
LiveRAC - Live Reorderable Accordion Drawing

by

Peter Jono McLachlan

B.A.H., Queen’s University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

September, 2006

c© Peter Jono McLachlan 2006

ii

Abstract

LiveRAC is a scalable focus+context approach for monitoring computer systems

and networking data that provides user-directed data reordering and details-on-

demand. LiveRAC maps alarm and metric data from network devices including

servers, routers and switches into a visual metaphor called accordion drawing. In

accordion drawing, users interact with the display as though it were a rubber sheet

tacked down at the borders. Regions of the display can be stretched and com-

pressed, but the fixed borders ensure the visibility of the entire information space.

Compressed regions of the display aggregate the underlying data. We implement

guaranteed visibility, a mechanism for ensuring the visibility of important features

such as critical alarms. LiveRAC extends existing accordion drawing techniques in

two ways: it can add, remove and reorder objects to the data set in logarithmic time,

and provides an infrastructure for semantic zoom, a visualization technique where

an optimal data representation is selected based on the screen space available to a

data cell. Using a client-server approach we allow the user to query the underly-

ing data in a context-rich, visually salient metaphor while maintaining interactive

frame rates.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . vii

List of Figures . viii

Acknowledgements . xi

1 Introduction . 1

1.1 Motivation . 2

1.2 Terminology . 6

1.3 Thesis Statement . 7

1.4 Collaboration . 8

1.5 Thesis Organization . 8

2 Related Work . 9

2.1 Information Visualization . 9

2.1.1 Statistical Graphics . 11

2.1.2 Time Series Data . 14

2.1.3 Interaction . 15

2.1.4 Focus+Context . 17

Contents iv

2.1.5 Semantic Zoom . 21

2.2 Network and Systems Visualization Tools 24

2.2.1 Cluster Visualization Tools 24

2.2.2 Computer Log Visualizations 25

2.2.3 Network Traffic Visualization 26

2.2.4 Intrusion Detection Visualization 28

2.3 SWIFT . 30

2.4 Accordion Drawing . 32

3 LiveRAC Overview . 38

3.1 Interface Components and Visual Encoding 40

3.1.1 Data View . 40

3.1.2 Time Range Selection Panel 45

3.1.3 Current device and Search Panel 46

3.1.4 Reordering . 47

3.2 Semantic Zoom and Bundles . 49

3.3 Interaction & Tasks . 52

3.4 jGLChartUtil . 53

3.4.1 Features . 54

4 Approach and Algorithms . 60

4.1 Architecture . 60

4.2 Split Line Hierarchy . 63

4.2.1 Challenges . 63

4.2.2 Our Approach . 65

4.3 Aggregation . 69

4.3.1 Challenges . 69

Contents v

4.3.2 Our Approach . 69

4.4 Semantic Zoom . 70

4.4.1 Challenges . 70

4.4.2 Our Approach . 70

4.5 Rendering . 73

4.5.1 Challenges . 73

4.5.2 Our Approach . 73

4.6 Picking . 79

4.6.1 Challenges . 80

4.6.2 Our Approach . 80

4.7 Reordering Data . 83

4.7.1 Challenges . 83

4.7.2 Our Approach . 85

5 Results . 86

5.1 Performance . 86

5.1.1 Split Line Data Structure 86

5.1.2 Rendering . 88

5.1.3 Charts . 88

5.2 Discussion . 90

5.2.1 Qualitative Results . 90

5.2.2 Visual Case Study . 91

6 Conclusions and Future Work . 98

6.1 Future Work . 98

6.1.1 Interaction . 98

6.1.2 Data Processing . 99

Contents vi

6.1.3 Performance . 100

6.2 Conclusion . 100

Bibliography . 102

vii

List of Tables

1.1 NOC operation staff tasks . 3

3.1 Cell colour mapping . 43

3.2 Chart types . 55

5.1 Split line tree operation complexity 87

viii

List of Figures

1.1 ACID console . 4

2.1 Statistical graphics . 11

2.2 Two-tone pseudo coloring . 12

2.3 Sparklines . 14

2.4 Table Lens . 18

2.5 Orthogonal rubber sheet navigation 20

2.6 Polygonal rubber sheet navigation 21

2.7 Pad . 22

2.8 VISUAL . 27

2.9 SnortView . 29

2.10 SWIFT . 30

2.11 SWIFT architecture . 31

2.12 Split line grid . 33

2.13 SequenceJuxtaposer . 34

2.14 PowerSetViewer . 35

2.15 Split line hierarchy . 36

3.1 LiveRAC . 39

3.2 LiveRAC regions . 40

3.3 LiveRAC time range selection panel 45

List of Figures ix

3.4 LiveRAC device tool panel . 46

3.5 LiveRAC search results . 47

3.6 LiveRAC data reordering dialog 48

3.7 Semantic zoom on a line chart 49

3.8 CPU Bundle . 51

3.9 Small graphical representations 55

3.10 Line chart . 56

3.11 Scatter chart . 57

3.12 Histogram . 58

3.13 Standard bar chart . 58

3.14 Shaded bar chart . 59

4.1 LiveRAC modular architecture 61

4.2 Subtree index numbers . 66

4.3 getSplitFromIndex Function . 67

4.4 getIndexFromSplit Function . 68

4.5 recurseCulledRowRange Function 71

4.6 Split line tree boundaries, example 1 74

4.7 Split line tree boundaries, example 2 75

4.8 computeLeftBound Function . 76

4.9 rotateLeft Function . 77

4.10 updateBoundLeftEchelon Function 78

4.11 Grid object relationships . 80

4.12 Reordering the split line hierarchy 84

5.1 Visual case study: Five days of data 92

5.2 Visual case study: Selecting a region 92

5.3 Visual case study: Expanding a region 93

List of Figures x

5.4 Visual case study: Selecting a second region 93

5.5 Visual case study: Heavy CPU utilization is visible 94

5.6 Visual case study: Selecting web servers 95

5.7 Visual case study: Two devices are expanded 95

5.8 Visual case study: A process spike is visible on one node 96

5.9 Visual case study: Two NFS filers selected 97

5.10 Visual case study: The NFS filers experience a heavy load 97

xi

Acknowledgements

I would like to thank everyone who contributed to the successful completion of

this thesis. A thesis is not the product of a single mind, but a synergy of com-

rades who participate directly, or in spirit through friendship and support. Any

list is bound to be incomplete, but thanking a few of my lab (in)mates is a good

start: Andrew Adam, Meghan Allen, Dan Archambault, Aaron Barsky, Chris Batty,

Derek Bradley, Tyson Brochu, Ciáran Llachlan Leavitt, Abhijeet Ghosh, Jennifer

Gluck, Stephen Ingram, Vladislav Kraevoy, Heidi Lam, Barry Po, Tiberiu Popa,

Ken Rose, James Slack, David Sprague, Matt Trentacoste, David White and Steve

Yohanan. My supervisor Tamara Munzner deserves a special mention for putting

up with my wandering ideas and helping to steer them into something tangible.

I’d like to single out my good friends from undergrad Christian Van Oullet and

Barry Po, for persuading me to pursue graduate school. Without you I’d still be

stuck in the ‘grind’.

Sarah, you’re a hard-working, good-natured, talented person. Stick to it, I know

you’ll make your dreams come true.

To my family: you have all been a source of inspiration to me. Jackie, you’re

an amazing person. Never stop being your fun, dynamic, I-might-do-anything-

next self. You’ve accomplished an amazing amount, done and seen many things

few others will, and I’m pretty sure you’re just getting started. Mom, your attitude

towards life is fantastic. You taught me a lot of what I know about taking respon-

Acknowledgements xii

sibility for my own destiny. I know I didn’t understand this when I was younger,

but you’ve won a convert now. Dad, you have one of the gentlest, most tenacious

spirits of anyone I know. Your commitment, honesty and work ethic is an example

to others. You make us all proud.

1

Chapter 1

Introduction

Computer networks and network devices are pervasive in almost every aspect of

modern society. Interactions with these devices may include single purpose ter-

minals such as automated teller machines, or general purpose equipment like per-

sonal data assistants and desktop computers. Data for this infrastructure is gener-

ally centralized on network servers. Increasingly, servers are being centralized in

data warehouses managed and monitored by a Network Operations Centre (NOC).

NOC facilities may be responsible for many terabytes of data, with billions of bits

transferred over the network each second. The scale and importance of managing

these facilities presents interesting research challenges. The complexity of NOCs

makes understanding the big picture difficult. Details are important for diagnosing

failures but often require proprietary tools to obtain and may force the user to sac-

rifice higher level overviews. The high cost of system failures makes it critical to

provide salient visibility of high severity system alarms and notifications.

This thesis presents LiveRAC, a scalable information visualization system that

supports NOC management tasks. Information visualization is a field of com-

puter science that develops visual tools to augment human cognition. Leveraging a

growing body of knowledge about the human visual system and human attention,

information visualization systems provide insights concerning data sets compris-

ing millions of objects. Using information visualization, operators at NOCs can

better understand the real-time state of their network, with interactive support for

Chapter 1. Introduction 2

exploring individual system details.

We make three contributions to the field of information visualization: a visu-

alization system for network and alarm data called LiveRAC, data structures and

algorithms for adding and removing split lines dynamically in the PRISAD [34]

accordion drawing infrastructure using a modified implementation of red-black

trees, and a technique for integrating semantic zoom [51] into accordion draw-

ing. These contributions are applied to create a visualization system that operates

on a real-world data set to provide a unique focus+context [63] interface for large

scale network data.

1.1 Motivation

Network devices extend beyond individual server or desktop systems, and include

file storage units, fiber disk storage, uninterruptable power supplies, printers and

many other pieces of equipment that are typical in a corporate or academic en-

vironment. Although these devices are network aware and can be queried on

an individual basis, in a large organization the monitoring and management of

these devices is an enormous task. For Simple Network Management Protocol

(SNMP) aware devices there are numerous commercial tools available for moni-

toring, called Network Management Stations (NMS), such as HP OpenView [31]

or Tivoli NetView [32]. In the free software world there is OpenNMS [50]. The pri-

mary objective of these tools is to: act as a central dispatch for alarms generated by

devices, provide a browsable device hierarchy, obtain specific information regard-

ing device status, analyse potential problems and provide a high-level overview of

system state.

Existing software packages typically lack data context, or a high level dash-

board that summarizes system state, when drilling for detail information. Although

Chapter 1. Introduction 3

NMS systems provide some overview capabilities, the user interacts with these

software packages by browsing, usually opening up new windows or changing the

content of the main application window. Although this allows the user to see spe-

cific information about a system, during this navigation activity awareness of the

overall system state is lost. The user can also lose spatial awareness of how one

system relates to another while descending device hierarchies.

Another problem with current network management solutions is the inability to

integrate and aggregate disparate data sources. Most modern computer networks

are largely heterogeneous and consist of a mix of Windows and UNIX systems,

and network appliances. Although there are some standard protocols for informa-

tion gathering such as SNMP, there are also numerous proprietary data collection

protocols which are platform specific, such as Windows performance monitor, and

SGI Performance Co-Pilot. Although tools that target a single protocol or plat-

form are useful, a visualization application which integrates data from multiple

sources would be ideal. A multi-protocol and multi-platform tool better facilitates

the side-by-side comparison of systems for root-cause analysis of problems and for

planning activities.

Table 1.1: NOC operation staff tasks

Overview Detail
Situational awareness Incident investigation
Critical alarm monitoring Capacity planning

Trend analysis

Some high-level network management tasks include those listed in Table 1.1

which we have divided into two categories: overview tasks and detail tasks. This

breakdown is imperfect as some elements of overview and detail are required for all

Chapter 1. Introduction 4

of these tasks, however, it broadly categorizes the nature of the activity. Situational

awareness means providing the user with a working mental model of the system

state. Critical alarm monitoring requires the user to be aware of critical alarm

states in the system, and changes to these states. Users perform trend analysis

by examining detailed trend information, or getting an overview of system-wide

trends. Incident investigation requires that a user obtain specific details from one

or more systems concerning an incident such as a network intrusion or service

failure. The activity of capacity planning is a blanket phrase for deciding when

to deploy additional network or server capacity, and where to best deploy new

services. Capacity planning involves examining detailed information from one or

more devices, gathering data regarding current system-wide state, and integrating

projections of future usage patterns.

Figure 1.1: ACID [2] is a tool for querying and viewing intrusion alarm data.

In traditional applications these activities require manually navigating through

large numbers of network devices, and synthesizing multiple data views. For exam-

ple, alerts are typically aggregated using an alert manager, often in a table format,

such as the view provided by ACID [2] shown in Figure 1.1, a web based appli-

Chapter 1. Introduction 5

cation for querying and viewing intrusion alarm data. Getting information about

any single device requires locating the device in the list views and loading details

either in a new window or in the main content window of the network management

application. This operation entails a loss of context. The system state may change

while the operator is performing the navigation, or while examining the details of

an individual system, and important information can be missed.

The objective of information visualization is to provide representations of large

data sets that can harness our perceptual and cognitive abilities. This includes

making use of visual characteristics, such as pre-attentive visual cues, and pat-

tern recognition. As the volume of network data grows it becomes increasingly

important to provide administrators with the tools to interact with the data in a

fluid manner, maximizing the use of limited screen real-estate, and providing an

overview of current system state during navigation operations.

LiveRAC is a visualization system we have developed to provide a scalable

context-rich approach for system and network monitoring. LiveRAC explicitly tar-

gets the operations personnel of network operation centres and administrators of

large networks, although LiveRAC may be of interest to small organizations as

well. NOCs are monitoring centres for data hosting facilities where thousands or

tens of thousands of devices are hosted in a physically secure data warehouse en-

vironment with highly redundant power and network connectivity. Some NOCs

are operated by large companies for their own internal networks, but many provide

hosting services to a variety of other companies, selling server space and connec-

tivity. LiveRAC can be useful in either of these contexts.

The application domains for LiveRAC include analysis of high performance

computer clusters, administration of large subnets, monitoring network application

server farms, and large network capacity planning. LiveRAC provides operators

with situational awareness through a high level overview where critical alarms are

Chapter 1. Introduction 6

always visible regardless of the number of machines monitored. Incident investiga-

tion is supported by allowing operators to get increasing levels of detail by enlarg-

ing regions of interest. Semantic zoom adjusts the detail level of a representation as

the area for the representation increases. LiveRAC simplifies capacity planning by

making it possible to look at large numbers of devices simultaneously. Variances

inside of devices are easily detected through small-multiples views. By viewing

archived data administrators have access to a large volume of trend information,

and can use this to baseline the current system status.

Our goal with LiveRAC was to design a scalable solution, and to do so our im-

plementation needed to scale well across several dimensions. The first dimension

is the number of devices that can be monitored. Large networks can have hundreds

of thousands of workstations, with tens of thousands of supporting servers and net-

work appliances. LiveRAC scales well both in the efficiency of its data structures,

and the visual accordion dawing [47] encoding used for displaying data. Other di-

mensions include the number of metrics to be monitored and the quantity of archive

data to be stored. The SWIFT [41] back-end used by LiveRAC integrates dozens of

different metrics and alarms, and provides access to months worth of archived data.

The scalability of SWIFT suggests the duration of archived data can potentially be

expanded to years as monitoring continues.

1.2 Terminology

A network device is any device from which we can gather statistics or alarm data.

This includes, but is not limited to, network routers, switches, servers and work-

stations. A metric is a descriptive value about a network device which can be

sampled. The units of metrics may vary. Examples of metrics include the number

of network packets transferred, or percentage of CPU load. A bundle is a grouping

Chapter 1. Introduction 7

of metrics, or alarms, which will be placed in the same graphical representation.

For example, CPU and memory might be grouped into a ‘System’ bundle.

An alarm in the context of network devices is an alert generated by a monitor-

ing system, typically a service availability system, or an intrusion detection system.

A ticketed alarm is an alarm which has been tagged for attention by a human op-

erator. Alarms are either automatically tagged through a script, or manually by

operators. Due to the volume of alarms, typically not all alarms are ticketed in

enterprise environments.

Focus+Context is a family of visualization strategies that involve one or more

regions of user focus, or attention, while providing a situational context for that

focus. Guaranteed visibility is a technique for creating data landmarks which re-

main visible irrespective of navigation actions. Rubber sheet navigation [54] [58]

is a focus+context technique for viewing and interacting with data where the data

is projected on a plane which can be stretched or squished to bring different regions

into focus. Accordion drawing [34] refers to rubber sheet navigation in conjunc-

tion with guaranteed visibility [47]. Semantic zoom is a visualization technique

that displays different data representations at different levels of zoom. All of these

techniques are described in more detail in Section 2.

1.3 Thesis Statement

Our objective is to create a scalable visualization system that supports the moni-

toring and planning tasks of NOC administrators for large-scale networked com-

puter infrastructure. We create a unique visualization and supporting infrastructure

which merges the techniques of accordion drawing and semantic zoom. The vi-

sualization allows users access to logged trend data, and uses streaming data to

provide a live view of activity on monitored network devices.

Chapter 1. Introduction 8

1.4 Collaboration

This research has been conducted in collaboration with Eleftherios Koutsofios and

Stephen North of AT&T Labs Inc. - Research who provided access to AT&T data,

insights into network operations staff requirements, and assistance with integrating

LiveRAC into the SWIFT data collection back-end.

