
Using Haptics to Address Mobile Interaction Design Challenges

Protoyping and User Evaluation with a Handheld Tactile Display

by

Joseph Kurachi Luk

B.S., Cognitive Science, University of California – San Diego, 1999

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

July 2006

© Joseph Kurachi Luk, 2006

ii

Abstract

Current user interfaces for mobile and handheld computing platforms prin-

cipally offer user interaction through the visual and auditory modalities.

However, mobile devices are often used in contexts where vision and hearing

are impaired. At the same time, more and more functionality is being layered

upon mobile devices, while the physical size of the display and keypad has

remained small. This limits the rate of information that can be exchanged

between the user and the system, and poses an interaction design challenge.

Haptics offers a potential solution by providing an additional modality that

is also especially well-suited to the demands of portable, personal devices

that are in contact with the user’s skin.

In this work we identify ways that interaction through the sense of touch

can enhance mobile user interfaces. We describe the synergistic process of

design of user interaction concepts and novel handheld tactile display hard-

ware based on the principle of piezoelectric actuated lateral skin stretch.

Following the realization of the prototype hardware, we performed percep-

tual characterization studies to determine the expressive capabilities of the

new device in the hands of a human user. Informed by the results from

the initial user studies, we built and tested a handheld browser applica-

tion with tactile enhancement. The results of user testing with the browser

Abstract iii

application suggest that the current implementation of directional tactile

stimulation alone is not sufficient to enhance performance (task time) in

spatial navigation; however, the user study also brought to light some en-

couraging qualitative feedback and ways to improve the interaction design

and haptic feedback.

By conducting a full iteration of a user-centred design process in hap-

tics, we have provided a case study to inform future development efforts,

a flexible platform for prototyping, and an indication of promising future

directions for using haptics to solve mobile interaction design challenges.

Joseph Kurachi Luk

joe@josephluk.com

iv

Contents

Abstract . ii

Contents . iv

List of Tables . xii

List of Figures . xiii

Glossary . xvi

Acknowledgements . xix

1 Introduction . 1

1.1 Problems with Contemporary Mobile Interaction Design . . . 2

1.1.1 Sensory Bandwidth Limitation 2

1.1.2 Environmental Competition for Visual and Auditory

Attentional Resources 4

1.2 Thesis Research Questions . 7

1.3 Thesis Approach and Overview 8

2 Related Work . 12

2.1 Mobile Interface Design Challenges 12

2.2 Haptic Augmentation for Multimodal Enhancement 13

Contents v

2.3 Handheld Haptics . 14

2.4 Perceptual Evaluation of Haptic Devices 16

3 Design Concepts . 18

3.1 Electronic Book Reader with Vibrotactile Feedback 19

3.2 Early 1-D Navigation Concepts 21

3.3 Application Concepts . 26

3.3.1 List selection: Ringer mode application 28

3.3.2 Scrolling: Browser application 31

3.3.3 Direction signalling: Assisted navigation application . 33

3.3.4 Display of background status information and alerts . 34

3.3.5 Minimally Intrusive Interface for Rich Navigation of

Music . 35

4 Handheld Prototype Development 39

4.1 Design Philosophy . 40

4.1.1 Linear slide-mounted tactile display using piezoelec-

tric actuated lateral skin stretch 40

4.1.2 Use of off-the-shelf hardware components 41

4.1.3 Handheld operation while connected to a host PC . . 42

4.1.4 Author’s Contribution 42

4.2 System Overview . 43

4.3 Output Transducers . 43

4.3.1 Tactile Output Device (Tactile Display) 43

4.3.2 Video Display . 48

4.3.3 Author’s Contribution 48

4.4 Sensors . 49

Contents vi

4.4.1 Slider Position Sensor 49

4.4.2 Push to Select Sensor 50

4.4.3 Author’s Contribution 50

4.5 Interface Electronics . 50

4.5.1 Author’s Contribution 51

4.6 Power Supplies . 51

4.6.1 Author’s Contribution 52

4.7 Control Software . 52

4.7.1 Input and Output Timings 53

4.7.2 Author’s Contribution 57

4.8 Tactile Flow Rendering . 57

4.9 Visualization of Tactile Stimuli 61

4.9.1 Problem . 61

4.9.2 Novel Graphical Representations 62

4.9.3 Shaded Graph for Voltage Signal 62

4.9.4 Skin Stretch Image . 64

4.9.5 Automated Tools for Design 66

4.9.6 gif2hapticon Tool 68

4.9.7 Author’s Contribution 70

5 Perceptual Characterization 72

5.1 Introduction . 72

5.2 Author’s Contribution . 73

5.3 Study 1 - Range of Perceivable Stimulus Speed 73

5.3.1 Speed Study - Experiment Design 74

5.3.2 Speed Study - Procedure 74

5.3.3 Speed Study - Results 76

Contents vii

5.3.4 Speed Study - Discussion 77

5.4 Study 2 - Haptic Icon Discrimination Experiment 77

5.4.1 MDS Study - Experimental Design 78

5.4.2 MDS Study - Procedure 79

5.4.3 MDS Study - Results 80

5.5 Study 3 - Subgroup MDS Experiment 82

5.5.1 Subgroup MDS - Experimental Design 83

5.5.2 Subgroup MDS - Procedure 83

5.5.3 Subgroup MDS - Results 83

5.6 Summary of Perceptual Characterization Findings 85

5.6.1 Qualitative Findings 86

5.7 Perceptual characterization findings for application design . . 87

5.7.1 List selection . 87

5.7.2 Scrolling . 87

5.7.3 Direction signalling . 88

5.7.4 Alerts and background status indicators 88

6 Browser Prototype . 90

6.1 Design Goals . 91

6.2 Low-Fidelity Prototype: Image-Based Browser 92

6.2.1 Design . 92

6.2.2 Implementation . 94

6.2.3 Image Browser User Test 95

6.3 Haptic Display of Web Pages 96

6.3.1 The Haptic Page Map 96

6.3.2 Mapping Haptic Icons to Page Elements 97

6.3.3 Spatial Layout . 99

Contents viii

6.4 Navigation Model . 100

6.4.1 Cursor Position . 100

6.4.2 Rendering Haptic Icons 101

6.4.3 Page Element Focusing 102

6.4.4 Graphical Display Scrolling 102

6.4.5 Control of Cursor Movement 103

6.4.6 Spring return to centre 105

6.4.7 Hybrid Velocity / Position Control Model 108

6.4.8 Reduction of Slider Jitter 113

6.4.9 Reduction of High-Amplitude, High-Frequency Outputs115

6.4.10 Speed Limitation . 116

6.5 Browser Software Architecture 123

6.5.1 Browser Client . 126

6.5.2 Browser Server . 127

6.5.3 Interprocess Communication and Timing 131

6.5.4 Browser Haptic Icons 132

6.6 Known Software Issues and Caveats 132

6.6.1 Support for Element Height 132

6.6.2 Opportunities for further software optimization 133

7 Browser User Evaluation . 134

7.1 Aims . 135

7.2 Study Design . 136

7.2.1 Study Variables . 136

7.2.2 Normalization for Task Difficulty 137

7.3 Methodology . 139

7.3.1 Recruitment of Study Participants 140

Contents ix

7.3.2 User Test Environment 141

7.3.3 Briefing and Collection of Demographic Data 144

7.3.4 Task Blocks . 145

7.3.5 Training Sessions . 148

7.3.6 Main Data Collection Session 148

7.3.7 Post-Task Assessment 148

7.4 Pilot Study . 148

7.5 Stimuli Used in the Study . 149

7.6 Distraction Task . 152

7.7 Browser Experiment Software 154

7.8 Quantitative Results . 158

7.8.1 Effect of Condition on Task Time 158

7.8.2 Individual Subject Differences in Performance 158

7.8.3 Effect of Task on Task Time 160

7.8.4 Effect of Task × Condition on Task Time 160

7.8.5 Validation of Task Difficulty Normalization 163

7.8.6 Analysis Using Normalized Task Time 165

7.8.7 Learning / Practice Effects 166

7.8.8 Quantitative Validation of Distraction Task 168

7.9 Qualitative Results . 168

7.9.1 Pre-Task Attitudes Survey 168

7.9.2 Qualitative Evaluation of the Distraction Task 171

7.9.3 Qualitative Evaluation of the Navigation Task 176

7.10 Discussion . 177

8 Conclusion and Future Work 182

8.1 Summary of Key Contributions 182

Contents x

8.1.1 Identification of a novel multimodal approach to ad-

dressing limitations in mobile user interfaces 182

8.1.2 Development of a new handheld haptics hardware plat-

form . 183

8.1.3 Evolution of application design concepts based on user

studies and hardware development 184

8.1.4 Method for rapid prototyping and graphical represen-

tation of tactile stimuli 184

8.1.5 Perceptual characterization of a novel miniature piezo-

electric tactile display 185

8.1.6 Handheld browser application with tactile enhancement185

8.1.7 Method for usability testing of mobile applications . . 186

8.1.8 Case study of a user interaction design process for

haptics . 186

8.2 Research Questions . 187

8.3 Future Work: Application Designs for Further Investigation . 191

8.3.1 Applications Involving Shape Rendering 192

8.3.2 General Haptic Icon Applications 193

8.3.3 Spatial Signalling . 193

8.3.4 Browser Improvements 194

8.4 Future Work: Hardware Improvements 195

8.5 Conclusion . 196

Bibliography . 199

A Browser User Evaluation Documents 207

A.1 Task Inventory . 213

Contents xi

B Browser User Study Supplemental Data 218

C gif2hapticon Code . 223

D Browser Prototype Code . 228

D.1 Tactile I/O Loop . 228

D.1.1 DataUpdateThread.h 228

D.1.2 DataUpdateThread.cpp 229

D.1.3 HapticPageMap.h . 231

D.1.4 HapticPageMap.cpp 233

D.1.5 BrowserShared.h . 243

D.1.6 BrowserShared.cpp . 244

D.1.7 BrowserXMLBits.h . 245

D.1.8 BrowserXMLBits.cpp 246

D.1.9 main.cpp . 251

D.2 Visual Browser Component 255

D.2.1 browser.js . 256

D.2.2 webscroller.css . 265

D.2.3 browser.xul . 265

D.2.4 readydialog.xul . 266

D.2.5 IMyComponent.idl . 266

D.2.6 MyComponent.cpp . 267

E Browser Experiment Software Code 270

E.1 taskloop.js . 271

E.2 taskloop.html . 278

E.3 ajaxcomponent.js . 280

E.4 reinforce.js . 282

xii

List of Tables

5.1 Stimuli used in the MDS studies 78

6.1 Values of hybrid velocity / position control model parameters. 119

6.2 Settings for the slider smoothing function using historical av-

eraging. 120

7.1 Browser Study Participant Demographics 140

7.2 Measured Task Time by condition 159

7.3 Measured Task Time by Subject 162

7.4 Normalized Task Time by condition 166

7.5 Distraction Task Performance Data 170

xiii

List of Figures

1.1 Example Navigation Tree Problem 5

1.2 Thesis Research Overview . 9

3.1 eBook Reader with Vibrotactile Feedback 20

3.2 Examples of Existing Linear Touch Input Devices 23

3.3 Bidirectional Linear Touch Sensor / Tactile Output Schematic 24

3.4 Simulated Force Feedback Using a Moving Bump 27

3.5 Application Design Scenarios 28

3.6 List Selection Application . 29

3.7 Low-Fidelity Foam Mockup 30

3.8 Browser Application . 32

3.9 Music Navigation Application 37

4.1 Hardware Overview . 44

4.2 Hardware Overview, March 2005 45

4.3 Tactile Display . 46

4.4 Position and Push-to-Select Sensors 49

4.5 Empirical Timing Measurements 54

4.6 Control Software Flowchart 56

4.7 Skin Stretch Patterns in Natural and Artificial Tactile Flow

Stimuli . 58

List of Figures xiv

4.8 A Millipede . 60

4.9 Visualization of Tactile Stimuli 63

4.10 Photoshop Custom Filter settings for automated stretch im-

age generation . 67

4.11 Image-Based Haptic Icon Design Workflow 71

5.1 Examples of Stimuli Used for the Speed Study 75

5.2 Speed Study Results . 76

5.3 Waveforms used in the MDS Studies 79

5.4 Results from the MDS Study 81

5.5 Results from the Subgroup MDS Study 84

6.1 Image Browser . 93

6.2 Haptic Page Map . 98

6.3 Scrolling Margins . 104

6.4 Slider Control Modes . 106

6.5 Force Feedback Using Springs 111

6.6 Velocity / Position Control State Diagram 114

6.7 Subtaxel Rendering Technique 121

6.8 Effective Icon Design for Subtaxel Rendering 122

6.9 Browser Software Architecture 125

6.10 Haptic Page Map and Icons Model 130

7.1 Browser User Test Environment 142

7.2 Haptic Icons Used in the Browser User Study 150

7.3 Effect of Task on Task Time 161

7.4 Effect of Task and Condition on Task Time 164

List of Figures xv

7.5 Relationship of Task Time with Presentation Order (Set of 3

Blocks) . 167

7.6 Relationship of Task Time with Presentation Order . . . 169

7.7 Results from the Pre-Task Attitudes Survey 172

7.8 Qualitative Feedback on the Distraction Task 173

7.9 Qualitative Feedback on the Navigation Task 175

xvi

Glossary

haptic icon Also known as a hapticon or tacton [10], a haptic icon is a brief,

distinctive signal delivered to the user through the haptic apparatus,

or its software representation.

High fidelity prototype As compared to low-fidelity prototyping, a

methodology for expediting the involvement of users in an interaction

design process by shifting the development effort from detailed imple-

mentation of features to early usability testing. In contrast, a high-

fidelity prototype is one which is relatively close to the final product in

terms of functionality and the level of interactivity which is supported.

piezo, piezo actuator Refers to an individual piezoelectric bending motor

element.

position control, or pControl In this mode, the scrolling motion of the

cursor or page follows the slider position directly. This type of control

is also used in jog dial or mouse wheel controls.

slider In this document, refers to the mechanism that allows the tactile

display to be moved up and down.

stretch image A graphical representation of the amount of gap between

adjacent piezo actuators at a given point in time. Assuming the user’s

Glossary xvii

finger has been in constant contact with the TD since prior to the

application of signal, the levels depicted in each location of the stretch

image correspond to the amount of relative skin displacement (“skin

stretch”) at that location on the TD. Described further in section 4.9.

subpixel rendering As used in this document, refers to the technique of

rendering graphics into an offscreen buffer with higher resolution than

the physical resolution of the display, then downsampling to the dis-

play resolution using anti-aliasing filters. For graphical displays, this

increases the effectively usable resolution at the cost of some sharp-

ness. In this document, this term does not refer to the technique of

using an LCD’s red-green-blue subpixels to increase resolution.

subtaxel rendering Equivalent to subpixel rendering for a tactile display.

tactile flow The perception of the movement of a tactile stimulus across

the skin over time. See Section 4.8.

tactile window The portion of the page map that is currently being ren-

dered to the TD. See Section 6.4.1.

taxel Just as a pixel is a logical element of a multi-element graphical display,

a taxel is a logical element of a multi-element tactile display. In the

case of the device prototype discussed in this thesis, a taxel represents

the voltage delivered to a single piezo actuator. The TD described in

this thesis therefore represents eight taxels.

TD Tactile display.

tweening In animation, refers to the creation of motion by adding inter-

mediate frames that depict a gradual progression from one state to

Glossary xviii

another. For the tactile display described in this thesis, “tweening”

refers to the successive displacement of a pattern of piezo activation

(voltage levels) across adjacent piezo actuators, to create the sensation

of tactile flow.

velocity control, or vControl In this mode, the slider position is mapped

to the scrolling velocity. Therefore, as long as the user keeps the slider

in one place, the cursor or page moves with constant velocity. This

type of control is also used in joysticks and shuttle controls.

voltage image (volt image)1 A graphical representation of the voltage

applied across the array of piezo actuators at a given point in time, as

described in section 4.9.

voltage image (volt image)2 An object in the STReSS library API which

contains data in the form of voltage levels.

XML Extensible Markup Language. A generic markup language, stan-

dardized by the W3C (World Wide Web Consortium). In the current

project, extensible documents conforming to the XML syntax are used

for various purposes including representing tactile stimuli.

XPCOM Cross Platform Component Object Model. Part of the open-

source Mozilla application platform. Used in the tactile enhanced

HTML browser (Chapter 6) for inter-process communications.

XUL XML User Interface Language. A markup language for specifying the

visual user interface components in the Mozilla application platform.

In the current project, XUL is used to customize the Mozilla browser

for use as a handheld application.

xix

Acknowledgements

I would like to acknowledge the guidance of my supervisor, Dr. Karon

MacLean, who was always a champion for her students, working tirelessly

to encourage us to do quality, meaningful research, and to overcome our

personal challenges, perfectionism included.

Much of the research described in this thesis was the result of an ex-

ceptional collaboration between laboratories at the University of British

Columbia and McGill University in Montréal. In particular, Jérôme Pasquero

and I participated in an extended exchange which resulted in numerous

learning experiences since we each brought a different, sometimes opposite,

point of view to the research problems. I am grateful to Jérôme and other

members of the McGill Haptics Lab, especially Professor Vincent Hayward,

Vincent Lévesque, and Qi Wang, for their patience in engaging me in end-

less scholarly debates, their warm hospitality, and their dedication to the

project. The contributions of Don Pavlasek and Jozsef Boka to the mechan-

ical design and fabrication are also sincerely appreciated.

The members of my thesis committee, Dr. Rodger Lea, Dr. Ron Rensink,

and especially Dr. Steven Wolfman, gave valuable feedback on this research.

Finally, I would like to express my application to Mario Enriquez for help

with the MDS testing methodology, and to Steve Yohanan for sharing his

operating system expertise.

1

Chapter 1

Introduction

Mobile, portable, and handheld computing environments offer significant

promise for the future of interactive computation. Compared to a typical

desktop computer, a mobile device enables opportunistic uses for informa-

tion that stretch the boundaries of the popular definition of data: instead of

working with documents and files, mobile devices are called upon to man-

age an increasingly varied collection of data, from voice calls to photos and

location based information snippets. The increasing popularity of mobile de-

vices also represents a continued shift away from the physical instantiation

of data and towards an increasingly miniaturized and networked medium.

Information that was once tangible, in the form of paper, magnetic tapes or

other media, is now invisibly contained within the device used to access it

or simply delivered over ubiquitous, wireless networks.

The dissociation of information from its physical encapsulation is driven

by pressures to improve portability by reducing device weight and volume.

However, interactive applications can never be completely removed from

physical constraints due to the necessity of producing a human sensory per-

cept.1 Furthermore, the history of computer user interfaces shows that
1Brain-computer interfaces enable the possibility of a completely non-physical user

interface, but are too poorly understood at the present time to consider them a viable

alternative in mobile device interaction.

Chapter 1. Introduction 2

significant progress in expanding the breadth of accessibility to computers

can be achieved when interfaces, such as the graphical user interface (GUI),

leverage the intuitive physics [38] that evolved in human beings as a means

for dealing with the environment.

The design of effective mobile information devices is thus confronted

with a classic dilemma: balancing the power of abstraction and freedom

from physical constraints against the usability advantages of a system that

interacts effectively with human beings on a natural physical scale. All too

often, increased mobility comes at the cost of decreased usability.

1.1 Problems with Contemporary Mobile

Interaction Design

The user interfaces of contemporary mobile devices suffer from sensory band-

width limitation and environmental competition for visual and auditory at-

tentional resources. Artificial haptics, incorporating synthetic tactile sig-

nalling, may be a useful tool for solving these problems.

1.1.1 Sensory Bandwidth Limitation

Throughout most of the 1990s, there was a steady decrease in the size (vol-

ume and weight) of personal mobile information devices such as mobile

phones, personal digital assistants (PDAs), media players and laptop com-

puters, spurred by steady technological progress in integration of electronic

circuits, portable power, and digital wireless transmission. However, the

trend towards miniaturization has since leveled off in many categories of

devices, despite continued progress in hardware integration and anecdotal

Chapter 1. Introduction 3

evidence from users that the portability of ever smaller devices is highly

desirable. The conventional wisdom is that input and output devices such

as keypads and screens can not be made smaller without negatively impact-

ing usability. Thus the factors limiting device portability have ceased to be

technical in nature; instead, user interface considerations now dictate the

practical limits to miniaturization of today’s mobile devices.

For the increasingly complex tasks being performed on mobile devices,

the information capacity of the small slice of the visual field covered by a

small LCD display has become a limitation. Various head-mounted displays

such as eyepieces and goggles have been developed to increase the effective

display area while retaining portability, but thus far they have not proven

widely practical because of their intrusiveness.

Similarly, most mobile information devices today include an audible

transducer and microphone input, but aside from making phone calls and

limited command-based voice recognition, information-rich auditory user in-

terfaces have yet to be demonstrated on mobile devices.

The use of multiple simultaneous sensory modalities, known as multi-

modal interaction, offers a method to increase the available user interface

bandwidth, or information volume per unit time that can be exchanged be-

tween user and device.[12] With visual and auditory modalities already re-

ceiving widespread research interest, and taste and smell being thus far

relatively impractical as user interface modalities, the domain of touch ap-

pears to be a useful area for study as an additional modality to enrich the

information carrying capacity of the user interface of a mobile device.

An abstract example of an interaction design problem created by limited

sensory bandwidth in mobile devices is shown in Figure 1.1. For a given in-

terface with a number of functions, “porting” the application to a mobile

Chapter 1. Introduction 4

device from a more conventional personal computer imposes limitations in

the amount of information that can be practically presented at any one

level of navigation hierarchy. Designers wishing to preserve functionality

are therefore forced to implement “deeper” navigation hierarchies requiring

more user interaction to access the desired function. The increased naviga-

tion overhead, in turn, decreases the practicality of the application in the

hands of a busy, mobile user. While this example may seem simplistic, it

is a relatively accurate description of the problems with the first genera-

tion of mobile phone applications based on the wireless application protocol

(WAP).

1.1.2 Environmental Competition for Visual and Auditory

Attentional Resources

Haptics may be especially useful for multimodal interaction in a mobile use

context because it does not share the action-at-a-distance property of visual

and auditory signalling, and is a more “parallel” sensory modality than

vision and hearing.

When moving through the environment, a person typically uses visual

and auditory modalities for navigation, avoiding obstacles, and learning

about the environment. Any system that requires those modalities for user

interaction must compete for the user’s attention with information originat-

ing from the environment.

Competition for limited visual attention can present serious safety issues:

for example, whereas use of a mobile device while walking on a crowded

street might be marginally acceptable, use while driving is becoming an

increasing public safety concern, and use while landing an aircraft might be

Chapter 1. Introduction 5

large-screen navigation tree equivalent small-screen navigation tree

Figure 1.1: Examples of deep versus wide navigation trees. The limited

sensory bandwidth available at any level of the hierarchy forces a “deep”

configuration, which requires more effort to navigate.

Chapter 1. Introduction 6

considered completely unacceptable [49]. In practice, the user is only able to

devote a portion of their visual attention to a mobile device, and repeatedly

shifts their attention between device and environment [40]. It follows that a

mobile user interface can not be guaranteed to deliver a visual cue to the user

unless the information is retained onscreen long enough for the user to direct

their attention to the display. This reduces the interface bandwidth relative

to desktop computers even further than a simple comparison of screen size

would suggest.

Auditory interfaces suffer from similar limitations. A very noisy envi-

ronment such as a crowded street presents challenges in making the sounds

produced by the device audible, as well as recognizing sounds produced by

the user. Auditory interfaces therefore scale poorly to large numbers of

densely packed users. On the other hand, in a very quiet environment, such

as a meeting or library, use of an auditory interface might be completely un-

acceptable because it would disturb others. Headphones and microphones

that isolate exterior noise improve user-device communication, but only at

the expense of user-environment communication, causing similar concerns

as visual impairment.

In comparison to vision or hearing, the sense of touch is relatively un-

obstructed in a mobile use context. The vestibular system is used for bal-

ance, and the feet or hands may be in contact with control surfaces, but

other areas of skin are likely to be available for interaction. Unlike vision

or hearing, which must be sensed through discrete organs, touch receptors

are distributed throughout the body and active simultaneously — thus, the

system can be characterized as more “parallel” in nature.

Tactile signals are only active at the point of direct contact, enabling

discreet interaction. In addition, a portable device is also in contact with

Chapter 1. Introduction 7

the user’s body more often than a desktop computer, making it a good

platform for tactile interaction.

Indeed, a non-multimodal, purely haptic interface is conceivable and is

currently used in limited contexts such as vibrotactile signalling of incom-

ing calls. However, haptics can not be considered a generic replacement for

visual or auditory interfaces, since each modality has its own profile of ap-

plications for which it is optimally suited. Work is ongoing to define novel

application spaces for haptics, including affective, subconscious, and inter-

personal interfaces. Within the scope of this thesis work, however, the po-

tential benefits of haptic augmentation to existing mobile applications with

demonstrated, proven utility will be explored. This will enable effort to be

focused on implementing a high-fidelity prototype, including hardware de-

velopment, application conceptualization, and usability testing, completing

a full iteration of an interaction design cycle within the scope of a master’s

thesis.

1.2 Thesis Research Questions

The goal of this thesis research is to increase the understanding of the ap-

plication of haptics to a mobile computing context. The following research

questions are addressed:

1. What are the problems with existing mobile user interfaces that may

be addressed using haptics?

2. How can one implement haptics on a mobile device despite power, size,

and weight restrictions?

Chapter 1. Introduction 8

3. What are the expressive capabilities of the hardware prototype in the

hands of a human user?

4. What are the engineering challenges associated with building a high-

fidelity hardware and software prototype with handheld use in mind?

5. Is tactile flow an effective aid for user navigation?

6. How can user-centred design methodology be applied to haptics, where

hardware technology is still the primary determinant of user interface

capabilities?

These questions are revisited in the Conclusion (Chapter 8) which sum-

marizes the research findings.

1.3 Thesis Approach and Overview

The approach that was used to address the research questions identified

in the previous section was to create a handheld haptics system in a user-

centred, iterative fashion by incorporating user input as early as possible

in the design process. The stages of this process are shown in Figure 1.2.

Because the aim of the thesis research was to use this process to better un-

derstand the potential for haptics in a mobile user interface, rather than to

produce a fully engineered product, priority was given to creating a handheld

haptic user experience over a fullly-functional device; if its usefulness could

be demonstrated, then future work could address the engineering challenges

related to true mobility, such as battery power and custom integrated cir-

cuits. Therefore, early in the design process the heuristic was adopted that

the prototype should attempt to replicate as much of the handheld user ex-

perience as practical within the resources available for the research, while

Chapter 1. Introduction 9

User Needs

Knowledge of
Existing Hardware

Further Hardware
Development

Further
Stimulus Discovery and

Perceptual Characterization

New Applications

Further Refinement of
Usability Testing Practices

Background Present Work Future Work

Usage Scenarios &
Application Concepts

Hardware Design

Perceptual
Characterization

Perceptual
Characterization

Perceptual
Characterization

Application Design

Application Usability
Testing

Conclusions and
Recommendations

for Future
Application Design

Figure 1.2: Overview of the design process used for this thesis research.

Chapter 1. Introduction 10

remaining tethered to a host PC and easily customizable; however, it should

have a power, weight, and volume profile such that future integration into

a wireless mobile device could be conceivable using known engineering tech-

niques. Further details of this design decision are provided in Chapter 4,

Hardware.

Rather than specialized haptic-only applications or, applications for users

with visual or auditory impairment, we have chosen to focus on the general

area of haptic augmentation of applications similar to those currently em-

ployed on mobile devices, because there is a clearer understanding of user

needs and an opportunity to contribute to ongoing mobile development pro-

grammes. Therefore, for the purpose of the studies described in this thesis,

the users are a general audience.

The hardware development and perceptual characterization stages were

performed in collaboration with Professor Vincent Hayward, and graduate

students Jerome Pasquero, Vincent Levesque, and Qi Wang of the McGill

University Haptics Laboratory; and undergraduate research student Shannon

Little of UBC. The contributions of each collaborator are noted in appro-

priate sections throughout the thesis.

This thesis is organized into the following sections:

Chapter 1 - Introduction describes the problem that is addressed in this

thesis, and the motivation for the research.

Chapter 2 - Related Work discusses the existing research in mobile and

haptic interfaces.

Chapter 3 - Design Concepts describes the initial conceptual design

work that was performed to better understand the research domain

Chapter 1. Introduction 11

and to determine the appropriate application and hardware specifica-

tions for further development.

Chapter 4 - Hardware Prototype Development covers the engineer-

ing process that was performed to create a handheld haptics platform

with an integrated piezoelectric tactile display. In addition to elec-

tromechanical design, this chapter also includes a consideration of the

method for designing and representing tactile outputs, and a descrip-

tion of the control software architecture.

Chapter 5 - Perceptual Characterization describes user experiments

conducted before detailed application development, to understand the

capabilities and limitations of the device in producing a salient tactile

percept.

Chapter 6 - Browser Prototype describes an in-depth, high-fidelity pro-

totype of a mobile browsing application that was built using the hand-

held haptics platform. This chapter also includes the results of an ini-

tial exploratory user test, and hardware customizations for the brows-

ing application.

Chapter 7 - Browser User Test presents a controlled user study

designed to assess the performance characteristics of the haptically

enhanced browsing application. New software created to manage the

usability test, and a distraction task model, are also described.

Chapter 8 - Conclusion returns to the research questions identified in

the previous section and considers how they were addressed through

the activities conducted for this thesis research.

12

Chapter 2

Related Work

In this chapter we describe the previous research that informs the present

study as it concerns mobile interface design challenges, haptic augmentation

for multimodal enhancement, handheld haptic technologies, and perceptual

evaluation of haptic devices. The decisions to focus on haptic augmentation

for general mobile devices, to use piezoelectric lateral skin-stretch technol-

ogy, and to use the perceptual characterization methodology are justified

based on the existing knowledge in the aforementioned domains.

2.1 Mobile Interface Design Challenges

The hypothesis that limited sensory bandwidth due to small screens and

keypads restricts mobile interface designs is based largely on widespread

anecdotal evidence and the experience of the author in designing mobile in-

terfaces professionally. As mobile devices are a field of high commercial in-

terest and development, many usability studies are only published privately

within companies [53]. At the same time, every research paper relating to

mobile interface design begins with a description of the challenges posed

by limited user interface bandwidth, resulting in the need for reduced and

restructured content relative to desktop interfaces [6]. The need for more

expressive interfaces that use physical, tactile affordances to support a con-

Chapter 2. Related Work 13

stellation of computing devices was articulated in the famous Tangible Bits

paper by Ishii and Ullmer [24].

Limited visual attention in mobile use contexts has been described in [40].

By following mobile users in realistic usage environments, Oulasvirta et al.

observed rapid and frequent visual attention switching between device and

environment as users attempted to navigate while using a mobile browser.

Based on broad field evidence, a related paper by Roto and Oulasvirta [47],

suggests that non-visual, and particularly haptic, interfaces are needed in

mobile applications to overcome the problems associated with loss of visual

attention during system wait states.

2.2 Haptic Augmentation for Multimodal

Enhancement

Given the attention-demanding nature of tasks performed on a handheld

device in a mobile environment, studies of multimodal enhancement of in-

terfaces under workload are relevant. In particular, Chan et al. [12] demon-

strated that haptic signals could be learned and recognized despite distrac-

tion that placed a demand on the users’ attentional resources. Tan et al. [50]

demonstrated that performance in an attention-demanding vehicular navi-

gation task could me improved with haptic feedback applied to a person’s

back.

In a navigation task, Dennerlein [17] demonstrated that haptic force-

feedback could be used to improve targeting performance. Similarly, a

patent by Novint Technologies [7] covers arbitrary force feedback produced

when the user pushes “into” a screen boundary, for non-visual feedback of

scrolling. Directional stimulation is a key component of these applications,

Chapter 2. Related Work 14

and is achieved in existing systems either through force feedback or spa-

tially distributed vibrotactile stimulation [50]. Using multiple actuators to

provide a directional signal provides significant increased utility over simple

vibration ([27, 31] and Immersion Corp. patent [9]).

