for Nodes 4 and 0, the node
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Figure 4.7: The three cases used to determine how to descend the NodeTree
hierarchy.

coverage is larger than one block size and has child nodes so we descend to

both children. Node 5 shows case 2 since its coverage spans less than one

block. We stop recurse and draw an box to represent Node 5 and its de-

scendant (Node 7). Finally, Node 2 is a leaf node in the NodeTree hierarchy

and recursion stops.

Algorithm 1 shows the pseudocode of the enqueuing function, enqueueRecurse(Node

node). Line 1 to line 6 ensure that node does not overlap with any boxes

that are already in the rendering queue. If node overlaps with a box b in the

rendering queue, b will be updated to an “aggregate” box and rendered ac-

cordingly. Line 8 to line 16 flag node.fixed variable if its actual size is smaller

than one block. Line 18 evaluates if node is a leaf node and line 20 decides

whether node’s coverage is less than one block. The number of recursion is

bounded by the number of boxes in the vertical direction, bv. Each of the

recursions requires traversing the SplitLine data structure with a complex-
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Algorithm 1 Enqueuing Function: enqueueRecurse(Node node)
1: if node.minLine−node.nodeRange.minLine<unitBlockLength then
2: node.nodeRange.minNode.aggregate = true
3: node.nodeRange.minNode.aggregateNumber++
4: else if node.nodeRange.max−node.minLine<unitBlockLength then
5: node.nodeRange.maxNode.aggregate = true
6: node.nodeRange.maxNode.aggregateNumber++
7: else
8: if node.maxLine.getPosition()−node.minLine.getPosition()≥unitBlockLength

then
9: node.fixed=false

10: node.aggregate=false
11: enqueue node;
12: else
13: node.fixed=true
14: node.aggregate=false
15: enqueue node;
16: end if
17: end if
18: if node is a leaf node then
19: return
20: else if node.nodeCoverage<unitBlockLength then
21: return
22: else if node.leftChild6=null then
23: renderRecurse(node.leftChild)
24: else if node.rightChild6=null then
25: renderRecurse(node.rightChild
26: end if
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ity of O(log(n)), where n is the total number of item sets. Therefore, the

overall complexity of the enqueuing function is O(log(n) ∗ bv).

In the second phase of the rendering pipeline, we traverse the render-

ing queue and render as many boxes as we can in a given time slot. This

technique is called progressive rendering. Progressive rendering is a tech-

nique that renders the entire scene in a prioritized fashion. It always starts

to render the most important part of the scene and then fills in the details.

If the time that is allocated for rendering this scene is used up, progres-

sive rendering just stops rendering the current scene and starts to draw the

next scene immediately, which makes the system very responsive. In PSV,

we start the rendering process from the columns that are within the user’s

navigation box, because user’s navigation implies that this area is of great

interests to the user.

Picking

Picking is a process of identifying which object was rendered at a particular

(x, y) pixel location. Picking also requires traversing both NodeTree and

SplitLine hierarchy. Picking is done in two steps. The first step is to traverse

the horizontal SplitTree to find the correct column. In the second step, we

retrieve the NodeTree from the correct column and do a traversal, which

is similar to the binary search, to find the correct node if there exists one.

Algorithm 2 shows the pseudocode of the picking function. The input of

this function is the root node of the selected column’s NodeTree.

Sometimes, the actual size of a box could be too tiny to be easily picked

by the user. A well selected fuzzConstant is used to ensure that every box
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Algorithm 2 pickNode(Node node) function.
1: if node is null then
2: return null
3: else
4: if mousePosY<node.minLine.getPosition()−fuzzConstant then
5: pickNode(node.leftChild)
6: else if mousePosY>node.maxLine.getPosition()+fuzzConstant then
7: pickNode(node.rightChild)
8: else
9: return node

10: end if
11: end if

that is visible on screen is pickable by allowing a few pixels’ offset. The

complexity of this function is O(log(n)), where n is the total number of

boxes on screen.

4.4 Scalability

4.4.1 Challenges

The powerset grows huge as the alphabet size increases: a universe of only

24 items outstrips the number of pixels on the screen, and universes of over

32 or 64 items are difficult to even store in standard data formats. Our PSV

system advances the state of the art by providing scalability in the size of

the alphabet.

4.4.2 Our Approach

We hope that PSV can handle datasets not only with large alphabets, but

also with maximum set size. In the following sections, we will show that
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PSV can scale very well in both aspects.