1.5 Thesis Organization

This chapter has provided a motivation for this thesis, background on existing tools,

our thesis statement, and outlines our research contributions. Chapter 2 discusses

previous work related to this thesis. Chapter 3 provides an overview of the com-

ponents and features of the LiveRAC application. Chapter 4 details our approach

and algorithms for implementing LiveRAC. Chapter 5 discusses the performance,

qualitative and quantitative results of LiveRAC. Chapter 6 suggests future direc-

tions and concludes this thesis.

9

Chapter 2

Related Work

LiveRAC draws on research in the fields of information visualization, perception,

interaction design and computer systems. Our related work is presented as fol-

lows: Section 2.1 discusses visualization and interaction techniques. Section 2.2

describes computer network and systems analysis visualization tools. Section 2.3

discusses the SWIFT system which LiveRAC uses as a data source, and Section 2.4

discussed work relating to accordion drawing, the data display and interaction

metaphor used by LiveRAC.

2.1 Information Visualization

The objective of information visualization is to connect the data collection and ag-

gregation power of computers with the human mind, a sophisticated pattern finding

device. The human visual channel is the highest bandwidth perceptual system we

possess for information acquisition [49]. Information visualization systems aim to

sort and display information in a manner that allows a human operator to create

mental models of the underlying data, and mine this data for correlations and out-

liers. Information visualization tools act as external memory aids for cognition,

with more advanced systems providing capabilities for dynamic exploration and

manipulation of the underlying structures.

Information visualization must provide spatial and representational encodings

Chapter 2. Related Work 10

for data that is abstract in nature. For example, statistics from network devices

such as number of bytes transferred, CPU load, or ICMP alarms received have

no analogue in the physical world. Information visualization has many tools for

displaying data, including the selection of a relevant spatial layout, colour, shape,

patterns, and motion. Many of the guidelines for applying these techniques are

available in Colin Ware’s book Information Visualization [71].

One high-level rule for designing visualizations has become immortalized in

a mantra by Ben Shneiderman: ‘Overview first, zoom and filter, then details-on-

demand’ [60]. Several disciplines of information visualization have evolved, taking

different approaches to fulfilling the mantra’s creed. Focus+context, discussed in

more detail in Section 2.1.4, is a family of techniques for situating regions of fo-

cus, or user attention, in the context of the data space. Many of these techniques

use distortion or aggregation to concurrently view the entire data field. Semantic

zoom, a technique for creating area-aware representations, is implemented in sys-

tems such as Pad [51], discussed in more detail in Section 2.1.5. LiveRAC takes a

focus+context approach, and integrates semantic zoom infrastructure.

Various toolkits have been released to support the development of information

visualization applications. The InfoVis Toolkit by Jean-Daniel Fekete [22] pro-

vides scalable data structures and data representations, as well as supporting user

interface widgets. Prefuse [27] by Jeffrey Heer et al. provides a wide range of

visualization capabilities. These toolkits offer powerful visualization capabilities,

but they do not provide infrastructure for all information visualization techniques.

The visual metaphor for data layout in LiveRAC is accordion drawing which is not

provided by either of these toolkits. However, LiveRAC does use a modified range

slider widget from the InfoVis toolkit.

Chapter 2. Related Work 11

2.1.1 Statistical Graphics

(a) Line chart (b) Bar chart

(c) Pie chart (d) Scatter chart

Figure 2.1: Statistical graphics are the projection of abstract shapes representing
observed quantitative data onto a co-ordinate system. Here we present a num-
ber of examples of statistical graphics. (a) is a line chart, the slope of the line
connecting plotted points visually embodies trend information. (b) is a bar chart,
allowing users to do easy side by side comparisons. (c) is a pie chart, facilitating
visual area comparisons. (d) is a scatter plot, an effective means of assimilating a
large number of data points.

Statistical graphics, also called data graphics or quantitative graphics, is the

projection of abstract shapes representing observed quantitative data onto a co-

ordinate system. Traditional statistical graphics, which has been in use for cen-

turies [8], uses dots and lines with labelled text to indicate values. Statistical rep-

resentations are abstract from the data they represent; for example, a line chart can

Chapter 2. Related Work 12

be used to indicate the relative numbers of apples, oranges and opossums at dif-

ferent sampling periods, but bears no resemblance to any of these objects. Many

statistical graphics are commonly referred to as graphs, which are drawings repre-

senting one or more sets of data, often having two dimensions and using horizontal

and vertical scalars for encoding. Graphs are relatively well explored and under-

stood. Good resources on graphs include The Elements of Graphing Data [16]

by William Cleveland, The Semiology of Graphics by J. Bertin [10] and numerous

texts by Edward Tufte [67] [68] [69] [70]. Statistical graphics are in day-to-day use

in academic and corporate environments. Popular and pervasive products such as

Microsoft Excel provide computer assisted creation of statistical graphics, support-

ing charts such as column, bar, line, pie and scatter charts. LiveRAC implements a

number of traditional statistical graphics, discussed in Section 3.4.

Information visualization is also concerned with finding novel data representa-

tions, and expanding the vocabulary of statistical graphics. Two recently developed

statistical data representations that have been implemented by LiveRAC are two-

tone pseudo colouring [57] described in Section 2.1.1.1 and sparklines, described

in Section 2.1.1.2.

2.1.1.1 Two-Tone Pseudo Colouring

Figure 2.2: Two-tone pseudo coloring [57], is a visualization technique for large-
scale univariate data. By using two colours for each scalar it is possible to more
accurately read the value. Image c© 2005 IEEE, reproduced with permission.

Chapter 2. Related Work 13

Two-tone pseudo colouring [57] is a statistical graphic for displaying large-

scale univariate data. Pseudo colouring is a common approach for the visual repre-

sentation of scalar data, where scalar data is mapped to a colour. Previous imple-

mentations of pseudo colouring have been either continuous, where colour value is

directly linked to a continuous range of data values, or discrete where a data value

range is mapped to a single solid colour.

In two-tone pseudo colouring two colours are allocated to each value interval

and are shaded to reflect the value. A scale of colours is created, with each colour

building on the last, allowing a very small two-tone pseudo coloured graphic to

represent a very large range.

Using two-tone pseudo colouring it is possible to precisely determine the value

at each point. The rate of increase and decrease is also easily visible along the

colour boundaries. One draw back of two-tone pseudo colouring is the requirement

for a minimum height which ranges between 8 and 20 pixels for a typical display.

The continuous and discrete pseudo colouring methods only minimally require one

pixel, but in practical use typically need between 4 and 10.

LiveRAC implements two-tone pseudo colouring as one possible representa-

tion for data.

2.1.1.2 Sparklines

Sparklines were introduced by Edward Tufte in Beautiful Evidence [69]. These

small graphics represent trend information in a compact space, and can be com-

pared to line charts with minimal axis and label information. The objective of

sparklines is to display the current value and the trend leading up to the current

value. This facilitates small multiple comparisons amongst dozens of graphics

aligned side by side or vertically. At the smallest size a sparkline can appear inside

Chapter 2. Related Work 14

(a) Sparkline (b) Binary sparkline

Figure 2.3: A sparkline [69] is a small graphic for representing trend information
in a compact space. In (a) the label on the right represents the nature of the data
being represented and a final value. A line plot indicates trend information. In (b)
binary data is encoded in vertical lines called ‘whiskers’. This graphic represents
a series of binary states.

of a single line of text.

Binary sparklines are similar to standard sparklines but show only binary infor-

mation in the plot. The blocks are referred to as whiskers. Additional information

can be encoded with text on the left or right label, and certain whiskers of the bi-

nary sparkline can be marked in a different colour to denote unusual events during

that interval.

LiveRAC provides data representations for both sparklines and binary sparklines.

2.1.2 Time Series Data

Time series data consists of any data elements which have a time dimension. A

typical form of time series data is a collection of [time, value] pairs. One example

of this might be monitoring data from a network interface which stores a time

stamp and the number of bytes transferred: [16 AUG 2006, 25000]. Many of the

traditional statistical graphics discussed in Section 2.1.1 can be used to represent

time series data, such as line and scatter charts.

Because any regularly sampled data has a time dimension, time series data is

common and it is an area of interest and active research in information visualiza-

tion. Wijk et al. present a paper for cluster and calendar visualizations of univariate

Chapter 2. Related Work 15

time series data [73]. They use a linked view between a calendar, and a data display

which clusters similar daily patterns. Weber et al. use spirals [72] as an alterna-

tive to bar and line charts for visualizing time series data. They assert that spirals

better support identifying periodic structures in the data. In TimeSearcher [29] by

Hochheiser and Shneiderman, users retrieve time series through dynamic queries.

The user selects time regions of interest called a ‘time box’ which provides details-

on-demand in a linked view. The visual elements of TimeSearcher are placed in

traditional scrollable GUI frames. Viz-Tree [44] discretizes time series data, and

builds tree structures from the results. Similarities between regions of the time

series plot can be detected by pattern matching the discretized data. Differences

between two time series can be shown by highlighting components of the tree struc-

ture.

All data visualized by LiveRAC has a time dimension. We implement a num-

ber of the standard statistical graphics techniques and two-tone pseudo colouring

for visualizing this data. However, where previous approaches to visualizing time-

series will often use a clustering technique [73], LiveRAC provides a matrix view

of time series data. LiveRAC also uses dynamic queries in a linked view for in-

teracting with the time dimension, similar to TimeSearcher. LiveRAC differs from

TimeSearcher by using the accordion drawing visual metaphor described in Sec-

tion 2.4.

2.1.3 Interaction

Interaction is the activity of manipulating some aspect of a visualization. This may

involve navigation actions in the visualization such as zooming, panning, and se-

lecting regions of interest, or altering the underlying data. Interaction is one area

where computer-supported information visualization provides capabilities entirely

Chapter 2. Related Work 16

distinct from what is available with print graphics. An early paper introducing

visualization interaction techniques is Selective Dynamic Manipulation of Visual-

izations (SDM) [15]. SDM proposed a new set of interactive techniques for 2D

and 3D visualizations that supported user selection, dynamic system response, and

the direct manipulation of visual objects. Other resources for interaction include

several chapters in the book Information Visualization by Ware [71]. LiveRAC

supports navigation of the data space and the selection of regions of interest.

Tightly coupled interaction has been shown to be an important component of

visualization design. Work by Shneiderman on dynamic queries [59] suggests that

allowing users to explore a data set by modifying parameters tightly coupled to the

visualization can improve user satisfaction and lead to dramatic performance im-

provements. Later work by Ahlberg and Shneiderman [3] showed the importance

of rapid response to input for this type of interaction. LiveRAC uses linked views

to provide dynamic, progressive queries on data elements.

2.1.3.1 Matrix Visualization

Matrix layouts, also called grid layouts, are a common way to encode tabular data,

and should be familiar to many users in the form of spreadsheets. Information

visualization tools have also used a matrix approach to encoding data, which has

been explored in various forms [4] [53] [40] [61] [62] [64].

2.1.3.2 Reorderable Matrix Visualization

With computer supported visualization, it is possible to interactively reorder a ma-

trix view to help find correlations in the data, an idea introduced by Bertin [9] in

his book Graphics and Graphic Information Processing. In Bertin’s example, he

replaces numeric cell values with correspondingly scaled ink shapes. A paper by

Chapter 2. Related Work 17

Siirtola [61] studied how users interact with reorderable matrix layouts using these

ink shapes, and how they were used to find correlations. The results of this study

indicate that user satisfaction was high and that users were able to find correlations

easily using this approach. Since the study by Siirtola, a number of systems have

taken a reorderable matrix approach including Online Partner Lens [26] and Vis-

taClara [37]. Kincaid et al. explore the use of a reorderable matrix of line charts

in a focus+context display with Line Graph Explorer [38]. Polaris [64] is an in-

teractive table-based visualization system for rich hierarchical data structures that

supports reordering.

LiveRAC uses a reorderable matrix layout for data. The key differences be-

tween LiveRAC and previous approaches are the use of the accordion drawing

metaphor. A reorderable matrix layout has not previously been implemented in

accordion drawing. Furthermore, other reorderable matrix visualization systems

such as Polaris have used comparatively simple cells that do not support semantic

zoom.

2.1.4 Focus+Context

LiveRAC uses focus+context [63], a family of visualization strategies that involves

situating one or more regions of user attention in a surrounding context field. In

many focus+context displays, all available data can be made visible regardless of

navigation actions inside of the data space, although regions of the display may be

expanded, compressed or distorted in these approaches.

Some approaches to focus+context displays use distortion, such as fisheye tech-

niques [23] [13] and nonlinear magnification fields [14]. These techniques often

yield better visual flow from context to focus at the expense of orthogonality. Rec-

tilinear fisheye attempts to address this issue by preserving orthogonality in the dis-

Chapter 2. Related Work 18

tortion. An early application of rectilinear fisheye lenses is the Document Lens [54]

by Robertson et al. The Document Lens provides a view of a complete document

projected onto a two dimensional plane, zoomed to fit entirely in the display area.

The user interacts with the document by using a rectilinear fisheye lens to view

regions of interest inside of the document. Context is provided along the edges of

the lens. Contextual information can also be displayed through layered lenses as in

the work by Bier et al. [11].

Distortion-free approaches to focus+context displays also exist. One example

of a distortion-free technique is aggregating context regions into glyphs [12] [52].

Table Lens [53] is a non-distortion based approach for viewing tabular data, and is

described in more detail in Section 2.1.4.1 below.

2.1.4.1 Table Lens

Figure 2.4: Table Lens [53], a focus+context visualization tool for large scale
tabular data. Regions of the display can be expanded by user navigation.

Table Lens [53] is a focus+context visualization for large scale tabular data. It

Chapter 2. Related Work 19

mutates table layout without distorting rows or columns, allowing cells to retain

their rectangular shape during magnification. Users can manipulate the view by

expanding and contracting regions of the display.

Table Lens offers a variety of graphical representations for data including text,

colour, shading, length and position. Table Lens attempts to determine the best

representation using a variety of information including the value, value type, region

type, cell size, user preferences, and a user directed highlighting system called

spotlighting.

LiveRAC shares the same rectilinear focus+context approach to visualizing

tabular data as Table Lens. The key differences between LiveRAC and Table Lens

are the use of the accordion drawing focus+context metaphor, an expanded set

of statistical graphic options for cells, LiveRAC’s time range selection capabilities,

and the specific systems application domain. LiveRAC is designed for viewing live,

streaming computer system and network data using a client-server architecture,

whereas Table Lens views static abstract data loaded from files.

2.1.4.2 Rubber Sheet Navigation

Rubber sheet navigation is a focus+context interaction metaphor developed by

Sarkar et al. [58], where the user manipulates the display as though it was a rubber

sheet tacked down at the borders. Navigation operations can stretch and compress

arbitrary regions of the display. Multiple focus areas are possible with rubber sheet

navigation, as different regions can be stretched to a desired size.

There are two different approaches to rubber sheet navigation, one using or-

thogonal stretching and the other using polygonal convex hulls, representing non-

distorting and distortion based approaches respectively. In orthogonal stretching,

illustrated by Figure 2.5, the user is limited to rectilinear operations on the display.

Chapter 2. Related Work 20

Figure 2.5: Rubber sheet navigation [58] with orthogonal stretching. Symmetry
is preserved, but discontinuity is visible in the scaling between the focus and
context regions.

Stretch and compress operations are locked to the cell boundaries. The advantage

of this approach is the preservation of the orthogonality of the data set. However,

it results in discontinuities in data density at the boundaries between the focus and

context regions. Polygonal convex hull stretching, as shown in Figure 2.6, en-

ables the selection of arbitrary polygonal interest areas within the visualization.

The distortion between context and focus regions takes place in a smooth gradient;

however, the symmetry of the grid boundaries is violated.

The data display and interaction mechanism in LiveRAC is accordion draw-

ing, which implements and extends rubber sheet navigation. Accordion drawing is

Chapter 2. Related Work 21

Figure 2.6: Rubber sheet navigation [58] with polygonal stretching. Scaling
between focus and context regions is smooth but symmetry is lost.

discussed in Section 2.4.

2.1.5 Semantic Zoom

Semantic zoom is a visualization technique that represents graphic objects differ-

ently depending on the apparent size of the object to the user. This technique does

not simply increase the polygon count or detail of an object that is occupying more

display pixels, but actually changes the physical manifestation of the object to bet-

ter suit its display size. For example, when occupying a small region of space a

calendar object might display only a list of high priority events and the dates of

Chapter 2. Related Work 22

Figure 2.7: The Pad [51] user interface presents the visual metaphor of an infi-
nite desktop. Objects and documents can be accessed by zooming and panning
inside of the interface. Representations of objects can change depending on the
perceived size of the object to the user, a technique referred to as semantic zoom.

those events in text. When the region is enlarged, the calendar can lay out the more

familiar month view. The first visualization system to implement semantic zoom

was Pad [51].