These examples support the feasibility of the application scenarios that

are proposed later, including the use of directional and tactile feedback (but

not through spatial patterns of vibration) to potentially enhance targeting

and spatial navigation in an interface.

2.3 Handheld Haptics

While there is promise for the use of haptics on a mobile device, there are

relatively few examples of functioning implementations. Some underlying

difficulties are listed below.1

• Lack of mechanical grounding. Applying force-feedback to a user re-

quires a fixed mechanical ground. In a mobile context, the forces

must be created relative to the user, which imposes constraints on the

physical design and force output capabilities. An alternative is tactile

display, which generates no net force on the user, but consequently

limits the scale of sensations transmitted.

• Stringent power, size, and weight constraints apply in mobile contexts.

Use of a conventional motor for force-feedback introduces a significant

impact on all three. [44]

• Since relatively few instances of integrated, rich haptic feedback exist

today, it is difficult to justify inclusion in a mobile device until there
1Portions of this section have been previously published in [34].

Chapter 2. Related Work 15

is a better understanding of the added value it creates for the user.

The most common occurrence of haptic feedback in mobile devices to-

day is the ubiquitous mobile phone or pager vibrator. Patterns of vibration

are typically used to indicate various alerts, such as an alarm or incom-

ing call. Recently there has also been commercial and research interest in

putting vibration in more sophisticated applications [13, 14, 32]. Generally,

vibrotactile stimuli are produced globally (across the entire device) and with

only two levels (on or off), vibrotactile devices generally do not afford bidi-

rectional interaction in the sense of the user actively exploring information

through movement and the sense of touch [23, 48].

Devices that are capable of delivering grounded forces to the user have

the potential for greater expressive capacity than vibration. Designs are

restricted to minimal degrees of freedom (DoF) [35], yet must create enough

added value to justify the power, size, and weight tradeoffs.

Piezoelectric actuation offers significant promise for mobile applications

because it can achieve a smaller form factor without coils and magnets.

Poupyrev et al. of Sony’s Computer Science Laboratories used piezo el-

ements to produce vibrotactile actuation of handheld devices or parts of

them [46]. In the case of a touch screen [45], the user typically experiences

the illusion of local actuation although the entire screen moves; this type of

vibrotactile actuation of a flat surface is also mentioned in a patent by New

Transducers Limited [8]. Creating true multiple loci of actuation on a small

scale is significantly more complicated using vibrotactile signals [46].

Piezoelectric actuators may be configured in a way that also produces

non-vibrotactile, low-frequency skin stimulation [23]. When the user places

his/her finger on an array of actuators which collectively comprise a multi-

Chapter 2. Related Work 16

element tactile display, the relative motion of the individual piezo tips

stretches the skin locally, activating skin mechanoreceptors. Applying spe-

cific patterns of distributed skin deformation can create the illusion of touch-

ing small-scale shapes and textures. A device based on this technology,

called the Virtual Braille Display (VBD) [30], has been used to render legi-

ble Braille dots using only lateral stretching of the skin.

Similar sensations can be achieved using technologies that push into the

skin [51], but the lateral skin-stretch configuration is mechanically simpler

and makes the most efficient use of the range of motion of commercially avail-

able piezoelectric bending motors [15], resulting in favourable power, size,

and weight profiles. Such a configuration also provides internal mechanical

grounding, as forces are generated between adjacent piezo elements.

We thus eventually chose lateral skin-stretch as the most promising con-

figuration for the hardware prototype. Our approach uses the same basic

principle as the VBD, but miniaturized and embedded in a handheld form

factor wherein the skin-stretch site is displayed to the users thumb, and

mounted on a slider. The device is described in further detail later.

2.4 Perceptual Evaluation of Haptic Devices

When a novel haptic transducer is created, prior to the development of full-

blown applications it is first helpful to understand the perceptual character-

istics of its output, so that signals can be created that best use the device’s

expressive capabilities. The perceptual evaluation procedure described in

Chapter 5 is based on work described by Enriquez and MacLean [18], using

the multidimensional scaling (MDS) technique to categorize haptic icons,

and the subgroup MDS technique has been further analyzed in [42]. The

Chapter 2. Related Work 17

procedure used in this thesis for designing the haptic signals also loosely

follows the work by Brewster and Brown on tactons [10, 11].

18

Chapter 3

Design Concepts

This section describes application concept development that followed from

the background research into the problem domain and existing haptic ap-

proaches.1

Design concept development proceeded in stages over the course of a

year; the existence of the piezoelectrically actuated lateral skin stretch tech-

nology was not known until after initial hardware and application concept

development had been done. Instead of creating applications for a particular

hardware specification (technology-centred design), we sought to leave the

hardware specification as open-ended as possible while focusing our efforts

on understanding how different application designs could meet user needs.

Of course, no application, especially haptic, can exist in a vacuum with no

dependency on hardware. Therefore, during application concept develop-

ment we also gave consideration to the minimum set of hardware features

necessary to make the specified interaction possible. For the present project,

we also had to keep in mind several practical considerations such as access

to manufacturing facilities and setting an appropriate scope for a master’s

thesis project. In these ways, the interaction design and hardware design
1Sections 3.3.1 through 3.3.4 have been previously published in [34] and represent the

collaborative work of authors on that paper. Figures 3.6, 3.8, 3.9, and Section 3.3.5 have

not been previously published.

Chapter 3. Design Concepts 19

evolved synergistically, with the interaction needs being the primary driver.

In this chapter we describe the maturation of design concepts from an

open-ended concept of simulating the haptic experience of reading a book, to

a slightly more tightly specified concept of 1-D navigation with haptic feed-

back. Conceptual prototypes, including low-fidelity physical mockups and

detailed usage scenarios, were used to drive the design process by elucidat-

ing details of the user interaction. Finally, we converged on a design based

on 1-D interaction model, with piezoelectric lateral skin-stretch technology

used to enable the application concepts.

3.1 Electronic Book Reader with Vibrotactile

Feedback

An early design effort focused on haptic augmentation of the experience of

using a mobile, handheld electronic book reader. The promise of a portable

electronic device for reading information has been long recognized [26], but

adoption of electronic readers has been hampered by poor display quality,

weight and power, and slow navigation compared to traditional books. With

the display quality, weight and power considerations being slowly mitigated

due to technological advances, what remains is the user interface problem.

Flipping through a paper book is a rich haptic experience, transmitting

information such as the relative location of a page in the book, the speed

of movement through pages, and even the usage history (books tend to

naturally flip open to well worn sections).

We explored the concept of artificial haptic signalling to support book

navigation by constructing the prototype shown in Figure 3.1. A vibrotactile

transducer (a small speaker) was mounted on a rubber block that was shaped

Chapter 3. Design Concepts 20

Sculpted Hand Grip(A) (B)

Rubber FlipperJoystick
(inside)

Vibrotactile
Transducer

Cable
to PC

Figure 3.1: (A) Device for providing vibrotactile feedback to simulate the

experience of page-flipping. The rubber flipper is mounted on a mini-joystick

and can articulate in the up/down direction with spring return to centre.

(B) The device being held in the hand. Note that the rubber edge meets

the thumb at an angle similar to that of the edge of a book when pages are

being flipped.

Chapter 3. Design Concepts 21

to simulate the angle of a book’s edge when the device was held in the hand.

The rubber “flipper” was mounted on a spring-loaded miniature joystick

found in a typical PC game controller, and its motion restricted by a custom-

machined plate so that the flipper could only move up and down. Finally,

the apparatus was enclosed in a soft formed foam hand-grip (Crayola Model

Magic).

The concept was that the user would use his/her thumb to tilt the rubber

flipper up and down, producing a velocity signal which, relayed through the

off-the-shelf USB game controller, would cause repeated page-up or page-

down signals to be sent to electronic book reader software. Feedback would

be provided for each page-turning event in the form of a perceptible click

caused by the vibrotactile transducer, allowing the user to feel their move-

ment through the pages of an electronic book. Finally, well worn pages

would be simulated by a combination of stronger clicks accompanied by

appropriate delays in the navigation model.

This concept was a first-iteration rapid prototype intended to study the

ergonomic experience of a device with potential for integration into a mobile

/ handheld environment. The speaker itself did not generate sufficient force

for a tactually perceptible click. Although it could have been upgraded with

a voice coil or similar device with stronger force, attention shifted to a more

versatile 1-D scrolling strip concept that could incorporate more expressive

feedback.

3.2 Early 1-D Navigation Concepts

In a typical feature-packed mobile device, much of the chassis that faces

the user (the X − Y plane) is covered with input and output transducers

Chapter 3. Design Concepts 22

such as keypads, displays, and speakers. Furthermore, there is pressure

to minimize the thickness of such devices in the Z direction, in order to

maintain a form factor that fits unobtrusively against the body in a pocket

or handbag. These factors make it difficult to incorporate a haptic device on

the front or back surface of a mobile device. More accessible locations are the

side surfaces, which are both relatively unused and also somewhat mitigates

concerns about the physical depth of a haptic transducer, which may extend

somewhat inside the case without significantly altering the typical aspect

ratio of a handheld device.

In a typical box-shaped handheld device, this location is accessible to

the user’s thumb, which sweeps out an arc that can be used for 1-degree

of freedom, linear input. Recently, several commercial products have been

introduced that utilize capacitive touch sensors to digitize 1-D input (Figure

3.2). This provided the inspiration to use the side surface of a device as a

bidirectional haptic transducer.

A conceptual schematic of a bidirectional touch input / tactile output

system is shown in Figure 3.3. The tactile transducer component is assumed

to be of the type that produces physical deformations perpendicular to the

surface of the finger, and could be implemented using any of a variety of

technologies. The following technologies were considered as candidates for

the tactile transducer:

• Electromagnetically actuated pins produce local deflection and

and form the basis for conventional Braille displays. With an appro-

priately chosen flexible covering acting as a low-pass filter, they can

also be used to render smooth shapes. Investigation was made into

using the mechanism from a dot-matrix printhead to create minia-

Chapter 3. Design Concepts 23

Sony Qualia Digital Camera

Vodafone Mobile Phone

Creative mp3 Player

Figure 3.2: Examples of existing products utilizing linear capacitive touch

sensors.

Chapter 3. Design Concepts 24

Capacitative
Position
Sensor

Tactile
Transducer

Click
Switch

Figure 3.3: Schematic diagram of a concept bidirectional haptic device for

1-D linear input and tactile output. A flexible sensor for determining the

position of the user’s finger is layered on top of a deformation-producing

tactile output transducer, and mounted on a movable apparatus so that the

force of the user’s finger pressing into the device can be detected for actions

such as selection. (Components not drawn to scale)

Chapter 3. Design Concepts 25

ture, high-resolution deflections. Unfortunately, the drawbacks to elec-

tromechanical actuation are high power consumption and the weight

of the coils.

• Just as piezoelectric speakers can be used as alternatives to electro-

magnetic speakers, a flat, segmented array of piezo elements could

produce the tactile deflections. However, conventional piezo elements

are made for producing audio, which has both higher frequency and

lower amplitude than required for producing tactile sensations beyond

vibration, which is poorly suited to dense spatial signalling.

• Small quantities of special magneto- or electro-rheostatic fluids

may be configured as an array of separated cells. When a current or

magnetic field is applied to a cell, the encapsulated liquid hardens, cre-

ating a tactile sensation when the user explores the array. Concerns

with this approach include long-term reliability of the fluids and mem-

brane, exotic micro-machining requirements, response time, crosstalk

between cells (especially with the magnetorheostatic approach), and

potentially limited amplitude.

• Shape memory alloys (SMAs) may be used in any number of

configurations, such as bimorph benders, to produce local deflections.

However, because the motion is temperature-related, crosstalk, heat-

sinking, and especially reaction time remain significant concerns for a

spatial array configuration.

Other considerations relate to the position sensing layer, which must be

flexible if used on top of a deflection producing layer. Depending on the

actuator technology, it must also be able to cope with magnetic and/or elec-

Chapter 3. Design Concepts 26

tric fields, which would cause problems for existing capacitive touch sensors.

This could potentially be cancelled out in software, though at a cost of effec-

tive resolution. An alternative configuration consists of putting the sensing

layer underneath (i.e., separated from the user’s finger by) the actuation

layer, which could eliminate the flexibility requirement but potentially ex-

acerbate the interference problem. For the purposes of rapid prototyping

for experimentation, preparations were made to mount a position sensing

coil on the user’s finger and to use a distally mounted drawing tablet (which

works by radio frequency sensing at a distance of up to a few centimeters).

Leaving the specific choice of actuator and sensor technology open for

the moment, interaction concepts were developed; an example is shown in

Figure 3.4. Assuming a device that can produce localized orthogonal deflec-

tion while tracking the user’s finger position with reasonable time accuracy,

force-feedback may be simulated without resort to motors that physically

push against the user’s finger in the lateral direction. The concept is mod-

eled on the sport of surfing, where a continuously moving ramp provides a

lateral force on the rider due to the action of gravity and slippage along the

surface. Similarly, a ramp that tracks the user’s finger and provides contin-

uous “uphill” resistance may be used to provide force feedback for a variety

of interaction designs such as those described in [17] that improve steering

and navigation.

3.3 Application Concepts

Under the working assumption of a linear, 1-degree of freedom bidirectional

haptic device capable of delivering several distinguishable tactile stimuli

combined with finger position sensing, several application concepts were

Chapter 3. Design Concepts 27

Bump tracks position
and moves to stay

ahead of finger

Figure 3.4: Simulated force feedback using a moving bump that tracks the

user’s finger, providing continuous “uphill” resistance.

Chapter 3. Design Concepts 28

developed to better understand how such a device might be useful in mobile

interaction design. For ease of understanding each concept, a contextual

scenario with a fictitious example user is used to motivate the application.

Figure 3.5: Overview of four application design scenarios. (a) List selection,

(b) Scrolling, (c) Direction signalling, (d) Background status notification.

The figures shown as callouts represent haptic icons. Figure by Jerome

Pasquero and Joseph Luk.

3.3.1 List selection: Ringer mode application

(Figure 3.5, a, and Figure 3.6) Linda is in a meeting and wants to set

her phones ringer mode discreetly. Grasping her phone inside her purse,

she explores the ringer mode menu by moving the selection highlight while

receiving tactile feedback. Each menu item feels unique, like touching objects

with different shape and texture, and she recognizes the sensation of the silent

menu item because she has used this function before. She selects the silent

mode and receives tactile feedback as confirmation.

The scenario illustrates one way we can employ haptic icons [18], or

Chapter 3. Design Concepts 29

tactons — [10] brief, artificial tactile stimuli to provide assistance in mak-

ing selections. A unique tactile stimulus is assigned to each item in a list

menu; with repeated feedback, users quickly associate functional meanings

to abstract haptic icons [11, 12].

— Alert Mode —

Loud

Vibrate

Soft

Silent

Figure 3.6: Example multimodal screen and haptic design for the list se-

lection application concept. Distinct haptic icons are given an onscreen

representation in this example as an associative aid.

The piezo tactile display technology described previously is capable of

displaying small simulated surface features, such as bumps and gratings,

with arbitrary motion relative to the users finger. It promises a rich vocab-

Chapter 3. Design Concepts 30

Figure 3.7: Low-fidelity foam mockup used for early user evaluation of the

menu selection application concept. There is a textured plastic tactile strip

mounted on the left side of the mockup.

Chapter 3. Design Concepts 31

ulary of haptic icons, which are later characterized in this document.

By mounting the tactile display on a slider that is also sensitive to thumb

pressure, it becomes an input device. The user can select items in a vertical

list menu by moving the display up and down. As the selection highlight is

moved, the haptic icon associated with the selected list item is felt. Kines-

thetic awareness of finger position allows the user to operate the device

without looking, and to make a selection using the tactile display.

To gather information on user’s impressions of this application concept,

we constructed a low-fidelity foam mockup (Figure 3.7) and asked people

to hold it in their hands and to imagine using the tactile sensations to help

them make menu selections. The subjective feedback was generally positive

and helped guide our prototype hardware development (Chapter 4).

3.3.2 Scrolling: Browser application

(Figure 3.5, b, and Figure 3.8) Bob checks the sports news and scores many

times each day. He didn’t like using his old mobile phone’s browser for this

because he had to scroll around a lot to view content, which made him often

lose his place.

Bob accesses a sports website using his new haptically-enabled phone and

scrolls down into a news story. He feels the sensation of his finger sliding

over a textured surface while the text of the story moves up the screen. As he

continues to scroll, he feels the headline of the next story (a distinct bump)

and some links (each vibrates gently as it is highlighted). All the stimuli

move smoothly past his finger in sync with the scrolling movement. Having

scanned the page, Bob scrolls back up and quickly locates his area of interest

(his home team’s standings) aided by the memory of what that part of the

Chapter 3. Design Concepts 32

Vancouver Weather
TODA Y 1/24 1/25

Other locations:
• San Francisco
• Montreal
• Tokyo

Vancouver Weather
TODA Y 1/24 1/25

Other locations:
• San Francisco
• Montreal
• Tokyo

(a) (b)

Figure 3.8: Example multimodal screen and haptic design for the browser

application concept. (a), The portion of the page currently visible is shown

as a highlighted region of the scroll bar. (b), Salient page elements are

represented as haptic icons and shown in the scroll bar as an associative aid.

Chapter 3. Design Concepts 33

page feels like.

Small-screen mobile devices typically require more scrolling and/or selec-

tion actions to navigate a deep rather than wide information layout. Both

place demands on the users visual attention. Haptic augmentation as vi-

brotactile feedback has been shown to improve performance in a handheld

scrolling task [46]. However, a compact multiple-element tactile display of-

fers additional capabilities such as smooth tactile flow rendering (a sensation

moving across the skin).

Different page elements, such as headings, images, and links, can be

rendered as haptic icons that are played when the user scrolls over them.

Thus, each page has an associated haptic map that reflects its structure.

Users learn to recognize familiar pages and can quickly scroll to desired

sections or links. Improvements in scrolling efficiency would encourage user

behaviours such as scanning to understand page structure and context, and

increase the amount of information that can practically be presented on a

page.

3.3.3 Direction signalling: Assisted navigation application

(Figure 3.5, c) Mary is looking for a toy shop at a large, crowded shopping

mall. Her location– and orientation–aware mobile device helps her find the

shop with an active map and directions. The device also provides haptic

feedback so she doesn’t have to constantly look at the screen, allowing her to

keep her eyes and ears on her surroundings.

Mary holds the device discreetly at her side, with her thumb resting on the

tactile display and pointing forward. The tactile display repeatedly strokes

her thumb in the reverse direction (towards her back), indicating that the

Chapter 3. Design Concepts 34

device is pointed in the opposite direction from her destination. As she

turns around, the sensation gradually weakens, then begins to build again in

the opposite, forward direction; she is now correctly oriented. Mary starts

walking while continuing to hold the device. The stroking becomes faster,

indicating that she is approaching her destination.

Any application that assists the user in finding a spatial target could

utilize an expressive tactile display to convey a direction cue. On a macro

scale, this includes vehicle-based or walking navigation tasks, where the user

must travel to a destination. On a small scale, the user could receive haptic

assistance to orient a mobile device camera so image-recognition software can

read a barcode or scene. Applications in between include finding wireless

access points or other active distributed information devices, or people in a

search-and-rescue scenario.

Vibrotactile stimulation at distributed points of the body has been con-

sidered for navigation [20], but in a non-intrusive handheld form factor, the

display of tactile flow can be used to indicate 1-D direction. Other parame-

ters (e.g. speed, amplitude, and wave shape) add information dimensions.

3.3.4 Display of background status information and alerts

(Figure 3.5, c) Albert always feels in touch with his friends because they

all share “presence” [39] and location information with each other via their

mobiles, with status notifications as they become busy or free.

Albert is composing a text message to a buddy. His fingers are busy

entering text, but occasionally he places his thumb on the tactile display to

move the cursor, and feels a subtle repeating haptic icon that indicates his

friend Steve has come online. Albert can continue with his task, aware of

Chapter 3. Design Concepts 35

the status change.

Later, Albert is on the phone when his friend Dean goes offline. Albert

feels a different haptic icon and is aware of Dean’s status without having to

interrupt his conversation or to remove the phone from his ear to look at the

display.

Haptic alerts are commonly used on mobile devices, signalling events

such as incoming or dropped calls [16]. Simple, high-amplitude signals such

as vibration can be perceived through clothing and on various areas of the

body, but more expressive tactile stimulation requires direct contact with

sensitive parts of the skin, such as the fingertips. Therefore, it is best suited

to situations where the device is being actively used and held in the hand,

where the haptic feedback provides background status information. If the

active application also makes use of haptics, the stimuli used for background

notification must be distinct from the foreground applications haptic signals.

Examples such as this underscore the importance of designing haptic icons

in the larger context of their anticipated usage, and employing empirical

data relating to their group perceptual characteristics.

3.3.5 Minimally Intrusive Interface for Rich Navigation of

Music

(Figure 3.9) Rich enjoys listening to music on his mobile device while on

the go. He recently downloaded 30 songs onto his mobile music player, and

wants to categorize them into songs he likes and songs he doesn’t like. This

is rather time consuming when he has to listen to the introduction of the

songs, so he is in the habit of using the fast-forward/cue feature to skip to

the “main”, or chorus section of the song. Unfortunately, on his old music

Chapter 3. Design Concepts 36

player this was a difficult task — since he never knew where the chorus

section began, he often overshot it or was forced to listen to less relevant

parts of the song before getting to the desired section. Moreover, since there

were very few buttons on his miniature mobile music player, he had to press

and hold the same button used to change tracks while visually monitoring

the position counter, which was very difficult to do while walking or driving.

Using his new haptically enabled mobile music player, Rich can literally

feel the structure of the songs in his collection. He runs his thumb up and

down the slider and feels bumps and textures where chorus sections begin

and end. Stronger musical themes feel like more significant tactile features,

while subthemes feel like weaker features. He can easily cue to any of these

features without looking, by moving his thumb to a position with a tactile

feature and pressing to select.

With this method, he quickly sorts through his newly downloaded songs

by repeatedly loading the next track, advancing to the chorus section, and

listening to the main musical theme. He uses the device’s rating feature to

make note of which songs he likes, so he can enjoy their full length later.

This scenario is based on the work of Goto [21], who described a method

to automatically parse and identify musical themes (chorus sections) in pop-

ular music. One application of the technique was in a retail music listening

kiosk, where customers needed to sample multiple tracks on a CD and make

a purchase decision within a limited amount of time. By providing cues

as to the structure of the music — including main repeating themes as

well as subthemes — the kiosk could help customers advance to the most

salient, relevant, or memorable sections of music to make decisions about

how much they like the selection. The goal of rapidly scanning tracks to

identify and/or categorize them is shared by both users of listening kiosks

Chapter 3. Design Concepts 37

— Audio Player —
Volume [••••••••]
Prev Track

Next Track

U2 3:10
Ver tigo

4/6

Figure 3.9: Example multimodal screen and haptic design for the rich music

navigation concept. (a), The portion of the page currently visible is shown

as a highlighted region of the scroll bar. (b), Salient page elements are

represented as haptic icons and shown in the scroll bar as an associative aid.

Chapter 3. Design Concepts 38

and users of portable music players. Mobile music players are further chal-

lenged by limited space for physical buttons, making it less practical to add

more controls than it is to add richer controls. Navigation of subthemes,

main musical themes, entire tracks, and entire albums or playlists forms

a continuum of salience which can be mapped to various levels of haptic

interaction using a transducer with sufficiently wide bandwidth.

39

Chapter 4

Handheld Prototype

Development

Working from the initial application concepts and hardware profile, we began

an effort to create a high-definition, active hardware prototype that would

enable significant investigation into the effectiveness of a portable haptic

interface in the hands of a user.

The piezoelectric actuated lateral skin stretch technology introduced in

Chapter 2 was selected for this project based on suitability for the problem

domain and interaction designs, as well as practical considerations such as

the maturity of the technology (allowing for a prototype to be realized within

the scope of a master’s thesis) and an existing relationship between the

author’s research group and the group developing the technology at McGill

University.

Since much of the work in this chapter is the result of a highly collabo-

rative effort between research groups at the University of British Columbia

and McGill University, each section in this chapter includes a description of

the present author’s individual contribution to that aspect of the project.

The hardware prototype, including the piezoelectric lateral skin-stretch con-

cept, is described in detail in [43]. In this thesis we shall focus on the aspects

that are relevant for the overall interaction design process of mobile haptics.

Chapter 4. Handheld Prototype Development 40

4.1 Design Philosophy

Because the options for specific implementations of the concept of handheld

haptics are virtually unlimited, we followed a design philosophy that was

informed by a combination of the conceptual design work discussed earlier

(including user needs and application concepts), resources available for con-

ducting the research, and general heuristics about practical implementation

of the hardware concept.

4.1.1 Linear slide-mounted tactile display using

piezoelectric actuated lateral skin stretch

As mentioned in previous chapters, the hardware concept consists of a linear

(1-degree-of-freedom), slide-mounted tactile display based on the piezoelec-

tric actuated lateral skin stretch technology, mounted in a handheld case

and positioned under the user’s thumb. We believe this option represents

the best compromise for adding significant new haptic functionality without

diverging too far from contemporary mobile device norms.

It would be conceivable to add multiple degree-of-freedom movement

and additional features, but the additional costs in terms of size, weight,

complexity, and power consumption must be justified against potential ben-

efits. Since the benefits of rich mobile haptics have yet to be demonstrated

conclusively, we felt it was best to adopt a conservative approach first; if

significant benefits could be demonstrated, further iterations of the design

could increase functionality in the areas where there would be an expected

benefit.

The TD is placed on the left side of the device (accessible by the thumb on

the left hand) because it is the most common location in existing products

Chapter 4. Handheld Prototype Development 41

for side-mounted controls such as buttons or jog wheels. The convention

appears to be due to a preference, since most people are right-handed, for

leaving the right hand available for jotting notes while talking on the phone,

or writing on the screen of a PDA.

4.1.2 Use of off-the-shelf hardware components

All of the components of the hardware prototype should be readily available,

mass produced parts. This design philosophy allows us to reduce costs and

increase the speed of development, by focusing on the system integration

issues rather than detailed engineering of components.

Our final hardware prototype may be replicated by any facility with basic

mechanical and electronic prototyping equipment such as a hand-operated

mill and soldering tools, at a final bill of materials cost of around $380 U.S.

dollars, excluding the FPGA and PC used for control. The major component

of this cost, retail piezo actuators ($160), declines significantly (by a factor

of 4 or more) if ordered in quantity.

The final size, weight, and power profiles of the prototype tactile display

mechanism make it not currently suitable for deployment as a mass pro-

duced consumer product. However, each of the critical components may be

miniaturized with industrial micro-manufacturing facilities. In particular,

the piezo elements, which currently require 50 V DC and extend into the

device with a depth of 31.8 mm, may be specially manufactured as layered

benders that could reduce the voltage requirement to 8-10V while simulta-

neously increasing rigidity and thus reducing the required depth [45]. In

addition, the comparator and amplifier sections of the control electronics

would be vastly simplified since reduced voltage would be well within the

Chapter 4. Handheld Prototype Development 42

range of mass produced microminiature DC-DC converters and integrated

amplifiers.

4.1.3 Handheld operation while connected to a host PC

A significant part of the complexity of producing mobile devices derives

from integrating batteries and wireless communications, and programming

embedded computers — issues that are secondary to the haptic interface

questions we are trying to investigate. Therefore, we have retained a tether

to a host PC and power supply, while packaging the input and output trans-

ducers in a handheld form factor.

This allows us to investigate key aspects of the handheld user experience

using a method similar to the “Wizard of Oz” paradigm: to the user, it

appears that they are using a mobile device with a few subtle wires added.

Despite the tether, the overall form factor generally affords mobility and

users are able to conceptually distinguish the wires as additions possibly

related to the testing status.

4.1.4 Author’s Contribution

The part of the design philosophy related to the form factor, especially the

thumb-mounted positioning, is primarily the work of the author. Other

aspects (off-the-shelf components and tethered operation) were heuristics

that were also shared in parallel by the collaborator, Jerome Pasquero, and

the thesis supervisor, prior to the beginning of the project.

Chapter 4. Handheld Prototype Development 43

4.2 System Overview

The hardware components of the system, including labelled signal paths, are

shown in Figure 4.1. The major components of this system are described in

the sections below.

Since this thesis discusses a design process, it is instructive to examine

how the hardware specification evolved over time. Within a month of begin-

ning the hardware project, many of the components had been established

(Figure 4.2). Along the way to the final design, the desk mount (which was

expected to increase reliability and simplify cable management, but was not

necessary because the cables were not as intrusive as expected) was elim-

inated, as was the provision for using an off-the-shelf game controller to

digitize analog position and button signals, and additional pushbuttons on

the device (though they could be added at any time if applications warrant).

4.3 Output Transducers

4.3.1 Tactile Output Device (Tactile Display)

The tactile display (TD) has an active area of 8.7 × 6.4 mm and contains

eight stacked piezoelectric bending motors separated by thin (0.5 mm) brass

rods. The bending “motors” (Piezo Systems model T215-H4-203Y) are thin

(0.38 mm thick) rectangular sheets of relatively rigid ceramic-like material

measuring 6.4 × 31.8 mm. Internally they consist of two bonded layers

of alternately polarized piezoelectric material, such that when an electric

field is applied to the motor, one layer contracts while the other expands,

resulting in a bending deformation of the entire slab.

The piezo elements are mounted in a new dual-pinning configuration that

Chapter 4. Handheld Prototype Development 44

FPG

A

LC

D
 D

river

o
p

tio
n

al
I/O

 card
o

r
m

icro
co

n
tro

ller

C
u

sto
m

 A
/D

 B
o

ard

lo
-p

ass
am

p
.

+
/- 50V

+
/- 50V

p

o
w

er
su

p
p

ly

+
5V

(w

allw
art)

co

m
p

arato
r

+
3.3V

 PW
M

64 K
H

z
x 8 ch

.
+

/- 15V

PW
M

x 8 ch
.

+
/- 15V

p
o

w
er

V.reg.

+
/- 50V

an

alo
g

+
/- 10V

an

alo
g

 o
r PW

M

U
SB

N
TSC

 C
o

m
p

o
site V

id
eo

S-V
id

eo

A
d

ap
ter

x 8 ch
.

+
12V

(w

allw
art)

P
C

p
iezo

stack

8 elem
en

ts
can

tilever
m

o
u

n
t

o
r

slid
e rail

Teflo
n

b

u
sh

in
g

s

Pu
sh

b
tn

Sw
itch

lin
ear

p
o

ten
tio

m
eter

(position)

su
p

er flexib
le

10-co
n

d
.

m
ed

ical cab
le

silico
n

e in
su

lated

C
o

lo
r

LC
D

2.5” d
iag.

58.8 x 49.9 x 5.8 m
m

Figure 4.1: Overview of hardware components of the handheld prototype

(final version used for user testing).

Chapter 4. Handheld Prototype Development 45

FPG
A

LC
D

o
p

tio
n

al
I/O

 card
o

r
m

icro
co

n
tro

ller

C
o

lo
r

LC
D

2.5” d
iag.

58.8 x 49.9 x 5.8
m

m

G
am

e C
o

n
tro

ller
(u

sed
 as I/O

in
terface)

lo
-p

ass
am

p.
+/- 50V

+
/- 50V

p

o
w

er
su

p
p

ly

+
5V

(w

allw
art)

co
m

p
ara-

to
r

+
3.3V

PW

M
x 8 ch

.
+

/- 10V

PW
M

x 8 ch
.

+
/- 15V

p
o

w
er

V.reg.

+
/- 50V

an

alo
g

+
/- 10V

an

alo
g

 o
r

U
SB

U
SB

N
TSC

 C
o

m
p

o
site V

id
eo

x 8 ch
.

+
12V

(w

allw
art)

P
C

p
iezo

stack

8 elem
en

ts
can

tilever
m

o
u

n
t

b
u

tto
n

(s)

d
esk stan

d

o

an
d

/o
r

(d
ep

en
d

in
g

o

n
 resp

o
n

se
tim

e

slid
e rail

Teflo
n

b

u
sh

in
g

s

FSR
(push)

lin
ear

p
o

ten
tio

m
ete

r (position)

su
p

er flexib
le

10-co
n

d
.

m
ed

ical cab
le

Figure 4.2: Hardware components as of March 2005

Chapter 4. Handheld Prototype Development 46

screws

clamp

protective plates

clamp

locating pin

separating rods

piezo benders

sleeves

(a)

(c)

(b)

Figure 4.3: The tactile display. (a) Mechanism of action. (b) Assembled

view. (c) Exploded view. Diagrams by Jerome Pasquero.