Handling large alphabets

When the alphabet size A is large, the powerset size P is a huge number:

2A. Dynamic allocation of the SplitLine hierarchy, as discussed above, is

necessary but not sufficient. The indices in the power enumeration do not

fit into an integer or a long when the alphabet size is greater than 31 or

63, whereas we support alphabets over 40,000. The näıve approach would

be to simply switch data structures from integer to bignum everywhere

that indices are used in the SplitLine hierarchy. However, computations

using bignums are far more expensive than those using integers or longs,

and storing them imposes a heavy memory footprint, so we would like to

minimize their use. In contrast, the visualizer must store all N sets actually

shown in main memory, so our algorithms are optimized for the case where

N << P . In the current implementation, N is limited to the range of 1.5

to 7 million sets, a number far smaller than the two trillion limit of integer

data storage. Operations that use the number of shown sets N can be done

much more efficiently, as opposed to those that use the alphabet size A or

the powerset size P .

Our spatial layout does fundamentally depend on the powerset size P ,

so we cannot completely eliminate bignums. The key insight is that we only

need to use these high-precision values when adding SplitLines from the

hierarchy as sets are added to the scene. Specifically, we use bignums in two

computations: finding the enumeration index as described by Equation 4.2,

and then when dividing that index by the fixed width of the grid to get a
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bignum row index. The row index does need to be stored: as illustrated

in Figure 4.4, a full-precision SplitLine row index may be necessary when

resolving the spatial relationship between the box in question and boxes

that are added or deleted later. By storing this row index as a bignum, we

support lazy evaluation and avoid unnecessary computation. Although the

computation of the enumeration index requires bignums, we do not need to

incur the memory overhead of storing it, so we throw it away after its use

in computing the row index.

Our rendering and navigation routines remain fast because we do not

need to use bignums when traversing the SplitLine hierarchy. Although the

bignum row indices must be stored at each node of the hierarchy, we can

traverse the tree without them by maintaining pointers or object references

in the node data structure linking it to its children and parent.

Extending the maximum set size

Often the dataset semantics dictate that the maximum set size is much

smaller than the alphabet size. For example, it is essentially impossible to

buy every item in a grocery store in one shopping trip or to take the thou-

sands of courses offered at a university during the same term. Figure 5.3

shows that the university enrollment dataset with alphabet 4616 has a maxi-

mum set size of 13, and the market basket data in Figure 5.7 has a maximum

set size of 115 out of the 1700 items in the alphabet. In contrast, although

the particular software engineering dataset shown in Figure 6.1 has a max-

imum set size of 48 files checked in together during a bug fix out of 42,028

files in the alphabet, the domain semantics could allow a maximum set com-
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mensurate with the entire alphabet. For instance, if the copyright notice on

top of each file needs changing, every file in the repository would be touched.

An important property of our algorithm is that there is no hardwired prior

limit on the maximum set size; we can accommodate a maximum set size

up to the cardinality of the alphabet itself.
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Chapter 5

Case study

PSV is a general information visualization system for data mining that pro-

vides a unified visual framework at three different levels: data mining on

the filtered dataset, the entire dataset, and comparison between multiple

datasets or data mining runs sharing the same alphabet. In this chapter,

we present a case study to showcase the utility of PSV.

5.1 Datasets

Two real datasets are used in this chapter to demonstrate the power of

PSV: a student course enrollment dataset, enrollment, and a retail trans-

action dataset, market. In this section, we give brief introductions to these

datasets.

• Enrollment: an itemset is a set of courses taken by a student during a

particular term, which includes the student number, course numbers,

and grades. The student numbers in the original dataset have been

sanitized using random integers for privacy purpose. The 95,776 item-

sets cover the six terms of the academic years 2001, 2002, and 2003.

The alphabet size, 4616, is the number of courses offered.
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• Market: a record in this dataset is a set of items that are bought

together by a particular customer during a single visit to a store. This

dataset was downloaded from UCI Machine Learning Repository 1 and

had been sanitized. This dataset contains 300,000 transactions and has

1657 items.

5.2 Enrollment dataset

5.2.1 Frequent Set Mining

We choose dynamic, constrained frequent set mining as a concrete case

study. Frequent set mining is a process of identifying in a dataset groupings

of co-appearing objects, whose frequencies exceed a user specified threshold.

The appeal of constrained frequent set mining is well known [23, 8, 20]. One

key problem that has not been addressed in previous work is how to support

users in choosing and changing constraint thresholds and parameters. This

unsolved problem makes dynamic constrained frequent set mining a perfect

case study to showcase the power of our visualization system.