The Pad visualization system is a pan and zoom interface intended to leverage

the human brain’s natural spatial awareness. Pan and zoom interfaces provide a

two-dimensional field of data over which the user navigates. The user’s perspective

can be thought of as a camera floating over a planar surface. The user looks at the

entire field of data by zooming out to the maximum level, where the edges of the

data field align with the view frustum of the virtual camera. The user obtains details

by zooming on regions of the display, and then performing pan operations.

In Pad, information is presented on an infinite two dimensional plane. Ap-

Chapter 2. Related Work 23

plications can be located anywhere within this space. Typical navigation activity

involves the use of a ‘portal’, a navigation action analogous to using a magnifying

glass that allows the user to zoom into one aspect of the display. Figure 2.7 shows

a screen shot from Pad.

Semantic zoom in Pad is provided by using portals and portal filters to provide

non-literal views of the data. As an example, a portal could be created that displays

tabular data as a bar chart, where another portal would reveal only the underlying

text and numbers.

The primary limitation of pan and zoom interfaces is a loss of information con-

text. The user cannot see beyond the edges of the view frustum, and it may be

difficult for the user to arrange a zoom level which allows side-by-side compar-

isons of data at a suitable focus level if the regions of interest are geographically

distant on the data plane. Overview windows have been investigated as a mecha-

nism for providing an overview and improving navigation. However, quantitative

evaluations using overview windows have been mixed [30] [48] [28].

Semantic zoom has also been implemented in focus+context visualizations

such in work by Bartram et al. [5]. Bartram uses fisheye distortions to create

user-directed regions of interest. Expanded regions can show multiple graphic rep-

resentations, depending on the degree-of-interest.

LiveRAC implements a variant of semantic zoom. Unlike previous implemen-

tations, LiveRAC’s semantic zoom is in an accordion drawing visualization. Unlike

Pad, LiveRAC is specifically targeted for providing a matrix layout of time series

data, rather than a new desktop metaphor.

Chapter 2. Related Work 24

2.2 Network and Systems Visualization Tools

A large body of visualization tools have been developed for performing security

and fault analysis on computers and computer networks. These range from ba-

sic tools such as packet analysis software like Ethereal [18] to simple web based

viewers for intrusion detection alarm data such as Analysis Console for Intrusion

Databases (ACID) [2].

Early work in computer network information visualization research used node-

link as well as matrix representations of network structure, such as those done

by Bertin [9]. Becker et al. developed an application called SeeNet [6] which

focused on the data in the network rather than the network structure. SeeNet was

used to visualize circuit switched long distance telephone data, rather than packet

switched internet traffic. SeeNet introduced a mechanism for directly manipulating

parameters of the visualization. SeeNet3D [19], introduced by Cox et al. and also

using telephone data, provided a number of three-dimensional data views in an

attempt to reduce edge crossings. Although metrics associated with the nodes and

links was displayed, both systems were focused on using the underlying network

topology for their representations.

In this section we survey some recent visualizations for computer cluster, log,

network and intrusion alarm data.

2.2.1 Cluster Visualization Tools

A tightly integrated and centrally managed group of computer systems is often re-

ferred to as a cluster or a farm. Although the term cluster typically refers to scien-

tific or research usage for executing a parallel program, and a farm typically refers

to a group of systems running individual instances of applications amongst whom

user load is automatically distributed, the two terms are often used interchange-

Chapter 2. Related Work 25

ably. Managing these distributed systems has led to a new group of monitoring

tools, both from the open source and research community. Clumon [17] is a sys-

tem for gathering cluster performance data and displaying it in simple web-based

graphic and list based formats. Ganglia [24] is a similar tool to Clumon which uses

multicasting to reduce network load, and also presents a mixed graphic and list

based web interface, and uses RRDTool [56] to manage data storage and generate

statistical graphics. RRDTool is a popular open source system for storing data in

round robin databases, a mechanism for maintaining fixed size databases and ag-

gregating archive data. NVisionCC [74] is a scalable visualization for computer

clusters, though it is focused on system security rather than performance monitor-

ing.

LiveRAC can be used to visualize cluster data, and is also well suited to more

heterogeneous network environments, with access to many disparate data sources.

It is also unique in using the accordion drawing approach over other cluster visual-

ization tools.

2.2.2 Computer Log Visualizations

Most computer systems maintain log files of system activities. UNIX based sys-

tems use a log interface called syslog, and Microsoft Windows systems have an

event logger. Many individual applications maintain separate log files and log for-

mats. Several visualizations have used computer log files as a data source. Eick et

al. applied the SeeSoft [21] tool for visualizing line oriented statistics to log files

in Graphical Analysis of Computer Log Files [20]. Using this implementation of

SeeSoft Eick et al. were able to present the user with a colour coded overview of

the log file, and linked navigation for increasing detail to the level of viewing raw

log text. MieLog [65] is a visual log browser which does statistical analysis and

Chapter 2. Related Work 26

displays results in an interactive display with linked views. Users are presented

with a log file overview, and multiple levels of detail up to the full text of the log

contents.

The alarms and metrics monitored by LiveRAC have many similar properties

to system log files as they are essentially time sorted lists of text. LiveRAC dif-

fers from the above tools by integrating the visualization of this data with other

computer metrics. Furthermore, neither MieLog nor SeeSoft operate on streaming

data, and therefore can only visualize snapshots of the current system state. Liv-

eRAC uses SWIFT [41] as a source for streaming systems and network data. This

provides a springboard for creating an interactive visualization that can monitor

systems in real time.

2.2.3 Network Traffic Visualization

In this section we discuss visualization tools for looking at network traffic patterns.

Although LiveRAC allows administrators to view network statistics like many of

the tools described below, it also encodes data from internal system metrics such

as CPU and memory, and provides an interface to the alarm and ticketing system.

NVisionIP[43] is a cluster security visualization tool developed at NCSA. It

uses NetFlow data to display a visualization of filter-selected traffic on an entire

class B network which can be based on the number of bytes transmitted or the

number of flows. NetFlow is a Cisco proprietary IOS software feature and pro-

tocol for exporting network traffic flow records. The global view of NVisionIP

presents a host-by-subnet grid based co-ordinate system of the monitored IP space.

The global view supports interaction by allowing users to investigate more detailed

information about an individual host. A small-multiple view allows an administra-

tor to view an entire region of NetFlows in more detail, including two bar charts;

Chapter 2. Related Work 27

one displays flow data for a common subset of ports, and the other shows flow data

for all other ports. The objective of NVisionIP is to provide network administrators

with a single interface for viewing the state of the network. Although NVisionIP is

intended primarily as a security tool, it can also serve as a useful tool for gaining an

overview of network status and utilization. NVisionIP was later enhanced [42] to

allow administrators to build rule sets based on observed visual patterns in the data.

LiveRAC differs from NVisionIP by taking a focus+context approach to viewing

network and systems data. Furthermore, it arranges the data in a reorderable grid as

opposed to a fixed IP address view. LiveRAC focuses on the state of the monitored

system and does not track or display per-connection data.

Figure 2.8: VISUAL [4] is a tool to help administrators of small network com-
puter systems. A home IP filter allows users to specify local IP ranges.

Visual Information Security Utility for Administration Live (VISUAL) [4],

shown in Figure 2.8, is a tool for assisting system administrators of small com-

puter networks to quickly understand the security state of their network. VISUAL

divides network space into local network address space and remote network ad-

Chapter 2. Related Work 28

dress space (the rest of the Internet). It uses data from the log files of Ethereal [18]

or tcpdump [33] to produce its visualizations. VISUAL provides a quick overview

of the current and recent communication patterns in the monitored network. A grid

view represents a matrix of local hosts; lines are drawn to indicate connections to

remote hosts drawn outside of the matrix. Using the visualization it is trivial to

see whether a single external host communicated with a large number of internal

hosts, which may be relevant for detecting network scanning activity. The vol-

ume of network traffic is represented by the size of the external host box. The

system can scale to a size of approximately 2500 home hosts and 10,000 external

hosts. Unlike VISUAL, LiveRAC does not take a connection-oriented approach.

Although LiveRAC provides visualizations for network interface statistics, it does

not visualize per-connection data. Furthermore, LiveRAC visualizes system and

alarm metrics which are not handled by VISUAL.

2.2.4 Intrusion Detection Visualization

In this section we discuss recent visualizations for Network-based Intrusion Detec-

tion Systems (NIDS). Although LiveRAC handles intrusion alarms, it also visual-

izes network statistics and many types of ticketed alarms which are not limited to

intrusion events. By drawing on more data sources, LiveRAC provides administra-

tors with additional context for alarm events.

SnortView [39] is a visualization for NIDS, and uses the logs of a popular open

source intrusion detection package called Snort [55]. In a typical enterprise NIDS

environment, administrators must cope with a large number of false positive and

false negative results. Typically a NIDS implementation must be tuned, pruning

signature entries that lead to large numbers of false positives, at the expense of

increasing the number of false negatives. SnortView allows the visual analysis of

Chapter 2. Related Work 29

Figure 2.9: SnortView [39] is a visualization for Network-based Intrusion Detec-
tion Systems (NIDS). IP addresses are arranged on the Y axis and time on the X
axis. Glyphs represent the different types of alarms.

NIDS log files allowing administrators to visually explore the alarm data and find

patterns, reducing the need to over cull the signature database. SnortView uses

a matrix based approach as seen in Figure 2.9. IP addresses are arranged on the

Y axis and time on the X axis. Glyphs represent the different types of alarms.

One problem with SnortView is the scalability of a fixed matrix of machines and

alarms. On large networks users may be forced to scroll to see details, and could

easily overlook alarms arriving in a region not currently visible on the display.

SnortView is also limited to a four hour time monitoring window.

IDS RainStorm [1] is another approach to visualizing network intrusion de-

tection using the Snort [55] intrusion detection system. IDS RainStorm divides

display space into columns that represent 2.5 class B address spaces for a total of

163,830 hosts. Coloured dots represent hosts where alarms have been received.

The user is able to zoom on regions of the display in a pan and zoom metaphor,

and can select individual alarms for more details. One significant problem with

Chapter 2. Related Work 30

IDS RainStorm is that it renders an entire address space, rather than only the mon-

itored hosts within that space. In a typical network, the number of nodes can be

relatively sparse in comparison with the size of addressable space. LiveRAC uses

screen space efficiently by rendering only monitored nodes.

2.3 SWIFT

Figure 2.10: SWIFT [41] is a streaming data processing and query back-end
combined with two and three dimensional front-end visualization techniques.
SWIFT gathers data from multiple unique data sources and merges them into
well-defined, self-describing records which can be streamed or queried by visual-
ization applications.

SWIFT [41] is a set of data storage, aggregation and visualization tools that

allows data from many distinct sources to be integrated into a single self-describing

data format. These data sources could include SNMP, intrusion detection systems,

or Microsoft Windows system monitors. The underlying system is extensible so

Chapter 2. Related Work 31

Customer Subnet

Monitored hosts Monitored hosts

Monitoring server(s)

SWIFT server

Viz client Viz client Viz client

Figure 2.11: Multiple monitoring hosts sitting on customer subnets gather statis-
tics and update the SWIFT database server. The visualization clients query the
SWIFT server for metric, alarm and aggregate data. LiveRAC provides a new vi-
sualization client for SWIFT that takes an information-dense matrix approach as
opposed to previous visualizations which focused on node-link, geographic and
list views.

virtually any data source can be mapped into the schema. Although SWIFT has

many features in common with other database systems, SWIFT has been optimized

for streaming data.

SWIFT queries and filters can be compiled into shared libraries that execute

rapidly over a set of streamed records. SWIFT also provides a number of visual-

izations such as the geographic view of telephone data shown in Figure 2.10. Other

visualizations provided by SWIFT include text, node-link, and other geographic

views.

Chapter 2. Related Work 32

The SWIFT system uses a client-server architecture illustrated in Figure 2.11.

LiveRAC harnesses the data collection and processing capabilities of SWIFT to

provide a new front-end visualization for the SWIFT data. Where previous SWIFT

visualizations have sought to show the physical relationships between network de-

vices, LiveRAC’s goal is to provide a scalable, information-dense matrix encoding

for all of the data associated with these devices. LiveRAC uses a threaded archi-

tecture to load data from the SWIFT system, and provides its own unique visual-

izations based on the SWIFT data. We use a modified Java interface from SWIFT

to query the server.

2.4 Accordion Drawing

LiveRAC uses an orthogonal descendant of rubber sheet navigation called accor-

dion drawing, first introduced in TreeJuxtaposer [47] (TJ1) by Munzner et al.

Accordion drawing is a combination of rubber sheet navigation and Guaranteed

Visibility (GV). During navigation landmarks or regions of interest may become

compressed such that they are not visible if another region of the display is dra-

matically expanded, or when viewing a very large data set. In many application

domains it can be desirable to have regions of the display which are always vis-

ible irrespective of navigation activities. These regions, called critical zones, are

formally identified in a paper by Jul et al. [36] and addressed by GV. Visualization

systems implementing GV ensure that marked regions will remain visible regard-

less of the information density.

In accordion drawing, screen space is divided into a grid of cells by horizon-

tal and vertical lines called split lines which form the cell boundaries. These split

lines can be manipulated interactively, changing the relative sizes of the underlying

cells. TJ1 was designed to provide a highly scalable mechanism for the side-by-

Chapter 2. Related Work 33

side comparison of phylogenetic trees. TJ1 uses a quadtree data structure for split

lines, with prioritized rendering for marked regions. Context nodes are filled in on

a best-effort basis and no limit is placed on the amount of compression that can

be applied to them. TJC [7] is a C-based implementation of TreeJuxtaposer that

removed the quadtree data structure for layout in favour of two separate data struc-

tures representing each axis of the split line grid separately. The resulting system

was able to render fifteen million nodes in under one second and used significantly

less memory than TJ1.

Figure 2.12: This grid shows horizontal and vertical split lines. The Xmin, xmax,
Ymin, and Ymax have immovable absolute co-ordinates; these are called the ‘stuck
lines’. There are four movable lines on the horizontal axis, and two movable split
lines on the vertical axis forming a grid with fifteen cells.

Other accordion drawing applications have included SequenceJuxtaposer [62]

in Figure 2.13 for viewing genetic sequences and PowerSetViewer [40] shown in

Figure 2.14 which displays power sets. Both of these applications render rectangu-

lar regions of colour to represent the underlying data which is mapped into a grid.

PowerSetViewer has the ability to add and delete data in the split line grid, and uses

Chapter 2. Related Work 34

Figure 2.13: Sequence Juxtaposer [62] is a visualization system for genetic se-
quences using the accordion drawing infrastructure.

a client-server architecture to retrieve data from a server. Power sets are enumer-

ated as a single one dimensional list, placed in a rectangular grid of fixed width.

The result is a grid with a small number of columns and very large number of rows.

PowerSetViewer does not allocate structures for the entire addressable space of the

power set, but instead creates a grid in which it can draw sparsely distributed sub-

sets within the power set. PowerSetViewer uses an algorithm for enumerating the

power sets governed by Formula 2.1. The resulting enumeration is used as a key

for inserting new grid lines into the red-black tree [66] based data structure. One

limitation of the implementation of dynamic split lines in PowerSetViewer is that

the enumeration approach is restricted to use by power sets, and each power set has

a fixed location. If a power set exists, it has a well defined location corresponding

to the index computed by the enumeration algorithm. Power sets cannot therefore

Chapter 2. Related Work 35

be arbitrarily located elsewhere in the visualization through user interaction.

m−1

∑
i=1

 A

i

+
m

∑
i=1

 A− pi−1

m− i+1

−
 A− pi +1

m− i+1

 (2.1)

Figure 2.14: PowerSetViewer [40] is a visualization system for viewing power
sets. Power sets are represented by a single enumerated sequence of nodes which
are line wrapped repeatedly creating a grid with a small number of columns and
very large number of rows. Set cardinalities are separated using alternating back-
ground colours.

Partitioned Rendering Infrastructure for Scalable Accordion Drawing (PRISAD) [34]

by Slack et al. is a Java-based framework for building applications requiring rubber

sheet navigation and guaranteed visibility. Several applications have been devel-

oped for the PRISAD infrastructure, including ported implementations of TreeJux-

taposer and SequenceJuxtaposer. PRISAD introduces rendering algorithms that

are based on the partitioning of the data structures into screen space, which signif-

icantly improves the rendering performance of large data sets, and helps prevent

Chapter 2. Related Work 36

the over-and-under culling of nodes. Because the implementation is pixel based,

rendering time is bounded by a function of the number of pixels being displayed

rather than the size of the entire data set. LiveRAC uses and extends the PRISAD

infrastructure described in detail in Section 4 by introducing fully dynamic data

structures that allow split lines to be added and removed at run time, and providing

a framework for semantic zoom in accordion drawing.

Figure 2.12 shows a split line grid for PRISAD. In PRISAD the drawing area

is divided into cells using horizontal and vertical split lines. The minimum and

maximum lines on each axis have fixed absolute co-ordinates, a condition which is

referred to as being ‘stuck’. The position of the other lines can be manipulated by

user navigation actions.

Figure 2.15: Split lines are stored in a balanced binary tree implemented over a
one dimensional array. The min and max positions are not stored in the tree. Each
split line has a relative value that determines its position between its min and max
bound.