Chapter 4. Handheld Prototype Development 47

optimizes the force delivered to the user’s finger and is more efficient than

the cantilever mount used in the Virtual Braille Display [30, 43]. Because the

distal ends of the piezo elements are fixed (i.e., mechanically grounded to the

chassis that is being held in the user’s hand), the proximal ends of the piezo

elements that are in contact with the user’s finger move when an electric

field is applied. The portion of the user’s skin covering the region between

the ends of two adjacent piezo elements is stretched when the elements move

away from one another, and it is compressed when they move towards one

another. This activates the strain-sensitive mechanoreceptors in the user’s

skin, producing a tactile percept. Finally, it has been demonstrated that

this produces the illusion of the sensation of something pushing into the

skin, as occurs when the finger is placed on a surface feature such as a small

bump [23].

Raw piezo elements are shipped as layered slabs with three electrodes:

the two outer surfaces and an internal, central electrode. Preparation in-

volves electrically connecting the two outer electrodes while creating an area

to access the central electrode. Using a technique developed by the McGill

collaborators, we abraded a small section of outer electrode and applied con-

ductive tape, conductive paint, and insulating tape to create the required

connections. Special solder flux provided by the piezo vendor was used to

attach 30-gauge wire to each bending motor.

Note that although the piezos we used require relatively high voltage

(+/- 50V), the current draw is on the order of a few milliamps and thus they

are not high power devices. Because the piezo bender essentially consists of

two oppositely charged electrodes separated by a gap, its electrical behaviour

at sub-resonant frequencies is essentially that of a slightly lossy capacitor. As

such, its steady state current draw is almost nil, and producing a deflection

Chapter 4. Handheld Prototype Development 48

by charging and discharging the plates also does not require high current.

Further details of the tactile display design can be found in [43].

4.3.2 Video Display

The video display is a conventional 2.5-inch colour TFT LCD monitor that

includes driver circuitry to accept NTSC composite input signals. In the

handheld prototype, the video display is mounted in the top half of the

casing with the driver board positioned alongside, rather than under, the

LCD panel. An 8-pin ribbon cable carrying the video signals emerges from

the bottom of the casing and is routed around the top of the casing to

join the power and signal wires. A second driver / interface board accepts

the NTSC composite input via an RCA jack and 12V DC power (from a

standard AC adapter) and sends the signals out on the ribbon cable.

After long term use the video display experienced hardware problems

unrelated to its usage in the haptic prototype, and it was not possible to

procure a timely replacement. Therefore, for the user tests related to the

browser it was necessary to use a slightly larger 3.5-inch monitor affixed to

the top of the case. While this did not produce an appreciably different

screen image (both use NTSC composite input), it did cause a significant

increase in the weight of the top half of the device.

4.3.3 Author’s Contribution

The tactile display was designed mostly by Jerome Pasquero, while the au-

thor was responsible for preparing the piezoelectric components, and partici-

pating and providing feedback in design discussions. The video monitor is an

off-the-shelf component; however, the author is responsible for its inclusion,

Chapter 4. Handheld Prototype Development 49

selection, and procurement.

4.4 Sensors

steel shaft

potentiometer

spacer

pivot switch

(a) (b)

Figure 4.4: Location of input sensors. (a) Resistive position sensor. (b)

Push-to-select sensor. Diagrams by Jerome Pasquero.

4.4.1 Slider Position Sensor

The entire TD is mounted on PTFE (Teflon) bushings that slide over 2.4-mm

diameter steel rods, with a travel of 11 mm. Slider position is acquired using

a standard analog 10K ohm potentiometer-type resistive position sensor. A

custom A/D module (Section 4.5) digitizes the signal and sends it to the

Chapter 4. Handheld Prototype Development 50

control circuitry.

4.4.2 Push to Select Sensor

To facilitate a “click to select” behaviour, the entire assembly can articulate

in an arc with a travel of approximately 1 mm when the user pushes into

the TD (i.e., perpendicular to the active surface). The movement is sensed

by a standard 3 mm pushbutton switch mounted on the distal end of the

mechanism. The switch is connected via the A/D module to the control

circuitry.

4.4.3 Author’s Contribution

The author was responsible for the idea of the selection functionality, and

component selection for the position sensor. A major part of the effort of

integration of the sensor components was in achieving the right mechanical

design for the slider and articulating mechanism; this was done by Jerome

Pasquero in cooperation with McGill mechanical workshop collaborators Joe

Boka and Don Pavlasek.

4.5 Interface Electronics

Control is achieved via a series of custom and off-the-shelf electronic mod-

ules. The tactile output signal begins at the PC running the application

software, which sends out packets via a Universal Serial Bus (USB) con-

nection to a field programmable gate array (FPGA, Constellation board

10K50E from Nova Engineering) running custom firmware. The function of

the FPGA is to convert the PC output into an 8-channel 156.25-kHz pulse

width modulated signal. The PWM signal is then fed through a comparator,

Chapter 4. Handheld Prototype Development 51

low-pass filter, and high voltage amplifier, resulting in an 8-channel analog

signal that varies from +/- 50V. (see Figure 4.1).

Note that any equipment capable of generating a PWM signal may be

used as the input to the comparator, filter, and amplifier stages. If desired,

a standard I/O card, or embedded controller, may be connected in lieu of

the PC and FPGA, eliminating the most costly and bulky components of

the system and allowing for flexibility in prototyping.

On the input side, a standard 8-bit analog to digital (A/D) converter is

used to digitize the resistive position signal.

4.5.1 Author’s Contribution

Jerome Pasquero was primarily responsible for the design and specification

of the interface electronics. The author was responsible for participating in

design discussions (mostly to advocate the maximum level of flexibility for

rapid interaction design prototyping), sourcing of some parts, and assembly

of the custom electronics.

4.6 Power Supplies

The power supply for the tactile output consists of a pair of standard regu-

lated 48V, 25W power supplies (Kaga Components Ltd. Part # SP30U-48S)

normally used for telephone equipment. The fine-tuning voltage adjustment

feature was used to tweak the output voltage to 50V. Additional power sup-

plies include manufacturer-supplied standard AC adapters for the FPGA

and LCD, and an internal +/- 15V power supply derived from the main +/-

50V source via voltage regulator.

Chapter 4. Handheld Prototype Development 52

4.6.1 Author’s Contribution

The design and integration of the main power supply is the work of the

author.

4.7 Control Software

The system is controlled by custom software modules on the FPGA and

host PC.

The FPGA software consists of device specific firmware that handles

the translation of USB packets into PWM output, and 8-bit A/D input to

USB packets. It additionally offers buffer management features and can

optionally support a non-hosted mode in which the FPGA operates in a

closed-loop fashion, with piezo output dependent on a cached slider position

function.

The PC software layer is based on the “STReSS Library”,1 [29] a cross-

platform API written in C++, featuring buffered input and output functions

and support functions. It is implemented using various open-source libraries,

including the ACE component library for XML parsing, threading, and other

support functions, and the libusb library for I/O. All applications described

in this thesis were implemented on a 1GHz Pentium class PC running SuSe

Linux.

Internally, the +/- 50V output signal is represented using 12 bits (4096

levels) on the FPGA, and the PC control software is able to handle both

12-bit and 8-bit signals. In practice, it was found that there was no readily
1The API is so named because it shares a large part of the code with an earlier project

[41].

Chapter 4. Handheld Prototype Development 53

perceivable difference2 between 12-bit and 8-bit resolution output, so the

8-bit (256 levels) signal was used for all the applications described in this

thesis. This allowed for more efficient use of resources, since timing was a

concern (see below).

4.7.1 Input and Output Timings

The basic software I/O loop runs at a rate of 333 Hz. Once every 3 ms, new

information (consisting of voltage levels for each of the eight piezos) is writ-

ten to the FPGA’s output buffer, and the input buffer (consisting of slider

position and click status) is read into the PC. All implementations described

in this thesis were run on standard Linux without real-time extensions, so

the actual I/O timings are subject to system load conditions.

Experiments and performance optimizations were performed to ensure

stable real-world performance under load. Figure 4.5 shows the measured

output at the amplifier (with the piezo load disconnected), while the system

is running the full interactive browser prototype described in Chapter 6.

In addition to generating piezo output, the system must read slider input,

compute the output tactile image, and update the visual browser display.

Effect of output timing on qualitative experience

The top portion of Figure 4.5 shows the output of an early version of the

software, which was able to produce signals at an irregular rate of approx-

imately 12 Hz, while the bottom portion of Figure 4.5 shows the output
2Although this observation is based on the subjective experience of the author and

other researchers, it is reasonable to assume that since the total piezo travel must be less

than 1.0 mm, a 12-bit (0.2 µm maximum) resolution is well beyond the limit of human

perception, which is roughly 1 µm for small surface features [25].

Chapter 4. Handheld Prototype Development 54

Figure 4.5: Measured outputs under conditions of load (running the browser

application). Above, prior to optimization. Below, after optimization, show-

ing two adjacent output channels at once.

Chapter 4. Handheld Prototype Development 55

after a series of software performance optimizations improved the rate to a

relatively stable 83 Hz. At the low (12 Hz) sampling rate, the sensations

produced by the TD were perceived by the author and other observers as

rough, vibration-like stimuli without a clear sense of tactile flow, while the

high (83 Hz) rate stimulus produced a much smoother sensation. Only the

high sample rate stimulus could be compared to the sensation of touching

a small bump. It is likely that the problems with low sample rate stim-

ulus were the result of aliasing — undesirable high frequency transients

are produced at the square edges of the wave, which become notably more

pronounced at the lower sample rate.

Control software performance optimization

Software performance optimization to improve the output rate consisted

of iterative development of both the FPGA firmware and PC software to

optimize the buffering algorithm for rapid, interactive, closed-loop opera-

tion. This was especially important for the browser application (Chapter

6) which, unlike the earlier applications used for simple, triggered playback

of haptic icons and tactile movies (Chapter 4), could not “anticipate” and

cache significant amounts of output for smooth buffered delivery.

Further performance improvement was achieved by rewriting the appli-

cations to the number of threads, as interprocess communication overhead

was found to be a significant source of irregular delays. The final implemen-

tation of the browser application uses only two “user” threads, plus one I/O

thread in addition to the various threads internal to the Mozilla browser.

Finally, as described in more detail in Chapter 6, the browser application

software is designed to take advantage of the fact that the visual sense

Chapter 4. Handheld Prototype Development 56

Read Input

Slider Model

Slider Position

Velocity Model

Smoothed
Slider Position

Document Model

Haptic Icon Model

Output Smoother

I/O Layer

FPGA

Amplifier

Tactile Output

Page Map
Position

Read Input

Slider Model

Slider Position

Velocity Model

Page Map Model Document Model

Smoothed
Slider Position

Page Map
Position

Page Map
Position

Smoothed
Voltage Image

USB

Analog

Analog

Haptic Icon Model

Output Smoother

I/O Layer

FPGA

Amplifier

Tactile Output

8-Channel
Voltage Image

8-Channel
Voltage Image

Smoothed
Voltage Image

USB

Analog

Analog

Display Model

Highlighted
Element

Visual Output
Display Model

Highlighted
Element

Position

New
Page Map

Visual Output

Highlighted
Element

(a) (b)

Figure 4.6: Implementation alternatives for the control software. (a), large

single loop, (b), asynchronous design for improved tactile performance. The

computation-intensive Mozilla portion is enclosed in a dotted line.

Chapter 4. Handheld Prototype Development 57

is less sensitive to timing irregularities than the tactile sense. Instead of

one large I/O loop incorporating the Mozilla browser and its document

model together with the tactile computation modules, the final software

uses separate, asynchronous loops for tactile and visual components (Figure

4.6). The tactile loop, a slim 500K C++ program, runs at a higher priority

than the visual loop (the approximately 20MB Mozilla suite), and includes

its own internal, simplified representation of the web page so that it does

not need to wait for the visual component.

The final resource usage of the full-blown control software stack, includ-

ing browser, averages around 60% of the 1GHz CPU, as measured by the

Linux “top” command.

4.7.2 Author’s Contribution

The core control software architecture and implementation was done by

Vincent Levesque. The author was involved in helping test and verify the

system, including the measurements and optimizations (with the exception

of the firmware update) described in Section 4.7.1.

4.8 Tactile Flow Rendering

The concept of tactile flow is described in various previous publications on

related piezoelectric actuated lateral-skin stretch tactile displays [23, 28,

30, 41] and publications on the present prototype [34, 43]; however, since

it forms the basis for many investigations throughout this thesis, we shall

review it briefly here.

When a finger is swept over a small surface feature, patterns of skin

Chapter 4. Handheld Prototype Development 58

Natural Touch

t=0

finger finger

t=3

LEGEND
Compression Zone

–50V 0V +50V
Stretch Zone

Synthetic Tactile Flow

Figure 4.7: Moving patterns of skin stretch create a sensation of tactile flow.

Left, the shear pattern associated with dragging a finger over a small surface

feature. Right, synthetic re-creation of the pattern using the piezoelectric

lateral skin-stretch TD. Parts are not drawn to scale.

Chapter 4. Handheld Prototype Development 59

stretch and compression are produced [28].3 For example, the drag of the

feature against the skin creates shear compression along the portion of skin

behind the leading edge, and since the skin is a continuous elastic material,

the area ahead of the leading edge undergoes a complementary shear expan-

sion, or stretch (Figure 4.7, left). Furthermore, this pattern of skin stretch

and compression travels across the finger as it is moved over the feature.

This moving pattern of skin stimulation is detected by mechanoreceptors

and produces a sensory percept, which we have termed tactile flow.

It is possible to simulate an analogous moving pattern of skin stretch

and compression using the tactile display in our handheld prototype. Fig-

ure 4.7, right, shows how the voltage-actuated bending of the piezo elements

creates regions of shear stretch and compression. Note that at time t = 3,

the pattern of voltage actuation is the same as at time t = 0, except that the

signals are shifted to the left. In outward visual appearance, the sequential

movement of adjacent piezo actuators during tactile flow display looks sim-

ilar to biological peristalsis (sequential muscle contraction), or the pattern

of movement of millipede legs (Figure 4.8).

Tactile flow is commonly associated with spatial movement, such as

dragging one’s finger over a surface to explore its texture, or losing one’s

grip on an object. It is a directional signal; moreover, it is more natural (in

terms of being more commonly encountered in daily life, as one touches and

explores objects) than spatially distributed patterns of vibration [9, 50].

Therefore, it is hypothesized that tactile flow may be useful as a spatial

cue for use in navigating computer interfaces. This topic is covered in more

detail in Chapter 7, Browser User Study.
3 One can simulate this experience by sliding a finger over the tactile “keyboard hints”

— small bumps present on most computer keyboards at the F and J key positions.

Chapter 4. Handheld Prototype Development 60

Figure 4.8: A millipede. Its legs move in a pattern that looks outwardly

similar to the movement of the TD’s piezoelectric actuators when displaying

a tactile flow signal, except that the TD does not normally move relative to

the user’s finger.

Chapter 4. Handheld Prototype Development 61

4.9 Visualization of Tactile Stimuli

4.9.1 Problem

Depicting and communicating the tactile display output visually was a no-

toriously difficult problem. The output electrical signal is an eight-channel

time-varying voltage ranging from +50V to -50V DC. Thus there is the

problem of depicting Voltage × Time × 8 Channels using two-dimensional

media. The output may be represented by drawing the eight signal traces

in a stacked fashion on the same time axis, like the display of a hypotheti-

cal eight-channel oscilloscope (Figure 4.5 and Figure 4.9, a). This “parallel

wave graph” approach is used in previous publications [30, 41]. However,

this representation has several problems, including:

• It only depicts the time-dependency aspect of the stimulus; it does not

readily show the output as a function of slider position, which is the

key feature that enables bidirectional interactivity and exploration of

virtual texture that extends beyond the 8-taxel display window.

• The presentation format is somewhat difficult to understand for a lay

audience. It is most easily understood by a technical audience that is

accustomed to reading signal trace graphs.

• Because the vertical axis encodes two separate variables — piezo num-

ber and voltage — the spatial relationship between piezos is broken up

by local axes (voltage). Thus the graph does not visually convey the

propagation of a signal from one piezo to another that characterizes

“peristaltic” motion or tactile flow.

• The “parallel wave graph” format requires a lot of space to depict

Chapter 4. Handheld Prototype Development 62

even a simple stimulus. A more compact representation would thus

be desirable.

4.9.2 Novel Graphical Representations

To address these issues, a new way of thinking graphically about the piezo

output was developed as part of the hardware development effort for the

handheld tactile display. This includes zeroth-order shaded voltage map

and first-order skin stretch image representations, and a haptic icon design

process that leverages the graphical representations for rapid prototyping of

tactile stimuli.

4.9.3 Shaded Graph for Voltage Signal

By replacing the height of a voltage trace with a greyscale shading value,

it is possible to achieve a more compact representation that eliminates the

overloading of the vertical axis with both voltage and spatial information.

As illustrated in Figure 4.9, b, the shaded graph enables more rapid compre-

hension by visual inspection of the “shape profile” and spatial displacement

pattern of the stimulus, as compared to the parallel wave graph.

Another key feature of the shaded graph is that instead of simply rep-

resenting eight piezo outputs, the vertical axis may now be considered to

encode taxels, or arbitrary spatial units along which tactile stimuli are orga-

nized. The TD can be considered a display window, spanning exactly eight

taxels, into this larger tactile space. Therefore, the shaded representation

serves a dual purpose: to visualize the output of the eight piezo channels over

time, and also to visualize a tactile feature map, optionally one that evolves

over time. The latter representation is used throughout the remainder of

Chapter 4. Handheld Prototype Development 63

1

8

1

2

3

4

5

6

8

7

0 12

0 12

Pi
ez

o
N

um
be

r

Pi
ez

o
N

um
be

r
Time

0 12Time Time

Voltage Image Stretch Image

+50V
-50V
+50V
-50V
+50V
-50V
+50V
-50V
+50V
-50V
+50V
-50V
+50V
-50V
+50V
-50V

+50V

0V

-50V

stretch

neutral

compression

LEGEND

(a)

(b)

Figure 4.9: Graphical representations of a stimulus consisting of three small

bumps that travel up, and then down, the TD. (a) Conventional parallel

wave graph, used in previous publications. (b) Shaded graphs showing volt-

age and skin stretch (delta) images. The time axis is expressed in arbitrary

units. Brass end-plates are not included in this stretch analysis.

Chapter 4. Handheld Prototype Development 64

this thesis.

4.9.4 Skin Stretch Image

The raw voltage level at a given time simply corresponds to the static dis-

placement of the piezo element at that time. The tactile percept, on the

other hand, is produced by transient patterns of skin stretch that activate

mechanoreceptors in the user’s finger. This may be caused by:

1. Skin stretch or compression produced by the movement of two piezos

relative to each other. The area of skin in the gap between the piezos

undergoes the stretch or compression.

2. Skin stretch or compression produced by the movement of a flanking

piezo relative to the brass end-plates.

3. High frequency vibrotactile activation of a piece of skin, in which forces

are produced against the inertia of the skin.

4. Active exploration of the static TD surface caused by the user moving

or slipping their finger over the TD.

Of these various causes, (4) is unrelated to the synthetic haptics being

discussed here, and (3) is subject to the limitations of vibrotactile stimuli

that we described in Chapter 2, and as such we consider it secondary to the

rich lower-frequency activations made especially possible by the current TD

design.

By plotting the difference between voltages applied to adjacent piezo

elements using a similar shading convention to the above, we can generate

a graphical picture of the skin activation pattern due to causes (1) and (2).

In the present work, we have chosen to use “bright” shading for “stretch”

Chapter 4. Handheld Prototype Development 65

(or expansion of the gap between two adjacent piezo-actuators), and “dark”

shading for “compression” (narrowing of the gap). The resulting visual

representation is known as a stretch image, and is contrasted with the raw

voltage image, sometimes abbreviated volt image. The stretch image reflects

more directly the user’s tactile experience of the stimulus.

Stretch Image Caveats

The stretch image is an attempt to more accurately depict the tactile sen-

sations produced by the device, and it is applicable to all of the stimuli

described in this thesis, but it is still not a completely perfect picture. The

following cases should be noted:

1. As mentioned in the previous section, the TD has sufficiently rapid

response so as to be capable of producing vibrotactile stimulation that

is not due to skin stretch created between adjacent piezo elements

and therefore is not captured by the skin stretch representation. For

example, if all eight piezo elements are vibrated in synchrony, the

skin stretch image representation would be a flat grey, equivalent to

no activation at all, since the piezos are not moving relative to one

another. For this reason, stretch images are always presented alongside

the source volt image in this work, as vibrotactile transients can be

visually identified as areas of high horizontal contrast in the volt images

even when they are not present in the stretch images.

2. Patterns of static stretch do not produce a tactile percept. For ex-

ample, the piezos could be moved into a particular configuration and

kept there for a long time (seconds), producing a momentary sensation

when they are first moved, but one that dies out as the mechanorecep-

Chapter 4. Handheld Prototype Development 66

tors adapt to the pattern of stretch. This adaptation is not reflected

in the stretch image.

The potential problem of too low-frequency stimulation should be kept

in mind during tactile experience design. Further discussion of image-based

compensation for mechanoreceptor adaptation can be found in the following

section.

4.9.5 Automated Tools for Design

When tactile images are represented as an array of eight greyscale pixels,

they can be created, manipulated, and analyzed using readily available tools

for dealing with visual (bitmap or raster) images. Using a paint and image

manipulation program such as Adobe Photoshop, tactile images can be eas-

ily painted using the mouse, and many convolution filters may be applied

with qualitatively similar effects in both visual and tactile domains: blur,

sharpen, add noise, contrast, and many others fall into this category. Since

the image format provides an on-line visual preview of the tactile stimulus,

the visual transformation produces a related tactile transformation. For ex-

ample, blurring an image visually, smooths (“blurs”) the tactile sensation

as well.

Furthermore, stretch images can be automatically and rapidly generated

in one click using Photoshop’s “Custom” Filter. This is a generic convolution

filter that accepts a user-specified kernel up to 5 × 5 in size, and may be

used to generate a wide variety of visual effects. When applied using the

settings shown in Figure 4.10, it takes the difference between two vertically

adjacent pixels, normalizes it to the stretch image scale previously described,

and outputs the image. Because the stretch image is one pixel smaller than

Chapter 4. Handheld Prototype Development 67

the volt image, the top pixel needs to be cropped off after using this filter.

Alternatively, if desired, the interaction of the two end piezos (#1 and #8)

with the brass end-plates can be investigated simply by adding two rows of

neutral grey pixels to the voltage image prior to convolution. The resulting

stretch image, after cropping, would then be 9 pixels high.

Figure 4.10: Photoshop Custom Filter settings to automate creation of

stretch images. The depicted convolution kernel instructs the program to

do the following: Take the sum of the current pixel, multiplied by 1, and the

pixel immediately above it, multiplied by -1. Scale the total by dividing by 2,

then add 127 (half of the full-scale value of 255).

More sophisticated algorithms could be employed to improve the accu-

racy of the stretch image by taking into account adaptation: local areas of

skin stretch that are held for long periods of time could gradually “fade to

grey” by detecting non-changing pixels (stretch zones) and pushing them

towards grey on a timescale that is consistent with empirically measured

adaptation phenomena.

Chapter 4. Handheld Prototype Development 68

From a practical standpoint, it was decided not to implement adaptation

compensation in the image processing for several reasons. First, the adap-

tation rate is not constant and is dependent on a number of factors such as

psychological state, skin properties and individual factors. Second, adding

a real-time scale to the horizontal axis of the images introduces significant

complication that undermines their purpose as a rapid prototyping and vi-

sualization tool. Finally, it is quite easy to visually detect and avoid long

periods of unintentional lack of motion in haptic icon designs; it is far more

likely that such artifacts would result from higher-level effects such as inter-

action between haptic icons and the speed of the user’s navigation. For these

reasons it was decided that the plain, uncompensated stretch image repre-

sented a good compromise between accuracy (correspondence of the visual

representation with the felt tactile sensation) and utility as a prototyping

and visualization tool.

4.9.6 gif2hapticon Tool

Prior to the introduction of the gif2hapticon tool, multichannel output for

piezo tactile displays was usually constructed algorithmically, with tables

produced in Matlab or similar tools through summation of sine functions,

and used by applications in a simple spatially modulated lookup loop. Al-

ternatively, using a Java-based application, the user could specify temporal

output (a “tactile movie”) by setting the value for each time-sample using

onscreen slider widgets. The output from this application was an XML-like

file4 encoding the sample “frames”, which was read by a tactile movie player
4XML was used primarily because of its extensible nature, which ensures that future

functionality, such as more complex time/space relationships and support for different

TDs, could be added without having to make major revisions to existing software. The

Chapter 4. Handheld Prototype Development 69

program and output in sequence to the hardware.5

Both existing methods required considerable time and effort to generate

a new tactile stimulus. In practice, the stimuli that were created tended to

be selected on the basis of convenience of the generating algorithm, rather

than the quality of the tactile experience — for example, algorithmically

“neat” simple sine waves or, when using the slider approach, square or linear

transitions. Additionally, the algorithmic method restricts the design of

haptic signals to a technical audience that is familiar and comfortable with

mathematical functions. A method to allow more direct, rapid prototyping

of haptic signals, leveraging the visualizations described previously, would

enable more iterative design of stimuli and exploration of the stimulus space.

Leveraging the existing XML framework, a tool called gif2hapticon was

developed by the author to rapidly transcode raster images in the GIF89a

[2] format to the tactile movie XML files, or to the newer “haptic icon” file

format (also XML based) described in Chapter 6. It is written in C++ and

uses the free ImageMagick [4] library for reading GIF images.

With the gif2hapticon utility, any software that is normally used for

creating animated GIF images for the Web may also be used to generate

tactile movies. A sample workflow is shown in 4.11. Perhaps more impor-

tantly, the first steps of this workflow, where haptic icons are designed in a

creative and exploratory process, are nearly identical to the creation of ani-

mated GIF icons for the Web. Therefore, anyone with experience in creating

simple Web graphics can participate in haptic icon design, thus enabling a

actual implementation does not include a formal Document Type Definition (DTD) for

reasons of expediency (although one could be added trivially in the future), therefore it is

“XML-like” in its current state.
5These methods were developed and used by the group at McGill University.

Chapter 4. Handheld Prototype Development 70

much wider audience than those who are familiar with creating matrices in

Matlab.

The code for the gif2hapticon tool is shown in Appendix C. It is a cross-

platform ANSI C++ application, as is the required ImageMagick library.

The general command line usage is:

gif2hapticon -t <infile.gif> <outfile.xml>

where -t specifies tactile movie mode and infile.gif and outfile.xml

are the input and output filenames, respectively.

gif2hapticon is discussed further in Browser Prototype, Section 6, as

it also features a mode for creating icons that are read by that application.

4.9.7 Author’s Contribution

The above section is primarily the work of the author. Prior to the au-

thor’s involvement with the project, the “parallel wave graphs” described in

Section 4.9.1 were developed by the McGill collaborators, as well as a graph-

ical representation, used in a Java tactile movie tool developed by Jerome

Pasquero, that showed the relative angular orientations of individual piezo

elements (not discussed in the body text above for reasons of brevity).

Chapter 4. Handheld Prototype Development 71

Photoshop
Paint / Draw

Image

Imageready
Add Motion

gif2hapticon

tactile
movie player

TD

Typical Web
Workflow

GIF

GIF

XML

Figure 4.11: The process for creating a haptic icon using the image-based

workflow is similar to the process of creating graphics for the Web. In this

example, all creative steps are done in Adobe Photoshop and ImageReady,

and the conversion to tactile signals is handled by automated tools, with the

output of the Photoshop stage being a static GIF and the output from the

ImageReady stage being an animated GIF. Tactile images of arbitrary size

are supported. For the purposes of a simple tactile movie, the size would be

1×8 pixels, while a haptic icon (Chapter 6) or other spatial representation

can have a greater height. All images represented here are volt images.

72

Chapter 5

Perceptual Characterization

5.1 Introduction

The development of the initial application concepts and handheld tactile

display hardware was guided by an understanding of the general capabilities

of the lateral skin-stretch technology, and ideas for how it could address user

needs in mobile contexts. To proceed to the next stage of more detailed

application design, we needed to quantify how users perceive the haptic

signals generated by the new hardware. We then mapped some of the regions

of the haptic “vocabulary” (range of stimuli that the device could generate),

allowing us to assess suitability of the envisioned applications, and what

stimuli would best match the roles specified in our concept designs.1

We used a similar approach to perceptual characterization as [12]. The

core stimulus salience quantification method utilized multidimensional scal-

ing (MDS), a tool for analyzing perception in complex stimulus spaces [21].

Given a range of stimuli, MDS analysis produces maps of how the perceptual

space is organized.
1A version of this chapter has been published. Luk, J., Pasquero, J., Little, S.,

MacLean, K., Hayward, V., Levesque, V. (2006). Haptics as a Solution for Mobile Inter-

action Challenges: Initial Design Using a Handheld Tactile Display Prototype, in Proceed-

ings of ACM Conference on Human Factors in Computing Systems, CHI ’06, Montreal,

Canada, April 2006.

Chapter 5. Perceptual Characterization 73

Our new hardware can generate moving stimuli, but the range of de-

tectable movement speeds was not known. We therefore performed a study

to estimate this range. This enabled us to select speeds for icons for later

MDS analysis.

5.2 Author’s Contribution

This chapter was previously published in [34], and represents the collabo-

rative effort of authors on that paper, including Jerome Pasquero, Shannon

Little, Karon MacLean, Vincent Levesque, and Vincent Hayward. The au-

thor participated in every phase of this research, including software develop-

ment, haptic icon design, running the experiments, data analysis, presenting

and writing up the findings, decision making and project management. All

user trials in the subgroup MDS experiment and the initial data analysis for

the speed study were conducted by the author.

5.3 Study 1 - Range of Perceivable Stimulus

Speed

The purpose of the speed study was to determine the available perceptual

bandwidth in one possible dimension that could be used as a parameter

for haptic icon design. The question we sought to answer was: “What is

the upper limit on the movement speed of a virtual ’shape’ that people

are able to perceive?” To estimate the range of useable stimulus speed

we hypothesized that the users’ ability to perceive the movement direction

would decrease as speed increased.

Chapter 5. Perceptual Characterization 74

5.3.1 Speed Study - Experiment Design

We used a simple moving stimulus consisting of a square waveform that was

“tweened” across the tactile display to achieve a sense of motion (Figure

5.1). Two waveforms were used, producing either a moving region of skin

expansion (“stretching”) followed by compression (“pinching”), or compres-

sion followed by expansion. The maximum stimulus speed was limited by

the hardware sampling frequency to 3.40 m/s (taking 2.56 ms to cross the

display). We conducted a simple pilot study among the authors to determine

the approximate appropriate speed range for testing, setting the lower speed

bound to a region where stimulus detection accuracy reached a plateau.

The independent variables were: speed (0.17 to 3.40 m/s); direction

(up or down); and wave type (stretch-compress or compress-stretch). The

dependent variables, measured with a forced-choice method, were: perceived

direction (up or down), yielding an accuracy measure when compared to the

actual direction, and confidence level (confident or guess).

5.3.2 Speed Study - Procedure

The trials were conducted on a Linux PC with the tactile device attached.

On each trial, the computer selected random values for each independent

variable. The user pressed a GUI button labeled “Play” to feel the stimulus,

which was repeated three times with an intervening delay of 0.7 second. The

user was then required to input the perceived direction and confidence level

before proceeding to the next trial. There were five “training” trials where

the user was informed of the actual direction via a modal dialog box just

after entering their responses, followed by 40 “test” trials where the user

received no notification.