At the beginning of the task, the analyst specifies a set of constraints and

a frequency threshold. Sets that both satisfy the constraints and pass the

frequency threshold will be returned to PSV. Finally, PSV will render the

sets that are returned by the mining engine on the display to give analysts

immediate visual feedback of the mining result.

PSV is able to communicate with the mining engine using a simple text

protocol, which includes constraint settings, pause, and play. User can
1http://www.ics.uci.edu/ mlearn/MLRepository.html
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pause the mining engine to tighten or relax the parameter settings based on

the partial result.

In the current implementation of PSV, users are able to specify the

following types of constraints for interactive constrained frequent-set mining:

(a) aggregation constraints of the form “agg(resultSet.A) θ const”,

where (i) agg is an aggregate operator (e.g., MAX, MIN, MEAN,

MEDIUM, SUM), (ii) A is an auxiliary attribute (e.g., class size, class

average for the student record database), (iii) θ is a comparison op-

erator (e.g., =, >, <,≥,≤), and (iv) const is an integer constant. For

example, the constraint “MAX(resultSet. classSize) < 100” finds all

the sets of courses having maximum class size less than 100.

(b) the frequency constraint “frequency(resultSet) ≥ threshold”, which

finds all the sets whose occurrences in the dataset meet or exceed the

user-specified threshold. For example, the constraint “frequency(resultSet)

≥ 0.001” finds all the sets that appear in at least 0.1% of the transac-

tions in the dataset.

(c) containment constraints of the form “resultSet contains ConstSet”,

where ConstSet is a set of constants. Here, this type of constraints

finds all the sets that contains any of the constants in ConstSet. For

example, the constraint “resultSet contains {CPSC124, CPSC126}”
finds all the sets that contain the course CPSC124 or CPSC126.

Constraints are processed at different locations within PSV: some can

handled by both the visualizer and the miner, while others are only processed
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by the miner or only processed by the visualizer. Frequency constraints

are computationally intensive, and are thus “pushed inside” to the miner,

in order to provide as much pruning as possible. The miner can handle

a combination of frequency and aggregation constraints. Sets that satisfy

these miner constraints are sent to the visualizer for display. Specifying

constraints for the miner is also a way to filter datasets larger than the cur-

rent 7-million itemset capacity of the visualizer, which maintains all loaded

itemsets in main memory to support fluid realtime exploration.

The visualizer supports aggregation and containment constraints by vi-

sually highlighting the matching sets from among those it has loaded. It

can handle multiple simultaneous constraints, coloring each with a different

color.

The visualizer supports immediate exploration of multiple simple con-

straints but has the limited capacity of 7 million itemsets, whereas the miner

can handle very large datasets and more sophisticated constraints but re-

quires a longer period of time for computation.

5.2.2 Usage Scenarios

We present four scenarios of using PSV features during a data mining task.

These scenarios are built around the real course enrollment database, where

an itemset is the set of courses taken by a student during a particular term.

The 95,776 items cover the six terms of the academic years 2001, 2002, and

2003. The alphabet size, 4616, is the total number of courses offered. Our

example user is an undergraduate course coordinator interested in finding

sets of courses when taken together, so that she can minimize conflicts when
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scheduling courses for the next year.

Scenario 1: She first considers medium-sized courses, and decides to

start with the enrollment threshold of 100. Her first constrained frequent

set query is frequency ≥ 0.005 and max(courseSize) ≤ 100. She watches

the visualizer display as it dynamically updates to show the progress of the

miner, and notices from the sparseness of the display that her initial para-

meter setting might not be appropriate. Figure 5.1 shows the constrained

frequent sets computed so far when she pauses the computation after 10%

of the itemsets have been processed. The sets are shown as a distribution of

small boxes ordered by cardinality, from singleton sets at the top to 5-sets

on the bottom. Hereafter we use the convention of k-sets to denote sets of

size k. Each cardinality has a different background color, and within each

cardinality the sets are enumerated in lexicographic order, as discussed in

Section 4.1. The coordinator loosens the frequency constraint to .001, and

tightens the enrollment parameter to 80 or fewer students before resuming

the computation. Figure 5.2 shows the final result with the new constraints.

After all ninety-six thousand itemsets have been processed by the miner,

the largest constrained frequent itemset is a 9-set, whereas the the largest

set in the partial result in Figure 5.1 is a 5-set.