In PRISAD split lines are stored in a balanced binary tree data structure im-

plemented using a one-dimensional array shown in Figure 2.15. Each axis has its

own data structure which is handled separately. Each split line has a relative value

that determines its position within its boundaries. The root absolute position can

be found by the equation Xmin
Xmax

Relroot where Xmin is the absolute position of the

minimum stuck line, Xmax is the position of the maximum stuck line and Relroot

Chapter 2. Related Work 37

is the relative value of the root split line. The absolute position of any split line

can be determined by ascending the tree from the target split line, and adjusting its

position based on the position of its ancestor.

38

Chapter 3

LiveRAC Overview

LiveRAC is a visualization system for monitoring computer performance statistics

and alarm data. Our objective with LiveRAC is to provide a scalable, cross plat-

form tool which integrates multiple data channels and supports both real-time and

historical visualizations.

LiveRAC is a Java-based application that addresses our cross-platform require-

ment, although it requires native bindings for OpenGL using the Java OpenGL

(JOGL) library [35]. Currently bindings for JOGL are available for Windows,

Linux, Mac OS X and Solaris, with source code available for building on other

platforms. The plethora of networking hardware and vendors means that tools must

work well in a heterogeneous environment if they are going to support the needs of

network administrators. LiveRAC is designed to integrate different types of hard-

ware platforms including network appliances, servers and workstations. Most plat-

forms have multiple data sources for system monitoring data, and across platforms

there are dozens of different protocols, proprietary and standardized, for gathering

this data. LiveRAC leverages the back-end data services of SWIFT [41] to provide

integration for monitoring many of these data sources.

LiveRAC takes a matrix visualization approach, presenting data in a grid of

cells similar to a spreadsheet. Unlike a spreadsheet, LiveRAC uses a focus+context

technique called accordion drawing that allows the user to navigate system data

without losing an overview of system state. LiveRAC allows users to view data in

Chapter 3. LiveRAC Overview 39

real time, or examine historical data for trend information using dynamic queries.

In this chapter we provide a detailed overview of the LiveRAC application,

shown in Figure 3.1. Section 3.1 describes the visual components of our system.

Section 3.2 describes the semantic zoom infrastructure that allows the grouping

of related alarms and metrics, and selecting representations for data. Section 3.3

describes how LiveRAC interaction supports user tasks. In Section 3.4 we discuss

the features of jGLChartUtil, an OpenGL charting library developed for LiveRAC.

Figure 3.1: LiveRAC is a visualization tool for performance statistics and alarm
data. This screen capture shows five days of data. One region of the display has
been expanded to show information about a cluster of web servers belonging to a
single customer.

Chapter 3. LiveRAC Overview 40

3.1 Interface Components and Visual Encoding

This section introduces each of the visual components of the LiveRAC applica-

tion, divided into three distinct regions shown in Figure 3.2. These are the data

region, the time range panel, and the query panel. External dialogs, described in

Section 3.1.4, support reordering actions.

Figure 3.2: LiveRAC is divided into three display regions, a data view and two
tool bars. The topmost region is the data view which is the only focus+context
component of the display. Below the data view is the time range tool panel which
provides visual and text components for choosing the time range of the data view.
The query tool panel at the bottom provides information about the cell under the
mouse pointer and a search dialog.

3.1.1 Data View

3.1.1.1 Layout

LiveRAC presents a matrix view of the data in an accordion drawing infrastructure.

Rows represent network devices, and columns can represent metrics, alarms, or

groups of metrics and alarms called bundles. A matrix cell represents the intercept

between a row and a column containing an area-aware rendering of the underlying

Chapter 3. LiveRAC Overview 41

data. The number of nodes in the data set can be larger than the number of display

pixels available. Regions with data density that exceed the number of pixels in the

display are aggregated. The user specifies a focus by enlarging and compressing

display regions through navigation actions on the data set. Expanded regions reveal

more detailed information.

The key challenge in selecting a layout strategy for the visualization is to pro-

vide groupings that will locate relevant results adjacent to one another for compar-

ison. Providing small-multiples comparisons, introduced by Bertin [9] and pop-

ularized by Tufte [67], has become a core principle in information visualization.

Small multiples help humans locate differences and patterns by allowing them to

saccade rapidly between multiple representations.

With the alarm and metric data that LiveRAC visualizes, there is no single

correct way to lay out information. For example, it is unclear as to whether to

group devices by IP address, by geography, or by functional grouping such as web

servers, file servers, etc. Although it may be intuitive to segregate alarms and statis-

tics, it is possible to construct scenarios where it is advantageous to look at alarm

histograms adjacent to a particular metric which may be relevant to the alarm. Our

approach with LiveRAC is to provide a logical initial ordering, then allow the user

to manipulate the ordering to their preferences. This allows users flexibility to take

an exploratory approach to interacting with the data. We initially order devices by

customer. Because the underlying data is from a network operations centre, all of

the devices are physically located in a small number of buildings and so geography

is not relevant in this particular case. We then sub-key on device name. Because the

device names have been selected to match the functional grouping of the device,

this has the added benefit of grouping computers which perform similar activities.

The optimal initial layout of columns is less clear. Instead of imposing a layout,

we allow columns to be added as relevant alarms or metrics are read from the

Chapter 3. LiveRAC Overview 42

SWIFT database. The user is able to group related metrics or alarms into bundles

as described in Section 3.2. Object ordering in the data view is preserved unless

the user performs an explicit reorder operation described in detail in Section 3.1.4.

We selected critical alarms and search results as candidates for Guaranteed

Visibility (GV). A critical alarm is a ticketed alarm that must be serviced by a

technician to meet quality of service requirements for customers, and therefore

we select it as our highest priority guaranteed visible marking. Red was chosen

as the colour for the critical alarm marking because it was used previously by

other applications at AT&T, and network operators are familiar with this mapping.

The minimum size for GV regions was initially selected to be three pixels. This

size can be tuned depending on the resolution of the displays being used for the

visualization. Search results must be visible, even in highly compressed regions of

the display, and therefore we use GV to support this activity, marking the results in

highly saturated blue.

3.1.1.2 Aggregation

Data aggregation is used when there are more devices in a region of the display

than pixels. Aggregation optimizes rendering by disposing of the redundant over-

drawing of certain pixels of the display, and allows us to present a meaningful value

to represent all of the occluded data. In LiveRAC we aggregate alarms by show-

ing the highest priority alarm that has been occluded, and use saturation as a way

of indicating how many alarms have been aggregated. Metrics are only assigned

a single colour, but we can still use aggregation to give users an overview of the

information density. Our aggregation algorithm is discussed in Section 4.3 of the

Algorithms chapter. We describe the colour scheme and our saturation equation

for LiveRAC below.

Chapter 3. LiveRAC Overview 43

3.1.1.3 Colour

The default representation for a cell which spans only a few pixels on the X or

Y axis would typically be a coloured box. LiveRAC inherits the colour scheme

used by an AT&T internal visualization application called SWIFT (described in

Section 2.3). This colour scheme encodes alarm severity data in the order defined

in Table 3.1. Metrics are always coloured grey.

Table 3.1: Cell colour mapping

Severity Colour
Critical Red
Major Orange
Minor Yellow

Warning Blue
Normal Green

Non-ticketed or Metric Gray

Saturation is used to encode information density. A non-aggregated has a base

saturation of 25%. As a cell is expanded, the saturation level decreases propor-

tionally with area to a minimum of .05%. We follow the colour use guidelines of

Ware [71] recommending that large areas should use desaturated colours. More-

over the decreasing saturation level helps make the semantic representation con-

tained within the cell more readable by providing sufficient contrast. The enforced

minimum ensures the severity level of the cell will always be visible regardless of

how large it is expanded. Our formula for computing cell saturation is provided in

Equation 3.1, where we define B as being the base saturation of a non-aggregated

cell, M as being the minimum saturation for a cell, K as the size at which minimum

Chapter 3. LiveRAC Overview 44

saturation is achieved and S as the current size of the cell.

B−M
K

S (3.1)

When regions of the display are compressed it is necessary to aggregate data.

The hue and value of the representation for this aggregated region is that of the

worst alarm that has been seen. The saturation starts at a minimum of 25% and

increases linearly with the number of alarms to a maximum of 100% saturation

when ten alarms have been aggregated.

3.1.1.4 Adding Devices and Metrics

When the user manipulates the time range of the application, described in Sec-

tion 3.1.2, data regarding previously unseen devices may be retrieved. Devices are

added dynamically to the split line structure whenever a record with a new device

is retrieved. Devices are added based on the sort order of the device axis.

Columns are added in a similar manner to rows if new types of alarms or met-

rics are detected in the incoming data from the server as a result of user interac-

tion. However, because columns are sorted arbitrarily through user interaction, new

columns are added to the far right of the display. The user is then free to reorder

columns however they choose.

3.1.1.5 Deleting Devices and Metrics

To maintain the stability of objects within the layout of the LiveRAC application,

devices and metrics are never removed from the display without an explicit action

from the user. Two shortcuts are provided for ‘cleaning’ the display if the user

is looking at a very small time range and wishes to focus on data relevant to that

particular moment. The first allows the user to drop any metric or alarm columns

Chapter 3. LiveRAC Overview 45

for which there is no data in the current time range. The second performs a similar

operation for devices, clearing empty rows.

3.1.2 Time Range Selection Panel

Figure 3.3: The time range selection panel is located underneath the data canvas
of the LiveRAC application. The text field on the left displays the start date of the
selected range. The widget in the center is the time range slider. The time range
slider allows the user to define the time range by dragging either edge of the slider
widget to a new location, or by clicking between the edges and dragging to move
the entire range. The play button advances the time range at regular intervals. The
text field on the right displays the end date of the selected range.

The time range selection panel, shown in Figure 3.3, is located immediately

beneath the main focus+context data canvas. This panel allows the user to select a

time range for viewing data. The user can select the time range using one of two

mechanisms: a double edged slider, or a pair of date spinners.

LiveRAC uses a range slider, visible at the centre of Figure 3.3, for selecting

the time range in the data view. A range slider allows the user to define the time

range by dragging either edge of the slider widget to a new location, or by clicking

between the edges and dragging to move the entire range. LiveRAC uses a modi-

fied version of the range slider from the InfoVis Toolkit by Fekete [22]. The range

slider in LiveRAC has been enhanced to display the density of alarms in the un-

derlying data. Each pixel of width of the slider bar is assigned an equal time range

and alarms are then ‘binned’ to a representative pixel. Displaying the alarm density

makes it easier for the user to detect periods of unusual alarm activity. A logarith-

mic scale is used such that pixels initially grow to a moderate saturation quickly,

Chapter 3. LiveRAC Overview 46

then increase saturation more slowly as the number of alarms increases. The func-

tion used islog I/ logT , where I is the number of alarms seen in that interval and T

is the total number of alarms in the time range of the slider.

Using the text fields to the left and right the user can directly manipulate the

date range. The text fields disallow invalid actions such as setting the start date

after the end date. The text fields and the slider are linked and update one another

to reflect any changes from user interaction.

LiveRAC supports VCR-like interaction using a play button visible in Fig-

ure 3.3. After selecting a time range, the user can choose an update interval and a

period of seconds for the update. When playback is initiated, the user can watch

historical data, or live data as it is added. A typical activity might be to view histor-

ical data at an accelerated rate, by selecting an interval of five seconds for updates,

and a period of one hour. This selection will advance the data view one hour for ev-

ery five wall-clock seconds. When viewing live data in real time the update interval

and period must match.

3.1.3 Current device and Search Panel

The current device and search panel in Figure 3.4 is located beneath the time range

panel.

Figure 3.4: The device tool panel shows information about the device under the
mouse on the left, and provides regular expression based search tools using the
input box on the right.

The text area on the left side of the current device and search panel provides

information about the device, customer and metric currently located beneath the

mouse cursor. If the mouse cursor is outside of the accordion drawing canvas it

Chapter 3. LiveRAC Overview 47

indicates the information about the last cell that was moused over by the user.

On the right side of the panel an input dialog allows the user to type in the name

of a device or a group name for devices. This search can be done progressively.

The results of a search operation are marked with guaranteed visible thin blue

horizontal lines, shown in Figure 3.5.

Figure 3.5: The guaranteed visible thin blue horizontal lines indicate search re-
sults. Users can progressively search on an asset name or a customer name.

3.1.4 Reordering

LiveRAC allows rows and columns to be reordered to facilitate side-by-side com-

parisons and the grouping of similar metrics. This capability can be very important

when directly comparing devices, grouping related devices, or exploring correla-

tions between alarms and metrics. The ability to move data within the visualization

empowers the user to explore patterns.

Chapter 3. LiveRAC Overview 48

Figure 3.6: The control panel on the right allows users to interactively reorder
metrics in the visualization. The visualization is updated with every operation.

Rows can be sorted using two different criteria: 1) customer name, device name

or 2) device name. Individual devices can also be reordered arbitrarily, although

this mode will result in new devices being added to the bottom of the display rather

than inserted using the sorted order.

Columns can be ordered arbitrarily by the user. New columns are added on the

right most side of the display. Generally, it is advantageous to group similar alarms

and metrics. Metrics which are best placed in the same chart can be added to the

same group, called a bundle in LiveRAC, described in Section 3.2. This capability

ensures closely related data can be viewed in the same representation.

Chapter 3. LiveRAC Overview 49

3.2 Semantic Zoom and Bundles

Semantic zoom [51] is a visualization technique where different representations of

data are presented at different levels of zoom. Semantic zoom tries to provide the

most meaningful possible representation at any given zoom level. This a signif-

icantly more sophisticated approach than simple scaling. For example, an object

with text elements has very little value when scaled down such that the text can no

longer be read. Features that were relevant at the larger zoom level cause clutter

and illegibility when the image is scaled down. However, if the text elements are

removed and a simpler graphic is used, it is still possible to extract meaningful

information from the representation.

(a) Full size line chart (b) Reduced line
chart

(c) Sparkline (d) (e)

Figure 3.7: An example of semantic zoom on a line chart. (a) A full sized line
chart is displayed. (b) The line chart has been reduced in size, the legend has been
removed and labels are more sparse. (c) The chart has been changed to a sparkline
graphic. Only one label is shown on the sparkline, indicating the subject of the
sparkline. (d) Only a colour swatch and a numeric value indicating the number of
records in this time range are shown. (e) Only a colour swatch is displayed.

LiveRAC provides a grouping system called bundles for collecting related

alarms and metrics, and specifying their representation levels. Because alarms

Chapter 3. LiveRAC Overview 50

represent ordinal data and metrics represent ratio data, it is not possible to group

alarms and metrics into the same bundle. Bundles are defined in an XML config-

uration file. In the future, it should be possible to construct the bundles visually

using a dialog-driven wizard or similar GUI mechanism. A partial XML bundle

configuration is shown in Figure 3.8. This bundle was used to generate the graphic

images in Figure 3.7.

Once the metrics or alarms for a bundle have been specified, it is possible to

configure every aspect of the representation levels for the bundle. The minimum

width and height for each representation level is specified, followed by chart type,

what data series to use at that representation level, colours and other chart details

discussed in section 3.4.

Chapter 3. LiveRAC Overview 51

<bundle>
<bundlename>CPU</bundlename>
<generic>0</generic>
<type>1</type>
<metric>LXCPU-USAGE.IDLE%</metric>
<metric>LXCPU-USAGE.SYS%</metric>
<representation>

<chartlabel>CPU Stats (S)</chartlabel>
<width>120</width>

<height>80</height>
<charttype>3</charttype>
<drawgrid>1</drawgrid>

<globalshadeunder>1</globalshadeunder>
<drawlegend>1</drawlegend>

<drawlabels>1</drawlabels>
<drawticks>1</drawticks>
<gridstipple>dotted</gridstipple>
<series>

<name>LXCPU-USAGE.IDLE%</mname>
<shadeunder>1</shadeunder>
<seriescolor>

<color>
<H>.3334</H> <S>1</S> <V>1</V>

</color>
</seriescolor>

</series>
<series>

<mname>LXCPU-USAGE.SYS%</mname>
<shadeunder>1</shadeunder>
<seriescolor>

<color>
<H>.16667</H> <S>1</S> <V>1</V>

</color>
</seriescolor>

</series>
</representation>

<representation>

<chartlabel>Sparkline</chartlabel>
<width>30</width>

<height>20</height>
<charttype>6</charttype>
<globalshadeunder>0</globalshadeunder>
<drawband>0</drawband>

<markhigh>1</markhigh>

<markhighcolor>
<color>

<H>.5</H> <S>1</S> <V>1</V>

</color>
</markhighcolor>
<marklast>1</marklast>
<marklastcolor>

<color>
<H>.6667</H> <S>1</S> <V>1</V>

</color>
</marklastcolor>
<marklow>1</marklow>

<marklowcolor>
<color>

<H>.7778</H> <S>1</S> <V>.6</V>

</color>
</marklowcolor>
<series>

<mname>LXCPU-USAGE.IDLE%</mname>
<shadeunder>1</shadeunder>
<seriescolor>

<color>
<H>.3334</H> <S>1</S> <V>1</V>

</color>
</seriescolor>

</series>
</representation>

</bundle>

Figure 3.8: This is an example of the partial XML definition for the CPU metric
bundle, that is, a bundle handler for CPU metrics. For brevity we show only
two representation levels from the bundle. The first representation is displayed
graphically in Figure 3.7(b), and the second in Figure 3.7(c).