Chapter 5. Perceptual Characterization 75

co
m

pr
es

si
on

 s
tre

tc
h

5 10

5 10

8

LEGEND

time (msec)
0

+50V

–50V

1

pi
ez

o

8

0
1

pi
ez

o

piezo #8

3.5 m/s, down

base waveform

1.8 m/s, up

(a)

(b)

(c)

Figure 5.1: Examples of stimuli used for the speed study. (a) Voltage signal

for one piezo element. (b) Pattern of lateral skin stretch produced with the

3.5 m/s stimulus. (c) Pattern of lateral skin stretch produced with the 1.8

m/s stimulus. The highlighted area represents one tactile frame in which

there is the sensation of stretching and compression at opposite ends of the

display.

Chapter 5. Perceptual Characterization 76

5.3.3 Speed Study - Results

8 right-handed volunteers (5 male, 3 female, aged 20-40 years old) partici-

pated in the user study. Each user took approximately 5-10 minutes to run

the study.

50

60

70

80

90

100

0.17 0.19 0.21 0.24 0.28 0.34 0.42 0.57 0.85 1.70
Speed (m/s)

Stimulus Direction
Detection Accuracy (%)

Figure 5.2: Results from the investigation of perceivable range of stimulus

speed. The heavy line is the polynomial trend line; measured data points

are in grey.

The overall accuracy results from the speed study are shown in Figure

5.2. The relationship of accuracy and speed was statistically significant with

(χ2 =43.00, p<0.01), supporting the experimental hypothesis. Accuracy fell

to approximately chance levels at the maximum speed of 3.40 m/s, but ap-

proached 90% at 0.34 m/s using a polynomial regression. The measured

accuracy at 0.19 m/s and 0.31 m/s appears to be lower than the surround-

ing data points. While likely due to random variation, this observation is

Chapter 5. Perceptual Characterization 77

being further investigated. At the higher speeds, users reported that the

stimulus felt like a “click” or small vibration and that direction was difficult

to ascertain.

No significant effect was found for wave type (χ2 = 1.87, p>0.01). User-

reported confidence level decreased as the speed was increased (χ2 = 165.49,

p<0.01).

5.3.4 Speed Study - Discussion

The results from the speed study show that the device is capable of signalling

the direction of stimulus movement over a large range of speeds. The sensa-

tion experienced is comparable to sliding one’s finger across a surface with a

small bump. It thus seems feasible to use a directional “tactile flow” signal

in applications such as assisted navigation. In addition, the results suggest

that speeds lower than approximately 0.34 m/s would be appropriate for

designing abstract haptic icons that convey the sense of motion.

5.4 Study 2 - Haptic Icon Discrimination

Experiment

The purpose of the haptic icon discrimination experiment was to assess the

range and distribution of perceivable difference of some specific haptic icons

rendered with this device. The multidimensional scaling (MDS) technique

was used to map the organization of the stimulus space.

Chapter 5. Perceptual Characterization 78

Factor Levels

waveform tri, roll, saw, bump, edge

amplitude ±50V (“full”), ±25V (“half”)

speed 0.34, 0.23, 0.17 (m/s)

duration (Calculated from waveform and speed)

tri: {480, 720, 960} (milliseconds)

roll: {221, 331, 442}

saw: {86, 130, 173}

bump: {74, 110, 147}

edge: {74, 110, 147}

Table 5.1: Stimuli used in the MDS studies

5.4.1 MDS Study - Experimental Design

The stimuli were selected according to a 5 waveforms × 2 amplitudes × 3

speeds factorial combination, resulting in 30 haptic stimuli (Table 5.1 and

Figure 5.3). These factors roughly correspond to stimulus components used

in prior studies for tactile displays [11, 19]. The waveforms were chosen

to represent qualitatively different tactile experiences based on first-pass

experimentation with different signals, and included both repeating and

non-repeating waveforms. For the speed parameter, we chose a range that

produced an accuracy rate approaching 90% in the prior speed study.

A fourth “meta-parameter”, duration, was calculated from the speed and

waveform parameters, and represents the total amount of time the stimulus

is present under the user’s finger. We hypothesized that this parameter

might be perceptually relevant and tracked it in later analyses.

Chapter 5. Perceptual Characterization 79

sample (× 320µs)

tri

roll

saw

bump

edge

+50V

-50V
+50V

-50V
+50V

-50V
+50V

-50V
+50V

-50V
1 20 40 60 80 100 120 140

Figure 5.3: Waveforms used in the MDS studies.

5.4.2 MDS Study - Procedure

The participants completed five stimulus-sorting blocks in a method similar

to that used in [36] and [52]. The sorting method is a way to efficiently

measure perceptual similarity between pairs of stimuli. Participants were

seated at a workstation and operated the mouse with the right hand while

holding the device in their left hand2 with the thumb resting on the tactile

display. Slider position was ignored. Participants used a GUI that presented

the 30 stimuli in a grid of approximately 1 cm2 tiles. They could trigger
2 Only left handed operation is supported on the handheld prototype. This is also the

case with almost all commercial handheld products having side-mounted controls. See

Section 4.1.

Chapter 5. Perceptual Characterization 80

stimulus playback by clicking a tile with the left mouse button, and used the

right mouse button to pick up, move, and drop the tiles into approximately

7 cm2 regions on the screen, which represented clusters. On the first block,

they could adjust the number of clusters using onscreen +/- buttons. In

subsequent blocks, they were required to produce 3, 6, 9, 12, or 15 clusters,

presented in random order; the number of clusters closest to the user-selected

for the first block was excluded.

We also collected qualitative feedback from users in a post-task interview,

seeded with the following questions:

• “How would you describe the tactile sensations you experienced to

someone who had not experienced them?”

• “What aspects of the device felt comfortable or natural to use, and

what aspects did not?”

• “Can you suggest any applications of the tactile sensations for a mobile

device?”

5.4.3 MDS Study - Results

Ten right-handed individuals (7 male, 3 female, aged 19-31 years old) par-

ticipated in the study, and were compensated $10 Canadian dollars. All

subjects completed the tasks within one hour.

We performed an MDS analysis on the data obtained from the sorting

task. Stimuli that are sorted together into a cluster were assigned pairwise

similarity scores proportional to the total number of clusters in a given

sort, because it is reasoned that when a user has more clusters from which

to choose, the significance of placing two stimuli together in a cluster is

Chapter 5. Perceptual Characterization 81

increased.

Figure 5.4: Results from the MDS analysis of haptic icons. Each point

represents a stimulus, and dotted lines illustrate stimulus groupings. The

axes may be rotated arbitrarily.

The results from a two-dimensional MDS performed with ordinal, untied

data are shown in Figure 5.4. Analyses in 3-D and higher dimensions did

not yield any additional structural information about the data.

The graph clearly indicates that users tend to structure the stimulus

space in terms of waveform, with the tri stimuli clearly distinguished, and

roll stimuli also being separated from the non-repeating waveforms bump,

Chapter 5. Perceptual Characterization 82

edge, and saw.

The stimuli formed by the three non-repeating waveforms — bump, edge,

and saw — were less clearly distinguished on the graph, indicating that users

did not consistently sort them separately from one another. This suggests

that the differences between these waveforms are not perceptually salient,

possibly due to limitations of the hardware or skin sensitivity. Additionally,

because the experimental paradigm uses relative perceptual data, the dom-

inance of the repeating / non-repeating waveform difference may obscure

subtle differences among the non-repeating waveforms [7].

A closer examination of the graph suggests that duration and amplitude

may also be salient perceptual dimensions, but their organization in the

overall MDS graph is not consistent. However, when subsets of the data

were analyzed one waveform at a time, most of the graphs exhibited clear

duration and amplitude structure along the x− and y−axes. Because the

data was collected in a task where users were required to sort all stimulus

factors at once, we hypothesized that because the less salient dimensions are

perceived qualitatively differently depending on waveform, a global MDS so-

lution was unable to represent them all consistently. We therefore performed

an additional experiment to determine the validity of the subset analysis.

5.5 Study 3 - Subgroup MDS Experiment

The purpose of the subgroup MDS experiment was to determine whether

more subtle stimulus factors could be detected when the waveform was not

varied.3

3A detailed analysis of the subgroup methodology is published in [42].

Chapter 5. Perceptual Characterization 83

5.5.1 Subgroup MDS - Experimental Design

The subgroup MDS experiment consisted of four trials: a control trial sim-

ilar to the first MDS experiment, and three subgroup trials where users

performed sorting tasks using individual waveform subgroups. We chose the

tri, roll, and edge waveforms for further analysis because the earlier MDS

analysis and qualitative reports indicated that they were judged to be the

least similar.

5.5.2 Subgroup MDS - Procedure

To avoid fatigue resulting from the increased number of trials, we reduced

the number of sorting blocks per trial. For the control trial with 30 stimuli,

subjects performed three sorts with a user-selectable number of clusters

in the first sort, and 5, 10, or 15 clusters in subsequent sorts, presented

in random order with the number of clusters closest to the user-selected

number of clusters in the first sort excluded. For the waveform subgroup

trials using 6 stimuli, after the first trial the clusters were 2, 3, or 4 clusters

using the same presentation and exclusion criteria. The control trial was

presented first, followed by the three waveform subgroup trials in random

presentation order. All other data collection methods were the same as in

the first MDS experiment.

5.5.3 Subgroup MDS - Results

Five right-handed people (3 male, 2 female, aged 19 to 35) participated in

the subgroup experiment. None had participated in a previous experiment

with the device. Participants were paid CAD $20 for a 90-minute session.

The subgroup MDS results confirmed the findings from the earlier sub-

Chapter 5. Perceptual Characterization 84

Figure 5.5: . Results from the subgroup MDS study. (a) Control trial with

all 30 stimuli. (b) tri stimuli (c) roll stimuli (d) edge stimuli. The results

exhibit organization along the dimensions of duration and amplitude.

Chapter 5. Perceptual Characterization 85

set analysis, with duration and amplitude being clearly employed by users

to organize the stimulus space. Figure 5.5 indicates no clearly discernible

duration/amplitude organization in the control trial graph with all 30 stim-

uli, but when individual waveforms were tested separately, the organization

became apparent. In the subgroup graphs, duration is aligned vertically and

amplitude horizontally.

Additionally, the data from the control trial exhibited the same overall

structure as the data from the first MDS study, providing further confir-

mation of the original results and the robustness of the technique despite

differences in the number of clusters used in the sorting task. Taken to-

gether, the results indicate that duration and amplitude, while secondary to

some differences between waveforms, are nevertheless discernible and useful

as salient parameters for haptic icon design in this environment.

5.6 Summary of Perceptual Characterization

Findings

The results from the three perceptual characterization studies suggest that

users are capable of distinguishing a wide variety of stimuli produced by

the hardware prototype. Direction, certain waveforms, duration, and am-

plitude are salient parameters that may be used in designing haptic icons for

use in applications. The three-way grouping we observed among waveforms

was especially interesting, because it empirically suggests how our first-pass

parameterization model of haptic icons could be improved; for example, in-

stead of treating waveform as a single parameter, in subsequent designs one

could consider non-periodic versus periodic waveforms, and further subdi-

vide the periodic group into different wave shapes (e.g., tri versus roll in the

Chapter 5. Perceptual Characterization 86

present experiment).

5.6.1 Qualitative Findings

During user evaluation we were also able to learn how people perceive the

device qualitatively. This information is especially useful for determining

how users would perceive the value of the proposed applications. The key

findings are summarized as follows:

• Universally (N=15/15), participants did not find the stimuli annoying

or disruptive. Many participants reported that they preferred them to

their mobile phone’s vibration mode. A variety of reasons were given,

including quiet operation and moderate stimulus amplitudes.

• Many (N=8/15) participants volunteered that they would find this

type of tactile stimulus useful for alerts and notifications, such as iden-

tification of who is calling, information about a waiting message, or

an alarm.

• Some (N=3/15) participants experienced mild tactile fatigue, usually

expressed as numbness, which was overcome by repositioning the finger

to use a different part of skin, or taking a brief (approx. one minute)

break.

• In general, participants said they found the device comfortable to hold

and ergonomically suitable for the tasks. Since the sliding function was

not used in the perceptual characterization studies, it is not known

whether this report would be affected by using the slider for input.

Chapter 5. Perceptual Characterization 87

5.7 Perceptual characterization findings for

application design

With some quantitative and qualitative data on low-level user perception of

the prototype device, we can now consider whether the applications origi-

nally envisioned for the device are indeed appropriate, and to proceed with

the next steps of application design.

5.7.1 List selection

Judging from the results of the perceptual characterization, haptic icons de-

signed along the dimensions of waveform (periodic or non-periodic), dura-

tion, and direction are candidates for distinguishing items in a list. Because

the most salient parameters are the direction and speed of the stimulus,

it is important to decouple this rendered motion from illusions of relative

stimulus motion generated as a result of the voluntary thumb movements

to produce control input to the system. One way of avoiding this confound

is to signify a discrete command such as scrolling an item up or down with

a larger but mechanically grounded gesture that incorporates pressing the

slider against an end-stop.

5.7.2 Scrolling

As originally envisioned, the browsing application uses rendered speed and

direction parameters to provide haptic feedback to the user about the move-

ment of the point of focus within the page. Haptic shape (waveform) is the

only parameter available to provide information about the selected item

(link, image, heading, etc.) However, the two MDS studies suggest that the

Chapter 5. Perceptual Characterization 88

user’s ability to discriminate haptic shape with this device may be some-

what limited when using non-periodic signals. It is possible to build and

test the browser application using the currently identified set of haptic icons,

but its usefulness may be limited by the relatively narrow choices of icons.

Alternative next steps include (a) reiterating the haptic icon design and

perceptual characterization stage to discover more choices for haptic shape;

(b) re-examining the rendering method and electronic I/O characteristics

to minimize electronic and mechanical filtering that may be reducing the

resolution and bandwidth of the haptic signal output; and (c) reconsider-

ing the mechanical construction of the tactile display itself with the aim

of further amplifying signal strength and thus, presumably, the potential

distinctiveness of different waveforms.

5.7.3 Direction signalling

The location-finding application concept relies on the tactile display’s ability

to convey direction information to the user. The user studies confirmed

that direction of tactile flow is clearly distinguishable across a useful range

of speeds. Intensity, waveform and rhythm of repeating stimuli may be

used to provide additional information about the distance to the target,

status, or movement of the target. Our results thus encourage prototyping

and usability testing for this application according to the original design

concept.

5.7.4 Alerts and background status indicators

User feedback obtained during interviews following the perceptual charac-

terization sessions indicated strong potential for using the device for alerts,

Chapter 5. Perceptual Characterization 89

based on the judgment that it would be pleasant and non-intrusive compared

to currently available vibrotactile displays.

Data from the perceptual characterization suggests a hierarchy of salience

that could be mapped to the relative importance or urgency of an alert. For

example, a periodic signal would be useful for important alerts due to its

high saliency. Less important changes in background status, such as the

movement of passively monitored “buddies”, could be conveyed with non-

repeating signals.

Finally, if background status indicators are to be multiplexed with other

haptic signals generated by the foreground (currently in-use) application,

one of the dimensions identified in the user studies could be allocated for this

display. For example, if the speed dimension was allocated to background

status indicators, slow moving stimuli could be used for the foreground appli-

cation, while fast-moving stimuli could indicate background alerts. However,

because of the limited set of currently known salient haptic stimuli, it would

be advisable to perform another iteration of haptic icon discovery before

allocating a large chunk of the “vocabulary” to background indicators.

90

Chapter 6

Browser Prototype

Having constructed a hardware prototype and characterized its expressive

capabilities in the hands of users, we were ready to begin prototyping and

testing one of the application concepts described in Chapter 3. We chose the

browser concept to investigate first, because it is the most generalizable in

terms of an abstract scrolling / navigation model, unlike more specialized

interfaces such as the music player. A browser with tactile enhancement is

also a significant departure from existing approaches, unlike the notification

scenario, which could be considered an evolutionary improvement of existing

vibrotactile notifications. Finally, the concept of simulating the tactile sen-

sation of spatial movement using tactile flow rendering, as an aid to cursor

navigation, has not been previously studied.

Two levels of browser prototypes are described in this chapter. In Sec-

tion 6.2 we describe a simple image browser,1 allowing viewing and scrolling

of an image with an associated “tactile track”, and an informal user evalu-

ation conducted to roughly determine the expected user experience with a

higher fidelity prototype. The remainder of the chapter is devoted to the

design and implementation of the high-fidelity tactile web browser, which is
1The image browser was implemented by Vincent Levesque and Jerome Pasquero based

on a collaborative design, and the user study was conducted by the author with contri-

butions to the experimental design from the McGill collaborators and thesis supervisor.

The image browser is also described in [42].

Chapter 6. Browser Prototype 91

capable of reading web pages, automatically generating haptic maps based

on web content, and supporting interactive navigation with both visual and

haptic feedback. A formal user evaluation of this browser is described in the

following chapter.

6.1 Design Goals

The purpose of building the browser prototype is (1) to explore one of the

aforementioned application areas in depth, (2) to discover what challenges

exist for implementing effective haptics in this application area using the

piezo tactile display device, and (3) to assess its effectiveness with usability

testing.

As mentioned in Chapter 4, the aim was to develop, test, and validate

an application in the handheld, tethered environment before going to the

much more difficult and expensive mobile, untethered context. As such, the

browser software does not need to be concerned with wireless issues and

variable content delivery relative to signal quality. Web standards such as

HTML, CSS, and JavaScript are used instead of wireless standards such

as WML, MIDP, and Brew. While this decision potentially limits the un-

tethered capabilities using the current browser architecture, it also greatly

simplifies the design and eliminates costly technology licensing, allowing use

of a fully open source software architecture.

Using Web standards means that the browser is capable of interacting

with live content from remote servers. However, for the purposes of usability

testing, locally cached web pages are used. The browser uses standard web

formatting and display constructs, but does not attempt to automatically

reformat pages originally designed for PC screens. Just as with mobile

Chapter 6. Browser Prototype 92

devices built around existing Web standards, content creators will use the

same techniques for authoring but must optimize their content for specific

devices. Design for tactile browsing can be considered an extension of this

process.

6.2 Low-Fidelity Prototype: Image-Based

Browser

A prototype browser was implemented that takes a graphical image as in-

put and allows interactive scrolling of the image, with synchronized tactile

output. The software was tested informally with users.

The image browser is described in detail in [43]. Therefore, it is only

briefly described here.

6.2.1 Design

The design concept, described previously in Chapter 2, is the work of the

author. A key component of this design is the provision of a tactile track,

represented graphically alongside the rendered page, with icons spatially

arranged at locations corresponding to the vertical positions of elements

such as headings, links, images, text, etc. (Figure 6.1). Furthermore, the

height of the icons represented in the tactile track corresponds to the height

of the page elements. When the user scrolls the page, the tactile track

moves in synchrony with the page. These concepts were used to build the

image-based browser.

Chapter 6. Browser Prototype 93

image
haptic
icon

text
haptic
icon

header
haptic
icon

THMB
The Tactile Handheld
Miniature Bimodal
device features a liquid
crystal display and a
tactile display.

It is held in one hand
with the thumb on the
tactile display which is
combined with a scroll
button.

Tactile Display

The display uses a stack
of piezoelectric benders
to deform the skin in the
tangential direction.

Tactile
Rendering
This technology can
render programmable
tactile sensations such
as moving small scale
features.

Demonstrative
Application
To demonstrate its
capabilities a simple
application was
developed whereby
access to a document
was provided by
simultatneous visual
and tactile exploration
in a scrolling mode.

© McGill University
Haptics Laboratory
and University of
British Columbia
SPIN Laboratory

ta
ct

ile
 w

in
do

w

(a) (b) (c)

Figure 6.1: Overview of main features of the image browser. (a) “Tactile
track” with callouts for icons. (b) Source image. (c) The viewable area
is determined by the screen size and height of the tactile display (“tactile
window”). Diagram by Jerome Pasquero.

Chapter 6. Browser Prototype 94

6.2.2 Implementation

Implementation was done by the team at McGill, principally Vincent

Levesque. The image browser application is implemented in C++ and uses

the GTK library [3] for graphics display, and the STReSS library (Section

4.7) for TD input and output.

The browser software is capable of generating its own haptic icons para-

metrically. It supports three types of icons, whose positions and types are

manually encoded in the input image:

1. Headers

2. Body Text

3. Embedded Images

In the image browser prototype, embedded images are represented by a

high-frequency “grating”, body text by sparse ”dots”, and headers by ei-

ther two closely spaced ”dots”, or a single dot with a superimposed high

frequency grating with adjustable magnitude. Based on informal user eval-

uation of the stimuli, the two-dot configuration for headers was chosen as

the best candidate for being distinguishable from the other stimuli.

Scrolling is accomplished by pushing the slider up or down, which causes

the page to continue scrolling as long as the slider was held in that position,

in proportion to the distance from the centre of the slider travel (velocity

control). For this test, the slider was equipped with a spring-return mecha-

nism that centred the slider in the middle of its travel. There was no action

associated with the TD’s “click” mechanism.

Chapter 6. Browser Prototype 95

6.2.3 Image Browser User Test

An informal user evaluation was carried out by the author to collect impres-

sions from people who were unfamiliar with the device. The full results are

reported in [43]. Evaluation with seven participants produced the following

findings:

1. While the high-frequency “image” icon and the low-frequency “body

text” icons were clearly distinguishable, 6 out of 7 participants had

difficulty distinguishing the “header” icon, even when it was displayed

graphically (in the tactile track) in a way that was visually distinguish-

able from the other icons, and they were asked explicitly to attend to

the number of stimuli they could distinguish.

2. All (7/7) participants said they wanted to be able to access the ends

of the page which were inaccessible due to the tactile window being

fixed in the middle of the visual scrolling window.

3. 4 out of 7 participants reported that they could easily perceive the

direction of movement of the tactile stimuli, and that it was in syn-

chronization with the movement of the page.

4. 3 out of 6 participants reported frustration with the use of the slider

mechanism for scrolling and targeting. One participant said that in-

stead of velocity control, it would be nice if the device worked like

a jog dial, supporting repetitive pushing motions in position-control

mode

5. Participants’ free-response suggestions included being able to make

selections by pushing down on the TD (“click” action), page flipping,

Chapter 6. Browser Prototype 96

eyes-free browsing, and notification.

6.3 Haptic Display of Web Pages

The previous section described a browser which operated on graphical

mockup images of web pages, with the accompanying tactile stimuli being

generated algorithmically from one of three templates, with placement and

type manually encoded in the image. Link selection, reading of web source

files (HTML, etc.), and other typical features of a web browser were not

supported. The goal of the image-based browser was to serve as a first-pass

low-fidelity prototype to obtain early user feedback as part of the ongoing

process of developing the browser application.

We will now discuss an automated method for creating a haptic repre-

sentation of a web page from its HTML source files. The key features of this

approach are:

1. Simultaneous visual and haptic rendering of HTML elements.

2. An object-oriented, extensible framework for the haptic page map.

3. Support for an arbitrary variety of haptic icons associated with page

elements.

4. Support for animated (i.e., time-varying) haptic icons.

6.3.1 The Haptic Page Map

The output of the rendering algorithm is a haptic page map, which is a

model (in the object-oriented programming sense) of the page in the haptic

domain. (Figure 6.2) In the haptic page map, icons are laid out spatially

Chapter 6. Browser Prototype 97

along a one-dimensional page map coordinate, which corresponds to the ver-

tical dimension in the visual representation of the web page. 2. During

navigation, the user moves a cursor along the page map coordinate, as de-

scribed in section 6.4.

6.3.2 Mapping Haptic Icons to Page Elements

Page elements, such as links, images, and headings, are associated with

haptic icons according to the following algorithm:

1. If the element contains the HTML name attribute, that property is

used as the haptic icon filename, followed by an .xml extension.

2. Otherwise, the default icons link.xml, image.xml, h1.xml, h2.xml,

etc. are used.

This approach allows page authors to specify haptic icons easily within

the HTML markup. For example, the XHTML tag:

places an image in the page with filename coupon.jpg and associates it with

the haptic icon hapticonA.xml.

Combined with the animated GIF based workflow described previously

in Section 4.9.6, this HTML-based markup scheme means that no special

tools are required to add haptics to an existing web page, and page authors

can leverage their existing skills in graphics creation and HTML markup.
2A coordinate transformation may apply in converting between graphical vertical co-

ordinates and page map coordinates. See Section 6.4.10.

Chapter 6. Browser Prototype 98

Spatial
Representation

of Haptic
Page Map

Graphically
Rendered

Page

Gecko

0

400

Page M
ap C

oordinate

HapticPageMap
int height = 400
HapticIcon *icons
...

HapticIcon::Spatial
int position = 150
HapticIcon *next
float *data
...

XHTML Source
...

<a href=’link1.html’

name=’hump’>Link 1<br \>

<br \>

<a href=’link2.html’

name=’plateau’>Link 2

...

HapticIcon::Animated
int position = 200
HapticIcon *next
float *data[frames]
...

HapticIcon::Spatial
int position = 250
HapticIcon *next
float *data
...

...

Link 1

Link 2

...

Figure 6.2: The (X)HTML source is rendered graphically by the Gecko

engine and haptically using the HapticPageMap model, shown here in a

simplified schema. The resulting spatial arrangement of icons is also shown.

The HapticPageMap object includes a list of HapticIcons, which may be of

type SpatialIcon or AnimatedIcon. Together, the objects form a complete

representation of the web page in the haptic domain.

Chapter 6. Browser Prototype 99

6.3.3 Spatial Layout

A simple spatial layout algorithm is used to assign positions to the hap-

tic icons. The haptic icon’s top coordinate corresponds to the top pixel-

coordinate of the rendered element in the graphical representation of the

web page.

Various approaches to deal with the case when multiple page elements

are laid out horizontally, and thus occupy the same vertical space on the

graphic display, were tested. There is functionality built into the layout en-

gine for dynamically reconfiguring the haptic icons to avoid overlap Initial

experimentation with this approach revealed that the mismatch between

graphical and haptic representations created unsettling navigation inconsis-

tencies. At the same time, it was found that horizontally laid out elements

are generally rare on small screen displays, especially mobile phones with a

“portrait” (as opposed to “landscape”) oriented display. Taking both these

factors into account, it was decided not to take advantage of the horizontal

layout functionality in the final prototype.

Currently, the layout algorithm does not make use of the rendered pixel-

height of the element; haptic icons are not dynamically resized to match

the visual element height. This was considered a low priority for links and

headings, since their heights are usually specified globally in a style sheet

and do not often vary from element to element.

Both the variable-height haptic icon and horizontal layout features would

be rather trivial to implement in the current framework, and represent op-

portunities for future improvement (Section 8.3.4).

Further details of the haptic page map generation algorithm are provided

in Section 6.5.

Chapter 6. Browser Prototype 100

6.4 Navigation Model

This section describes the user interaction model for the web page and its

associated haptic page map.

6.4.1 Cursor Position

The navigation model maintains a cursor position in both the graphic and

haptic domains. The coordinates may be the same, or they may be related

by a linear transformation, as described in Section 6.4.10.

The haptic cursor position is logically an integer number in the haptic

page map coordinate space. Signals are rendered to the TD from a portion

of the page map that is centred on the cursor position. This is known as

the tactile window. The height of the tactile window is normally eight units

high but may be increased with subtaxel rendering, described in Section

6.4.10. Because there are an even number of piezos, by convention the cursor

position is rendered slightly above centre, or piezo #3 if no transformation

is applied.

The graphic cursor is logically a single row of pixels comprising the verti-

cal point of focus. It is displayed as a semi-transparent yellow bar, achieved

with the alpha channel features of the PNG image file format, centred on the

logical cursor position, with height corresponding to the height of the tactile

window in the current coordinate transformation scheme; it is eight pixels

high when there is no transformation. Therefore, the graphic cursor pro-

vides the user with a visual display of the area of the page which is currently

“visible” (or, more accurately, tactable) through the tactile display.

The graphic and haptic cursor positions are kept synchronized in soft-

ware. The term cursor position may be used to refer to both.

Chapter 6. Browser Prototype 101

6.4.2 Rendering Haptic Icons

As mentioned in the previous section, the tactile window, or portion of the

haptic page map that is “viewable” by the tactile display at a given position,

is rendered to the TD continuously. The following algorithm is used:

1. Every I/O loop cycle, the program traverses the list of haptic icons

that is linked from the HapticPageMap object.

2. If a haptic icon is found whose extent lies within the tactile window

(i.e., is within focus), the object’s rendering function is called, which

renders the icon (places voltage values) to a buffer.

3. The loop repeats until all icons have been checked.3

4. The portion of the buffer that is within the tactile window is output

to the device.

Therefore, the case of overlapping icons (normally an error condition),

icons that are lower in the list of icons may overwrite their predecessors.

Animated icons are handled implicitly by the rendering function of the

HapticIcon::AnimatedIcon object, which maintains a real-time counter

and renders different “frames” when it is called at different times. Under the

current implementation, the counter starts from the first animation frame

when the icon is first brought into focus (its extent is overlapped by the

tactile window), but is not reset subsequently; the icon’s animation may be
3Since the number of haptic icons is small (typically, less than 20) and is limited by the

amount that the user is willing to scroll, the overhead associated with a simple iteration

through the list of icons is negligible on the current system. Further improvement could

be made by using a sorted data structure, such as a tree, to reduce search cycles.

Chapter 6. Browser Prototype 102

considered to continue playing in the background during the time it is out

of focus.

6.4.3 Page Element Focusing

The Mozilla browser keeps track of a focused, or highlighted, page element.

If the user presses the selection button (usually a mouse button, but handled

abstractly in the current implementation), the focused element is selected.

For example, in the case of a link, the browser loads the new link.

The page element that intersects with the graphical cursor position re-

ceives the current focus. In simpler terms, the user can highlight an item by

positioning the cursor over it. Because the cursor occupies a full row, the

current design does not support selection of multiple horizontally distributed

elements; it simply defaults to selecting the rightmost element.

Because the cursor is logically a single row, but is displayed as the height

of the tactile window which occupies eight or more rows, it is possible for the

cursor to be partially intersecting an element both in the visual and tactile

space without the element being focused.

6.4.4 Graphical Display Scrolling

Because pages are often taller than the graphical display, cursor movement

must also control scrolling of the display. A push-to-scroll model is used;

when the cursor hits a boundary of the display, the display begins scrolling if

necessary. On a PC, this type of model is commonly used in word processors

and text-entry boxes, where vertically moving the cursor beyond the display

boundary causes the display to scroll one line at a time.

Because the cursor is also being used for focusing, it is desirable for the

Chapter 6. Browser Prototype 103

user to have some way of looking ahead before hitting an element. Therefore,

scroll margins are implemented, as shown in Figure 6.3. From its initial

position at the top of the display, the cursor moves down until it hits the

scroll margin. If the user continues scrolling down, the cursor’s displayed

position remains fixed while the page scrolls under it. If the user reverses

direction and moves the cursor up, the page does not scroll until the cursor

hits the top scroll margin (hysteretic motion). When the display can scroll

no more, the cursor moves past the scroll margin and to the top or bottom

of the page. In this way, the whole page is accessible to the cursor, unlike

the previously described image based browser.

6.4.5 Control of Cursor Movement

In the simplest case, the “throw” of the slider may be mapped to the overall

height of the page map, such that if the user positions the slider at the top

of its range, the cursor is positioned at the top of the page, and if the user

positions the slider at the bottom of its range, the cursor is positioned at

the bottom of the page. This is a direct position control mode; the cursor

position corresponds directly to the slider position. Position control is the

model used in jog dials, including mouse scroll wheels.4

Early experimentation with the device revealed that there was insuffi-

cient spatial resolution to display more than two or three distinguishable

haptic icons using direct position control across the short slider range (11

mm). Furthermore, precise positioning would require extremely high dex-

terity, and may even be beyond the precision of the analog position sensor;
4 Depending on the application, the mouse scroll wheel may also operate in a discrete

pseudo-position control mode, simulating the effect of a user repeatedly pressing a scroll

key.

Chapter 6. Browser Prototype 104

Top Margin

Focal Area

Bottom Margin

1/5

3/5

1/5

Figure 6.3: Scrolling margins for the graphical display, located at 20% from

the top and bottom of the display. The display begins scrolling when the

cursor reaches a margin.

Chapter 6. Browser Prototype 105

for a typical web page 600 pixels high, the necessary resolution would be

approximately 1390 dots-per-inch, far in excess of typical mouse hardware

resolution. 5

Because of the limited range of slider motion, it was necessary to use

velocity control, which is the model used in joysticks and shuttle controls.