Scenario 2: The coordinator now returns to the question of what course

size would represent her intuitive idea of “medium”. Instead of filtering the

itemsets with the miner, she loads in the entire database in pass-through

mode so that she can quickly explore by highlighting itemsets that satisfy

different attribute constraints directly in the visualizer, as shown in Fig-

ure 5.3. She tries several values for the maximum enrollment constraint,
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Figure 5.1: Scenario 1 for data mining with PSV. The user pauses after 10%
of the itemsets are processed to loosen the frequency constraint and tighten
other the parameters.

Figure 5.2: Scenario 1 for data mining with PSV. After the user’s refinement,
the view is considerably denser, and higher cardinality sets are shown, after
all the itemsets are processed.
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Figure 5.3: Scenario 2 for data mining with PSV. The user loads in the
entire raw dataset to find good parameter settings with lightweight experi-
mentation, using the same unified framework as when the miner was filtering
data. Courses with enrollment less than 100 are highlighted.

and in less than a minute settles on the value of 100 let say.

Scenario 3: She continues by zooming in to 2-sets to investigate details

that cannot be resolved from the overviews that she has seen so far, which

show aggregate information about multiple sets if they fall into the same

spatial region in the layout. When she zooms far enough in, each on-screen

box in the zoomed-in region represents only a single set, as show in Fig-

ure 5.4. The relative ordering of itemsets is preserved in both the horizontal

and vertical directions. She can still see the highly aggregated information

about 1-sets on top and higher cardinality sets on the bottom, so she can

easily keep track of the relative position of the area that she has zoomed.

She can browse many itemsets in a few seconds by moving the cursor over

individual boxes to check the course names reported in the lower left corner

of the display. Those highlighted sets show the courses which are frequently
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Figure 5.4: Scenario 3 for data mining with PSV. The rubber-sheet naviga-
tion technique of stretching and squishing a box shows details.

taken together by students this year. Therefore, by looking at those high-

lighted sets, she easily identifies which courses to avoid scheduling at the

same time as CPSC 124.

Scenario 4: Having found a good enrollment threshold of 100 that

characterizes medium-sized courses, she is ready to investigate individual

courses and whether the set of courses frequently taken together changes

over time. Instead of looking at the combined data over all academic years,

she selects only the 2001 data, and returns to using the miner to filter with

the constraints of frequency ≥ 0.001 and max(courseSize) ≤ 100, and

clicks on the box representing the 1-set CPSC 124. Figure 5.5 shows that

this 1-set and all of its supersets are highlighted. In other words, she can

see the upward closure property of the containment relation. Using lattice

terminology, the highlighted elements form a lower semi-lattice with CPSC

124 as the bottom element, and they satisfy all the specified constraints. The
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Figure 5.5: Scenario 4 for data mining with PSV. CPSC 124 and its supersets
are highlighted for the academic year 2001.

Figure 5.6: Scenario 4 for data mining with PSV. CPSC 124 and its supersets
are highlighted for the academic year 2003.
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courses contained in these highlighted sets are the ones to avoid scheduling

simultaneously with CPSC 124. She then starts up a second copy of PSV

with the same configuration on the academic year 2003 data, as shown in

Figure 5.6. With the 2001 and 2003 displays side by side, she can quickly

spot differences and mouseover those boxes to find the names of courses that

became less popular to take with CPSC 124.

5.3 Market dataset

Figure 5.7 shows the result of the Market dataset. The numbers on the left

side of the windows indicate the size of the sets or the number of items that

were bought together by a customer during a single shopping trip. It it easy

to find that the upper part of the window is much denser than the lower

part of the window, which means that customers are less likely to buy a lot

of items at a time. After a close look at the final visualization, we further

confirm that the sizes of a majority of the transactions are less than six.

Interestingly, the top part of the region for singleton set is denser than the

lower part, which implies that the products listed in the head part of the

alphabet are more popular than those reside in the tail part. Unfortunately,

we are unable to identify those products to conduct further analysis, since

the Market dataset has no attribute.

5.4 Discussion

The aforementioned case study has demonstrated the power of the PSV

system. PSV is good at identifying global distribution of the frequent sets
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Figure 5.7: A visualization of the Market dataset. The basket dataset has
over a half-million itemsets and an alphabet of 1700 items.

as well as the difference between two datasets that share the same alphabet.

However, it may not be as useful as the traditional text based interface when

PSV is serving as a driving interface to the steerable mining engine, since

the decision of when and how to relax or tighten the constraints is solely

based on quantitative information, which can be accurately and efficiently

represented using numbers. More specifically, if the cardinality of the final

result is small, then traditional text-based interface may be a good choice

because users can get useful information immediately by reading a short list.