Chapter 3. LiveRAC Overview 52

3.3 Interaction & Tasks

The primary interaction mechanism in LiveRAC is accordion drawing described in

Section 2.4 of related work. Users can select a region of the display using a ‘rub-

ber band’, a region of the data marked by the mouse and snapped to split line grid

boundaries. This region can then be expanded or compressed in the X and Y direc-

tions through a mouse drag operation. This technique facilitates fluid interaction

with the application, and helps the user maintain spatial awareness regarding their

current focus within the context of the larger data set. This interaction technique, in

conjunction with the time range and query panels described in Section 3.1 provide

a rich set of tools for exploring data.

When no focus regions are selected, all cells in the display are of roughly equal

size. Guaranteed visibility ensures that even if thousands or millions of cells exist

in the visualization, critical events will be marked. This level of zoom gives an

overview of system state, indicating the distribution of devices with critical alarms.

LiveRAC marks all critical alarms at any level of zoom. The size of the critical

marker can be adjusted to optimize visibility for large and small displays.

When investigating alarms, users of LiveRAC can explore rich historical data

regarding a device. By enlarging the time window, users can easily see repeating

patterns of alarms, such as alarms that recur at regular intervals, as well as correla-

tion between metrics and alarms.

LiveRAC simplifies capacity planning by providing side-by-side comparisons

of server load using multiple focus regions on a single display. This capability

removes the requirement for switching between windows, and allows rapid nav-

igation to expand new regions of interest. Adjacent and distant regions can be

compared with nearly equivalent ease by compressing the regions between devices

or columns.

Chapter 3. LiveRAC Overview 53

By supporting a large time window, it is possible to view daily, weekly and

monthly trends in LiveRAC.

3.4 jGLChartUtil

Providing multiple semantic zoom levels in LiveRAC required a charting library

with support for a variety of graphic options at different levels of data density.

There are two excellent charting packages for Java which fall under free software

licenses: jFreeChart [25] and jRobin [45]. Although both of these solutions offered

robust charting features, they use the 2D drawing library provided by Java2D. The

resulting images then needed to be texture mapped in OpenGL, which is inefficient

compared to drawing the polygons in OpenGL. Benchmarks using these two charts

revealed that even a small chart of a few dozen data points could take over 100ms

to render and texture map. During a navigation operation it is desirable to maintain

a minimum frame rate of 10fps, or 100ms. Clearly, if there were two or more

of these charts on the display at any given time, achieving this frame rate would

become impossible.

One possible work-around for the performance problems of jFreeChart and

jRobin would be to generate mip-maps of the textures and use them during scale

operations, to limit the number of times a chart needs to be regenerated. One

problem with this approach is that it would quickly consume a large amount of

texture memory. Furthermore, the aspect ratio of the charts can change, creating

distorted and potentially unreadable results when the charts are directly scaled as

images, rather than redrawn with raster fonts. A chart which redraws with every

resize also has the advantage of being able to re-evaluate how screen real-estate is

used. For example, it can choose to decrease font size, or reduce the number of

labels and grid lines to improve legibility on a smaller chart.

Chapter 3. LiveRAC Overview 54

Because none of the off-the-shelf solutions provided the capabilities we de-

sired, we elected to write a small, high performance charting library using OpenGL.

The resulting chart library, jGLChartUtil 3.4, is completely abstracted from the

LiveRAC application. It is a general purpose charting library with a well defined

Java API [46]. Keeping the charting library separate from the application gives us

the ability to replace the charting feature if a more capable library becomes avail-

able in the future, and also allows us to provide this charting library as a separate

work product under an open source license for use in other projects.

3.4.1 Features

In this section we summarize some of the high level capabilities of jGLChartUtil.

For brevity will not provide an exhaustive list of the jGLChartUtil features, for

detailed information refer to the jGLChartUtil javadoc API reference [46].

jGLChartUtil supports a number of standard features and enhanced capabili-

ties. jGLChartUtil allows charts to have multiple data series, which can be distin-

guished by a user assigned colour or different line stipples. Legends are provided

for each data series on the chart, and labels can be assigned by the user. The leg-

end is drawn on a best-effort basis, and may be dropped if the chart is too small to

render it. The chart can be assigned a master label, with a user selected alignment.

Axis labels are optional, and are provided by the charting library on a best effort

basis. The charting library will try and provide as many labels as possible given the

size of the labels and space constraints of the chart. It will attempt to fit the labels

by reducing label size down to a user specified minimum, and reducing significant

digits of a decimal value.

Many charts offer the option of shading regions with an alpha value. Region

shading can be enabled and disabled globally, and for each individual data series.

Chapter 3. LiveRAC Overview 55

The use of alpha transparency and blending makes intersections between data se-

ries clearly visible. The amount of transparency is configurable by the user.

jGLChartUtil supports numerous types of charts detailed in the following sec-

tions. Table 3.2 provides a breakdown of the supported categorical and ratio charts.

Table 3.2: Chart types

Ratio charts Categorical charts
Sparkline Binary Sparkline

Two-tone pseudo colouring Histogram
Line chart Bar chart

Scatter chart

3.4.1.1 Sparklines

(a) Sparkline

(b) Binary sparkline (c) Two-tone pseudo colour
map

Figure 3.9: (a) Sparklines [69] are small graphics that compactly represent trend
information. (b) Binary sparklines represent binary information in a compact
space. (c) Two-tone pseudo colour maps [57] are a representation technique for
displaying large scale one dimensional data sets at very high density.

Sparklines are small statistical graphics introduced by Edward Tufte in Beau-

tiful Evidence [69] for representing trend information in a compact space. An

Chapter 3. LiveRAC Overview 56

example of a sparkline drawn by jGLChartUtil is shown in Figure 3.9(b).

Binary sparklines are similar to standard sparklines but show only binary in-

formation in the plot. An example of a binary sparkline drawn by jGLChartUtil is

shown in Figure 3.9(b).

3.4.1.2 Two-tone Pseudo-Colour

Two-tone pseudo colour maps [57] are a representation technique for displaying

large scale one dimensional data sets at very high density. We show an example of

a two-tone pseudo colour map drawn by jGLChartUtil in Figure 3.9(c).

3.4.1.3 Line Charts

Figure 3.10: Line charts are used to compare data points in two dimensional data.

Line charts are used to compare data points in two dimensional data. The slope

of the line simplifies trend finding. jGLChartUtil provides standard line charts

with the added capability to shade under the lines. The resulting region-shaded

graphic can make it easier to compare relative volumes visually. When multiple

data series are being charted, the shaded region can be blended between the data

series. Shading can be turned on or off on a per-data series basis, or globally. An

example of a line chart can be seen in Figure 3.10.

Chapter 3. LiveRAC Overview 57

3.4.1.4 Scatter Charts

Figure 3.11: Scatter charts are typically used for mapping two dimensional data
sets with large numbers of data points.

jGLChartUtil provides scatter charts, a plot typically used for mapping two

dimensional data sets with large numbers of data points. Multiple data series can

be shown in a single chart. The charting library does not currently support drawing

a trend line through the scatter plot, but this feature may be added to future versions.

We show a scatter chart drawn in jGLChartUtil in Figure 3.11.

Chapter 3. LiveRAC Overview 58

3.4.1.5 Histograms

A histogram is a statistical graphic for showing frequency distributions. jGLChar-

tUtil histograms support multiple data series, and alpha-blended region shading of

the data points. We show a histogram drawn in jGLChartUtil in Figure 3.12.

Figure 3.12: Histograms show frequency distributions

3.4.1.6 Bar Charts

Figure 3.13: Bar charts show relationships in categorical data.

Bar charts are a common statistical graphic representation. jGLChartUtil sup-

ports two types of bar charts. The first is a standard coloured bar chart, with op-

tional outlining to provide higher contrast. The second type of bar chart uses a

Chapter 3. LiveRAC Overview 59

Figure 3.14: An example of the shade bar chart. Bar charts show relationships in
categorical data.

less saturated shaded region underneath a solid marker. The reduced saturation in

this type of chart helps reduce saturation overload on busy displays. We show a

standard bar chart drawn in jGLChartUtil in Figure 3.13 and a shade bar chart in

Figure 3.14.

60

Chapter 4

Approach and Algorithms

In this chapter we provide the approach and algorithms for overcoming the techni-

cal challenges of developing the LiveRAC visualization. Section 4.1 discusses the

architecture of LiveRAC and interaction with the SWIFT data collection and pro-

cessing engine. Section 4.2 discusses the design of dynamic structures for handling

add and delete operations on rows and columns at run time. Section 4.3 describes

our algorithm for node aggregation and Section 4.4 discusses our semantic zoom

strategy. Section 4.5 describes the rendering process, and Section 4.6 discusses

picking objects from the visualization. Section 4.7 discusses user-directed reorder-

ing of data within LiveRAC.

4.1 Architecture

LiveRAC implements a threaded, modular architecture that utilizes the PRISAD [34]

accordion drawing API. The application layer manages user interaction, enqueues

data requests, and renders the data view. The gridding and data management layer

maintains the data structures necessary for addressing each cell in the matrix lay-

out, stores data retrieved from the server and maintains information regarding cell

representations. PRISAD provides an API for accordion drawing. Extensive mod-

ifications were made to the PRISAD split line infrastructure, described in Sec-

tion 4.2 to provide dynamic functionality required by LiveRAC. Minor changes

Chapter 4. Approach and Algorithms 61

Split line infrastructure

API & Generic
interaction support

PR
IS

AD
Gridding & Data

management

Application & User
interface

Li
ve

RA
C

SW
IF

T
In

te
rfa

ce SWIFT data processing
back-end

SWIFT

Ch
ar

tin
g

Li
br

ar
y

Figure 4.1: LiveRAC uses a modular architecture. The PRISAD accordion draw-
ing infrastructure provides API’s on which the LiveRAC application is built. The
SWIFT interface layer provides a network client-server interface to the SWIFT
data collection and processing services. Shaded boxes indicate modules where
we have made significant contributions.

were made to the API to incorporate these modifications.

The interface to the SWIFT [41] system runs as a separate thread that processes

data requests and returns the data to the application and gridding layers. Separating

data requests from rendering ensures that navigation and user interaction can con-

tinue while data is loading from the server. User interactions queue data requests

on the data service thread, which aggregates relevant requests and culls unneeded

requests, and interacts with the SWIFT server. The SWIFT back-end aggregates

multiple data sources into a unified record structure. LiveRAC provides a dense,

unique, matrix-layout visualization of this data that incorporates overview and de-

tail.

Although large volumes of data must be parsed whenever the time window is

changed, LiveRAC minimizes the amount of data that must be transferred to the

client as much as possible. For most nodes in the display, the representation is only

a colour index value which indicates the highest severity event during the time

Chapter 4. Approach and Algorithms 62

range, and an integer which indicates the number of events which occurred in that

interval. At the overview level, metric cells indicate only a colour value and the

number of metric records received during the sampling period specified by the user

in the time range slider. For these highly compressed cells the server returns only

these two integers, an order of magnitude less data than the full alarm or metric

record contains. For cells occupying more screen real estate, detail requests are

enqueued to the data service thread.

The data service thread makes data requests to the SWIFT [41] server described

in section 2.3. SWIFT queries resemble web CGI requests. On the SWIFT server

a number of custom written filters for LiveRAC have been pre-compiled and are

applied to the selected range of data. These queries are written in a C-like lan-

guage for a SWIFT parser, which generates additional code blocks, and then uses

a standard C compiler such as GCC to create a native shared library for the server

platform. SWIFT processes and searches the underlying data for LiveRAC. SWIFT

is a multi-platform tool that is deployed both on SGI IRIX based systems, as well

as Linux on PC hardware. Because most SWIFT tools work as small steps in a

pipeline, SWIFT can leverage large scale multi-processor systems effectively.

The user can make navigation actions between the execution cycle of the data

service thread, providing an opportunity for the data service thread to aggregate

queries where possible, and discard outdated queries. For example, it is possible

the user might have made two rapid changes to the time slider between data service

thread execution. In this case, the first request can be discarded, saving server load

and bandwidth. A user navigation could also reveal dozens of charts simultane-

ously. Each of these chart queries can be grouped into a single large query, which

dramatically decreases load on the server and reduces query overhead because only

a single pass needs to be made over the data rather than a full pass for each chart

query. The data service thread sleeps for thirty milliseconds between execution

Chapter 4. Approach and Algorithms 63

cycles.

4.2 Split Line Hierarchy

As discussed in Section 2.1.4.2 of related work, PRISAD was designed to allocate

a static 2-D grid of cells. Each of these cells is bounded by four movable lines,

which are called split lines. Navigation in the accordion drawing metaphor is ac-

complished through the manipulation of these split lines. Placing cell data objects

within this framework is called gridding. In previous PRISAD-based applications

the number of cells was well defined when the data set was loaded, and PRISAD

allocated two static one dimensional arrays for the split line grid. Elements could

not be arbitrarily inserted into these static structures without copying all data to a

new, resized, array structure incurring an O(n) penalty.

LiveRAC requires that devices (rows) and user defined alarm bundles, met-

rics, or alarms (columns) be interactively added, removed or relocated to any point

within the grid. The static structures of PRISAD were not suitable for these require-

ments. In this section we present algorithms and dynamic structures for extending

PRISAD to allow logarithmically bounded split line insert and remove operations

at run time.

4.2.1 Challenges

We define the following design criteria for a dynamic structure to replace the static

arrays in PRISAD:

• Worst case logarithmic insert and remove operation

• O(log n) worst case path to any node from the root

• Linear scalability in memory usage

Chapter 4. Approach and Algorithms 64

• Support for arbitrary ordering with enumeration

The requirement for preserving arbitrary node ordering eliminates hash tables.

Furthermore, because split lines subdivide the display area in a tree hierarchy, it

was intuitive to use a tree-like data structure to store the split lines. A balanced

binary tree structure such as red-black trees [66] seemed to be the optimal solution,

as it resolves all of our first three requirements.

In LiveRAC we needed to support the arbitrary ordering of split lines within

the hierarchy to support add, remove and reorder operations. Any split line can be

placed at the beginning, end or between any two other split lines in the hierarchy.

In this schema the data structure itself stores the user-specified ordering, but we

need a mechanism for enumerating tree nodes for picking, range selection and split

line order comparison operations. During picking, we may want to select the n-th

node in the ordering. Furthermore, the most efficient way to store split line ranges

is as a pair of integer indices, for example [10, 73], indicating a range between

10 and 73. This could be duplicated without needing indices by creating a pair

of pointers, one to split line 10 and another to split line 73. However, the index

encodes additional information not available to the pointer. For example, we need

to store extra information to indicate which pointer is the start of the range, and

which pointer is the end. We lose other important information about the range as

well, for example we can no longer assert that the range spans 64 nodes without

performing a traversal, again with a worst case of O(n) if the range is the span of

the entire tree. Without enumeration, it is impossible to tell whether a given node

s lies previous or successive to a given node t without a complete traversal of the

tree.

As discussed in Section 2.1.4.2, PowerSetViewer [40] addresses this enumer-

ation issue by utilizing properties specific to power sets. With a priori knowledge

Chapter 4. Approach and Algorithms 65

of the power set alphabet it is possible to allocate a sufficiently large enumera-

tion space to ensure each power set can have a unique index in the ordering. In

LiveRAC we must enumerate objects that lack the properties particular to power

sets.

Performing a simple linear enumeration of the split line objects in the tree car-

ries an O(n) penalty for insert and remove operations, since a re-enumeration of all

subsequent nodes would be required for either operation, which violates our first

design requirement. One alternative is to evenly distribute the split line enumera-

tion over a 64 bit space, and then distribute new split lines as evenly as possible

within this range, performing a O(n) key redistribution pass when we run out of

resolution. This solution might be acceptable if we can assert that split lines will

generally be added and removed evenly across the layout. However, no such asser-

tion can be made and we have every reason to expect the possibility of hundreds or

thousands of adjacent split lines being added concurrently, making re-enumeration

a common operation. The requirement for frequent re-enumeration makes this so-

lution unacceptable.

Implementing a data structure which allows arbitrary ordering but preserves a

mechanism for enumerating nodes in a balanced tree was the primary challenge in

implementing a dynamic grid structure.

4.2.2 Our Approach

We determined that red-black trees [66] were a suitable candidate data structure

for each split line axis. Red-black trees satisfy most of our requirements: insert

and remove operations are O(log n), objects can be ordered arbitrarily if we do not

require the ability to binary search the tree, and the tree structure scales linearly

in memory usage. The only outstanding challenge is the issue of enumerating the

Chapter 4. Approach and Algorithms 66

Figure 4.2: Each node of the red-black tree stores an integer value of its subtree
size. Leaf nodes have a subtree size of 1: themselves. The subtree size of the root
is the size of the tree.

tree nodes described in Section 4.2.1. We provide a solution based on a balanced

red-black tree that allows for an unlimited number of split line add or remove op-

erations in logarithmic time on either axis, and allows retrieval of tree nodes based

on an integer index.

As described in Section 4.2.1 any static enumeration assignment will result in

a requirement to re-enumerate during an insert or remove operation on the tree.