In the simplest case (pure velocity control), the cursor movement velocity

corresponds to the slider position, with the centre of the slider treated as

zero velocity. A small “dead zone” may be used in the centre to reduce

unwanted cursor motion. This method was used in the image-based browser

(Section 6.2). A more sophisticated model was used for the web browser

(Section 6.4.7), and a summary of the three cursor control models is shown

in Figure 6.4.

6.4.6 Spring return to centre

Typical velocity control input devices have a spring-loaded return to centre

mechanism which provides a resistance force when the user pushes on the

device to cause motion. Informal user testing of the device with and without

spring feedback revealed that users strongly preferred spring feedback when

the device was used in simple velocity control mode.

A number of approaches were tried to implement spring feedback, in-

cluding elastic foam, elastic bands, and compression springs. Due to the

mechanical design of the slider, use of compression springs in a coil-over-

shaft configuration was the most parsimonious and reliable approach. (Fig-

ure 6.5) This required finding springs with a minimum inner diameter of 2.4

mm and appropriate length and spring constant. Springs with appropriate
5The Microsoft Intellimouse Optical, for instance, has a resolution of 400 dots-per-

inch.[5]

Chapter 6. Browser Prototype 106

TD /
Slider

Simple
Position
Control

Simple
Velocity
Control

{

Hybrid
Position /
Velocity

0

600

Page M
ap C

oordinate

-100

“Dead
Zone” 0

100

Velocity

-100

-20

0+20

0

100

Velocity

Position

Figure 6.4: Slider control modes. In simple position control, the slider

position is mapped directly to the cursor position, e.g., for a page with

height 600. In simple velocity control, the slider position relative to centre

is mapped to the velocity of cursor movement, with an optional central

“dead zone” to make centering easier. In hybrid position/velocity control,

a region of the slider travel functions in direct position control mode; if the

user pushes the sider beyond that region, velocity control is active.

Chapter 6. Browser Prototype 107

physical dimensions could be found in common retractable ball-point pens,

and 16 different pens were acquired and disassembled to find the one with

the most appropriate spring constant. However, due to the fact that typ-

ical use of a retractable ball-point pen involves compressing the spring by

pushing directly on its end, versus lateral force applied in the case of the

TD, most ball-point pen springs were too stiff for use with the device. Con-

sequences of excessively stiff springs included user fatigue and diminished

tactile stimulus intensity, due to the piezos being bent laterally against one

another by the force against the spring-loaded slider.

Softer springs were found in multi-colour ball-point pens that also have

lateral actuation. The softest spring was found in a Mitsubishi four-colour

combination pen from Japan, and this spring was cut to size and used in

the device. The spring was actually too soft to produce a reliable and

accurate return to centre against the friction of the slider and the inertia of

the TD; therefore, two slightly overlength springs in a mutually preloaded

configuration were used to improve the centering properties. Unfortunately,

this also increased the force necessary to push the slider all the way to its

top or bottom stop.

This configuration was used in the image-based browser tests (Section

6.2) and early pilot testing of the HTML-based browser. While it was clearly

necessary for velocity control (users reported strong preferences for the pres-

ence of the springs), extended use caused fatigue due to the stiffness of the

springs, and premature failure of the insulating varnish coat due to the

strong shear forces between the thumb and the TD. An extensive survey

of spring vendors revealed that no softer springs could be found in the 2.4

mm inner diameter configuration, possibly due to metallurgical limitations

in the minimum thickness of wire that can be used while remaining in its

Chapter 6. Browser Prototype 108

elastic zone. Softer springs are available in a torsion configuration, but

major re-engineering of the slider mechanism would have been required to

accommodate them, and it is unlikely that such low spring rates would be

sufficient to overcome the friction associated with the mass of the TD. Due

to these limitations, it was decided to remove the springs prior to further

testing of the browser prototype, and to defer broad re-engineering of the

slider mechanism until the cursor control model could be studied in more

detail.

6.4.7 Hybrid Velocity / Position Control Model

Through informal user evaluation, it was found that velocity control alone

did not afford the bidirectional tactile exploration that was effective in cre-

ating the illusion of exploring small shapes with the Virtual Braille Display

[30]. Furthermore, it was desirable to make effective use of the centre of the

slider travel for precise positioning instead of simply having a “dead zone”.

A hybrid velocity / position control model was adopted to meet these

goals, as shown in Figure 6.4. When the slider is in the position control

zone, velocity is zero and the user can move the cursor using position control

within a local offset range. Outside of this zone, velocity control is active.

The actual values of the parameters used are listed in Section 6.4.7.

To the user, the experience of navigation using the hybrid control model

is of a small active area in the centre of the slider range within which they can

interactively “browse” a haptic icon as if they were touching a small shape,

moving the finger up and down to explore its edges. Pushing the TD further

causes scrolling motion. If the TD is moved very fast (for example, rapidly

from its bottom-stop to its top-stop), the cursor may rapidly move across its

Chapter 6. Browser Prototype 109

position control range. If the maximum velocity setting is lower than this

velocity, there may be a somewhat unexpected bimodal cursor behaviour in

which it rapidly jumps and then moves more slowly under velocity control.

However, in real-world usage, the user is unlikely to move the slider rapidly

from end-stop to end-stop; the more common usage pattern involves moving

the slider away from its centre detent and holding it there until the target is

achieved, followed by small fine-tuning adjustments in the case of overshoot,

undershoot, or local exploration of adjacent elements.

Hybrid Control Mode Feedback and Spring Return

While the hybrid control model allows fine-grained exploration within the

central position control zone, users still reported discomfort using the device

in its velocity control zone without spring feedback. In addition, in the

absence of any haptic cues such as spring force feedback, it was difficult to

determine where within the slider travel the mode switch occurred, which

also resulted in negative user observations.

To deal with the latter concern, synthetic tactile notification of mode

switching was implemented. Whenever the user crossed a mode switch

boundary, the current tactile signal was overlaid with a rapid vibrotactile

signal consisting of a half-height (50V peak-to-peak) cycle, repeated twice

over 4 samples. The overlaid samples were clipped to +50V/-50V if neces-

sary. This provided a “clicking” or “bumping” sensation as the slider was

moved across the mode boundaries. The sensation was judged effective in

early pilot testing for notifying mode switches, but only if the slider was

moved very slowly across its travel. With rapid movement, the user could

move the slider across its 11 mm travel within a fraction of a second, causing

Chapter 6. Browser Prototype 110

the two mode switch notifications to blend into a generic vibratory signal

with minimal spatial localization relevance. Furthermore, it did not address

the need for proportional force feedback in velocity control mode.

The eventual solution was to adopt hardware springs in a hybrid con-

figuration. Figure 6.5 shows the design after several testing rounds with

various materials and thicknesses. Small pieces of latex foam were affixed

to the slider stops using industrial double-sided tape. The extent of the

foam pieces was approximately one-quarter of the total slider travel each (3

mm). Because of the compliance of the foam, the point at which the slider

hits the foam is essentially imperceptible; however, after the foam is com-

pressed more than halfway, it starts to provide perceptible resistance. There

is approximately 1 mm of travel within this range, during which the force

is perceived as essentially isometric. To the user, the experience is of mov-

ing the slider within a free-movement zone causing the cursor to track the

slider position, followed by pushing the slider against its stops with variable

force resulting in velocity control. Specific parameters were determined after

informal optimization with three pilot users, and are listed in the section

below.

Hybrid Control Delays

Further testing of the device under the hybrid control system revealed ad-

ditional areas needing improvement for user comfort. First, when users

wanted to stop cursor movement by moving the slider out of the velocity

control zone, they typically released the slider, allowing the springs to move

it back into the position control zone, or they actively slid the slider back

towards centre. In either of these cases, the slider was unlikely to end up

Chapter 6. Browser Prototype 111

No spring
return

TD
(rear view)

latex
foam

Hybrid
springs

Coil-over
shaft

springs

Figure 6.5: Force feedback using springs. The standard coil-over-shaft spring

configuration and the hybrid spring configuration is shown in various slider

positions.

Chapter 6. Browser Prototype 112

exactly at the position control boundary; it was more likely to be somewhere

within the position control zone. The effect of this on cursor movement was

an unsettling “snap back” effect that made targeting difficult because the

user would acquire a target using position control, release the device, and

the cursor would move backwards a distance equivalent to the distance be-

tween the position control zone boundary and the final slider position, thus

bringing the intended target out of focus.

The second problem was unintended cursor movement due to acciden-

tally moving the slider into the velocity control zone. This situation occurred

when the user was targeting a point just outside of the position control range.

The user would approach the target by continuing to move the slider in the

direction of the target, cross the zone boundary unintentionally, and cause

unexpected continuous cursor movement.

Finally, due to the short velocity control range, and the low amount

of force that the user could apply to the device laterally without causing

fatigue or piezo deflection, there was a limited dynamic range available for

use with velocity control. Users still wanted to move the cursor rapidly

to traverse a web page quickly; however, if the maximum speed parameter

was increased excessively, there was insufficient precision at low speeds for

precise targeting.

These three problems were addressed by adding time controlled elements

into the control software. The resulting control system’s state diagram is

shown in Figure 6.6. To address the first cause of unexpected cursor move-

ment due to “snap back”, a delay was implemented in the transition from

velocity control to position control. Since the system remains in velocity

control during this delay, the rapid return of the slider to its centre detent

position simply causes the velocity to drop to zero, “absorbing” the large

Chapter 6. Browser Prototype 113

negative position displacement. When the user replaces his/her finger on

the display and starts moving it again after the delay has expired, the sys-

tem is in the position control state, enabling interactive local exploration of

tactile features.

The second concern of accidentally moving the slider into the the velocity

control zone was addressed using a delay in the transition from position

control to velocity control. Local exploratory behaviour in position-control

mode consists of relatively rapid, back-and-forth small scale sweeps of the

virtual surface. To make the transition to velocity control using the delay

model the user must “push and hold”, a more intentional action, before the

system started scrolling under velocity control.

Finally, a linear acceleration model was added to the velocity control to

enable increased scrolling speeds if the user held the slider in the velocity

control zone for an extended time.

Hybrid Control Settings

After performing the above mentioned adjustment process, the final param-

eters used in the browser prototype are listed in table 6.1.

6.4.8 Reduction of Slider Jitter

Although the slider uses a high-precision resistive position sensor, there is

considerable analog sensor noise. If unfiltered, this noise produces contin-

uous high-frequency piezo motion that completely destroys the ability to

render shapes using low-frequency piezo deflections. A historical averaging

model was therefore implemented in the software to reduce jitter.

Raw slider input is first passed to a SliderSmoother object in soft-

Chapter 6. Browser Prototype 114

vControlWaiting

vControlActive

vControlFinished

pControl

User moves to
vControl zone

Position Control

Velocity Control

Position Control

Velocity Control

timeout

timeout

User moves back
to vControl zone

User moves back
to pControl zone

User moves to
pControl zone

Figure 6.6: State transition diagram for the four velocity / position control

states.

ware, which outputs the “smoothed slider position”. It takes two param-

eters: cache size and threshold, whose final values are shown in Table

6.2. When the slider is stationary or being moved slowly, an average of

the last cache size number of samples is taken and used as the final slider

position, thus cancelling out any small, high-frequency noise. For high val-

ues of cache size and large slider displacements, this can take a noticeable

time to converge on the slider position, which is perceivable as a “rubber

band” effect on the cursor. Therefore, an escape parameter, threshold, is

implemented. If the user moves the slider rapidly, historical averaging is

abandoned and the current slider position is used directly. Furthermore,

Chapter 6. Browser Prototype 115

the cache of values is reset so that averaging re-starts at the current slider

position when its velocity drops below the threshold value.

6.4.9 Reduction of High-Amplitude, High-Frequency

Outputs

When a user is scrolling very rapidly through the page map, it is possible for

two sequential samples to be taken from very distant areas of the page map.

When there is a large voltage spread between adjacent samples, it creates

a large, sudden displacement of the piezo that is perceived by the user as a

rough “clicking” sensation. The high-frequency transients caused by rapid

discrete movement of the piezo are especially bothersome, since they tend

to result in user reports of undesirable “vibration”, “zapping” or “electric

shocks”. It is also potentially damaging to the piezo motor itself.

To combat this undesirable effect, two measures are used. First, the

slider input smoothing algorithm can spread displacements over time using

its historical averaging algorithm, as described in the previous section. How-

ever, to reduce unwanted “rubber band” cursor behaviour, large slider dis-

placements cause a buffer abort. Furthermore, when velocity control is being

used with high maximum velocity settings, high-frequency, high-amplitude

actuator transients can be produced even when the slider is held station-

ary in a high-velocity position. Therefore, an additional output smoothing

algorithm was implemented to reduce sudden large piezo movements.

The algorithm first checks whether a given piezo actuator will have a

large voltage change, as measured between the “current” sample and the

immediately previous sample. If the threshold (currently set at 50V in either

direction) is exceeded, then the actual output voltage delivered to the piezo

Chapter 6. Browser Prototype 116

is “smoothed” out by averaging the current sample and the immediately

previous sample. (We nicknamed this method “lookback” smoothing).

Because this tends to have the effect of smoothing out peaks and there-

fore limiting the dynamic range of the TD during high speed movement,

there is also a feedforward component designed to “recover” part of the

peak voltage in future samples. When averaging is used to produce the out-

put of a given sample, the sample’s original (pre-averaging) value is stored.

That value is used to compute the next sample by averaging the cached and

current sample values on the next timestep. The threshold test is then ap-

plied and, if necessary, the previous actual sample voltage is averaged back

in using the “lookback” algorithm.

The net effect of these smoothing functions is to create the sensation of

rapidly scanning across tactile features, while minimizing aliasing caused by

sampling delay.

6.4.10 Speed Limitation

In the perceptual characterization phase (Chapter 5), a maximum speed of

0.34 m/s was found to elicit a reliably discernible sense of directional motion

among users. We may use this figure as a reasonable estimate of an upper

bound for the speed at which a user can traverse the haptic page map while

maintaining a continuous tactile flow percept.6 At maximum speed, given
6The speed study measured non-interactive tactile flow signals, and it is possible that

the actual upper speed bound for an interactive (i.e., user-modulated) tactile flow signal

may be slightly higher. An experienced user may also be able to detect higher speed

signals. However, for the purposes of our initial calculation, it is clear that even with a

30% margin of error, requiring the user to spend 8 to 33 seconds to traverse a typical web

page is still unacceptably long and requires countermeasures.

Chapter 6. Browser Prototype 117

the physical dimensions of the TD it takes 30 ms for a haptic icon to move

from one piezo actuator to the next.

If spatial layout of the haptic map is performed using a one-to-one map-

ping between pixels and taxels, it would require 18 seconds at maximum

speed to go from the top to the bottom of a typical 600 pixel-high web page.

Pages in the testing corpus for the browser ranged from 424 to 1698 pixels

high, so it would require considerable time (12 to 50 seconds) to traverse

the web page at speeds necessary to stay within the range of perceivable

direction.

Two techniques were used to accomplish the decoupling of the scrolling

motion on the screen and the TD:

1. Page map shrinking, and

2. Subtaxel rendering

These methods effectively comprise a cascading transformation scheme

for the page map coordinates that can reduce the logical height of the haptic

page map up to eight times relative to its graphical equivalent. If desired, it

may be possible to further increase maximum speed using other techniques

in combination or separately. These possibilities are discussed in Section

8.3.4.

Page Map Shrinking

The browser client supports a mode that transforms all page coordinates

and requested icon heights to create a page map that is half the pixel-height

of the web page. Using this technique, it is possible to double the effective

speed limit of scrolling traversal, but because icons must be half-height, they

must be simpler, thus limiting the differentiability of icons.

Chapter 6. Browser Prototype 118

User testing with the page map shrinking feature suggested that the loss

of icon fidelity negatively impacted the perception of tactile flow because it

required designing more sharp-edged icons. Users perceived rapid changes

in the voltage applied to actuators as “vibration” rather than tactile flow.

This undesirable perception of high-frequency aberrations is analogous to

the problem of harsh edges and other anomalies that occurs in computer

graphics when images are downsampled excessively using simple nearest-

neighbour scaling algorithms.

Further page map shrinkage beyond a factor of two was deemed im-

practical because the haptic icon height for a link icon, normally 21 page

map units for the corpus of pages used in the user test (Chapter 7), would

drop below 10, thus severely limiting the expressive capabilities of the icons

and increasing the risk of delivering unintended high-frequency vibrotactile

signals to the user.

Subtaxel Rendering

To reduce the movement speed of the tactile stimulus while still retaining

good fidelity, a subtaxel rendering method was implemented in the browser

server component. Using this method, the internal representation of the

page map retains the same height as in the one-to-one case. However, when

the signal is rendered to the TD, two or three (depending on a configurable

mode setting) taxels from the internal map are averaged to form one output

taxel. In this way, the effective “viewport size” of the tactile display (the

tactile window) increases two- or three-fold, to 16 or 24 taxels, respectively.

Because the location of the TD’s window into the overall page map is main-

tained in the internal high-resolution coordinates, smooth movement results.

Chapter 6. Browser Prototype 119

Parameter Description Value Units

maxP The page map range accessible

in position control mode.

50 page map

units

maxV The maximum velocity at full

acceleration.

200 page map

units per

second

posControlZone The portion of the slider travel

assigned to position control (the

remainder is used for veloc-

ity control). Determined by

the point at which the latex

foam begins to provide notice-

able feedback.

0.75 (ratio)

timeBeforeVControl The timeout before entering ve-

locity control mode. Used to

prevent accidental activation of

velocity controlled movement

during exploratory behaviour.

0.05 seconds

vControlAcceleration The time between entering ve-

locity control mode and reach-

ing the maximum velocity for a

given slider position.

1.0 seconds

timeAfterVControl The timeout before entering po-

sition control mode. Prevents

“snap-back” of the cursor when

the user releases the TD.

0.05 seconds

Table 6.1: Values of hybrid velocity / position control model parameters.

Chapter 6. Browser Prototype 120

Parameter Description Value

cache size The number of slider values (collected once ev-

ery 3 ms) to average to find the current slider

position.

10

threshold If, within the 3 ms sample interval, the slider

is moved a distance greater than this value

(in raw 12-bit slider position units), historical

averaging is abandoned and the current slider

position is used directly.

5

Table 6.2: Settings for the slider smoothing function using historical aver-

aging.

Chapter 6. Browser Prototype 121

Rendered OutputHigh-Resolution
(Subtaxel) Image

t = 0

t = 1

+10

+10

-20

+50

0

+20

+50

0

-20

+10

Figure 6.7: The subtaxel rendering technique. In this example, three taxels
from the internal high-resolution representation are averaged to form one
output taxel. The stimulus is moving up across the display, and two time
samples are shown.

Chapter 6. Browser Prototype 122

SuboptimalEffective

Piezo #2 Output Piezo #2 Output

Ti
m

e
(m

s)
*

* When user is moving the cursor at a constant speed of 10 pixels per second.

+50V

0V

-50V

stretch

neutral

compression

LEGEND

Input Output
Volt. Stretch

300

200

100

0

400400

Input Output
Volt. Stretch

300

200

100

0

-50V

-17V

+17V

+50V

-50V

0V

+50V

Time (ms)*
0 100 200 300 400

Time (ms)*
0 100 200 300 400

Figure 6.8: Effective icon design for subtaxel rendering. High-resolution
page map representations are shown in the left column of the group, and
the output of the subtaxel rendering algorithm is shown on the right column
in both raw voltage signal and skin-stretch representations. Five time sam-
ples are shown as the stimulus is tweened upwards across the display at a
constant speed, illustrating how the subtaxel algorithm provides fine spatial
information in the form of temporal signal changes. Note that exceeding
the resolution limit of the TD when designing high-resolution icons tends
to create blurry results. Below the pictures, the output from one piezo (#2
from the top) is graphed over time. In the case of a well-designed icon, the
piezo reaches full-scale values.

Chapter 6. Browser Prototype 123

The method is, in effect, using temporal data to encode spatial data — using

the high temporal resolution of the sense of touch [19] to compensate for the

low spatial resolution of the tactile display device. The technique is shown

in Figure 6.7.

Because data is lost during the downsampling, haptic icons must be

designed carefully to ensure that they create the intended sensations. Figure

6.8 illustrates some examples of effective and suboptimal haptic icon design

with respect to downsampling. By analogy, when visual images are heavily

downsampled to low pixel counts using averaging, they tend to lose contrast

and become blurry, and the same danger applies to the haptic icon images.

Especially since the sensations produced by the TD tend to be quite subtle,

it is important to retain as much dynamic range as possible when designing

icons.

Fortunately, the effects of downsampling may be quickly previewed dur-

ing icon design in Adobe Photoshop by scaling the image by 33% and using

the “bilinear” setting, which is equivalent to the averaging method used by

the software.

6.5 Browser Software Architecture

The browser software architecture is shown in overview form in Figure 6.9.

A logical flow diagram is also presented in Figure 4.6. Briefly, the principal

components of this architecture are as follows:

1. A client component, built on the open-source Mozilla API, that han-

dles parsing of the HTML and CSS source documents, generation of

the page map XML file, keyboard and mouse input, graphical display,

loading of new pages, and logging data for the usability evaluation.

Chapter 6. Browser Prototype 124

Described further in Section 6.5.1.

2. A server component, implemented in high speed C++ code and

running a continuous I/O loop, generating the tactile signals from its

internal representation of the page map, and translating analog slider

input to page map coordinates and forwarding the input to the client

component. Described further in Section 6.5.2.

3. Interactive haptic icon design tools, previously described in Sec-

tion 4.9.6.

4. (Not shown on the diagram) Web page generation tools for cre-

ation of HTML and CSS source content. Haptic markup is optionally

added to the HTML source as described in Section 6.3.2.

5. A file-based interprocess communication system using “posi-

tion” and “click” files to transmit information from the server compo-

nent to the client component, and a “flag” file for the client component

to signal to the server component to load a new HapticPageMap. De-

scribed further in Section 6.5.3.

Author’s Contribution

Initial work on specifying the architecture of the browser client was per-

formed by undergraduate research student Shannon Little with support

from the author. The current XPCOM and XUL components share approx-

imately 50% of the code from that effort [33], which is in turn significantly

derived from online XPCOM and XUL tutorials; the current JavaScript

component, where the majority of functionality is implemented, shares less

than 10% of code.

Chapter 6. Browser Prototype 125

JavaScript

M
ozilla API

XU
L

XPC
O

M

C
lient C

om
ponent

C
++ Application
STR

eSS API
Linux O

S / Libs

Server C
om

ponent
TD

Slider
Piezos

Keyboard / M
ouse

LC
D

FPG
A

H
TM

L
w

ith
haptic

m
arkup

C
SS

Pos.
C

lick
Flag

H
aptic

PageM
ap

XM
L

H
aptic
Icon
XM

L

gif2hapticon

G
IF

Photoshop,
M

atlab,
etc.

link

Am
p.

U
SB

FPG
A

Figure 6.9: The browser software architecture, including software and hard-

ware components and the data that is exchanged between them.

Chapter 6. Browser Prototype 126

The I/O portion of the browser server is based on example applications

provided by Vincent Levesque, a graduate student at McGill university,

as documentation for the STReSS Library [29] API. Earlier examples of the

“THMB Library” co-written by Vincent Levesque and Shannon Little based

on this code were not used; the code was rewritten from scratch for more

precise timing control.

Where open-source software was used, it is mentioned in the following

sections.

All other portions, including the aforementioned haptic page map and

navigation functionality, cursor display, usability testing support, page con-

tent, and style sheets are the work of the author.

6.5.1 Browser Client

The browser client component is built on the open-source Mozilla API and

its Gecko rendering engine. Since Mozilla is the most popular extensible,

open-source platform for web page browsing as of this writing, it ensures

good compatibility with Web standards and good portability of the software.

The browser client component consists of:

1. A JavaScript application,

2. An XPCOM (Cross Platform Component Object Model) component,

3. A XUL (XML User Interface Language) “chrome” component, and

4. The Mozilla API, its Document Object Model and security modules,

and the Gecko parsing and rendering engine.

Most of the browser client component is implemented in the JavaScript

application, because it has access to the Mozilla browser’s Document Ob-

Chapter 6. Browser Prototype 127

ject Model (DOM), allowing read access for the spatial layout of web page

elements, HTML tags including specialized haptic markup, and mouse and

keyboard events. The JavaScript application also writes to the DOM when it

loads a new page, displays the cursor, highlights elements that are in-focus,

or provides usability testing related displays to the user. Data-logging is ac-

complished using the standard terminal dump() command from JavaScript.

The main I/O loop consists of reading the slider position and click count (via

the XPCOM layer, described below), updating the cursor position based on

the slider position, and comparing the click count to a previous value — if

an increase is detected, the highlighted page element is selected.

The XUL layer consists of small wrapper code to run the JavaScript

application within the Mozilla framework while suppressing standard PC

browser features such as toolbars.

The XPCOM component handles file input and output, which is nor-

mally unavailable to JavaScript because of security restrictions. It con-

sists of various functions to read the position and click files, and write the

HapticPageMap file and its associated update-flag file. The file input and

output functions are implemented in C++, and a compiled IDL (Interface

Description Language) wrapper is used to create the abstract function in-

terface that allows JavaScript to call the C++ functions.

Finally, the Mozilla API itself is based on Mozilla 1.01 browser, and is

the work of various open-source authors.

6.5.2 Browser Server

All tactile device input and output routines are encapsulated in the browser

server component, which is a separate executable running at the highest

Chapter 6. Browser Prototype 128

priority available in the Linux kernel. This architecture ensures rapid, con-

tinuous updating of the tactile device, reducing the risk of irregular tactile

signals that are perceived as undesirable vibrations or roughness.

The browser server begins by loading an XML-like7 HapticPageMap file

generated by the client component after reading an HTML source file. The

HapticPageMap file contains links to the various XML-like haptic icon files

that are associated with page elements. The browser server parses all of

these files using the open source ACE8 Library’s XML parsing engine. The

result is an internal representation of the haptic structure of the page in the

form of an object model built around the HapticPageMap object (Figure

6.2). Since the object model exists within the compiled C++ component, it

can be read rapidly during the I/O loop.

Device input and output is handled through Vincent Levesque’s STReSS

Library’s API [29], which in turn makes use of libusb and firmware onboard

the FPGA for hardware input and output.

The browser server’s I/O loop9 performs the following actions every cy-

cle:

1. Check the page map flag, and reload the HapticPageMap if necessary.

2. Read the slider position and click count from hardware and perform

the translation into page map coordinates.

3. Compute the eight-taxel tactile image based on the cursor position

and the HapticPageMap.
7See the footnote to section 4.9.6.
8ADAPTIVE Communication Environment [1].
9The browser is not currently implemented on a real-time operating system, so its

update interval can not be guaranteed to be 3 ms. See Section 4.7.1 for more information

on measured timings.

Chapter 6. Browser Prototype 129

4. Output the tactile image to the hardware.

5. Output the cursor position to a position file.

6. Output the click count to a click file.

The browser server implements a dual-threaded architecture as a further

performance consideration. Filesystem operations are handled outside the

main I/O thread, and mutex locks (via the ACE library) are used for data

synchronization.

Browser Server Haptic Page Map Model

A key part of the design of the browser server component is its object

orientation. Just as graphical web browsers have developed a rich Docu-

ment Object Model around the HTML source, the browser server’s haptic

model is intended to be flexible and extensible using object-oriented tools.

The base object (equivalent to the document object in the DOM) is the

HapticPageMap object, which contains a list of HapticIcons (equivalent to

the document.elements[] array in the DOM). Currently, two types of hap-

tic icons, SpatialIcon and AnimatedIcon, are supported, each with their

own content data stored in a class inherited from the HapticIconContent

abstract base class (Figure 6.10).

This architecture facilitates adding additional types of haptic icons. For

example, one could imagine a haptic icon that varies its position based on

time and/or slider position. It could be rapidly implemented as another

subclass of HapticIcon, or SpatialIcon. As long as it supports its own

polymorphic RenderIcon() method, no changes to the core browser server

code are necessary. In fact, the AnimatedIcon class was added after the

browser server architecture was complete using the method just described.

Chapter 6. Browser Prototype 130

HapticPageMap
int height
HapticIcon *icons
CurrentMapPos()
ComputeDetentPosFromVelocity()
ComputeImage()
RenderAllIcons()
...

HapticIcon
abstract base class
char *type, *name
RenderIcon()

HapticIconContent
abstract base class

SpatialIcon

type=”SpatialIcon”
SpatialIconContent *

AnimatedIconContent
double *data[frames]

SpatialIconContent
double *data

AnimatedIcon

type=”AnimatedIcon”
AnimatedIconContent *

Figure 6.10: Inheritance and encapsulation diagram for the HapticPageMap

object, HapticIcon abstract base class and its inherited classes, and

HapticIconContent abstract base class and its inherited classes.

Chapter 6. Browser Prototype 131

Further functionality could be achieved by scripting the HapticPageMap

model (using JavaScript), in a similar fashion as is currently done with

the DOM. This would enable a range of advanced haptic functionality and

interactivity leveraging the existing core input/output code.

6.5.3 Interprocess Communication and Timing

Communication between the browser server and browser client components

is achieved through the use of small files. This has the advantages of simplic-

ity and leveraging the filesystem’s implicit locking mechanisms to prevent

simultaneous access and data corruption. It has the disadvantage of poten-

tially low performance due to disk overhead. Timing studies were therefore

required to validate the filesystem approach.

As described in Section 4.7.1, various web pages were run with an oscillo-

scope connected to the amplifier outputs, and a series of software optimiza-

tions achieved an empirically stable output rate. No specific timing studies

were done on the GUI (Mozilla) loop, but it was observed that position

and click files were not accumulating in the filesystem, indicating that they

were being read in a timely manner by the client. No delays were observable

between slider input and GUI output.

As mentioned before, various optimizations were done for high perfor-

mance, including multithreading and careful task prioritization. Placing the

file-exchange directory on a RAM disk did not have any performance effect,

probably because the files were already being exchanged via the filesystem’s

memory cache rather than being written to and read from disk.

Chapter 6. Browser Prototype 132

6.5.4 Browser Haptic Icons

As discussed above in Section 4.9.6, a graphical image-based workflow allows

for interactive icon design and rapid analysis using the stretch image tech-

nique. The gif2hapticon tool not only supports the tactile movie output

mode, but also a haptic icon output mode with the -i command line option

(the default). The XML-like format is similar to the tactile movie syntax

but is more optimized for haptic icons for use with web pages. Both static

(SpatialIcon) and time-varying (AnimatedIcon) formats are supported,

and the type is automatically determined by checking whether there are

multiple frames stored in the GIF input. Icons are stored in a icon library

directory accessible by the browser server and loaded at runtime when the

HapticPageMap is parsed.

6.6 Known Software Issues and Caveats

6.6.1 Support for Element Height

Currently, haptic icons are XML-like files that are named under the conven-

tion [name]-[height].xml. The page rendering engine selects the height

value based on the onscreen height of the associated element. Therefore,

a separate haptic icon file (or at least a symbolic link to a valid file) must

be present for every possible rendered height of the elements. This limits

the generalizability somewhat, especially for images, which may have vari-

ous heights. A possible solution would be to generate icons algorithmically

(including repeated tiling), to use the closest-available height icon, or some

combination of the two approaches. The XML format should then be re-

considered somewhat, moving the height parameter out of the filename and

Chapter 6. Browser Prototype 133

into a separate tag, such as <height>, much as the <at> tag is currently

used. Multiple height representations could also be combined into one file.

6.6.2 Opportunities for further software optimization

The browser prototype was implemented with the goal of eliciting user feed-

back on the application concept as expeditiously as possible. There are

opportunities for improving the software architecture if the goal is to build

a “production” version with more headroom for future expansion of features:

• A formal implementation of the XML standard, including a Docu-

ment Type Definition (DTD) would support future extensibility while

retaining compatibility with the existing “XML-like” implementation.

• The inter-process communication method, which currently uses high-

overhead but simple to implement filesystem access, could be revised

using more lightweight, optimized communication methods for greater

performance.

• The application could be ported to a real-time operating system for

more precise timing control.

• The modularity of the JavaScript code base could be optimized for

better maintainability.