In contrast, finding rectangles require additional navigation. However, if the

users care more about the distribution of the final result, PSV is obviously a

better choice, since the contextual information provided by PSV will provide

information about the distribution.

In the student enrollment example, given a course, a typical user might

only be interested in the top 10 courses that are taken together with that

course in a specified period. The result can be shown to the user simply
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using a short list. The additional contactual information does not facili-

tate the user’s job. On the contrary, unnecessary navigation resulted from

discovering the detailed information requires extra efforts.

We tried to showcase the utility of PSV in other domains, such as soft-

ware engineering and algorithms. However, based on our research and in-

terviews with several domain experts, it was difficult to find examples that

required the full power of PSV. PSV has the ability to allow users to ex-

plore in a huge search space, but most of the domain specific problems do

not require showing or searching the result in the context of the entire search

space.
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Chapter 6

Performance

In this chapter, we discuss the performance of the PSV system with both

real and synthetic datasets, documenting that PSV can scale to datasets of

up to 7 million itemsets and alphabet sizes of over 40,000, while maintaining

interactive rendering speeds of under 60 milliseconds per frame.

6.1 Datasets

6.1.1 Mozilla Dataset

We use the Mozilla dataset to show that PSV can accommodate datasets

with alphabet sizes of over 40,000. The Mozilla dataset is a software engi-

neering dataset from the open-source Mozilla project 1. It was downloaded

from the Bugzilla 2 bug database and was compiled by Anne Ying. An item-

set is a set of files that have been checked in together after a revision task

is done. Each itemset contains the file names and their version numbers.

There are 33,407 check-in records and 42,028 files. The final visualization is

shown in Figure 6.1.
1http://www.mozilla.org
2http://www.bugzilla.org/
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Figure 6.1: The Mozilla dataset has 42,028, itemsets and an alphabet of
42,028.

6.1.2 Synthetic Datasets

To showcase the memory usage and rendering performance, two synthetic

datasets, sparse and dense, are generated. The dense synthetic dataset is

the extreme case of the densest possible distribution: items in the dataset are

the first 10 million items in the full powerset of an alphabet of 10,000 items.

The sparse synthetic dataset has a distribution density roughly similar to

the market dataset, and use the same alphabet.

6.1.3 Datasets Summary

Table 6.1 gives a summary of the datasets introduced in the previous sec-

tions.
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Name Alphabet Size Transaction Size
Enrollment 4, 616 95, 776
Market 1, 657 300, 000
Mozilla 42, 028 33, 407
Sparse 10, 000 10, 000, 000
Dense 10, 000 10, 000, 000

Table 6.1: A summary of the datasets.

6.2 Scalability and Benchmarks

Figure 6.2 and Figure 6.3 shows the PSV performance results for memory

usage and render speed for the aforementioned three real-world datasets:

enrollment, Mozilla, market and two synthetic datasets. As shown in

Figure 6.2, datasets that share the same alphabet size of nearly 5000 items

have the same initial memory requirements. The Mozilla dataset has the

much larger alphabet size of over 40,000 items, and requires more initial

memory. The reason why a large alphabet requires a relatively larger initial

memory is that we need to build up a lookup table in order to speed up

the calculation of the index of a set in the powerset enumeration, where

the size of the table is proportional to the size of the alphabet. Another

reason why the difference of the initial memory requirements is noticeable

is that most elements in the lookup table are BigIntegers, which requires

much more memory than primitive variables.

PSV can handle 7 million itemsets from the dense dataset before running

out of memory, giving an upper bound on supportable dataset size. The

limits of PSV depend on the distribution of the dataset within the powerset.

Sparser datasets require the instantiation of more SplitLines than dense
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ones, resulting in less total capacity in the visualizer. The sparse dataset

represent the typical use case. PSV can handle over 1.5 million itemsets from

this dataset family before its memory footprint outstrips the maximum Java

heap size of 1.7GB. We reiterate that when using the miner as a filter, PSV

as a client-server system can handle much larger datasets than the limits of

the visualizer.

Figure 6.3 top shows that the rendering time is near-constant after a

threshold dataset size has been reached, and this constant time is very small:

60 milliseconds per scene, allowing over 15 frames per second even in the

worst case. The render time also depends linearly on the horizontal width

of the grid.