The solution to the problem requires the use of relative value assignments. In our

split line tree, we store an added integer value for each split line called ‘subtree

size’ shown in Figure 4.2. This value indicates the number of descendants of a

given node, inclusive of the node itself. The root of the tree therefore has a subtree

size that is identical to the size of the tree. Using this additional information it is

possible to find a tree node by index number or determine an index number given

a node in O(log n) time.

Chapter 4. Approach and Algorithms 67

getSplitFromIndex Function
input: target index I

running count from leftmost node in the tree, L
current node N

output: node corresponding to input index, N

myIndex ← (N.left 6= null) ? myIndex + N.left.subtreeSize : L
if myIndex = I

return node
else if I < myIndex

return getSplitFromIndexRecursive(I, L, N.left)
else

return getSplitFromIndexRecursive(I, myIndex+1, N.right)
end if

Figure 4.3: getSplitByIndex O(log n) recursive function locates a node of the red-
black tree based on its index number within the range of the tree from left to right.
It is first called with the root of the tree as the current node, N.

To find a node given an index number, we use the recursive function getSplit-

ByIndex shown in Figure 4.3. We descend the tree from the root, adding the left

subtree index on every right descent. Because this descent can be no further than

the depth of the tree, which can be no deeper than O(log n) in a red-black tree [66],

and requires only O(1) add or compare operations at each step, we can assert that

this is an O(log n) algorithm.

Computing a node’s index number is the inverse of finding the node given an

index number. We begin from the specified node, and ascend towards the root

using the algorithm in Figure 4.4. A counter is incremented by the left subtree size

each time the ascent is made from a right child node. Because this ascent can be no

longer than the depth of the red-black tree, which is bounded to log n, as described

Chapter 4. Approach and Algorithms 68

getIndexFromSplit Function
input: target node, N
output: index of target node, I

lineIndex ← (N.left 6= null) ? N.left.subtreeSize : 0
p ← N.parent
current ← N
while p 6= null

if current = p.right
lineIndex ←(p.left 6= null) ? lineIndex + p.left.subtreeSize + 1 : lineIndex + 1

end if
current ← p
p ← p.parent

end while
return lineIndex

Figure 4.4: getIndexFromSplit O(log n) recursive function returns the index num-
ber of a target node. The algorithm ascends from the target node, incrementing a
counter by left subtree size each time the ascent is made from a right child node.

in CLR [66], and requires only O(1) add or compare operations at each step, we

can assert that this is an O(log n) algorithm.

Using these algorithms we are able to theoretically enumerate a tree of split

lines of size 231, based on the positive number space available to a Java signed

integer.

New devices and columns are added to the split line tree structure as leaf nodes.

Because the new devices are added as leaf nodes, they effectively split the distance

between their parent split line and the successive split line in the hierarchy in two.

Because the user generally only has a relatively small number of focus regions of

the screen (a few dozen split cells or less) expanded, relative to the size of the

Chapter 4. Approach and Algorithms 69

hierarchy, the effective result is that dense regions of the display typically grow

denser with very little effect on the stability of the stretched regions. If a new device

is added between devices which have been stretched, the result would cut the parent

cell’s space in half, while preserving the overall geometry of the stretched region.

This approach provides the minimum possible impact of dynamic add operations

on the user.

4.3 Aggregation

The PRISAD [34] accordion drawing infrastructure supports aggregation in dense

regions of the split line hierarchy. A tuneable parameter specifies in world space

co-ordinates the threshold in pixels beneath which aggregation will take place. We

aggregate devices, represented by rows in LiveRAC, as this represents our largest

data dimension in most circumstances. We perform aggregation when multiple

split lines subtend a single display pixel.

4.3.1 Challenges

The aggregation algorithm must present the most relevant information regarding

the culled nodes. This algorithm must execute quickly, executing in at worst O(k)

time where k is the number of nodes being aggregated, as a value must be returned

for every pixel during each rendering pass.

4.3.2 Our Approach

Our algorithm traverses the subtree of aggregated nodes as shown in Figure 4.5. It

maintains a record of the highest priority cell value and a count of the number of

cells with this value from all culled nodes in a RowColorAggregator object. Since

this algorithm is a traversal of the subtree, and performs only O(1) compare and

Chapter 4. Approach and Algorithms 70

addition operations, it has O(k) complexity, where k is the number of nodes aggre-

gated. The highest severity value determines the hue of the colour used to repre-

sent the aggregated cells, and the saturation is selected by the number of alarms

received.

To improve performance we cache the RowColorAggregator object by associ-

ating it with the root split line of the aggregated subtree. The cache is dirtied if the

split line hierarchy is modified. To prevent these cache objects from occupying too

much memory, we delete any cached RowColorAggregator objects associated with

split lines that are descendants of the aggregated subtree.

4.4 Semantic Zoom

As discussed in Section 3.2, LiveRAC can have multiple data representations per

cell depending on the cell size, a visualization technique called semantic zoom [51].

4.4.1 Challenges

LiveRAC required an infrastructure for semantic zoom that was fast enough to

maintain interactive frame rates during navigation operations, and that was highly

configurable by users of the system. The solution needed to support grouping mul-

tiple metrics together into a single column, but preserving the ability for different

representation levels to show subsets of these groupings.

4.4.2 Our Approach

We designed a highly configurable semantic zoom infrastructure that allows users

to create customized groups of alarms and metrics called bundles. Bundles are con-

figured using an XML formatted configuration file which permits the user to create

Chapter 4. Approach and Algorithms 71

recurseCulledRowRange Function
input: root split line of the subtree to be aggregated, s

column index number, i
RowColorAggregator object r

output: modified RowColorAggregator object

dev← s.getRowObject()
cell← dev.getMetric(i)
if cell 6= null

severity← cell.getHighestSeverity()
if severity > agg.worstAlarm

r.worstAlarm← severity
r.numFound← 1

else if severity = r.worstAlarm
r.numFound++

end if
end if
if s.getLeft() 6= null

recurseCulledRowRange(s.getLeft(), metricID, agg)
s.getLeft().cullingObject← null

end if
if (s.getRight() 6= null)

recurseCulledRowRange(s.getRight(), metricID, agg)
s.getRight().cullingObject← null

end if
return

Figure 4.5: The recurseCulledRowRange recursive function returns a modified
RowColorAggregator object which contains a record of the highest priority alarm
from the aggregated range as well as a count of the number of alarms received
from the culled rows.

Chapter 4. Approach and Algorithms 72

explicit groups of alarms and metrics. The XML format provides a syntax for spec-

ifying the features available in jGLChartUtil to represent the selected alarms and

metrics. Users define a bundle, specify the metrics to be included, define global

charting options, and then create a series of representations. Each representation

has a minimum X and a minimum Y size.

LiveRAC uses a greedy algorithm to select the largest representation it can find

for a given bundle. Note that the available screen size and the representation do not

need to match. If the available size is larger than the minimum required for the rep-

resentation, the representation is expanded to use the available space. This scaling

is handled by the supporting chart library, which takes as a parameter the number

of pixels of width and height available. It uses this information to determine the

draw area of chart, and the optimal font size to avoid any font overlap.

Although they are defined in the same file and configured in an identical man-

ner, metric bundles and alarm bundles are separate entities distinguished through

a type flag. This is due to the incompatibility of the underlying data types: alarm

representations are of a categorical data type, and system metrics are ratio data,

which cannot be meaningfully mapped together with traditional representations. It

may be possible to create representations that synthesize these data types in useful

ways, and this will be explored in future work.

Three bundles have special status in LiveRAC. The first is called the garbage

bundle. In this bundle the user places the names of metrics or alarms they do not

wish to appear in the layout. The other two special bundles are a generic metric

bundle, and a generic alarm bundle. These are the bundles that describe how any

metric or alarm that has not been explicitly handled by other bundles should be

represented, and will typically be the most common column type being displayed.

Chapter 4. Approach and Algorithms 73

4.5 Rendering

Cells are rendered by locating the left, right, top and bottom split line bounds of

the cell. The absolute values of these boundaries within the world space are then

computed. Once we have these four world space co-ordinates, any desired OpenGL

rendering operation can take place within this display region. When finding the

boundaries of a cell in PRISAD, we first locate the split line that bisects the cell.

This may be a ‘leaf’ split line, that is, it has no children in the split line tree and

therefore its relative position has no value for layout, or it may be an internal node

in which case the relative position of the split line between its boundaries is relevant

for finding the cell boundaries of its descendants.

4.5.1 Challenges

The boundaries of a given cell S are always formed on one side by its parent. If S

is a left child, the parent forms its right boundary. If S is a right child, the parent

forms its left boundary. An example of this can be seen in Figure 4.6. Finding

the parent bound is a trivial O(1) operation, requiring only an ascent to the parent

of S to determine whether S is a left or right child. We call the non-parent bound

the opposite bound. Finding the opposite bound quickly is a key challenge for

rendering. Figures 4.6 and 4.7 provide graphical examples of opposite bounds for

nodes.

4.5.2 Our Approach

To locate the opposite bound of S we ascend through each of the ancestors of S.

After each ascent, we check whether the path to S lies to the left or right of the

current ancestor A. If the path to A lies in the opposite direction of the path from

S to its parent, then A is the opposite bound of S. Figure 4.8 provides pseudocode

Chapter 4. Approach and Algorithms 74

Figure 4.6: The left and right boundaries for node C are B and D respectively
where B is also the parent bound and D is the opposite bound. Smin and Smax

represent the stuck lines which are not stored in the data structure but can exist as
boundaries for exterior nodes of the tree and the root. For example, Smin is the left
bound for A, B and D. Smax is the right bound for D and E.

for computing the left bound of S. Finding the opposite bound is O(log n) because

in the worst case it is an ascent from a leaf node to the root in the red-black tree

structure, which has a maximum depth of log n [66]. The right bound can be found

using a functionally identical algorithm appropriately substituting left for right.

The root of the tree is a special case with two virtual bounds called the mini-

mum and maximum stuck lines. These lines have fixed absolute co-ordinates and

form the basis for all absolute positioning computations performed in the tree as

presented in PRISAD [34].

Once an opposite bound is computed for a split line we cache the result. During

an insert operation it is necessary to fix the bounds of all rotated nodes. We do this

for each rotation. In Figure 4.9 we show our algorithm for a left rotate operation,

a modified form of the red-black tree left rotate algorithm from Introduction to

Chapter 4. Approach and Algorithms 75

Figure 4.7: The left and right boundaries for node H are F and Smax respectively,
where Smax represents the opposite bound and F represents the parent bound. Smin

and Smax are stuck lines which are not stored in the data structure but can exist as
boundaries for exterior nodes of the tree, and the root. As an additional example,
Smin is the left bound for A, B and D.

Algorithms by Cormen, Leiserson, Rivest, and Stein [66].

When a split line is deleted from the tree it is necessary to update the bounds

of all the rightmost descendants of the node’s left child, and all the leftmost de-

scendants of the node’s right child. We call this an echelon bound update. Our al-

gorithm for updating a deleted node’s left child bounds is provided in Figure 4.10.

Updating both sets of bounds can take a worst case of O(2 log n).

Chapter 4. Approach and Algorithms 76

computeLeftBound Function
input: split line for which the left bound is needed, S
output: left bound of S, R

if S = S.parent.left
while true

parent ← S.parent
if parent = root

return minStuckLine
end if

gp ← parent.parent
if parent = gp.right

return gp
else

S ← parent
end if

end while
else

return S.parent
end if

Figure 4.8: The computeLeftBound function finds the split line that forms the left
boundary of the input split line. The right bound can be found using an identical
algorithm appropriately substituting left for right.

Chapter 4. Approach and Algorithms 77

rotateLeft Function
input: split line to rotate, P
output: a rebalanced tree structure

R ← P.right
P.right ← R.left
P.subtreeSize ← P.subtreeSize - R.subtreeSize
if P.right 6= null

P.subtreeSize ← P.subtreeSize + P.right.subtreeSize
P.right.parent ← P

end if
R.parent ← P.parent
if P.parent = null

root ← R
else if P.parent.left = P

P.parent.left ← R
else

P.parent.right ← R
end if

R.left ← P
P.parent ← R
R.subtreeSize ← (R.right = null) ? 1 + R.left.subtreeSize : 1 + R.right.subtreeSize + R.left.subtreeSize
setBounds(R)
setBounds(R.left)
if P.right 6= null

setBounds(P.right)
end if

Figure 4.9: The rotateLeft function performs a left rotation on the tree. The
algorithm is based on that provided from Introduction to Algorithms [66]. During
the rotation we perform subtree size accounting and re-compute the bounds for
the affected nodes.

Chapter 4. Approach and Algorithms 78

updateBoundLeftEchelon Function
input: split line which has replaced the deleted split line in the tree hierarchy, S
output: updated opposite ancestors

if S.left = null

return
end if
if S.left.right = null

return
end if

current ← S.left.right
while current 6= null

current.opBound ← S
current ← current.right

end while

Figure 4.10: The updateBoundLeftEchelon updates the rightmost descendants of
the left child of the replacement node in the tree after a delete operation.

Chapter 4. Approach and Algorithms 79

LiveRAC streamlines some of the rendering procedures from the PRISAD im-

plementation of SequenceJuxtaposer. For both LiveRAC and SequenceJuxtaposer

rendering requires finding all four split line bounds of a given cell. In Sequence-

Juxtaposer, the rendering queue consists of a list of split line ranges. A range is a

set of index numbers into the split line hierarchy. During rendering in Sequence-

Juxtaposer, it is necessary to compute which split lines have boundaries that best

match a given range, because the full range, or regions of a range, may have been

aggregated into a single display block. If this is the case it is desirable to stretch

and align the range span to the display block. The look up to discover whether a

range subtends a display block is a binary search, an O(log n) operation. LiveRAC

adds the split line root of a range directly to the queue, thus during rendering we

need only do a bounds lookup on the split line. Since split line bounds are cached

and maintained in the dynamic infrastructure each time the tree is modified, this is

an O(1) operation during rendering.

4.6 Picking

A picking operation is the process of locating a cell in the accordion drawing in-

frastructure given X and Y absolute co-ordinates in screen space. We first translate

these into our rendering canvas world space co-ordinate system. To locate the ap-

propriate device we descend the device axis split line tree in a binary search oper-

ation using the computed absolute values of the split lines. When we find the split

line with the largest value that is smaller than our screen position, this split line is

returned. The split line contains a pointer to the correct device which represents a

row in our application. To find the appropriate column we perform a similar binary

search on the column split line axis, and return the column index number. The

index number permits an O(1) look up of the column name in the column ordering

Chapter 4. Approach and Algorithms 80

array, which we then use to find the correct cell in the device object’s hash table.

4.6.1 Challenges

The primary rendering and picking challenge was to look up an device or column

name in O(1) time with any one of the following: a pointer to the corresponding

split line, the index number of the corresponding split line, or the name of the

device or bundle.

4.6.2 Our Approach

(a) Relationships of grid objects in split line hierarchy

(b) Pointer relationships between objects

Figure 4.11: (a) displays the relationships of grid objects within the split line
grid hierarchy. A row is physically located between adjacent split lines, and can
contain multiple cells. The column split lines are not shown in this figure for
improved visual clarity. (b) demonstrates the pointer relationships between the
objects. A split line has a pointer to the row located beneath it in the layout, and
the row has a back pointer to its top split line. Rows maintain pointers to each of
their cells, which contain back pointers to the row.

Chapter 4. Approach and Algorithms 81

Our approach begins by distinguishing between rows which represent network

devices, and columns which represent alarms and metrics. Because we know a pri-

ori that our data consists of many thousands of rows but only dozens or hundreds

of columns we can exploit these characteristics and handle the two axes differently.

If there are N rows and M columns, a complete matrix data structure would consist

of a two dimensional array of N x M cells. However, not every cell in LiveRAC

is populated with data. We implement row objects, discussed in more detail be-

low, which store information about each row, including the list of cells containing

representations within that row and the column index numbers where the cells are

located. There is then no requirement for a corresponding column object. Because

each row has pointers only to cells which are actually populated we save a consid-

erable amount of heap memory, especially in the case of sparsely populated rows.

A diagram illustrating grid object relationships is provided in Figure 4.11(a).

4.6.2.1 Row objects

We introduce the concept of a row object, a program data structure that represents

a network device. The ordering of row objects is determined by the horizontal split

lines, each split line object contains a pointer to a row object located immediately

beneath itself and spanning the distance to the next visible split line. Thus, the

row object r would span the distance between split line n and n+1. The decision

to make this pointer point to the row beneath the split line rather than the row

above was arbitrary and has no impact on the application as long as it is applied

consistently throughout the data structure. Each row object also has a pointer back

to its corresponding split line to make lookups possible in either direction as shown

in Figure 4.11(b).

Each row object implements a comparator that defines its ordering relative to

Chapter 4. Approach and Algorithms 82

other row objects. For LiveRAC two comparators were implemented. The first

comparator sorts row objects by their customer, and then sub-sorts by device name.