As mentioned earlier, while the software is far from being exhaustively

optimized, none of the aforementioned optimizations would affect the oper-

ation of the browser in its current form. The current version of the browser

has been tested to support the application concept and to deliver stable tac-

tile performance. As such, it is ready for user evaluation, which is covered

in the following chapter.

134

Chapter 7

Browser User Evaluation

This chapter describes a formal evaluation that was performed on the browser

prototype, aimed at measuring its performance in the hands of a human user.

We measured the time required to browse web pages to find a piece of in-

formation, such as a weather forecast, and compared the performance in

three conditions: (1) the handheld prototype with tactile feedback, (2) the

prototype without tactile feedback, and (3) a mouse scroll wheel used as

a discrete navigation control. To simulate a perceptually demanding mo-

bile environment, study participants were asked to simultaneously perform

a distraction task (not identified to the participants as such) using pedals

to respond to video cues. The data from the study, after normalization to

compensate for differences in difficulty between the various tasks, did not

demonstrate a significant performance difference between the two handheld

prototype conditions, although the mouse scroll wheel was faster as ex-

pected. Qualitative reaction to the tactile feedback was generally positive,

with a small proportion of users reporting minimal conscious awareness of

the stimulation.

In this chapter, the volunteers that participated in the study are referred

to as users, and the terms user evaluation and user test are equivalent.

Chapter 7. Browser User Evaluation 135

7.1 Aims

The purpose of the user test was to evaluate the effects of tactile feedback

on performance and qualitative user experience in a handheld context using

the previously described browser prototype. The browser prototype imple-

ments a number of novel concepts, including the use of artificial tactile flow

rendering to provide spatial cues. The results from the user test could serve

to validate these concepts, and the utility of tactile feedback on a hand-

held or mobile device in general, by providing a working demonstration and

performance statistics.

The study addresses the following questions:

1. Does the presence of tactile feedback, in the form of a synthetic tactile

flow signal, affect the time required to complete a web navigation task?

2. How does the experience of browsing and navigation on the handheld

prototype compare to a more common paradigm (the mouse scroll

wheel)?

3. What are users’ subjective reactions to the use of tactile feedback in

this application?

4. What are users’ subjective reactions to the handheld prototype hard-

ware and browser software?

5. Are there any correlations between user demographics, such as age,

gender, and previous mobile experience, and their performance in the

browsing task with or without tactile feedback?

Chapter 7. Browser User Evaluation 136

7.2 Study Design

Formally, the user study is designed as a task time performance measure

with one primary within-subjects factor having three levels. The selected

alpha level was 0.05. The full list of study variables is outlined below.

7.2.1 Study Variables

Primary Dependent Variable

task time: The amount of time (in milliseconds) required for the user

to complete the task. The task begins when the user signals that they are

ready to begin the task (and the browser screen is presented on the display).

The task ends when the user signals that they have found the requested

information.

Primary Independent Variable (condition)

3 levels: slider+ (slider with tactile feedback), slider- (slider without

tactile feedback), mouse (mouse scroll wheel used for navigation).

Additional Dependent Variables

The following were also measured:

• Performance on the distraction task (described below in Section 7.6).

• Individual link access times, which yielded the amount of time spent

on each page.

• A qualitative assessment battery (described below).

Chapter 7. Browser User Evaluation 137

Additional Independent Variables

The following factors were randomized:

• The task type (3 levels: weather, transit, and movies)

• The specific task:

– weather group: 18 levels

– transit group: 12 levels

– movies group: 10 levels

– (total 40 different tasks)

• Various parameters related to the distraction task (see Section 7.6

below).

• User demographics.

In addition, a variable, presentation order, is defined as the presen-

tation sequence number after flattening for condition. More information

on presentation order is given in Section 7.3.4.

7.2.2 Normalization for Task Difficulty

Each of the 40 tasks is similar in the sense that they all involve searching

for information in a web page hierarchy using identical navigation methods.

However, because the information that the user is requested to find is slightly

different in each task, each task will have an intrinsic task completion time,

referred to here as the task difficulty. The task difficulty is influenced

by a number of factors, including the depth of the hierarchy at which the

information is found, the position of links on the web page (i.e., the distance

Chapter 7. Browser User Evaluation 138

that the user must scroll to access the link), and the complexity of the cues

(e.g., link text) employed by the user during navigation.

Since task difficulty is a confounding variable in our analysis of the

effect of condition on task time, it is desirable to decouple the measured

task times from the relative differences among tasks, using a normalization

procedure. The first step in this procedure requires the computation of a

statistical estimate of relative task difficulty. Tasks that are relatively

more “difficult” (i.e., have a higher intrinsic task completion time) would

have their measured task completion times depressed by the task diffi-

culty score, and vice-versa for relatively “easier” tasks.

Theoretical models such as Fitts’ Law and GOMS could provide pre-

dictive estimates of task difficulty as a normalization score, but there is

no single existing published model that takes into account all the factors

influencing task difficulty in the specific context of the current experiment.

Furthermore, it is not within the scope of the present work to derive and val-

idate an in-depth user model of browsing using the hybrid position/velocity

control system on a handheld device using the specific content and layout

that was developed for the user study. Therefore, to maximize accuracy, an

empirical task difficulty score was used, calculated from the measured

data according to the following procedure.

A normalization vector was computed, having a normalization score for

each of the 40 tasks. For each task, an average score (across all subjects

and conditions) was computed and compared to the average for all tasks.

The ratio of current task time to average overall time score was used as the

“difficulty” score, and the normalization factor was computed by taking its

inverse.

By deriving the normalization score from a pooled statistic across all

Chapter 7. Browser User Evaluation 139

users, the task difficulty normalization does not take into account individual

user differences. Sources for these differences might include variations in

familiarity with certain tasks versus others, or differences in the relative

effects of various factors that influence the task time (navigation distance,

verbal complexity, etc.). The validity of the normalization procedure in light

of individual subject differences will be explored in Section 7.8.5.

7.3 Methodology

A total of 16 volunteers were recruited for the study (three pilot subjects

and thirteen main study subjects), which was performed under the auspices

of UBC Ethics Approval #B01-0470 (see Appendix A). Each study session

took approximately 50 minutes and consisted of:

1. Briefing and collection of demographic data.

2. A pre-task attitudes survey.

3. Verbal delivery of task instructions.

4. A training, or practice session, minus the distractor task.

5. A second training session, including the distractor task.

6. The main study task (described further below).

7. A post-task attitudes survey.

8. A post-task interview.

9. Compensation ($10 per subject).

Chapter 7. Browser User Evaluation 140

Gender 38% female

Age median: 28.5

std. dev: 4.6

Right handed 81%

Previous experience with a musical instrument 77%

Among subjects with previous musical instrument ex-

perience, number of years played

median: 7

std. dev: 4.0

Regular user of a mobile phone 77%

Regular user of a PDA 15%

Regular user of a game controller with vibrotactile

feedback

15%

Regular user of a mouse with scroll wheel 94%

Table 7.1: Demographic characteristics of the subject pool (16 subjects)

that was used for the browser user evaluation, including both pilot subjects

and main study subjects.

Due to variability in the experimental procedure during the three pilot

runs (mostly related to fixing bugs in the computer setup), only data from

the 13 main study subjects were used in the quantitative and qualitative

analyses of the experiment.

7.3.1 Recruitment of Study Participants

Participants were recruited through the HCI@UBC subjects database, and

through friends and associates of the author who met the study criteria. The

conditions for participating in the study were a good command of English

and no prior experience with the browser prototype or the present research

Chapter 7. Browser User Evaluation 141

in general. The final corpus had demographic characteristics as described

in Table 7.1. The subject pool appears to be a typical random selection

of potential users of general mobile data services, slightly skewed towards

younger participants due to the university setting. Since no distinction was

made between pilot subjects and main study subjects other than the order

in which they booked their appointments, both groups of subjects can be

considered to be randomly drawn from the distribution described in Table

7.1.

7.3.2 User Test Environment

All user tests were conducted in a dedicated, soundproof usability testing

lab at the University of British Columbia during normal business hours or

in the early evening. The room was arranged as shown in Figure 7.1. The

following devices were arranged in front of the study participant:

1. The tactile display prototype, including an embedded LCD display.

Because the originally specified 2.5-inch LCD panel malfunctioned

prior to the start of the experiment and could not be promptly re-

placed, it was necessary to use a 3.5-inch NTSC TFT colour LCD

monitor, attached to the top case with double-sided tape. This re-

sulted in an increased weight, especially in the top part of the device.

2. A mouse (Logitech Scroll Mouse) with scroll wheel.

3. A standard 101-key PC keyboard. The two largest keys, ENTER

and SPACE, were used for signalling readiness to begin the task and

completion of the task, respectively, and were labelled “START” and

“STOP”, using 7.5-cm wide yellow sticky notes.

Chapter 7. Browser User Evaluation 142

Figure 7.1: Browser user test environment.

Chapter 7. Browser User Evaluation 143

4. A second PC keyboard (not shown in the diagram), connected to the

experiment PC and used by the facilitator for resetting the distractor

task.

5. A 17-inch colour TFT LCD PC monitor running at 1280x1024 res-

olution. Prompts to the user were displayed in 120-pixel high type,

centred in the display on a white background.

6. A set of pedals, of the type used commonly in home game systems for

driving games (ACT LABS, Performance Pedals). Participants were

instructed to place one foot over each pedal. The pedals themselves

were modified to function as left and right mouse buttons, and were

connected to the PC via a USB mouse.

7. A browser PC, running the Linux-based browser prototype software

and connected to the tactile display, LCD, mouse with scroll wheel,

keyboard, and local-area network.

8. An experiment PC, running Windows 2000 and the browser experi-

ment software (described in Section 7.7), and connected to the PC

monitor, pedals, and local-area network.

9. The driver electronics, connected between the browser PC and tactile

display prototype.

During the experiment, the facilitator remained in the room with the par-

ticipant, delivering instructions read from the verbal protocol (Appendix A)

and verbally collecting the information the participant was asked to retrieve.

The experimenter also remained logged in to the browser PC via a remote

terminal connection from a separate laptop, performing such functions as

Chapter 7. Browser User Evaluation 144

starting and stopping the browser prototype software, changing configura-

tion settings (for example, slider+ to mouse), and monitoring the data

collection process. The experimenter also used a keyboard connected to the

experiment PC to signal task completion and to present the next task to the

participant when they verbally indicated that they were ready to proceed.

In the slider- condition, all software settings were the same as the

slider+ condition, except the final amplifier electronics were powered off.

This ensured that there were no confounding variables, such as timing differ-

ences, introduced as a result of changing conditions between slider+ and

slider-.

7.3.3 Briefing and Collection of Demographic Data

Study participants were first asked to read and sign the standard UBC Ethics

Consent form (included in Appendix A), and each participant was given a

copy for their records. All participants were verbally reminded that they

could abort their participation in the study at any time without penalty

(i.e., they would still receive their compensation). Participants were also

reminded that their frank and honest opinions were requested, and that the

purpose of the study was to obtain a performance assessment of the device,

not the study participant.

All study participants then completed the demographic survey and pre-

test attitudes survey; the results are shown in Table 7.1 and Figure 7.7.

As noted in the verbal protocol (Appendix A), all participants were

instructed to hold the device in their left hand1 with their thumb resting
1 Only left handed operation is supported on the handheld prototype. This is also the

case with almost all commercial handheld products having side-mounted controls. See

Section 4.1.

Chapter 7. Browser User Evaluation 145

on the tactile display. Participants were told not to abrade or pick at the

surface of the TD, and were reminded when necessary to maintain a hand

position such that the thumb was in full contact with all 8 elements of the

TD. When the mouse scroll wheel was used as an input device, the user

was also asked to use their left hand to operate the mouse. In that case, the

device (still required for visual display) was placed on the table and propped

up at an an angle for better visibility.

7.3.4 Task Blocks

The study is organized into blocks of 6 tasks each. Each block is per-

formed under one condition (slider+, slider-, or mouse). Within a

group of three blocks, each condition is presented; and each subject re-

ceives a sequence that is randomly drawn from the 6 possible permutations

of condition presentation order. Between blocks, study participants get a

one-minute break to relax and stretch.

Within each block, the 6 tasks are also presented in a randomized

order. Tasks may be categorized into task types, consisting of weather,

transit, and movies, each of which is represented twice per block. There

are 6 possible permutations of the presentation order of 3 task types. For

each block, a presentation order is drawn at random from this set, and the

sequence is repeated twice to form a 6-task block. Finally, for each task

type, the presentation order of specific tasks is randomized.

The presentation sequence of an example run through the main part of

the study can be visualized as follows (six blocks shown):

(slider+)A16.C5.B8.A11.C9.B1 −→ (break) −→

(mouse)C3.B4.A3.C2.B5.A7 −→ (break) −→

Chapter 7. Browser User Evaluation 146

(slider-)B3.A15.C1.B2.A17.C4 −→ (break) −→

(slider+)A2.B1.C8.A5.B11.C6 −→ (break) −→

(mouse)C1.A18.B9.C7.A1.B9 −→ (break) −→

(slider-)B10.C5.A4.B6.C9.A10 −→ (break) −→

...

where each letter (A, B, or C) represents a task type, the number following

the letter represents a specific task, and each line is a block. Note that

the sequence of tasks does not repeat until all tasks of a particular task

type have been exhausted; the sequence for that task type then repeats in

the same order as before. When, for example, all 12 tasks of task type A

have been exhausted, the next task drawn from task type A is the same

as the first task that was drawn during the first pass through the sequence.

The meta-variable presentation order is the ordinal task × block

presentation sequence number, with conditions “flattened” out. Formally:

POtask = ttask + T (ceil(btask/3)− 1) (7.1)

Where:

• POtask is the presentation order number for the given task,

• ttask is the sequential presentation number for the task within its

block (ranging from 1 to 6)

• btask is the sequential presentation number of the block to which the

task belongs (ranging from 1 to 9)

• T is the number of tasks per block (6)

Chapter 7. Browser User Evaluation 147

In the example above, tasks A16, C3, and B3 each have a presen-

tation order of 1, and tasks C5, B4, and A15 have a presentation

order of 2. The sequence continues through tasks A2, C1, and B10,

which have a presentation order of 7. By grouping tasks that are pre-

sented at approximately the same ordinal position in different conditions

under a single presentation order score, a within presentation order

analysis of variance of task times is enabled. The results from this analysis

are presented in Section 7.8.1. — The full task inventory is included in

Appendix A; however, some examples are:

A1 What is the weather in London today?

A2 What will the weather be like in London tomorrow?

A3 What will the weather be like in London the day after tomorrow?

A4 What is the weather in Paris today?

B1 If you take the 99 B-line from UBC at 1pm, when will you arrive at

Broadway station?

C1 When is the movie “L’Enfant” playing at the Ridge Theatre?

The various randomizations and permutations are handled automatically

by the JavaScript component of the Test Software (described in Section 7.7).

Error cases, defined as the user clicking on the wrong link, becoming

distracted (in ways other than typically induced by the distraction task),

or experiencing a problem, were recorded but excluded from the analysis

of task times. When a participant made an error, he/she was asked to

inform the facilitator of the error but complete the task anyway. A “back

Chapter 7. Browser User Evaluation 148

to previous page” link was provided in a standardized location on all pages

of the sample corpus for this purpose.

7.3.5 Training Sessions

Participants first completed two training sessions to become familiar with

the tasks. In the first training session, subjects completed 3 shortened

blocks of 2 tasks each, in each of the three conditions (slider+, slider-,

or mouse). In the second training session, subjects also completed 3 short-

ened blocks of 2 tasks each, but with the addition of the distraction task

(described below in Section 7.6).

7.3.6 Main Data Collection Session

In the main part of the study, subjects completed 9 full blocks of 6 tasks

each, or 54 tasks in total.

7.3.7 Post-Task Assessment

Following the main data collection task, subjects were given a one-minute

break and then asked to fill out a post-task attitudes survey. The survey is

included in Appendix A, and the results are discussed in Section 7.9.

Following the survey, the facilitator conducted an interview using the

protocol documented in Appendix A. The participants were then given their

compensation and were free to go after signing a receipt.

7.4 Pilot Study

A pilot study was first conducted with three participants to assess, debug,

and optimize the experiment protocol and browser prototype design. Pa-

Chapter 7. Browser User Evaluation 149

rameters in the browser prototype software were continuously optimized

during the pilot phase using a participatory design model (the final values

are documented in Table 6.1). In addition, the decision to implement the

hybrid control spring design (Figure 6.5) was made based on user feedback

from the pilot study.

7.5 Stimuli Used in the Study

The final selection of haptic icons used for the study are shown in Figure 7.2.

Two types of haptic icons were used. Large headings were marked with the

high-frequency grating icon, and links were marked with the modified single-

bump crater icon. To arrive at these haptic icon selections, more than 20

variants of haptic icon representations were created using the image-based

rapid prototyping method (Section 4.9.6) and participatory design feedback

was obtained during the pilot phase and used immediately to tweak and

optimize the icons in an on-line fashion. Icons were selected for high salience

(perceived amplitude), distinguishability from one another, and clarity of the

directional tactile flow signal.

To achieve these design goals, several points were taken into considera-

tion. First, the results from both the MDS haptic icon discriminability study

(Section 5.4.1) and the Image Browser User Test (Section 6.2.3) indicated

that the most salient dimension employed by users for distinguishing haptic

icons was whether the icons were high frequency and periodic or low fre-

quency and relatively non-periodic, therefore, the two selections were made

on opposite ends of this spectrum. The decision to use only two icons was

based on the following justification: the browser user study was intended

primarily to address the effectiveness of tactile flow as a design concept; pre-

Chapter 7. Browser User Evaluation 150

21

0

gratingcrater

-50V +50V
21

0

Pa
ge

 M
ap

 U
ni

ts

Pa
ge

 M
ap

 U
ni

ts

-50V +50V

Figure 7.2: Haptic icons used in the browser user study. For each of the two

icons, the volt image representation, voltage trace, and crop of an associated

page element are shown. The height of the crater representation (21 page

map units) is the same as the height of a link (in pixels) when rendered in

the browser window. The rendered height of headings may differ slightly

from the height of the associated grating icon; in that case, the haptic icon

is top-justified.

Chapter 7. Browser User Evaluation 151

vious studies had already addressed the distinguishability of a wide variety

of haptic icons; and the use of a large corpus of haptic icons might intro-

duce undesired variability in the salience of the tactile flow signal which the

present study was not powered to evaluate. On the other hand, if the effec-

tiveness of tactile flow as a spatial cue was proven, a subsequent study could

examine the detailed design of an optimally sized corpus of haptic icons for

use with the browser.

Animated icons containing time-varying moving components were ex-

plored, but since the goal of the experiment was to demonstrate the useful-

ness of the tactile flow signal as a spatial cue, it was felt that the icons at

this stage of development should not interfere with the tactile flow signal

by superimposing additional motion. Therefore, static icons were selected.

The decision to use the grating icon for headings and the crater icon

for links, as opposed to vice-versa, was informed by the observation that

the directional sensation of tactile flow was much stronger for the non-

periodic signals, and links were more frequent and irregularly distributed

than headings in the test web page corpus, thus the importance of effective

tactile flow display for links was higher.

Finally, the icons were designed such that, using the 3-to-1 subtaxel

rendering setting (Section 6.4.10), individual piezos would still reach max-

imum (or near-maximum) amplitude displacement. To avoid icon overlap

and because pilot testing did not reveal any significant advantages in terms

of tactile flow perception, the page map shrinking feature of the browser

prototype software was not used.

Chapter 7. Browser User Evaluation 152

7.6 Distraction Task

Divided attention between the information appliance and the user’s envi-

ronment is a key feature of mobile device usage in the real world [40]. To

simulate this experience while retaining the benefits of a controlled labora-

tory testing environment and without incurring the costs of engineering the

prototype for true mobility, a visual distraction task was implemented as

part of the experiment protocol.

Every seven seconds (beginning seven seconds after the start of the

browsing task), the user was prompted to perform an independent task

with his/her feet, so as to not affect the hand-based interaction with the

mobile device. The prompt was displayed on a PC monitor on the desk,

requiring the user to shift his/her gaze from the hands (below eye level) to

horizontal eye level. The prompt was displayed in large (120-pixel high)

type, such that a change could be observed using peripheral vision while

looking at the device held in the hand; however, the prompt was displayed

in ALL CAPITAL letters in a serif font to minimize preattentive processing

of the message. Since the various prompts were morphologically similar and

complex, the user was forced to read the message each time.

There were six distraction task variants, each of which involved respond-

ing to one of the following commands:

1. Press the left pedal once.

2. Press the left pedal twice.

3. Press the right pedal once.

4. Press the right pedal twice.

Chapter 7. Browser User Evaluation 153

5. Press the left, then the right pedal.

6. Press the right, then the left pedal.

To balance initial difficulty against increasing user familiarity as they

acquired experience with the task, only the first four distraction tasks were

used during the first half of the experiment (3 out of 6 blocks in training

phase 2, and 4 out of 9 blocks in the main experiment); after that, the full

selection of 6 tasks were used.

Feedback was given at seven-second intervals together with a refresh of

the task prompt. A cumulative positive reinforcement model was used, sim-

ilar to a typical video game design. Successive correct performance resulted

in the onscreen presentation of a reward image, consisting of a briefly (1

second) animated character such as a smiley face, with increasing valence.

For example, the smileys became larger, more numerous, more animated and

more embellished to reinforce a string of correct performance. Six levels of

reinforcement were supported. If the user provided an incorrect input dur-

ing a seven-second interval, the correct-response counter was reset to zero

and the background of the prompt area was changed from white to red. A

correct response during the next seven-second interval resulted in the back-

ground reverting to white, the counter being incremented by one, and the

appropriate reward animation being presented.

The effectiveness of the distraction task is assessed from a quantitative

perspective in Section 7.8.8 and from a qualitative perspective in Section

7.9.2.

Chapter 7. Browser User Evaluation 154

7.7 Browser Experiment Software

As described in Section 7.3.2, User Test Environment, two PCs were used

during the experiment, one running the browser prototype software, and the

other running the experiment software. The experiment software provides

the following functionality:

1. Randomizing the selection of tasks in blocks, using the procedure de-

scribed in Section 7.3.4.

2. Displaying task prompts to the user (e.g., “What is the weather like

in Paris today?”).

3. Displaying the timed distractor task prompts to the user (e.g., “Press

the left pedal twice.”). Described further in Section 7.6.

4. Providing feedback to the user on their performance in the distractor

task.

5. Recording the distractor task events from the pedals, and tagging the

data with timing information.

6. Sending the collected data to the facilitator’s email account via the

network.

7. Reading the keyboard events from the facilitator.

8. Prompting the user to take a one-minute break.

In addition, for the most accurate timing, the browser prototype software

also includes several functions related to the experiment:

1. Receiving events from the keyboard when the user signals the start

and end of the task.

Chapter 7. Browser User Evaluation 155

2. Displaying a modal dialog box blocking interaction with the browser

until the user signals the start of the task.

3. Supporting the mouse scroll wheel as a configurable alternate input

device.

4. Resetting the browser upon user-signalled completion of the task.

5. Dumping timing data to the terminal (recorded on the experiment

facilitator’s remote laptop).

The browser experiment software is designed for any standards-based

web browser (it was run on Mozilla Firefox 1.0 under Windows 2000 for the

experiment) and consists of the following components (included in Appendix

E):

1. A set of XHTML files with embedded style sheet (CSS 1.0) informa-

tion, comprising the presentation layer of the software.

2. A set of JavaScript files, comprising the logic layer.

3. A CGI (Common Gateway Interface 1.1) script, based on the free

“FormMail” script, running on an off-site server that accepts form

data and forwards it to the facilitator’s email account.

The general architecture is that of a web application using the modern

AJAX (Asynchronous JavaScript and XML) methodology, running mostly

on the client side. It uses the XMLHttpRequest object supported in all

current (as of 2006) browsers to send data to a server-based CGI script in

an online fashion, without reloading the page or causing a visual interrup-

tion to the user. This allows for a highly interactive, portable experiment

Chapter 7. Browser User Evaluation 156

management application while providing convenient email-based collection

of data with redundant copies distributed across networked computers for

maximum safety. To the author’s knowledge, the present software is the first

known application of this technique for usability experiment management.

The logical flow of the browser experiment software is as follows:

1. The appropriate HTML file (training phase 1, training phase 2, or

main experiment) is loaded into the browser by the facilitator.

2. The HTML file instructs the browser to load and executes the associ-

ated JavaScript code.

3. A start screen is presented, prompting the facilitator to enter a partici-

pant number, and in the main experiment version, an optional number

of blocks (default is 9). The participant number is provided simply for

convenience and is appended to all data output by the program.

4. When the participant indicates to the facilitator that he/she is ready

to begin the first task, the facilitator presses a form submit button.

5. The JavaScript component creates an array for each of the three task

types. In the main experiment version, the arrays are randomly per-

muted, and the tasks are sequentially assigned to blocks that are

stored as associative arrays.

6. A display refresh is performed without reloading the page, accom-

plished by manipulating layer visibility parameters in the style sheet.

7. The first task prompt is displayed to the user. The software waits for

a keyboard input from the facilitator, indicating that the participant

Chapter 7. Browser User Evaluation 157

has read the prompt and has pressed the START key, signalling the

browser prototype component to start the task.

8. The software enters a loop, presenting a distractor task prompt to the

user at seven-second intervals. The software checks to ensure that no

two sequentially presented distractor tasks are alike.

9. Pedal input from the user is read and stored. When the seven-second

interval expires, the input is checked against the task requirement and

feedback (correct or incorrect) is provided to the user.

10. When the facilitator presses a key on the keyboard, the task is finished,

the distractor task prompt is removed, and the next task prompt is

presented on the screen.

11. When a block has been completed, the software sends an interim copy

of the data log to the server-based CGI script (and thus to the facil-

itator’s email account). The user is prompted to take a one-minute

break via a modal dialog.

12. When all blocks have been completed, the software sends the final copy

of the data log to the server and presents a modal dialog thanking the

user for his/her participation. Since the page is never refreshed, the

data is retained in a text input field that is hidden below the scroll

boundary of the window. Should the email transmission fail, the data

can still be recovered from the page using copy and paste on the client

PC.

Chapter 7. Browser User Evaluation 158

7.8 Quantitative Results

A total of 645 valid, error-free observations of task time were gathered in

each of the 3 conditions across the 40 tasks and 13 participants, and used

in the quantitative analysis of performance.

7.8.1 Effect of Condition on Task Time

The results of a repeated-measures ANOVA on the task time data across all

13 non-pilot subjects is shown in Table 7.2. For this analysis, task time

was compared within participant and presentation order variables. If

an error occurred in any of the three conditions for a given level of pre-

sentation order for a given subject, the data for that level of level of

presentation order was not considered in this analysis; only those com-

binations of task × subject with full repeated measures across all conditions

were used, resulting in a slightly lower number of observations (N) than the

overall data set.

The results show a statistically significant difference in task time across

the three different conditions. However, when the conditions are exam-

ined in a pairwise fashion, there is a statistically significant difference be-

tween the mouse condition and the two slider conditions, but not among

the two slider conditions (i.e., with and without active tactile feedback).

7.8.2 Individual Subject Differences in Performance

Could the lack of a statistically significant difference between the two slider

conditions be due to individual differences in the way users respond to the

presence or absence of tactile feedback? The data were analyzed separately

for each subject (with appropriate Bonferroni correction for the groupwise

Chapter 7. Browser User Evaluation 159

Condition Mean Task Time Std. Error N

mouse 12166.34 4415.81 181

slider- 18200.52 5453.77 181

slider+ 18445.01 4682.06 181

Overall ANOVA

Conditions F p

Overall 132.750 0.000

Pairwise Comparison (Bonferroni Corrected)

95% Confidence Interval

Conditions ∆Mean Low High p

mouse vs slider- -6034.18 -7182.19 -4886.19 0.000

mouse vs slider+ -6278.67 -7292.42 -5264.93 0.000

slider- vs slider+ -244.49 -1373.88 884.91 1.000

Table 7.2: Results from a within-subjects, within-presentation order

analysis of measured task time. All measurement units are in milliseconds.

error rate), and the results are shown in Table 7.3.

As shown in Table 7.3, the magnitude of the difference between slider+

and slider- conditions was small for each participant, and none of the

differences was statistically significant. The evidence therefore does not

support the hypothesis that opposing effects of condition in individual

subjects was responsible for the overall lack of statistical significance.

Chapter 7. Browser User Evaluation 160

7.8.3 Effect of Task on Task Time

The relationship between task and measured task time is shown in Fig-

ure 7.3. The graph clearly shows variation in the task times that suggest

differences in task difficulty. The task requiring the most time to complete

was:

C10 What rating did the movie “The Promise” receive in its review in the

Washington Post?

The task requiring the shortest time to complete was:

A15 What will the weather be like in San Francisco the day after tomorrow?

Examining the web pages in the test corpus, we see that task C10 re-

quires a minimum traversal distance of 156 + 852 + 563 + 497 = 2068

pixels or page map units: the longest in the corpus. By comparison, task

A15 requires traversal of 99 + 484 + 254 + 176 = 1013 pixels or page map

units: the shortest in the corpus. The observations are therefore generally

in accordance with GOMS and Fitts’ Law principles about the effects of

distance and keystroke input on task completion time.

7.8.4 Effect of Task × Condition on Task Time

Could the lack of a statistically significant difference between the two slider

conditions be due to opposing effects in different tasks? Figure 7.4 shows

the task time data sorted by task across each of the conditions. Although

the data is somewhat noisier due to a lower number of samples in each

condition versus the overall task time, each of the three conditions follows

the same general trend with regard to variation in task difficulty; we do not

observe any large interaction effects between condition and task time

Chapter 7. Browser User Evaluation 161

Time vs Task

0

5000

10000

15000

20000

25000

30000

A15
A3

A14A17A11A16
A9

A10A12
A7A5

A13
A1A6B9A8B8B7A2

B12
A4

B10
C1B2B1C2

A18
B5C6C4C7

B11
B3C9C3B6B4C8C5C1

Task

Time (ms)

Figure 7.3: The 40 tasks are sorted according to measured task time and

displayed here with standard error bars.

Chapter 7. Browser User Evaluation 162

Average Task Time vs Condition

Subj. N allcond mouse slider- slider+ p

4 49 18878 16282 20527 19986 1.000

5 54 16294 13487 17358 18036 1.000

6 53 15748 10841 18227 18314 1.000

7 49 16892 10384 19566 19960 1.000

8 47 17775 13170 20226 19558 1.000

9 53 13339 9155 15875 15084 1.000

10 51 13203 10654 13763 15376 0.968

11 46 15513 11392 17517 17963 1.000

12 49 17509 13987 19053 19529 1.000

13 48 13650 9055 15613 16283 0.932

14 46 18171 12587 21419 20913 1.000

15 50 21640 17069 23146 24026 1.000

16 50 13187 9248 15413 15031 1.000

ALL 645 15287 12056 18245 18499 1.000

Table 7.3: Measured task time for each of the 13 main test participants.

“Allcond” stands for “all conditions”. The p-values are the result of Bonfer-

roni corrected t-tests between the two slider conditions. All measurement

units are in milliseconds. Further statistics are provided in Appendix B.

Chapter 7. Browser User Evaluation 163

across the tasks. Furthermore, although the performance in the mouse

condition in the most difficult task (C10) is worse than the performance in

the slider- condition in the least difficult task (A15), when compared in

a task-matched fashion, the performance in the mouse condition is always

better than the performance in either of the slider conditions. This does

not support the hypothesis that the lack of an observed difference in the

two slider conditions was due to an interaction between task difficulty and

condition.

7.8.5 Validation of Task Difficulty Normalization

Before proceeding with the task difficulty normalization as described in Sec-

tion 7.2.2, we should verify that the observed variation in performance on

a task-by-task basis was indeed due to intrinsic task-related sources, and

not due to the effect of the study independent variables. As discussed in

Section 7.8.3, both the empirical data and theoretical models support the

hypothesis that variation in task difficulty is associated with navigational

distance. Furthermore, as Figure 7.4 indicates, the general trend of increas-

ing difficulty with certain tasks is observed in all three conditions in a

slightly noisy, but mostly monotonic fashion. Combined, these observations

lend validity to the concept of task difficulty determined by intrinsic factors,

which may be “normalized out” using an empirical model of task difficulty.