We are also interested in the performance when part or all of the on-

screen sets are highlighted, since grouping and highlighting are two most

commonly used features in PSV. In PSV, a set can belong to multiple groups

at the same time. The color of the set is determined by the color of the group

that has the highest priority. However, we do not determine the color on the

fly, because the cost of querying and the cost of changing OpenGL context

may be very high. In the current implementation, when a set belongs to n

groups, we simply redraw the set n times in n different depth based on the

group priorities. We rely on the Z-buffer to assign the correct color to the

set. Based on the results of our empirical experiments, the cost of redrawing

a set multiple times is much less than that of determining the color on the

fly, considering that a set are not like to belong to more than 3 groups at

the same time. In the worst case, when each of the n groups contains all

sets, the rendering time is n times that of the normal case where no sets is
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highlighted.

The main challenge with PSV was to accommodate large alphabet and

maximum set sizes, a difficult goal given the exponential nature of the pow-

erset used for spatial layout. We have done so, showing examples of PSV

in use on alphabets ranging from 4,000 to over 40,000. Larger alphabets

require more bits in the bignums used in the enumeration, affecting both

the speed and memory usage of PSV.

All performance results are based on the following configuration: a

3.0GHz Pentium 4 with 2GB of main memory running SuSE Linux with

a 2.6.5 kernel, Java 1.4.1 02-b06 (HotSpot), an nVidia Quadro FX 3000

graphics card, and an 800x600 pixel window.
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Figure 6.2: Top: PSV memory usage is linear in the transaction log size,
and depends on the sparsity of the dataset distribution within the powerset.
Bottom: Inset showing memory usage for small datasets.
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Figure 6.3: Top: PSV rendering time is under 60 milliseconds per frame,
near-constant after passing a threshold, and linear in the width of the grid.
Bottom: Inset showing render times for small datasets.
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Chapter 7

Conclusion and future work

In this thesis, we have reported the design and implementation of the PSV

visualization system for lattice-based mining of powersets. PSV provides a

unified visual framework at three different levels: data mining on the fil-

tered dataset, the entire dataset, and comparison between multiple datasets

sharing the same alphabet. PSV is also connected to a dynamic frequent

set mining server, showcasing how this visualization approach helps users

exploit the power of steerability.

The key technical challenge for PSV is the size of the alphabet. We

develop a fast scheme for computing the enumeration position of a given m-

set in O(m) time, devise a dynamic data structure for managing SplitLines,

and handle bignums carefully to avoid inefficiencies. We conduct case studies

of the PSV system with real datasets. We also use synthetic datasets to

expose the limits of the current implementation of the PSV system. The

empirical evaluation shows that the current version is capable of handling

an alphabet size over 40,000 items and a transaction dataset exceeding 7

million transactions. Maintaining high frame rates is critical to the success

of interactive visual mining, and our framework succeeds in keeping the time

to render the entire visible scene below one tenth of a second.
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Although PSV has successfully achieved the scalability and rendering

goals, we identify some problems that is key to justify the utility of PSV. As

the main motivation of PSV, the frequent set mining itself is not a perfect

example to showcase the power of PSV, since showing the final result in the

context of the entire search space is not a key factor in achieving the task.

This leading to a central question for PSV: when do we need the distribution

information? Although it is not easy to find compelling examples in other

domains, we are still in search of clear tasks and/or datasets with more

attributes, where the full power of PSV will be utilized.

There are several directions of future work that we would like to pursue.

First, we would like to characterize the effectiveness of different enumer-

ation orderings in helping users find visual patterns that convey important

information about the dataset. We would like to offer users the flexibility

in ordering the powerset. Specifically, people may attach different weights

to all or part of the items. The second tier ordering of the powersets will

be based on the weight of the item. This will ensure that itemsets that

contain “heavier” or more important items will appear before “lighter” or

less important itemset.

Secondly, we would like to juxtapose different datasets sharing the same

alphabet in a single window. In the current implementation, users need

to start two instances of PSV in order to compare two datasets that share

the same alphabet. Users need to switch back and force to compare the

two visualizations. It would be ideal to offer users the opportunity to put

different datasets in a single instance of PSV. We may also employ brushing

and linking technique, so that the user may easily identify the relationships
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among different datasets.

Finally, we would like to adapt the current version of PSV to support

comparison of different partial data mining outcomes for other data min-

ing tasks, including sequential pattern mining [2], decision tree construc-

tion [4, 12], and clustering [18]. Moreover, since finding frequent set is the

first step in identifying association rules, we would like enable PSV to sup-

port discovering association rules. Moreover, we also would like to keep

searching the possibility of applying PSV in other domains, such as software

engineering and algorithms.
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