The second comparator applies only to device names. When a split line and the

associated row object is added to the data structure the split line tree is descended

starting from the root, doing a binary search comparison at each step. Because the

split line tree is derived from a red-black tree this is an O(log n) operation to find

the correct place to insert. We also want to support the case where the ordering

of the row objects could be a completely arbitrary arrangement of the user. In this

case new devices are added as children of the last element in the data structure,

which is rebalanced with each add operation.

When data is received by the server it is necessary to find a device by its string

identifier. Because it is possible that the split line tree is in arbitrary order, thus

denying us the ability to binary search, we need to provide a fast mechanism for

obtaining the pointer to the correct row object. A hash table is maintained using

the device’s string identifier as the key. This allows for O(1) look up of row objects

by name.

Each row object contains a table of corresponding entries for populated cells.

This is further described in section 4.6.2.2.

4.6.2.2 Cells

LiveRAC must support three types of column operations for rendering and data

storage: determining the column of a cell using a global ordering, getting the cell’s

column split line index numbers based on its associated bundle name and locating

a bundle name based on an index number.

We address the first issue using a static global array associated with the row

object which contains the complete list of columns in the accordion drawing frame-

Chapter 4. Approach and Algorithms 83

work, and maintains global ordering information. There is only a single instance of

this list regardless of the number of devices and columns, and because the number

of columns is small in comparison to the number of devices, O(n) operations for

insert and delete from this table are acceptable.

During a rendering operation a non-culled row must look up the column split

lines for each cell in its table of populated cells. This lookup needs to take place in

O(1) time to ensure fast rendering. To provide this capability we use a hash table

built from the global ordering array which is keyed using the string name of the

cell’s bundle. The result of the hash table look up is the integer index number of

the cell’s left split line.

When we are drawing column labels we need to look up bundle names based on

the index number of the column split line being drawn. This can be accomplished

by using the index number of the column as the index number of the global ordering

array.

4.7 Reordering Data

Reordering data is the process of swapping rows or columns of data inside of the

accordion framework to facilitate side by side comparisons.

4.7.1 Challenges

There are two possible approaches for reordering rows and columns. The naive

approach is to move split lines within the split line hierarchy, this operation is

analogous to removing a split line and adding it at a different location in the hierar-

chy. The most significant drawback to this approach is that such a move operation

causes problems maintaining the visual stability of the underlying tree. Let us say

the line being moved is the root node, and it is positioned at 0.9. Both of its chil-

Chapter 4. Approach and Algorithms 84

A

B

C

(a) User navigation has moved the root split line B to 0.9,
enlarging the regions to the left of it.

A

C

B

(b) Swapping split lines B with C results in a dramatic shift
in layout.

Figure 4.12: Naive reordering of a split line hierarchy on one axis. Three split
lines are visible in both (a) and (b). We remove one split line and insert it in
another location of the hierarchy. This is a poor approach to reordering because
it can dramatically change the location of objects on the screen if relative values
are not fixed appropriately. In Figure (a), the root split line B is set to a relative
position of 0.9. Both children, A and C of the root have a relative position of
0.5. In Figure (b), we show the hierarchy after transposing the right child C with
the root B from (a). There is a dramatic shift in cell layout as a result of this
transposition that may cause confusion for the user.

dren are positioned at the default of 0.5. Because of the hierarchical nature of the

accordion layout, the entire subtree on both sides of the new root will experience

a significant shift in its on-screen location if we swap the root with the right child

node, as demonstrated in Figure 4.12.

Chapter 4. Approach and Algorithms 85

The problem of this dramatic shift could be fixed with additional bookkeep-

ing operations in the split line hierarchy. However, there is a simpler alternative.

Instead of moving the split lines, references can be swapped in the gridding data

structures. This is the approach we have pursued in our implementation of data

reordering.

4.7.2 Our Approach

As described in Section 4.2 we handle rows and columns differently. The row split

lines maintain a pointer to a row object, and the row object has a back pointer to

its corresponding split line. We can trivially relocate rows by swapping these two

pointers with the corresponding pointers on another device. This makes the actual

swap an O(1) operation on the data structures. To display the results a redraw must

be performed.

We avoid having to modify each row object during a column reorder by storing

the ordering of columns as a global structure. During rendering, a row object can

lookup the position of a given cell by keying the name of that cell against this

global hash table which returns an integer value representing the cell’s column.

We also maintain a list structure of column names for drawing the column labels.

When a column is reordered, it is necessary to rebuild the list at O(n) cost, where

n is the number of columns. This operation must be coupled with a fix to the hash

table structure that allows the O(1) lookup of column index numbers, another O(n)

operation. Although the column reorder operation has a worst case run time of

O(2n), where n represents the number of columns, we know that n is bounded to

less than one thousand and typically is in the dozens, making this a trivial operation

despite the high complexity cost. The performance benefits of O(1) lookups during

rendering offset the up front expense.

86

Chapter 5

Results

In this chapter we present the qualitative and quantitative results from the LiveRAC

visualization system. In Section 5.1 we examine the performance of operations on

the split line tree. Section 5.2 presents and discusses qualitative results using the

LiveRAC application with real network operation centre data.

5.1 Performance

Maintaining interactive performance in LiveRAC depends on the underlying split

line infrastructure, rendering operations, and statistical graphic drawing time.

5.1.1 Split Line Data Structure

The split line data structure contains the largest number of data elements in Liv-

eRAC. Typical operations on this data structure include: a shallow partial traversal

while building the partitioned tree for rendering as discussed in Section 2.4, finding

nodes by index, finding index numbers for nodes and finding node bounds. Insert

and delete operations are less common, and therefore we accept a higher run time

cost to pre-compute and cache values that are required during rendering to improve

interactive performance. The performance of common split line tree operations is

summarized in Table 5.1 and will be discussed in more detail below.

Because node bounds are cached during insert and delete operations, lookups

Chapter 5. Results 87

Table 5.1: Complexity for split line tree operations

Operation Significant Operation Cost

Find node bounds 1
Find node by index log n
Find index of node log n

Insert node 9 log n
Delete node 12 log n

on node bounds require only one significant operation during actual rendering op-

erations. Without the cache, finding bounds would require log n significant opera-

tions for each bound. The cache is maintained during insert and delete operations

on the tree structure, with only affected nodes being updated.

All log n operations require only a descent from the root of the tree to a leaf

node. All of the accounting to support node indexes is performed during node

insert and delete operations.

The most expensive component of the insert and delete operations is updating

node bounds during tree rotations. Red-black trees require a maximum of 2 ro-

tations during insert and three rotations during delete operations. Each of these

rotations can affect a maximum of three nodes, requiring that the bounds of these

nodes be re-computed at log n cost for each. Node inserts have a base cost of 3 log

n: locating the node position to insert at (log n), updating the subtree count (log

n), and locating the bounds of the inserted node (log n).Therefore, maintaining an

accurate cache of node bounds can require in the worst case 9 log n for inserts and

12 log n for deletes, when we add in the base cost of a red-black insert and index

accounting. We suggest ways of reducing this cost in Section 6.1.

Chapter 5. Results 88

5.1.2 Rendering

We optimize rendering performance in LiveRAC by caching the most critical op-

erations and re-computing only when changes are made to the underlying split line

data structure. These caches include the bounds cache from the split line infras-

tructure, a column index cache, and a node aggregation cache. The design goal of

the PRISAD infrastructure is to partition the split line hierarchy into pixel space,

bounding rendering performance to O(p) where p is the number of pixels on a given

split line axis. LiveRAC adheres to this design goal.

5.1.3 Charts

Because most cells in LiveRAC will typically be too small to show representations

more sophisticated than simple colours, charts are not as critical to the performance

of the application as the split line structure. Even on a large display it is difficult

to have more than a few dozen charts visible at any given time. However, because

charts can be complex visual objects, care was taken to optimize the performance

of the charting library.

To achieve interactive rendering speeds, jGLChartUtil uses the simplest data

structures possible. Data is stored in arrays using the primitive type double, rather

than in more flexible but slower object wrappers and dynamic data structures. The

charting utility was written to do the minimum amount of layout possible. All

representation awareness is maintained outside of the charting library. The only

area-aware components of jGLChartUtil are the scalars for drawing the chart, auto

font sizing and label collision detection. The charting library detects changes to

these underlying data or charting options and rebuilds the chart on demand.

Chapter 5. Results 89

5.1.3.1 Chart Meta-Data Caching

All meta-data required by the chart is computed once and cached. This includes in-

formation with respect to the scale of the axis, labels, legends and positions within

the chart co-ordinate system. The cache is marked as dirty when updates are made

to the individual data series. Dirty markers are maintained for each data series sep-

arately, so a modification to one data series will require only that data series to be

re-evaluated. Resize operations on the chart do not require the rebuilding of any

data series meta-data. All data series meta-data computations are O(d) worst case,

where d is the number of data points in the chart.

5.1.3.2 Drawing

Chart drawing operations without labels are O(d) where d is the number of data

points in the chart, plus a fixed cost for setting up the rendering.

Charts are drawn using OpenGL and are stored as display lists. Display lists

cache OpenGL instructions on the graphics card, which can result in significant

performance improvements on newer graphics hardware. Using a 3GHz Pentium

IV system, a chart with three data series of 100 data points takes under 50ms for

the first draw, and under 5ms for subsequent redraws. Typical time for rendering a

cached draw list is under 1 ms.

If the chart is resized, it may be necessary to re-compute chart meta-data, and

recreate the display list. Although a complete redraw of the chart is fast, we can op-

timized further by scaling the chart to fit the new dimensions instead of redrawing

if the change is only a few pixels, making the distortion almost invisible. Because

navigation activities on one side of the display may have only minor effects on the

size of objects on the other side of the display, small changes to charts can be quite

common.

Chapter 5. Results 90

5.2 Discussion

Although more work is needed for LiveRAC to become a software package that can

be deployed to end users, we are able to make a number of observations based on

the current state of the application. Performance is quite good. Navigation actions

are smooth, and the only visible delay in chart loading is retrieving data from the

SWIFT server. When loading aggregate alarm and statistic data in queries with a

very large time range, such as a week or more of data, the query can take over a

second. Although this could stand improvement, the amount of data that must be

parsed on the server side dictates that some perceivable delay will always exist on

large queries.

Positive feedback from users is encouraging, as is enthusiasm for seeing this

research develop into a tool which can be deployed in the field. That administrators

feel that context has value for situational awareness and navigation is an important

validation of our focus+context approach to addressing this visualization challenge.

5.2.1 Qualitative Results

LiveRAC has been developed using an iterative process which has consistently

involved personnel from a Network Operations Centre at AT&T and feedback from

researchers familiar with creating visualizations for this domain. During the early

stages a first generation mock-up prototype showing the capabilities of semantic

zoom in accordion drawing was presented, using randomly generated data. The

positive feedback gleaned from this first generation system, and the dialog that

was generated, have guided the evolution of the LiveRAC prototype.

The most salient results for LiveRAC are the discovery of real world conditions

using the tool. Using LiveRAC we have been able to discover the following:

• Variance in /var debris accumulation and scheduled cleanup patterns

Chapter 5. Results 91

• Evidence of idle processes on some web servers

• Cyclical load patterns

• Uneven distribution of load across clusters

• Impact of web server load on filers

Feedback regarding the prototype has been positive. A senior manager at

AT&T has said the tool has promise as a next generation platform for their ex-

ecutive dashboard of data centre operations. Funding for the project is ongoing

and the prototype will continue to evolve.

5.2.2 Visual Case Study

In this section we document how the LiveRAC application can be used to examine

and diagnose problems on a large web farm. The data we are examining is real, but

names have been obfuscated for reasons of confidentiality. During the monitoring

period, the web farm we are examining was under heavy web load due to a large

sporting event.

Chapter 5. Results 92

Figure 5.1: This screen capture displays 5 days worth of alarm and metric data.
No focus regions have been selected.

Figure 5.2: The user selects a region to stretch. Using the group bar located on
the far left of the display, it is possible to tell that this entire region represents a
single customer grouping.

Chapter 5. Results 93

Figure 5.3: The user expands the region sufficiently to reveal a series of spark
lines. We can see some interesting trend information in the CPU and Processes
columns.

Figure 5.4: The user selects another region from the same customer grouping.

Chapter 5. Results 94

Figure 5.5: Periods of heavy CPU utilization are visible on several of the servers
in the web farm as downward pointing spikes on the idle CPU chart. Note the cor-
responding jump in number of processes on these machines. The servers closer to
the top of the screen capture did not experience similar load spikes in CPU, indi-
cating an imbalance in load distribution. Also of interest is the column indicating
the use of /var. The systems towards the top of the screen capture show periodic
growth and cleanup in the use of this file system, whereas the systems below do
not. This could indicate configuration differences between the systems.

Chapter 5. Results 95

Figure 5.6: A region of web servers is selected to expand for more detailed in-
formation. The machines selected have been chosen to use as baseline systems to
compare against the more unusual behaviours from the systems located below.

Figure 5.7: The user has expanded i35034web005 and i35034web006. We see
more details of server behaviour during the selected time range. The user has now
selected one of the web servers that exhibited unusual behaviour, and prepares to
expand it. The legend is not yet visible.

Chapter 5. Results 96

Figure 5.8: The user has expanded i35034web021. We now have more details
on the extent of the process spike, and can see the system was at 100% utilization
from Friday 16 until Sat 17 on the chart. There were spikes at corresponding
periods on the baselines system but not to nearly the same extent. Also, notice
that even though the load reduced on Sat 17 for i35034web021, the number of
processes has stayed high. This may indicate apache is not cleaning up idle server
threads, a potential performance problem.

Chapter 5. Results 97

Figure 5.9: Near the top of the screen capture the user selects two of the NFS
filers associated with the web farm. These filers provide the disk storage for the
web farm.

Figure 5.10: The NFS filers experienced an increased frequency of load spikes
starting around the same period as i35034web021 experienced heavy CPU uti-
lization. However, neither NFS filer approached capacity, indicating there were
sufficient resources to cope.

98

Chapter 6

Conclusions and Future Work

6.1 Future Work

Interaction with the LiveRAC application suggests a number of directions which

could improve the value of the tool to network administrators and management

users. We have divided these directions into three categories: interaction, data

processing and performance.

6.1.1 Interaction

Although the accordion drawing interaction technique offers the advantages of con-

text and a smooth navigation metaphor, the interface does have a significant learn-

ing curve. Adding capabilities to automatically expand regions of the display us-

ing keyboard shortcuts, for example by hotkeying certain groups of devices, would

make it easier for administrators to quickly look at a group of devices.

Administrators may want to lock the application to view a fixed set of devices

and alarm bundles. For example, an administrator may be responsible for only

a single customer. An option to specify explicitly which machines, alarms and

metrics are to be displayed would help filter data for users who have specific areas

of responsibility or who are only interested in a narrow subset of the system.

Currently row and column reordering takes place using external dialogs. This

offers the advantage of being easier to use because the user can perform the reorder-

Chapter 6. Conclusions and Future Work 99

ing irrespective of compressed regions. However, the user should be permitted to

interact directly with rows and columns in the accordion drawing view. Using a

lensing technique that spreads the region directly beneath the cursor when the user

is dragging a column or row to a new location it should be possible to mitigate

some of the difficulties posed by a direct manipulation technique.

LiveRAC currently permits users to build columns which represent aggregates

of multiple metrics or alarms, called bundles. This functionality could extend to

allowing the user to add groups of devices together, and to average the values from

this group into aggregate statistics for each bundle. This provides a good view of

the state of closely related devices, such as a web farm.

LiveRAC does not currently allow the user to view actual alarm text, or values

of the statistic data, even though this information is stored in memory. Adding a

separate panel or window for viewing raw data elements in a table would provide

access to this low-level information which may be valuable during deep analysis.

6.1.2 Data Processing

Currently the SWIFT system creates a running average of all gathered statistics.

This trend information is stored for different time scales, such as days, weeks and

months. Using this data provides both an excellent baseline for making compar-

isons against recorded data, and a method for conducting predictive analytics by

projecting the trends into the future. This functionality could be further extended to

alarm data, perhaps leading to a system that de-prioritizes alarms that are expected

on a daily basis, reducing operator workload.

Currently there is no correlation computation performed between alarm events

and metrics. An obvious next step is to add causal analysis, to determine if there is

a significant relationship between when alarm events are generated and the under-

Chapter 6. Conclusions and Future Work 100

lying state of the monitored system. The result may be ‘hybrid’ cells which map

both alarm and supporting statistical information.

6.1.3 Performance

As described in Section 5.1.1, split line bounds are re-computed with every add and

remove operation to the split line axis. This allows us to improve rendering perfor-

mance at the expense of an up-front charge when the split line tree is modified. An

alternative solution would be to store a modification count on the split line axis,

and lazily compute bounds as needed, storing the index of when each bound was

computed in the split line object, and caching the bounds. Because many split lines

are never actually rendered if they fall beneath the partitioning range, this might

offer a significant performance improvement in very large data sets at the expense

of increased memory usage and a slow initial rendering after data structure mod-

ification. The cost of significant insert and delete operations would drop to 3 log

n.

6.2 Conclusion

We have presented LiveRAC, a focus+context visualization system for monitoring

large collections of networked devices. The system scales to thousands of network

devices, dozens of monitored metrics and alarm types and can display data ranging

over a period of months. LiveRAC supports NOC operations staff by providing

situational awareness in parallel to other activities that require detail views such as

incident investigation and capacity planning.