Consideration was given as to whether to use a single, pooled normal-

ization score from across the three conditions for each task (i.e., a nor-

malization vector), or to use separate normalization scores for each task

× condition (i.e., a 3 × 40 normalization matrix). There was no reason

to reject the hypothesis of similar effects of task difficulty across all three

Chapter 7. Browser User Evaluation 164

Time vs Task vs Condition

0

5000

10000

15000

20000

25000

30000

A15
A3

A14A17A11A16
A9

A10A12
A7A5

A13
A1A6B9A8B8B7A2

B12
A4

B10
C1B2B1C2

A18
B5C6C4C7

B11
B3C9C3B6B4C8C5

C10

Task

Time (ms)

All Conditions
Mouse
No Tactile
With Tactile
Poly. (Mouse)
Poly. (No Tactile)
Poly. (With Tactile)

Figure 7.4: The coloured lines show measured task time vs. task in

each of the three conditions, while the heavy black line shows the overall

(averaged) time across all conditions. The tasks are sorted in order of

overall measured task time. Polynomial curve fit lines are also shown for

each of the conditions. The data are noisy due to a low and variable number

of observations at each point due to the randomization of task assignments.

The following data points had zero observations and are reflected in the

graph as smooth lines drawn between adjacent observations: Tasks A13 and

B11 in the slider- condition, and task A17 in the mouse condition.

Chapter 7. Browser User Evaluation 165

conditions based on the data in Figure 7.4. Furthermore, due to the ran-

domization of tasks, some cells in the 3 × 40 matrix would have had zero

observations (the maximum number of observations in a cell was 13); using

the overall data the lowest number of observations was 9, and the highest

was 24 (see Appendix B). For these reasons, it was decided to determine the

normalization score for a given task by considering the data across all three

conditions.

The normalization scores were applied to the measured task times to

determine the normalized task time, and ranged from 0.733 for the task

requiring the most time to complete (C10), to 1.474 for the fastest task

(A15).

7.8.6 Analysis Using Normalized Task Time

Overall Effect of Condition on Normalized Task Time

A revised version of Table 7.2, using times normalized for task difficulty, is

shown in Table 7.4. Data variation due to differences in task difficulty is

reduced, as evidenced by the lower standard error and increased F statistic;

however, despite increasing the detection power through normalization, the

overall results between the two slider conditions are still not statistically

significant.

Individual Subject Differences in Normalized Task Time ×

Condition

Normalizing the task scores did not affect the significance of the observations

on an individual user basis. Full statistics are provided in Appendix B.

Chapter 7. Browser User Evaluation 166

Condition Mean Task Time Std. Error N

mouse 11474.34 3957.91 181

slider- 17011.57 4455.32 181

slider+ 17179.28 3653.15 181

Overall ANOVA

Conditions F p

Overall 163.275 0.000

Pairwise Comparison (Bonferroni Corrected)

95% Confidence Interval

Conditions ∆Mean Low High p

mouse vs slider- -5537.25 -6456.06 -4618.41 0.000

mouse vs slider+ -5704.94 -6499.99 -4909.89 0.000

slider- vs slider+ -167.707 -945.67 610.26 1.000

Table 7.4: Results from a within-subjects, within-presentation order

analysis of normalized task time. Units are in milliseconds.

7.8.7 Learning / Practice Effects

Even if the difference between the two slider conditions was not statisti-

cally significant across the entire experiment, could the presence of tactile

feedback have a positive or adverse effect on learning the task and opera-

tion of the device? To address this question, we split the data into bins

for each of the three three-block sets comprising a full run through each

of the three conditions. The data are presented in Figure 7.5. A typical

Chapter 7. Browser User Evaluation 167

asymptotic performance improvement is observed in each of the three con-

ditions; however, it is unclear whether there are significant interactions in

the two slider conditions. The shape of the curves suggests that more fa-

miliarity with the device or practice with the experimental paradigm would

not have produced a significant difference between the two slider condi-

tions, although the present data do not suggest an expected outcome for a

long-term, longitudinal study.

Time vs Block-of-Blocks

9000

11000

13000

15000

17000

19000

21000

1 2 3

Block-of-Blocks

Time (ms)

mouse
slider-
slider+
nmouse
nslider-
nslider+

Figure 7.5: The measured (mouse, slider-, slider+) and normalized (nmouse,

nslider-, nslider+) task times are plotted versus the presentation order se-

quence of a set of 3 blocks (“block-of-blocks”) comprising a full run through

each of the three conditions.

Chapter 7. Browser User Evaluation 168

For increased resolution, the data were analyzed by the previously de-

scribed presentation order meta-variable. The results with both mea-

sured and normalized task times are shown in Figure 7.6. Again, typical

learning curves are observed, with a slight increase in task time at the end

likely attributable to fatigue. The data do not indicate any effect of tactile

feedback on learning; however, the relative flatness and consistency of the

learning curves lend confidence to the validity of the observations.

7.8.8 Quantitative Validation of Distraction Task

The data gathered by the experiment PC were analyzed to ensure that

participants were performing the distraction task per the experiment proto-

col, and the results are summarized in Table 7.5. While some participants

showed higher accuracy than others on the distraction task, the overall accu-

racy rate was 81%, showing that participants were attending to and perform-

ing the distraction task. The qualitative findings related to the distraction

task are discussed in Section 7.9.2.

7.9 Qualitative Results

7.9.1 Pre-Task Attitudes Survey

The results from the pre-task attitudes survey are shown in Figure 7.7.

All questions were measured on a Likert scale. Questions 1, 5, 2, and 3

were intended to assess participants’ attitudes about performing multiple

tasks at once on a handheld device. Questions 4 and 7 were intended to

gather some insight into participants’ self-assessment of tactile aptitude and

preference, which people have rarely considered before and therefore can

Chapter 7. Browser User Evaluation 169

Measured Time vs Presentation Order

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Task / Block

Time (ms)

mouse
slider-
slider+
Poly. (slider+)
Poly. (slider-)
Poly. (mouse)

Normalized Time vs Presentation Order

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Task / Block

Time (ms)

nmouse
nslider-
nslider+
Poly. (nslider-)
Poly. (nslider+)
Poly. (nmouse)

Figure 7.6: Task time and presentation order, with polynomial curve

fit lines added.

Chapter 7. Browser User Evaluation 170

Participant PedalPrompts PedalCorrect %Correct

4 70 67 96%

5 67 59 88%

6 58 57 98%

7 69 58 84%

8 72 31 43%

9 54 33 61%

10 46 42 91%

11 53 37 70%

12 71 62 87%

13 47 37 79%

14 73 50 68%

15 97 95 98%

16 62 55 89%

ALL 839 683 81%

Table 7.5: Performance on the distraction task by individual study partici-

pants. The table shows the total number of task prompts that were presented

to the user, compared with the number of periods between prompts where

the user made a correct response according to the prompt.

Chapter 7. Browser User Evaluation 171

not be measured using direct questioning. Finally, question 6 was added

based on qualitative feedback obtained during earlier studies in which users

expressed a strong preference for the piezoelectric TD versus a typical mobile

phone vibrator due to lower noise and intrusiveness; for this experiment, it

was hypothesized that pre-existing attitudes about mobile phone vibration

might be correlated to performance with the TD.

Unfortunately, because no significant effect was observed for the pres-

ence or absence of tactile feedback, it is impossible to correlate the measured

attitudes with individual subjects’ performance on the task. However, the

presence of this data anchors the demographic picture of the subject pop-

ulation and reveals a significant diversity in attitudes about multitasking

while using a handheld device, which lends ecological validity to the study.

7.9.2 Qualitative Evaluation of the Distraction Task

The goal of the distraction task was to cause the participant to split his/her

visual attention resources in a manner similar to that of a person using a mo-

bile device in a real-world usage context. Data from the experiment indicates

that the task was mostly successful in this regard. The facilitator observed

that all participants frequently shifted their visual attention between the

handheld browser’s LCD and the PC monitor (where the distraction task

prompts were displayed). Video analysis of the author and several research

colleagues performing the distraction task together with the main experi-

mental task further confirmed that the interval between attentional shifts

was on the order of a few (2 - 10) seconds and often coincided with times

when the web page was being reloaded, which matches what was observed

in previous field studies of mobile users [40].

Chapter 7. Browser User Evaluation 172

1. I am a multitasker.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

2. Mobile phones are useful for more
than just talking.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

3. Sometimes it's necessary to use a
mobile phone while driving.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

4. I'm good at working with my
hands.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

5. I prefer to work on one thing at a
time.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

6. The vibration function on a mobile
phone is annoying.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

7. When I am shopping, I often pick
up objects to touch them even though

I know I won't buy them.

0

2

4

6

8

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

Figure 7.7: Results from the pre-task attitudes survey for the 13 main study

participants.

Chapter 7. Browser User Evaluation 173

8. I was able to keep my eyes
on the screen of the

handheld device during the tasks.

0
2
4
6
8

Strongly
Agree

Neutral Strongly
Disagree

10. The task of pushing the
pedals in response to the

instructions was challenging.

0
2
4
6
8

Strongly
Agree

Neutral Strongly
Disagree

Figure 7.8: Results of the post-task attitudes assessment questions pertain-

ing to the distraction task.

Chapter 7. Browser User Evaluation 174

The qualitative data gathered from the participants after they had fin-

ished the tasks (Figure 7.8) mostly supports the hypothesis that the distrac-

tion task was successful in achieving its goals. There were mixed responses

to Question 8 (“I was able to keep my eyes on the screen of the handheld

device during the tasks...”), possibly due to a lack of awareness of where

visual attention was directed; indeed, the participants were not asked to

pay attention to where they were looking until after all the tasks had been

completed. However, most subjects agreed with the prompt in Question 10

(“The task of pushing the pedals in response to the instructions was chal-

lenging...”), indicating that the distraction task was at least placing some

attentional demands on the subject.

In post-task interviews, several participants expressed frustration with

the level of system feedback on the distraction task. Feedback was only given

at 7-second intervals when the prompt was changed, not immediately fol-

lowing the user input, so users were sometimes confused as to whether they

had succeeded in entering the requested input. It was especially difficult for

participants due to the use of two simultaneous tasks in an attention-starved

paradigm (the facilitator observed that this caused subjects to forget which

inputs they had made), and the poor mechanical feedback of the pedal hard-

ware, which was originally designed for continuous, analogue input. How-

ever, the distraction task was intended to require users to divide their own

attention within seven-second blocks rather than to interrupt or preempt the

user at machine-specified times; immediate, asynchronous feedback would

have interfered with this model somewhat.

Chapter 7. Browser User Evaluation 175

9. The task of finding
information on the page

was challenging.

0

2

4

6

8

Strongly

Agree

Neutral Strongly

Disagree

11. The tactile feedback
was helpful in locating

items on the page.

0

2

4

6

8

Strongly

Agree

Neutral Strongly

Disagree

12. I would pay 5% more for a
mobile phone that had this

kind of tactile display.

0

2

4

6

8

Strongly

Agree

Neutral Strongly

Disagree

13. The tactile feedback I
experienced today was

pleasant.

0

2

4

6

8

Strongly

Agree

Neutral Strongly

Disagree

14. Overall, I found the device
easy to use.

0

2

4

6

8

Strongly

Agree

Neutral Strongly

Disagree

Figure 7.9: Results of the post-task attitudes assessment questions pertain-

ing to the navigation task.

Chapter 7. Browser User Evaluation 176

7.9.3 Qualitative Evaluation of the Navigation Task

The questionnaire data gathered from the participants on the main (i.e.,

navigation) task are shown in Figure 7.9. Additionally, the following feed-

back was obtained during the post-task interviews:

• Most (12/13) participants felt that their performance was best in the

mouse condition. Hardware-related reasons included more familiar-

ity with the mouse scroll wheel model (5/12) and better ergonomic

placement of the hands (6/12).

• Five out of 13 participants said they thought their performance was

better with active tactile feedback. Reasons cited included a qualita-

tive preference for being able to feel the page elements.

• Almost all of the users criticized the velocity-control scrolling model

compared to the mouse scroll wheel model. The most commonly cited

reason was that continuous scrolling was less efficient than discrete

(i.e., link-to-link) scrolling, although 3/13 users also expressed dis-

comfort with the irregular jumping motion of the mouse scrolling in

areas where links were sparse.

• Surprisingly, 4/13 users reported no awareness of the tactile feedback

until they encountered the post-task assessment questionnaire. One

user said they did not notice the tactile feedback until about halfway

through the study. This was despite all users having been informed

that they may experience tactile feedback during the study. The per-

ceptual load due to the distractor task may have had an effect on this

lack of awareness.

Chapter 7. Browser User Evaluation 177

• Miscellaneous comments and suggestions included improving the hand

position for better ergonomics, reducing the inertia of the slider for

lower fatigue, and improving the contrast and clarity of the embedded

LCD screen.

7.10 Discussion

Returning to the questions posed at the start of the study:

1. Does the presence of tactile feedback, in the form of a synthetic tactile

flow signal, affect the time required to complete a web navigation task?

It does not appear that tactile flow feedback aids targeting and naviga-

tion performance in the browser model used. By carefully inspecting

the data along various dimensions (subject, presentation order,

etc.), and increasing the power of the experiment through the task

difficulty normalization, we can more confidently state that there does

not appear to be an effect of tactile feedback in the measurements

taken. While this is clearly disappointing in light of the hypotheses

formulated at the start of the experiment, the findings enable us to

focus on areas for improvement of the device rather than on issues

with the experimental design.

2. How does the experience of browsing and navigation on the hand-

held prototype compare to a more common paradigm (the mouse scroll

wheel)?

The familiarity and ergonomic comfort, as well as the discrete scrolling

model, of the mouse scroll wheel were preferred.

Chapter 7. Browser User Evaluation 178

3. What are users’ subjective reactions to the use of tactile feedback in

this application?

Participants were mostly either ambivalent about the tactile feedback

or reacted positively.

4. What are users’ subjective reactions to the handheld prototype hard-

ware and browser software?

The prototype was mildly criticized for its ergonomic profile and weight.

5. Are there any correlations between user demographics, such as age,

gender, and previous mobile experience, and their performance in the

browsing task with or without tactile feedback?

Due to a lack of overall statistical significance between the two slider

conditions, it was not possible to obtain correlative data on these de-

mographic characteristics.

Why was performance seemingly unaffected by the tactile flow rendering

setting? Prior to the start of the experiment, we hypothesized that the

following factors, if satisfied, may influence the measured performance in

the tactile feedback condition:

1. The tactile rendering could be perceived as a sense of tactile flow by

the user.

2. The tactile flow signal would simulate moving spatial cues that occur

in the real world when the user is touching objects.

3. The simultaneous, multimodal input of both visual and haptic cues

would allow the user to more quickly gain a sense of spatial location

in a virtual space (i.e., web page).

Chapter 7. Browser User Evaluation 179

4. Given a more rapid, more confident acquisition of spatial location,

targeting performance would be increased.

5. Any performance changes would be measured by the experimental

paradigm.

The first factor should be true, based on the fact that the parameters

used were within the limits established by the Perceptual Characterization

studies, and the haptic icon design effort to maximize the amplitude of

the percept created by the TD. However, the fact that several users did

not notice the presence or absence of tactile feedback under conditions of

high perceptual load suggests that the amplitude may be on the low (i.e.,

weak) side. Since the signals were already mostly optimized, the remaining

limitations are primarily in the hardware and the physical constraints of

the piezoelectric elements used in the display. Weak stimulation could be

responsible for the lack of a statistically significant performance difference,

but it seems unlikely that no performance difference would be observed due

to low amplitude alone, since users are universally able to detect the tactile

feedback when their attention is directed towards it.

Regarding the second and third factors, the synthetic tactile flow ren-

dering differs from typical real-world touch in a significant way: in natural

touch, a tactile flow percept is generated when the fingertip is moved (i.e.,

slid) across a textured surface, usually accompanied by the proprioceptive

sensation of the directed movement of the body part. In the browser model,

the tactile signal is decoupled from its typical proprioceptive accompaniment

and controlled with a novel force- and position-sensitive virtual scrolling

model. Moreover, in the world of natural touch, externally modulated slid-

ing (tactile flow) signals are usually limited to accidentally losing one’s grip

Chapter 7. Browser User Evaluation 180

on an object, or an insect crawling across the fingertip, where the semantic

interpretation of the tactile signal is not one of spatial position, but of an

alert. A synthetic, decoupled tactile flow signal, therefore, has a significant

challenge to overcome in being a novel way of providing a spatial cue.

The fourth factor is likely to be true on the basis of general psycholog-

ical principles of semantic activation and directed movement. In addition,

a thorough analysis of the experiment, combined with the fact that perfor-

mance differences were observed in the mouse condition, lends confidence

to the fifth condition. Therefore, it seems that the most likely explanation

for the lack of performance improvement was that the concept of decou-

pled tactile flow signal as a spatial cue was not validated by the current

experiment.

How can the browser be improved? In addition to the performance

data, a significant amount of qualitative data about the browser in the

hands of a human user was collected. The study suggests that user comfort

can be increased by improving the ergonomic characteristics of the device,

including thumb position, size, and weight. Instead of continuous velocity-

based scrolling, the navigation model could be discretized, either partially

(as in the case of the mouse scroll wheel) or wholly (as in the case of scroll

keys), allowing users to more easily target links. A discretized navigation

model could use different haptic signals, including icons that use tactile

flow for identification rather than spatial cueing, to widen the vocabulary of

tactile signals and perhaps become useful not as spatial cues, but as eyes-

free semantic cues as to the content of the web page. These opportunities

for further development are considered in further detail in the conclusion in

the following chapter.

Chapter 7. Browser User Evaluation 181

In summary, the key contributions of the Browser User Experiment are

that, having thoroughly tested the application of tactile flow in a browser

model, we can rule out further optimization of haptic icons, scroll model pa-

rameters, browsing content, and experimental design, and instead direct our

efforts towards application designs that do not rely on decoupled tactile flow

rendering as a spatial cue. Qualitative feedback obtained during the study

gives clues about how to significantly improve the hardware and navigation

models. We have also established an experimental paradigm, including a dis-

traction task and novel, web-based experiment management software, which

can be used to evaluate further progress in handheld, multimodal interfaces.

182

Chapter 8

Conclusion and Future Work

In this chapter we summarize the key contributions of this work, revisit

the research questions posed earlier, and outline promising future directions

enabled by this work.

8.1 Summary of Key Contributions

This thesis makes the following contributions to the body of knowledge about

interaction design for mobile haptics.

8.1.1 Identification of a novel multimodal approach to

addressing limitations in mobile user interfaces

Conventional approaches to mobile interaction design using existing hard-

ware suffer from limited interface bandwidth and poor suitability for mobile

conditions of visual and/or auditory impairment. Contributions of this work

include the articulation of this need, a survey of existing haptic technologies

and the selection of the piezoelectric actuated lateral skin-stretch technol-

ogy, mounted in a simplified 1-D slider configuration, as a tractable method

for addressing the requirements of mobile haptics. Compared to existing

vibrotactile approaches, our concept of mobile haptics enables richer tac-

tile experiences while managing cost, power, size, and weight tradeoffs. The

Chapter 8. Conclusion and Future Work 183

validity of this selection has been demonstrated by the realization of a hand-

held prototype supporting interaction in both haptic and visual modalities.

8.1.2 Development of a new handheld haptics hardware

platform

Having selected the problem domain and the tactile display technology, we1

proceeded with implementation of a hardware and software platform for

prototyping and testing handheld haptic applications. This inexpensive,

reproducible prototype, including the various technical developments incor-

porated within, represents another contribution of this research project.

Even after the major engineering effort on the prototype (carried out

at McGill University) was completed, the hardware and software specifica-

tion evolved through insights obtained by using the platform for applica-

tion development and conducting user tests. For example, the need for a

spring-based return-to-centre feature for velocity control was identified dur-

ing application development. The specification of the prototype platform

at the time of writing represents the result of this iterative development.

The existence of the prototype enables further research in handheld haptic

applications without the need for development of entirely new hardware.
1 The hardware prototype development was a collaborative effort with members of the

McGill University Haptics Lab. The present author was a contributor at all stages of

the prototype development, but the electronic and mechanical design was lead by Jerome

Pasquero, and the control software design was led by Vincent Levesque. For more infor-

mation, please see Chapter 4.

Chapter 8. Conclusion and Future Work 184

8.1.3 Evolution of application design concepts based on

user studies and hardware development

This thesis describes a suite of novel application designs that are matched

to the capabilities and limitations of the handheld prototype. In addition to

the detailed initial specification based upon a design philosophy and back-

ground research, this work presents evolutionary development of the applica-

tion concepts based on insights learned during the prototyping process. For

example, the size of the “vocabulary” of haptic icons available for use with

the browser application — and thus the range of haptic icon functionality

— was discovered through perceptual characterization experiments (Chap-

ter 5).

8.1.4 Method for rapid prototyping and graphical

representation of tactile stimuli

As described in Section 4.9, novel approaches for visualizing voltage outputs,

spatial volt images, and skin stretch images were developed to address the

previously cumbersome process of creating, managing, and analyzing tactile

stimuli. In addition, an accessible prototyping procedure using standard

web-based graphical tools, and support utilities for automated parsing of the

visual representations, are introduced. These methods can be generalized

to any tactile display that produces spatially distributed patterns of skin

stimulation.

Chapter 8. Conclusion and Future Work 185

8.1.5 Perceptual characterization of a novel miniature

piezoelectric tactile display

Rather than immediately developing applications based on the developers’

own vague and subjective impressions of the capabilities of the new system,

we first conducted a detailed user evaluation to determine its “vocabulary”

of signals that human users are capable of perceiving. Both the results of

these user studies, and the validation of this method as a useful component

of user-centred design for novel output hardware, represent contributions of

this work.

We determined that directional tactile flow can be perceived reliably at

speeds up to 0.34 metres per second, and that haptic icons may be designed

along dimensions of — in order of decreasing saliency level — repeating ver-

sus nonrepeating waveform, direction, speed, and amplitude. These findings

may be put to use by anyone who is interested in developing applications

for a tactile display with similar physical parameters to the one we used.

8.1.6 Handheld browser application with tactile

enhancement

As an example of one high-fidelity application prototype, we constructed a

multimodal browser capable of reading web pages and displaying them si-

multaneously with visual and haptic representations. The method for trans-

lating web markup to a haptic page map, and the navigation model for a

1-D slider are examples of novel contributions of this effort.

Usability testing of the handheld browser did not demonstrate a per-

formance (task time) advantage for navigation with directional tactile cues

(tactile flow), although the qualitative feedback obtained from the users sug-

Chapter 8. Conclusion and Future Work 186

gests that there may be a subjective preference for the tactile confirmation

of target acquisition. The results may be used to guide further development

of applications (Section 8.3, below), and to highlight areas where hardware

improvements are likely to have the most significant effect on usability (Sec-

tion 8.4).

8.1.7 Method for usability testing of mobile applications

A contribution of this thesis is the method used for testing a handheld device

in the laboratory while simulating some of the cognitive and perceptual load

aspects of mobile interaction in the real world. The system incorporates a

pedal-based distraction task that requires the user to engage the feet and

visual system without interfering with the hands, similar to the scenario of

a person walking while using a device.

An experiment manager software application, built using modern web

technologies, provides cumulative reinforcement feedback to the user and

collects data in a reliable, distributed fashion. This software is available

for re-use by any researcher who wishes to conduct a user experiment using

simulated mobile conditions.

8.1.8 Case study of a user interaction design process for

haptics

Finally, the activities described in this thesis can be considered, from a

case study perspective, as one full iteration of a user-centred design process

(Figure 1.2) that begins with an analysis of user needs and proceeds in a

stepwise cascade of discovery and increasing understanding of the interaction

between the system and the user. The results from each stage of this process

Chapter 8. Conclusion and Future Work 187

provide input for further iterative improvement.

This work presents a specialized case of the classic user-centred design

archetype, one that is specifically tailored to the needs of contemporary

research in haptics. By demonstrating that it is possible to follow the user-

centred approach even with nascent technology and heavy dependency on

hardware configuration, this work lends validity to the concept of incorpo-

rating users early in a design process in order to focus on achieving good

usability and to minimize system- or technology-centric design.

8.2 Research Questions

The research questions posed at the beginning of this thesis were addressed

in the following ways.

1. What are the problems with existing mobile user interfaces that may

be addressed using haptics?

In Chapter 1 we identified two fundamental problems of existing mo-

bile interfaces: sensory bandwidth limitation and environmental (con-

textual) competition for visual and auditory attentional resources. Hap-

tics is well suited to address these challenges through parallel feedback

in a sensory modality that is still mostly unused in mobile interaction.

In Chapter 3 we described the initial stages of an iterative application

design process that has identified

2. How can one implement haptics on a mobile device despite power, size,

and weight restrictions?

In Chapter 2 we discussed existing approaches for haptic transduc-

ers and identified the piezoelectric lateral skin-stretch technology as a

Chapter 8. Conclusion and Future Work 188

promising candidate for further investigation. The resulting piezo tac-

tile display represents a compromise: it is smaller, lighter, consumes

less power, and avoids the mechanical grounding challenges of motors

used for force feedback, but it is also more complicated than a typical

mobile phone vibrator. However, the technology we used also offers a

significantly richer haptic experience than mere vibration.

In addition to the selection of the tactile display itself, our investigation

into various alternatives for mobile haptics hardware resulted in the

choice of a linear slide-mounted tactile display positioned on the side of

the device as a working compromise between complexity (and thus, size

and weight) and functionality. After application prototyping and user

testing, we now know that features such as a spring return-to-centre

and increased slider travel (perhaps enabled by a different mounting

configuration) should be considered for the next iteration of design, in

order to improve the usability of the hardware when used for cursor

navigation.

Since our choice of technology was partially influenced by practical

considerations such as access to manufacturing facilities, it is conceiv-

able that if the process was replicated by someone else, a different

hardware focus might have been chosen. For example, someone with

access to MEMS (Micro-Electro-Mechanical Systems) facilities, or spe-

cialized intellectual property, might have been able to create a hard-

ware prototype just as rapidly as we were, without using off-the-shelf

parts. However, the interaction designs we proposed prior to the selec-

tion of the hardware technology are generalizable in the sense that they

do not assume large grounded forces (which would be impractical on

Chapter 8. Conclusion and Future Work 189

a mobile device regardless of haptic display technology), and provide

a “bridge” between existing mobile user needs and a rough hardware

specification that may be implemented using a variety of technologies.

3. What are the expressive capabilities of the hardware prototype in the

hands of a human user?

In Chapter 5 we described the results of three perceptual characteriza-

tion experiments that revealed the usable stimulus speed range, distin-

guishable haptic icon design parameters, and hierarchy of salience of

various parameters such as speed, direction, waveform and amplitude.

4. What are the engineering challenges associated with building a high-

fidelity hardware and software prototype with handheld use in mind?

Through the process of designing and building the prototype platform

and its application software, we discovered a variety of new information

related to the realization of a handheld haptic device. For example,

on the hardware side we were the first to validate the use of a stiffer

double-pinning configuration for the piezo benders as a key factor en-

abling miniaturization (Section 4.3.1).2 Through experiments with the

control software algorithms,3 we discovered that a 12-Hz refresh rate

was insufficient, while an 83-Hz refresh rate was sufficient for produc-

ing smooth tactile sensations on this TD. Finally, we encountered the

problem of visualizing and prototyping haptic icons, and addressed it

using the methods described in Section 4.9.
2The double-pinning configuration was invented by project collaborators Jerome

Pasquero and Qi Wang.
3The control software development and optimization was carried out in collaboration

with Vincent Levesque.

Chapter 8. Conclusion and Future Work 190

By building a representative software application (the browser) we

learned that, under the present system configuration, an asynchronous

design with priority given to the tactile process over the visual process

was necessary for good haptic performance. The need for a sophis-

ticated cursor navigation model was also recognized, with iterative

development eventually resulting in a hybrid position/velocity control

model that promotes active tactile exploration within the central re-

gion of the slider travel while allowing traversal of larger areas than

would be possible with position control alone.

5. Is tactile flow an effective aid for user navigation?

The user studies conducted with the browser prototype did not demon-

strate a significant performance (task time) advantage for tactile flow

as an aid to navigation or target acquisition in the browsing context.

However, qualitative feedback from the same studies was often posi-

tive, with many users indicating a subjective preference for the extra

tactile feedback. Further user studies could perhaps better elucidate

the ways this multimodal interaction could be used to better support

user goals other than more rapid navigation.

6. How can user-centred design methodology be applied to haptics, where

hardware technology is still the primary determinant of user interface

capabilities?

It is a common misconception that emerging fields like haptics require

designers to do a lot of up-front effort on the display technology before

involving users, due to the complexity and lack of standardization of

the interface hardware. User testing, when done, is typically utilized

Chapter 8. Conclusion and Future Work 191

for fine-tuning the software applications, or simply validating the use-

fulness of a particular approach. At the same time, it is well known

that incorporating user studies early in the design process is essential

for achieving maximum usability benefit per development effort [22].

Some of the methods we used to incorporate user testing early in the

design process, such as perceptual characterization, have also been

used in previous studies (e.g., [12]). However, in the present study, we

have conducted a full cycle of development, in which usability consider-

ations were the primary driver at each stage — from concept work that

began with an inquiry about user needs and delayed the detailed spec-

ification of hardware until after usage scenarios had been determined,

to the further development of the application concepts informed by

perceptual characterization studies, and finally, to the two-stage de-

velopment of the browser application consisting of a low-fidelity pro-

totype followed by user testing, and a high-fidelity prototype which

was then formally evaluated.

Therefore, we have demonstrated that, even when the user interface is

highly dependent on technological limitations, it is possible to follow a

user-centred design process and to benefit from the streamlined path

towards good usability that this approach allows.

8.3 Future Work: Application Designs for

Further Investigation

Informed by the results of the hardware prototyping, perceptual characteri-

zation, and high-fidelity software prototype and user test with one selected

Chapter 8. Conclusion and Future Work 192

application, we may now return to the application design stage to consider

the feasibility of further applications based on the same handheld haptics

concept.

8.3.1 Applications Involving Shape Rendering

Applications involving shape rendering are those that take advantage of

the piezoelectric tactile display’s ability to mimic patterns of skin stretch

analogous to those created by touching small objects and surface features.

Handheld Braille Reader

The ability of a piezoelectric lateral skin-stretch tactile display to render leg-

ible Braille dots via active tactile exploration has been previously demon-

strated in [30]. A mobile version has various applications for blind users

including discreet text messaging or reading printed characters with optical

character recognition (OCR). The only hardware change that would be nec-

essary for practical implementation would be the use of two rows of piezo

arrays for each of the two vertical Braille dot positions. The existing hybrid

position / velocity scroll model could be used to overcome slider travel lim-

itations, but further testing will have to be done to determine the optimal

parameters for legibility of Braille.

Medical Application: Displaying Small Shapes

Although not strictly a mobile application, the ability to digitally transmit

and reproduce small shapes could enable a remotely located doctor to tactu-

ally palpate an area on a patient which is sensed by a high resolution tactile

sensor such as the one described in [37]. An example might be detailed ex-

Chapter 8. Conclusion and Future Work 193

amination of the results of a tine test, which produces distinctive patterns of

swelling depending on antibody status, which are often much more difficult

to distinguish visually than tactually.

8.3.2 General Haptic Icon Applications

In the following group of applications, the TD is used as a fixed output

transducer, with minimal direct coupling between user input and tactile

output. This type of interaction was tested and verified in the MDS and

speed study experiments, and does not assume untested concepts such as

spatial acquisition by tactile flow rendering. Therefore, it is expected to

have a high probability of successful deployment. However, factors such as

environmental distraction and matching between the information content of

the output and the TD’s capabilities must still be considered.

Instant Messaging / Notification

As described in Section 3.3.4, tactile notification of presence status changes

could enrich the experience of using instant messaging or other social appli-

cations. It is expected that the effects of haptic enhancement would be most

pronounced under conditions of workload [12] or environmental distraction.