We have modified the split line data structure for logarithmic time insert and

delete operations, allowing data elements to be added and removed from the visu-

alization at run time. Data reordering significantly improves the ability of users to

Chapter 6. Conclusions and Future Work 101

perform side-by-side comparisons for regions of interest [61]. The dynamic split

line code is fully integrated into PRISAD [34] and can be used for future accordion

drawing applications that require this capability.

We have created a library and infrastructure for semantic zoom which allows

multiple data representations to be mapped into each cell created by the split line

grid. These representations can be specified hierarchically to allow the optimal

representation to be displayed for different focus levels. The library is generic

and can be used for extensions to the LiveRAC visualization system and for future

projects.

Quantitative measurements and qualitative feedback indicate that LiveRAC is

a scalable, effective visualization system for monitoring system metric and alarm

data in complex NOC environments.

102

Bibliography

[1] Kulsoom Abdullah, Chris Lee, Gregory Conti, John A. Copeland, and John

Stasko. IDS RainStorm: Visualizing ids alarms. In VIZSEC ’05: Proceed-

ings of the IEEE Workshops on Visualization for Computer Security, page 1,

Washington, DC, USA, 2005. IEEE Computer Society.

[2] Analysis Console for Intrusion Databases (ACID). downloadable at:

http://acidlab.sourceforge.net/, cited July 26, 2006.

[3] Christopher Ahlberg and Ben Shneiderman. Visual information seeking: tight

coupling of dynamic query filters with starfield displays. In CHI ’94: Pro-

ceedings of the SIGCHI conference on Human factors in computing systems,

pages 313–317, New York, NY, USA, 1994. ACM Press.

[4] Robert Ball, Glenn A. Fink, and Chris North. Home-centric visualization

of network traffic for security administration. In VizSEC/DMSEC ’04: Pro-

ceedings of the 2004 ACM workshop on Visualization and data mining for

computer security, pages 55–64. ACM Press, 2004.

[5] Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. The continuous

zoom: a constrained fisheye technique for viewing and navigating large infor-

mation spaces. In UIST ’95: Proceedings of the 8th annual ACM symposium

on User interface and software technology, pages 207–215, New York, NY,

USA, 1995. ACM Press.

Bibliography 103

[6] Richard A. Becker, Stephen G. Eick, and Allan R. Wilks. Visualizing network

data. IEEE Transactions on Visualization and Computer Graphics, 1(1):16–

28, 1995.

[7] Dale Beermann, Tamara Munzner, and Greg Humphreys. Scalable, robust

visualization of very large trees. In EuroVis 2005, 2005.

[8] James R. Beniger and Dorothy L. Robyn. Quantitative graphics in statistics:

A brief history. American Statistician, 32(1):1–11, 1978.

[9] J. Bertin. Graphics and graphic information processing. Walter de Gruyter,

Berlin, Germany, 1981.

[10] J. Bertin. Semiology of Graphics. University of Wisconsin Press, 1983.

[11] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.

DeRose. Toolglass and magic lenses: the see-through interface. In SIG-

GRAPH ’93: Proceedings of the 20th annual conference on Computer graph-

ics and interactive techniques, pages 73–80, New York, NY, USA, 1993.

ACM Press.

[12] Stuart Card and David Nation. Degree-of-interest trees: A component of an

attention-reactive user interface. In Proceedings of Advanced Visual Inter-

face, pages 231–246, 2002.

[13] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia.

3-dimensional pliable surfaces: for the effective presentation of visual in-

formation. In UIST ’95: Proceedings of the 8th annual ACM symposium

on User interface and software technology, pages 217–226, New York, NY,

USA, 1995. ACM Press.

Bibliography 104

[14] Sheelagh Carpendale, John Ligh, and Eric Pattison. Achieving higher mag-

nification in context. In UIST ’04: Proceedings of the 17th annual ACM

symposium on User interface software and technology, pages 71–80, New

York, NY, USA, 2004. ACM Press.

[15] Mei C. Chuah, Steven F. Roth, Joe Mattis, and John Kolojejchick. SDM:

Selective dynamic manipulation of visualizations. In ACM Symposium on

User Interface Software and Technology, pages 61–70, 1995.

[16] William S. Cleveland. The elements of graphing data. Wadsworth Publ. Co.,

Belmont, CA, USA, 1985.

[17] Clumon - The Cluster Monitoring System. http://clumon.ncsa.uiuc.edu/, cited

Aug 10, 2006.

[18] Gerald Combs. Ethereal. downloadable at: http://www.ethereal.com/, cited

July 5, 2006.

[19] Kenneth C. Cox, Stephen G. Eick, and Taosong He. 3D geographic network

displays. SIGMOD Rec., 25(4):50–54, 1996.

[20] Stephen G. Eick, Michael C. Nelson, and Jerry D. Schmidt. Graphical analy-

sis of computer log files. Commun. ACM, 37(12):50–56, 1994.

[21] Stephen G. Eick, Joseph L. Steffen, and Jr. Eric E. Sumner. Seesoft-a tool

for visualizing line oriented software statistics. IEEE Trans. Softw. Eng.,

18(11):957–968, 1992.

[22] Jean-Daniel Fekete. The InfoVis Toolkit. In Proc. of InfoVis ’04, pages 167–

174, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

Bibliography 105

[23] G. W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 16–23,

New York, NY, USA, 1986. ACM Press.

[24] Ganglia. http://ganglia.sourceforge.net/, cited Aug 10, 2006.

[25] David Gilbert. jFreeChart. downloadable at: http://www.jfree.org/jfreechart/,

cited July 4, 2006.

[26] Martin Graham and Jessie Kennedy. Exploring and examining assessment

data via a matrix visualisation. In AVI ’04: Proceedings of the working con-

ference on Advanced visual interfaces, pages 158–162, New York, NY, USA,

2004. ACM Press.

[27] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for

interactive information visualization. In CHI ’05: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 421–430, New

York, NY, USA, 2005. ACM Press.

[28] I. Herman, G. Melancon, and M.S. Marshall. Graph visualization and navi-

gation in information visualization: A survey. IEEE Transactions on Visual-

ization and Computer Graphics, 6(1):24–43, 2000.

[29] Harry Hochheiser and Ben Shneiderman. Interactive exploration of time se-

ries data. In DS ’01: Proceedings of the 4th International Conference on

Discovery Science, pages 441–446, London, UK, 2001. Springer-Verlag.

[30] Kasper Hornbæk, Benjamin B. Bederson, and Catherine Plaisant. Naviga-

tion patterns and usability of zoomable user interfaces with and without an

overview. ACM Trans. Comput.-Hum. Interact., 9(4):362–389, 2002.

Bibliography 106

[31] HP Inc. HP OpenView. http://www.managementsoftware.hp.com/, cited July

5, 2006.

[32] IBM Ltd. IBM Tivoli NetView. http://www.ibm.com/software/tivoli/products/netview/,

cited July 5, 2006.

[33] Van Jacobson, Craig Leres, and Steven McCanne. TCPdump public reposi-

tory. http://www.tcpdump.org/, cited December 13, 2004.

[34] James Slack and Kristian Hildebrand and Tamara Munzner. PRISAD: A par-

titioned rendering infrastructure for scalable accordion drawing. In INFOVIS

’05: Proceedings of the Proceedings of the 2005 IEEE Symposium on Infor-

mation Visualization, page 6, Washington, DC, USA, 2005. IEEE Computer

Society.

[35] The JOGL API Project. https://jogl.dev.java.net/, cited August 6, 2006.

[36] Susanne Jul and George W. Furnas. Critical zones in desert fog: aids to

multiscale navigation. In UIST ’98: Proceedings of the 11th annual ACM

symposium on User interface software and technology, pages 97–106, New

York, NY, USA, 1998. ACM Press.

[37] Robert Kincaid. VistaClara: an interactive visualization for exploratory anal-

ysis of DNA microarrays. In SAC ’04: Proceedings of the 2004 ACM sym-

posium on Applied computing, pages 167–174, New York, NY, USA, 2004.

ACM Press.

[38] Robert Kincaid and Heidi Lam. Line graph explorer: scalable display of

line graphs using focus+context. In AVI ’06: Proceedings of the working

conference on Advanced visual interfaces, pages 404–411, New York, NY,

USA, 2006. ACM Press.

Bibliography 107

[39] Hideki Koike and Kazuhiro Ohno. Snortview: visualization system of snort

logs. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on

Visualization and data mining for computer security, pages 143–147, New

York, NY, USA, 2004. ACM Press.

[40] Qiang Kong. Visual mining of powersets with large alphabets. Master’s the-

sis, University of British Columbia, 201-2366 Main Mall, Vancouver, B.C.,

V6T 1Z4, May 2006.

[41] Eleftherios E. Koutsofios, Stephen C. North, Russell Truscott, and Daniel A.

Keim. Visualizing large-scale telecommunication networks and services

(case study). In VIS ’99: Proceedings of the conference on Visualization

’99, pages 457–461, Los Alamitos, CA, USA, 1999. IEEE Computer Society

Press.

[42] Kiran Lakkaraju, Ratna Bearavolu, Adam Slagell, William Yurcik, and

Stephen North. Closing-the-loop in NVisionIP: Integrating discovery and

search in security visualizations. In VIZSEC ’05: Proceedings of the

IEEE Workshops on Visualization for Computer Security (VizSec’05), page 9,

Washington, DC, USA, 2005. IEEE Computer Society.

[43] Kiran Lakkaraju, William Yurcik, and Adam J. Lee. NVisionIP: net-

flow visualizations of system state for security situational awareness. In

VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualiza-

tion and data mining for computer security, pages 65–72. ACM Press, 2004.

[44] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey P. Lankford, and

Donna M. Nystrom. Visually mining and monitoring massive time series.

In KDD ’04: Proceedings of the tenth ACM SIGKDD international confer-

Bibliography 108

ence on Knowledge discovery and data mining, pages 460–469, New York,

NY, USA, 2004. ACM Press.

[45] Sasa Markovic and Arne Vandamme. jRobin. downloadable at:

http://www.jrobin.org/, cited July 4, 2006.

[46] Peter McLachlan. jGLChartUtil. downloadable at:

http://www.sourceforge.net/projects/jglchartutil, cited July 4, 2006.

[47] Tamara Munzner, François Guimbretiére, Serdar Tasiran, Li Zhang, and Yun-

hong Zhou. Treejuxtaposer: scalable tree comparison using focus+context

with guaranteed visibility. ACM Trans. Graph., 22(3):453–462, 2003.

[48] Dmitry Nekrasovski, Adam Bodnar, Joanna McGrenere, François Guim-

bretiére, and Tamara Munzner. An evaluation of pan & zoom and rubber

sheet navigation with and without an overview. In CHI ’06: Proceedings

of the SIGCHI conference on Human Factors in computing systems, pages

11–20, New York, NY, USA, 2006. ACM Press.

[49] Tor Norretranders. The User Illusion. Viking, 1999.

[50] OpenNMS. http://www.opennms.org/, cited July 5, 2006.

[51] Ken Perlin and David Fox. Pad: an alternative approach to the computer

interface. In SIGGRAPH ’93: Proceedings of the 20th annual conference on

Computer graphics and interactive techniques, pages 57–64, New York, NY,

USA, 1993. ACM Press.

[52] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. SpaceTree:

Supporting exploration in large node link tree, design evolution and empiri-

cal evaluation. In INFOVIS ’02: Proceedings of the IEEE Symposium on In-

Bibliography 109

formation Visualization (InfoVis’02), page 57, Washington, DC, USA, 2002.

IEEE Computer Society.

[53] Ramana Rao and Stuart K. Card. The table lens: merging graphical and

symbolic representations in an interactive focus + context visualization for

tabular information. In CHI ’94: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 318–322, New York, NY, USA,

1994. ACM Press.

[54] George G. Robertson and Jock D. Mackinlay. The document lens. In UIST

’93: Proceedings of the 6th annual ACM symposium on User interface soft-

ware and technology, pages 101–108, New York, NY, USA, 1993. ACM

Press.

[55] Marty Roesch. SNORT. downloadable at: http://www.snort.org/, cited July

26, 2006.

[56] RRDTool. http://oss.oetiker.ch/rrdtool/, cited Aug 10, 2006.

[57] Takafumi Saito, Hiroko Nakamura Miyamura, Mitsuyoshi Yamamoto, Hiroki

Saito, Yuka Hoshiya, and Takumi Kaseda. Two-tone pseudo coloring: Com-

pact visualization for one-dimensional data. In INFOVIS ’05: Proceedings of

the Proceedings of the 2005 IEEE Symposium on Information Visualization,

page 23, Washington, DC, USA, 2005. IEEE Computer Society.

[58] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretch-

ing the rubber sheet: a metaphor for viewing large layouts on small screens.

In UIST ’93: Proceedings of the 6th annual ACM symposium on User in-

terface software and technology, pages 81–91, New York, NY, USA, 1993.

ACM Press.

Bibliography 110

[59] Ben Schneiderman. Dynamic queries for visual information seeking. IEEE

Softw., 11(6):70–77, 1994.

[60] Ben Shneiderman. The eyes have it: A task by data type taxonomy for infor-

mation visualizations. In VL ’96: Proceedings of the 1996 IEEE Symposium

on Visual Languages, page 336. IEEE Computer Society, 1996.

[61] Harri Siirtola. Interaction with the reorderable matrix. In IV ’99: Proceedings

of the 1999 International Conference on Information Visualisation, page 272,

Washington, DC, USA, 1999. IEEE Computer Society.

[62] James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John.

Sequencejuxtaposer: Fluid navigation for large-scale sequence comparison in

context. In German Conference in Bioinfromatics, 2004.

[63] Robert Spence and Mark Apperley. Data base navigation: an office environ-

ment for the professional. Readings in information visualization: using vision

to think, pages 333–340, 1999.

[64] Chris Stolte, Diane Tang, and Pat Hanrahan. Query, analysis, and visualiza-

tion of hierarchically structured data using polaris. In KDD ’02: Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discov-

ery and data mining, pages 112–122, New York, NY, USA, 2002. ACM Press.

[65] Tetsuji Takada and Hideki Koike. Mielog: A highly interactive visual log

browser using information visualization and statistical analysis. In LISA ’02:

Proceedings of the 16th USENIX conference on System administration, pages

133–144, Berkeley, CA, USA, 2002. USENIX Association.

[66] Thomas H. Cormen and Charles E. Lieserson and Ronald L. Rivest. Intro-

duction to Algorithms. MIT Press, 1990.

Bibliography 111

[67] Edward Tufte. The Visual Display of Quantitative Information. Graphics

Press, first edition, 1981.

[68] Edward Tufte. Envisioning Information. Graphics Press, 1990.

[69] Edward Tufte. Beautiful Evidence. Graphics Press, first edition, 2006.

[70] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and

Narrative. Graphics Press, February 1997.

[71] Colin Ware. Information Visualization: Perception for Design. Morgan Kauf-

mann Publishers, second edition, 2004.

[72] Marc Weber, Marc Alexa, and Wolfgang Műller. Visualizing time-series on

spirals. In INFOVIS ’01: Proceedings of the IEEE Symposium on Informa-

tion Visualization 2001 (INFOVIS’01), page 7, Washington, DC, USA, 2001.

IEEE Computer Society.

[73] Jarke J. Van Wijk and Edward R. Van Selow. Cluster and calendar based vi-

sualization of time series data. In INFOVIS ’99: Proceedings of the 1999

IEEE Symposium on Information Visualization, page 4, Washington, DC,

USA, 1999. IEEE Computer Society.

[74] William Yurcik, Xin Meng, and Nadir Kiyanclar. NVisionCC: a visualization

framework for high performance cluster security. In VizSEC/DMSEC ’04:

Proceedings of the 2004 ACM workshop on Visualization and data mining

for computer security, pages 133–137, New York, NY, USA, 2004. ACM

Press.

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Terminology
	Thesis Statement
	Collaboration
	Thesis Organization

	Related Work
	Information Visualization
	Statistical Graphics
	Time Series Data
	Interaction
	Focus+Context
	Semantic Zoom

	Network and Systems Visualization Tools
	Cluster Visualization Tools
	Computer Log Visualizations
	Network Traffic Visualization
	Intrusion Detection Visualization

	SWIFT
	Accordion Drawing

	LiveRAC Overview
	Interface Components and Visual Encoding
	Data View
	Time Range Selection Panel
	Current device and Search Panel
	Reordering

	Semantic Zoom and Bundles
	Interaction & Tasks
	jGLChartUtil
	Features

	Approach and Algorithms
	Architecture
	Split Line Hierarchy
	Challenges
	Our Approach

	Aggregation
	Challenges
	Our Approach

	Semantic Zoom
	Challenges
	Our Approach

	Rendering
	Challenges
	Our Approach

	Picking
	Challenges
	Our Approach

	Reordering Data
	Challenges
	Our Approach

	Results
	Performance
	Split Line Data Structure
	Rendering
	Charts

	Discussion
	Qualitative Results
	Visual Case Study

	Conclusions and Future Work
	Future Work
	Interaction
	Data Processing
	Performance

	Conclusion

	Bibliography