8.3.3 Spatial Signalling

This group of applications makes use of the TD’s capacity to display a di-

rectional signal. As the MDS analysis demonstrated, users can distinguish

at least two directions, three speeds, and two amplitudes in a optimal con-

trolled laboratory setting. The semantic usefulness of those parameters in a

real-world context of multiple distractions and variable tactile engagement

Chapter 8. Conclusion and Future Work 194

still needs to be determined.

Navigation

As described in Section 3.3.3, a directional signal may be utilized for nav-

igation feedback. Based on the results of the browser user study, it is not

clear that the directional signalling will produce an intuitive directional re-

sponse in the user. Rather, it is perhaps more likely that the user would

come to associate a specific haptic icon (in this case a directional signal)

with a semantic meaning, and produce responses appropriately. However,

this hypothesis requires further testing.

8.3.4 Browser Improvements

While the concept of tactile flow rendering to improve spatial navigation was

not validated in the present study, there is room for numerous improvements

in the browser prototype. These include:

• General software optimization to improve I/O performance, perhaps

moving to a real-time operating system and/or embedded controller

for the tactile loop.

• Dynamic haptic icon rendering based on the pixel height of page ele-

ments.

• An algorithm to properly handle horizontally laid out elements that

overlap in the vertical domain. This would require a more complex

2D (visual page map) to 1D (haptic page map) transformation engine

than is currently implemented.

Chapter 8. Conclusion and Future Work 195

• Maximum usable scrolling speed can perhaps be further increased by

adding a “high speed mode”4: when the user is scrolling at high speed,

the normal haptic icons can be dynamically substituted with alter-

nate representations optimized for maximum amplitude, and perhaps

“stretched” so that they remain under the finger longer, or by display-

ing only the most semantically important elements. This favours speed

over “vocabulary”. The range of distinguishable haptic icons would be

reduced while the system is in high speed mode, since the amplitude

parameter and some waveforms would no longer be available. Such a

modification, therefore, must be considered carefully with respect to

the desired haptic tagging scheme.

8.4 Future Work: Hardware Improvements

Of course, numerous opportunities exist for further improvement in the pro-

totype hardware specification. Many of the challenges associated with build-

ing working applications using the prototype are related to the slider, which

despite being auxiliary to the tactile output device has a major effect on the

user experience. Increasing the slider travel (perhaps by reconsidering the

mounting location), and finding appropriately stiff springs for the hardware

return-to-centre feature could improve the scrolling model.

The first 1-D piezo tactile display, the Virtual Braille Display, had a slider

travel that was an order of magnitude longer than the present miniature tac-

tile display. This enabled a simple position-control mode, but importantly

also allowed the user to use proprioception to sense the slider position with-

out having to mentally integrate velocity and time. Neither of these usability
4This idea was contributed by thesis reader Dr. Steve Wolfman.

Chapter 8. Conclusion and Future Work 196

advantages are present in the current handheld version.

Finally, presently the push to select, or “click”, feature of the device

is implemented as a switch. By replacing the switch with an analog force

sensor such as a force sensitive resistor (FSR), and perhaps reconsidering the

mounting appropriately to deliver the force linearly to the sensor, additional

interaction models may be considered that modulate the stimulus amplitude

based on how strongly the user is pressing down on the TD, enabling richer

tactile exploration.

8.5 Conclusion

In this thesis we have described one full iteration of an interaction design and

hands-on inquiry process (Figure 1.2). We began by identifying a problem

with broad relevance: the usability limitations of contemporary mobile de-

vices. Under the working hypothesis that haptics might be a good candidate

for addressing this problem, we conducted conceptual design work informed

by an inquiry into existing usage patterns and user needs. User require-

ments and system requirements emerged concurrently, eventually allowing

us to proceed with the development of a high-fidelity, “deep” hardware pro-

totype using a number of novel technologies, in partnership with an expert

collaborator. Once some of the device’s expressive capabilities were known,

we proceeded with the development of a high-fidelity browser application

prototype. Finally, it was then possible to use more conventional usability

techniques to assess the performance characteristics of the browser.

Through the exercise of designing, building, and testing the mobile hap-

tics concept, we learned that user-centred interaction design for haptic inter-

faces requires the use of slightly different methodologies than conventional

Chapter 8. Conclusion and Future Work 197

user-centred interaction design for primarily visual interfaces. First, be-

cause richly expressive haptics — especially in the mobile domain — is still

in its infancy, the hardware used for rendering computer signals into hu-

man sensory percepts is far more varied and weakly standardized than for

the visual domain. This implies that it is not possible to do “pure” user-

centred interaction design that is entirely system (and hardware) agnostic.

Instead, application and hardware design must go hand-in-hand; however,

in our approach we have striven to follow the spirit of good user-centred

design techniques by beginning the inquiry into user needs and application

scenarios as early as possible, using the minimum set of assumptions about

the specific hardware implementation. As design work proceeded, both the

target hardware profile and the application designs evolved synergistically,

informed by increasing knowledge about user needs and candidate hardware

designs.

Another special characteristic of designing for mobile haptics is the util-

ity of formal perceptual characterization based on user studies. While the

sensory gamut of a visual display might be readily characterizable using a

set of standardized measures and a simple visual inspection, haptic signals

are often far more subtle, complex, and difficult to characterize. Therefore,

when a new haptic output device is developed, it is helpful to understand

its sensory gamut — or measure of expressiveness — using the techniques

described in this thesis, to inform the design of applications that best take

advantage of the tactile display.

The identification and validation of practical interaction design tech-

niques for mobile haptics, concept designs for applications based on a min-

imally assumptive hardware profile, high-fidelity hardware prototype, high-

fidelity browser application prototype, and user study findings that shed

Chapter 8. Conclusion and Future Work 198

light on the characteristics of a miniature lateral skin-stretch haptic system

represent major contributions of this work. For future work, it is reason-

able to expect that another iteration of the same process, informed by the

findings from each step of the previous iteration, will produce further im-

provements in hardware and application usability. Such predictability en-

ables researchers and engineers to engage in mobile haptics development in a

planned fashion, and it is hoped that this method will increase the accessibil-

ity, usefulness, and usability, putting this exceedingly promising technology

in the hands of users.

199

Bibliography

[1] The adaptive communication environment (ace).

http://www.cs.wustl.edu/ schmidt/ACE.html.

[2] Gif89a specification. http://www.w3.org/Graphics/GIF/spec-

gif89a.txt.

[3] The gimp toolkit (gtk) library. http://www.gtk.org/.

[4] Imagemagick library home page. http://www.imagemagick.org/.

[5] Microsoft intellimouse optical specification.

http://www.microsoft.com/hardware.

[6] Corin R. Anderson, Pedro Domingos, and Daniel S. Weld. Personalizing

web sites for mobile users. Proceedings of the 10th Conference on the

World Wide Web (WWW10), 2001.

[7] T.G. Anderson. Human-computer interface including haptically con-

trolled interactions. United States Patent 6,954,899, October 11 2005.

[8] R. Bown. Multi-functional vibro-acoustic device. United States Patent

6,911,901, June 28 2005.

[9] A.C. Braun, L.B. Rosenberg, D.F. Moore, K.M. Martin, and A.S. Gold-

enberg. Directional tactile feedback for haptic feedback interface de-

vices. United States Patent 6,864,877, March 8 2005.

Bibliography 200

[10] Stephen Brewster and Lorna M. Brown. Tactons: structured tactile

messages for non-visual information display. In CRPIT ’04: Proceed-

ings of the fifth conference on Australasian user interface, pages 15–23,

Darlinghurst, Australia, Australia, 2004. Australian Computer Society,

Inc.

[11] L. M. Brown, S. A. Brewster, and H. C. Purchase. A first investigation

into the effectiveness of tactons. pages 167–176, 2005.

[12] A. Chan, K. MacLean, and J. McGrenere. Learning and identifying

haptic icons under workload. pages 432–439, 2005.

[13] Angela Chang, Sile O’Modhrain, Rob Jacob, Eric Gunther, and Hiroshi

Ishii. Comtouch: design of a vibrotactile communication device. In DIS

’02: Proceedings of the conference on Designing interactive systems,

pages 312–320, New York, NY, USA, 2002. ACM Press.

[14] Angela Chang and Conor O’Sullivan. Audio-haptic feedback in mobile

phones. In CHI ’05: CHI ’05 extended abstracts on Human factors in

computing systems, pages 1264–1267, New York, NY, USA, 2005. ACM

Press.

[15] R. Cholewiak and C. Sherrick. A computer-controlled matrix system

for presentation to skin of complex spatiotemporal pattern. Behavior

Research Methods and Instrumentation, 13(5):667–673, 1981.

[16] Immersion Corporation. Vibetonz system. Product Literature, March

2005.

[17] Jack Tigh Dennerlein, David B. Martin, and Christopher Hasser. Force-

feedback improves performance for steering and combined steering-

Bibliography 201

targeting tasks. In CHI ’00: Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 423–429, New York,

NY, USA, 2000. ACM Press.

[18] M. Enriquez and K. E. MacLean. Common onset masking of vibrotactile

stimuli - poster. In Proc. World Haptics. IEEE, 2005.

[19] F. Geldard. Some neglected possibilities of communication. Science,

131(3413):1583–1588, 1960.

[20] F. Gemperle, N. Ota, and D. Siewiorek. Design of a wearable tactile

display. pages 5–12, 2001.

[21] Masataka Goto. Smartmusickiosk: Music listening station with chorus-

search function. Proceedings of the 16th Annual ACM Symposium on

User Interface Software and Technology (UIST 2003), pages 31–40,

2003.

[22] J.D. Gould. How to design usable systems. In Readings in Human-

Computer Interaction: Toward the Year 2000, pages 93–121. 1995.

[23] V. Hayward and M. Cruz-Hernandez. Tactile display device using dis-

tributed lateral skin stretch. In Proc. of the Haptic Interfaces for Vir-

tual Environment and Teleoperator Systems Symposium (IMECE2000),

volume DSC-69-2, pages 1309–1314. ASME, 2000.

[24] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces

between people, bits and atoms. In ACM, editor, Proc. of CHI’97,

pages 234–241, 1997.

Bibliography 202

[25] R.S. Johansson and R.H. LaMotte. Tactile detection thresholds for a

single asperity on an otherwise smooth surface. Somatosensory Re-

search, 1:21–31, 1983.

[26] Alan Kay. Personal dynamic media. IEEE Computer, 10(3):31–41,

1977.

[27] R. L. Klatzky and S. J. Lederman. How well can we encode spatial

layout from sparse kinesthetic contact? In Proceedings of the 11th

Symposium on Haptic interfaces For Virtual Environment and Teleop-

erator Systems (Haptics’03), page 179, Washington, DC, March 2003.

IEEE Computer Society.

[28] Vincent Lévesque and Vincent Hayward. Experimental evidence of lat-

eral skin strain during tactile exploration. Proc. Eurohaptics 2003,

pages 261–275, 2003.

[29] Vincent Lévesque and Jérôme Pasquero. Stress library.

http://www.cim.mcgill.ca/ haptic/.

[30] Vincent Lévesque, Jérôme Pasquero, Vincent Hayward, and Maryse

Legault. Display of virtual braille dots by lateral skin deformation:

feasibility study. ACM Trans. Appl. Percept., 2(2):132–149, 2005.

[31] Robert W. Lindeman, John L. Sibert, Erick Mendez-Mendez, Sachin

Patil, and Daniel Phifer. Effectiveness of directional vibrotactile cuing

on a building-clearing task. In CHI ’05: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 271–280,

New York, NY, USA, 2005. ACM Press.

Bibliography 203

[32] Jukka Linjama and Topi Kaaresoja. Novel, minimalist haptic gesture

interaction for mobile devices. In NordiCHI ’04: Proceedings of the

third Nordic conference on Human-computer interaction, pages 457–

458, New York, NY, USA, 2004. ACM Press.

[33] Shannon Little. Theory, software, and psychophysical studies for the

tactile handheld miniature bimodal device. Technical Report TR-2005-

21, University of British Columbia, Department of Computer Science,

2005.

[34] Joseph Luk, Jérôme Pasquero, Shannon Little, Karon E. MacLean,

Vincent Lévesque, and Vincent Hayward. A role for haptics in mobile

interaction: Initial design using a handheld tactile display prototype.

In CHI ’06: Proceedings of the SIGCHI conference on Human factors

in computing systems, New York, NY, USA, 2006. ACM Press.

[35] K. E. MacLean, M. J. Shaver, and D. K. Pai. Handheld haptics: a usb

media controller with force sensing. pages 311–318, 2002.

[36] K.E. MacLean and M. Enriquez. Perceptual design of haptic icons. In

Proc. EuroHaptics 2003. IEEE, 2003.

[37] Vivek Maheshwari and Ravi F. Saraf. High-resolution thin-film device

to sense texture by touch. Science, 312(5779):1501–1504, June 9 2006.

[38] Michael McCloskey. Intuitive physics. Scientific American, 248:122–

130, April 1983.

[39] B.A. Nardi, S. Whittaker, and E. Bradner. Interaction and outeraction:

instant messaging in action. Proceedings of the 2000 ACM Conference

on Computer Supported Cooperative Work, pages 79–88, 2000.

Bibliography 204

[40] Antti Oulasvirta, Sakari Tamminen, Virpi Roto, and Jaana Kuorelahti.

Interaction in 4-second bursts: the fragmented nature of attentional

resources in mobile hci. In CHI ’05: Proceedings of the SIGCHI con-

ference on Human factors in computing systems, pages 919–928, New

York, NY, USA, 2005. ACM Press.

[41] J. Pasquero and V. Hayward. stress: A practical tactile display system

with one millimeter spatial resolution and 700 Hz refresh rate. In Proc.

Eurohaptics 2003, pages 94–110, 2003.

[42] J. Pasquero, J. Luk, S. Little, and K.E MacLean. Perceptual analysis

of haptic icons: an investigation into the validity of cluster sorted mds.

In Proc. Of Symp. On Haptic Interfaces for Virtual Environment and

Teleoperator Systems (IEEE-VR). IEEE, 2006.

[43] Jérôme Pasquero, Joseph Luk, Vincent Lévesque, Qi Wang, Vincent

Hayward, and Karon MacLean. Distributed tactile display for rich

haptic interaction with a handheld infomation display. To appear in

IEEE Multimedia, 2006.

[44] C.A. Perez, A.J. Santibañez, C.A. Holzmann, P.A. Estévez, and C.M.

Held. Power requirements for vibrotactile piezo-electric and electrome-

chanical transducers. Medical and Biological Engineering and Comput-

ing, 41:718–726, November 2003.

[45] Ivan Poupyrev and Shigeaki Maruyama. Tactile interfaces for small

touch screens. In UIST ’03: Proceedings of the 16th annual ACM sym-

posium on User interface software and technology, pages 217–220, New

York, NY, USA, 2003. ACM Press.

Bibliography 205

[46] Ivan Poupyrev, Shigeaki Maruyama, and Jun Rekimoto. Ambient

touch: designing tactile interfaces for handheld devices. In UIST ’02:

Proceedings of the 15th annual ACM symposium on User interface soft-

ware and technology, pages 51–60, New York, NY, USA, 2002. ACM

Press.

[47] Virpi Roto and Antti Oulasvirta. Need for non-visual feedback with

long response times in mobile hci. In WWW ’05: Special interest tracks

and posters of the 14th international conference on World Wide Web,

pages 775–781, New York, NY, USA, 2005. ACM Press.

[48] K. B. Shimoga. Finger force and touch feedback issues in dexterous

telemanipulation. pages 159–178, 1992.

[49] David L. Strayer, Frank A. Drews, and Dennis J. Crouch. A comparison

of the cell phone driver and the drunk driver. Human Factors: The

Journal of the Human Factors and Ergonomics Society, 48(2):381–391,

Summer 2006.

[50] Hong Z. Tan, Rob Gray, J. Jay Young, and Ryan Traylor. A haptic

back display for attentional and directional cueing. Haptics-e: The

Electronic Journal of Haptics Research, 3(1):20, June 11 2003.

[51] C.R. Wagner, S.J. Lederman, and R.D. Howe. Design and performance

of a tactile display using rc servomotors. Haptics-e Electronic Journal

of Haptics Research (www.haptics-e.org), 3(4), September 1999.

[52] L. Ward. Multidimensional scaling of the molar physical environment.

Multivariate Behavioral Research, 12:23–42, 1977.

Bibliography 206

[53] Scott Weiss. An alternative business model for addressing usability:

Subscription research for the telecom industry. ACM interactions, pages

62–63, July-August 2005.

207

Appendix A

Browser User Evaluation

Documents

The following documents related to the browser user evaluation are included

in this Appendix:

1. Ethics Approval Form

2. Participant Demographic Data Collection Form and Qualitative As-

sessment Battery

3. Verbal Protocol (Experiment Instructions)

4. Post-Study Interview Data Collection Form

5. Task Inventory

6. Examples of Test Web Pages

admin
Text Box
208

Physical and multimodal user interfaces – usability and psychophysics

Study Questionnaire Form UBC Behavioural Research Ethics Approval #B01-0470

Instructions

Please respond to all of the items listed below. If you have any questions, please ask the facilitator.

Part 1: Background

1. Age: ________ years 2. Sex: female or male

2. First language(s): ___________________________________

Part 2: Survey

1. a) Did you play a musical instrument as a child? yes or no (please circle one)

 b) If ‘yes’, for how many years did you play? ________ years

 c) If ‘yes’, which instrument(s) did you play? ___

2. Do you regularly use any of the following: (check all that apply)

❏ Mobile phone

❏ PDA (personal digital assistant), including BlackBerry

❏ Game controller with vibration or force feedback (PlayStation Dual Shock, etc.)

❏ Mouse with a scroll wheel

3. Please respond to the following statements by placing an X in the box according to the following scale:

Strongly Agree Agree Neutral Disagree Strongly Disagree

1. I am a multitasker.

2. Mobile phones are useful for more than just talking.

3. Sometimes it’s necessary to use a mobile phone while driving.

4. I’m good at working with my hands.

5. I prefer to work on one thing at a time.

6. The vibration function on a mobile phone is annoying.

7. When I am shopping, I often pick up objects to touch them even though I know I won’t buy them.

Thank you! Please inform the facilitator when you are done.

admin
Text Box
209

Physical and multimodal user interfaces – usability and psychophysics

Study Questionnaire UBC Behavioural Research Ethics Approval #B01-0470

Instructions

Please respond to all of the items listed below. If you have any questions, please ask the facilitator.

Part 3 – Post-Study Survey

4. Please respond to the following statements by placing an X in the box according to the following scale:

Strongly Agree Agree Neutral Disagree Strongly Disagree

8. I was able to keep my eyes on the screen of the handheld device during the tasks.

9. The task of finding information on the page was challenging.

10. The task of pushing the pedals in response to the instructions was challenging.

11. The tactile feedback was helpful in locating items on the page.

12. I would pay 5% more for a mobile phone that had this kind of tactile display.

13. The tactile feedback I experienced today was pleasant.

14. Overall, I found the device easy to use.

5. The facilitator will now ask you some brief questions.

6. Additional comments:

 __

 __

 __

Thank you for participating in this study!

admin
Text Box
210

Experiment instructions

Thank you for participating in this experiment today. Please review these instructions and
if you have any questions, ask the facilitator. If you feel uncomfortable, you may quit the
experiment at any time without penalty.

Holding the device
Hold the device in your left hand with your thumb resting on the side-mounted tactile
display (TD). You can slide the TD up and down, and you will feel some spring
resistance. Do not rub, pick, or otherwise abrade the surface of the TD. For best results,
try to keep the TD centred under your thumb as you operate the device.

Tasks
First, you will have a chance to “practice” to get familiar with the controls and tasks.
Then you will do a series of tasks that involve finding some information on a web page.
Every sixth task, you may be asked to change devices – for example, using the mouse
instead of the TD. If you are using the TD, you might feel tactile feedback, or you might
not. There will be a one-minute break after each block of six tasks.

In addition to browsing web pages, you may be asked to do another task simultaneously.
Every 7 seconds, an instruction will appear on the computer screen. You must press the
pedals according to the instructions within 7 seconds, before the next instruction appears.

Operating the browser
Depending on the task, you can move the cursor using either the TD or the mouse scroll
wheel. Highlight the link you wish to select, and select it using the ENTER key.

Timing
Timing information is being collected, so it is important that you do all the tasks
as fast as you can. The procedure is as follows:

1. The facilitator will explain the next task.
2. When you are ready to begin the task, press the ENTER key. Timing starts

from this point.
3. When you find the information requested, press the SPACE bar as soon as

possible. This stops the timer.
4. Inform the facilitator of the answer.

Again, it is important that you press the SPACE bar as soon as you see the answer. Do
this before you tell the answer to the facilitator.

If you make a mistake
On the bottom of each web page, there is a link labeled “Back” which will take you to the
previous page. If you make a mistake, please continue trying to complete the task as
quickly as possible. When you are finished, please inform the facilitator that a mistake
was made during the task.

admin
Text Box
211

Ref. #: cs1i_interview_2004_07_05_v1_0.doc

Physical and multimodal user interfaces – usability and psychophysics

Stock Inquiry Questions

About this document
The experimenter will converse with the participant using the following ‘stock’ questions to guide
the inquiry.

1. During the experiment, you were asked to find information using either the mouse, or

the handheld device with or without tactile feedback. Did you feel that your
performance was better in any of the three conditions? If so, why?

2. Aside from the task of pushing the pedals and the general experimental setup, do

you have any suggestions for improvement, for example in the way the handheld
device is used, or the way tactile feedback is given?

admin
Text Box
212

Appendix A. Browser User Evaluation Documents 213

A.1 Task Inventory

A1 What is the weather in London today?

A2 What will the weather be like in London tomorrow?

A3 What will the weather be like in London the day after tomorrow?

A4 What is the weather in Paris today?

A5 What will the weather be like in Paris tomorrow?

A6 What will the weather be like in Paris the day after tomorrow?

A7 What is the weather in Tokyo today?

A8 What will the weather be like in Tokyo tomorrow?

A9 What will the weather be like in Tokyo the day after tomorrow?

A10 What is the weather in Hong Kong today?

A11 What will the weather be like in Hong Kong tomorrow?

A12 What will the weather be like in Hong Kong the day after tomorrow?

A13 What is the weather in San Francisco today?

A14 What will the weather be like in San Francisco tomorrow?

A15 What will the weather be like in San Francisco the day after tomorrow?

A16 What is the weather in Toronto today?

A17 What will the weather be like in Toronto tomorrow?

A18 What will the weather be like in Toronto the day after tomorrow?

Appendix A. Browser User Evaluation Documents 214

B1 If you take the 99 B-line from UBC at 1pm, when will you arrive at

Broadway station?

B2 If you take the 99 B-line from UBC at 1pm, when will you arrive at

Granville?

B3 If you take the 99 B-line from UBC at 1pm, when will you arrive at

Main?

B4 If you take the 99 B-line from UBC at 9pm, when will you arrive at

Broadway station?

B5 If you take the 99 B-line from UBC at 9pm, when will you arrive at

Granville?

B6 If you take the 99 B-line from UBC at 9pm, when will you arrive at

Main?

B7 If you take the #44 bus from UBC at 10am, when will you arrive at

Macdonald?

B8 If you take the #44 bus from UBC at 10am, when will you arrive at

Davie?

B9 If you take the #44 bus from UBC at 10am, when will you arrive at

Waterfront station?

B10 If you take the #44 bus from UBC at 5pm, when will you arrive at

Macdonald?

B11 If you take the #44 bus from UBC at 5pm, when will you arrive at

Davie?

Appendix A. Browser User Evaluation Documents 215

B12 If you take the #44 bus from UBC at 5pm, when will you arrive at

Waterfront station?

C1 When is the movie “L’Enfant” playing at the Ridge Theatre?

C2 When is the movie “L’Enfant” playing at Fifth Avenue Cinemas?

C3 When is the movie “L’Enfant” playing at Empire Oakridge?

C4 What rating did the movie “L’Enfant” receive in its review in the Los

Angeles Times?

C5 What rating did the movie “L’Enfant” receive in its review in the New

York Post?

C6 When is the movie “The Promise” playing at the Ridge Theatre?

C7 When is the movie “The Promise” playing at the Pacific Cinematheque?

C8 When is the movie “The Promise” playing at the Silvercity Riverport?

C9 What rating did the movie “The Promise” receive in its review in the

Globe and Mail?

C10 What rating did the movie “The Promise” receive in its review in the

Washington Post?

����

����������

�������

�������

������

�������

������

����

��������������

���������������������������������
������������������������������������

Weather.

SPRING OUTLOOK

���������
�������
����������
������������
����� ���� ���
��� ���� ��� ��� ���� ���
������ ������ ��� ������ ���
������ ������� �� �������

�� �������

LOCAL WEATHER

��������� � �������

13°C 15°C 10°C
����� �������� �������

TRAVEL FORECAST

North America
Europe
Asia
Africa
South America
Antarctica

���� �� ����

����� ��������

����� �������

�������

������
�������
�������
������
��������
�����������
��������
������
�������������
�������
�������
���������
����������������
��������

���� �� �������

���� �� ����

Weather - Travel

Forecast

.

SAN FRANCISCO,

CALIFORNIA

12°C 12°C 11°C
����� �������� �������

�� �������� ��������

���� �� ����� �������

���� �� �������

���� �� ����

������� � ��

��������

�

��������� ����

���� ��

����� ��

����� ��

��������

���� ��

���� ��

���� ��

���� ��

���� ��

���� ��

���� ��

���� ��

���� ��

���������������

���� �� ����

����
�������������������
�������������������

����� �� ���

�������������������������������
���
���

���������������������������
���
���

����������������������

� ��������� ����������

�������������������������

� ����� ����������

������������������

� ��������� ���������� �����
���
���

� �������� ������� �����������

� �������� ������������

� ������������ ���������

���������������������������

���� �� ����

admin
Text Box
216

��������� �

��������

�

��������

�������������

������������������

�����

����� ������ �������

����������

���������������

�����������������

�� ���� ��������

���� �� ��������

��������������

���� �� ����

�������

����

��������

�������� �����

�����

��������

�

��������

��������

���

�������

������ � ���������

Dispossessed twenty-year old
Bruno (Jeremie Renier) lives
with his eighteen-year-old
girlfriend Sonia (Deborah
Francois) in Seraing, an
eastern Belgian steel town.
They live off Sonia’s
unemployment benefits along
with the panhandling and
petty thefts committed by
Bruno and his gang. Their
lives change forever when
Sonia gives birth to their
child, Jimmy.

��� �������

�������������

������������

�������

Foreign, Drama
Rating: Not yet rated
Jean-Pierre, Luc Dardenne
(dir.)
Jeremie Renier
Deborah Francois

��������������

���� �� ����

������� � �� ������

�� ������������

��� ��� ���� ��� �

������

���� ��

������

������������

������

���� ��

������

������� �� � ��� ��

������

������� ��

������

����� ��

������

������ ��

������

������ ��

������

���������� �������

������

�����������������������

���������������

���� �� ����

admin
Text Box
217

218

Appendix B

Browser User Study

Supplemental Data

This appendix contains supplemental data charts related to the statistical

analysis of the browser user study. The following are included:

• Variance information for the individual participant analysis, including

charts and standard deviation tables for both the measured and nor-

malized data. Normalized means are also provided. The means for

the measured data were reported in Table 7.3.

• Data tables for task difficulty analysis, including scores used for the

normalization of measured task times.

Appendix B. Browser User Study Supplemental Data 219

����������� � ������� ����� ������� �������

�� �� ����� ����� ����� �����

�� �� ����� ���� ����� �����

� �� ����� ���� ����� �����

�� �� ����� ���� ����� �����

�� �� ����� ����� ����� �����

� �� ����� ����� ����� �����

� �� ����� ����� ����� �����

� �� ����� ���� ����� �����

�� �� ����� ����� ����� �����

� �� ����� ����� ����� �����

�� �� ����� ����� ����� �����

� �� ����� ����� ����� �����

�� �� ����� ����� ����� �����

��� ��� ����� ����� ����� �����

���������������������������������

Appendix B. Browser User Study Supplemental Data 220

���

�

����

�����

�����

�����

�����

�����

�� �� � �� �� � � � �� � �� � �� ���

�����������

�������

�����

�������

�������

����������� � ������� ����� ������� �������

�� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

��� ��� ���� ���� ���� ����

���������������������������������

Appendix B. Browser User Study Supplemental Data 221

���

�

����

�����

�����

�����

�����

�����

�� �� � �� �� � � � �� � �� � �� ���

�����������

�������

�����

�������

�������

����������� � ������� ����� ������� �������

�� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

� �� ���� ���� ���� ����

�� �� ���� ���� ���� ����

��� ��� ���� ���� ���� ����

�������������������������������

Appendix B. Browser User Study Supplemental Data 222

�
�
�
�
�

�
�
�
�

�
����

�
�
�

�
�
�
�
�

�
���
�
�
�

�
���
�
�
�

��
�
��
�

�
����

�
�
�
��
�
�
�
�
�
�
�
��
�
�

�
���
�
�
���
�
�

�
���
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�

�
�
��
��
�

�
�
�
�
�

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
��
��
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
��
��
�

�
�
�
�
�

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�

�
�

�
�
��
�
�

�
��
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�
�

�
�
�

�
�
�

�
�
�

�
��
�
�

�
��
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�
�

�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
��

�
�
�

�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���

�
�
�

�
�

�
�

�
�

�
��
�
�

�
��
�
�

�
�
�
�
��
�����
�
���
��
�
�
��
�
��

223

Appendix C

gif2hapticon Code

// GIF2HAPTICON
// U t i l i t y f o r conver t ing (opt i ona l l y , animated) GIF f i l e s to hapt ic i con XML
// format f o r the THMB dev ice
// (c) 2006 , Joseph Luk

// Compile command : gcc −I$HOME/ImageMagick −6.1.9 −L$HOME/ImageMagick −6.1.9/
magick / . l i b s −lMagick g i f 2hap t i c on . c −o g i f 2hap t i c on

// ensure LD LIBRARY PATH=/Volumes/Usr/admin/ImageMagick −6.1.9/ l t d l / . l i b s : /
Volumes/Usr/admin/ImageMagick −6.1.9/ magick / . l i b s

#inc lude <unis td . h>
#inc lude <ctype . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <a s s e r t . h>
#inc lude <magick/ api . h>

bool outputTact i leMovie (FILE ∗ f i l e , Image ∗ image , unsigned char ∗ p ix e l s , i n t
numframes) ;

bool outputHapticIcon (FILE ∗ f i l e , Image ∗ image , unsigned char ∗ p ix e l s , i n t
numframes) ;

i n t main (i n t argc , char∗ argv [])
{

// ImageMagick s t u f f
Except ionIn fo except ion ;
Image ∗ image ;
ImageInfo ∗ image in fo ;
unsigned char ∗ p i x e l s ;

i n t x , y , i ;
FILE ∗ f i l e ;
unsigned long numframes ;
unsigned long f rames i z e ;

enum output modes { tac t i l emov i e , hapt i c i c on } output mode ;
i n t ch ;
char ∗ o u t f i l e ;
char d e f a u l t o u t f i l e [] = ”out . xml ” ;
output mode = hapt i c i c on ;

i f (argc > 1 && ! strcmp (argv [1] ,”−− help ”))
{

p r i n t f (” Usage : g i f 2hap t i c on <output mode> <animated GIF f i lename> <XML
output f i lename >\n”) ;

p r i n t f (”\ t<output mode> opt ions can be :\n”) ;
p r i n t f (”\ t\ t −t Output t a c t i l e movie\n”) ;
p r i n t f (”\ t\ t − i (l owercase l e t t e r i) Output hapt i c i con (DEFAULT)\n”) ;
p r i n t f (”\ t d e f a u l t s to <in . g i f > and <out . xml> i f no arguments are g iven .\n”) ;
p r i n t f (”\ tNote : a l l frames must be the same s i z e (no crazy opt imized GIFs) .\

n”) ;
p r i n t f (”\ t I f you have problems , go to ImageReady animation pa l e t t e−>Optimize

Animation . . . and d e s e l e c t everyth ing .\n”) ;
e x i t (1) ;

}

whi le ((ch = getopt (argc , argv , ” t i ”)) != −1)

Appendix C. gif2hapticon Code 224

switch (ch)
{

case ’ t ’ :
output mode = ta c t i l emov i e ;
break ;

case ’ i ’ :
output mode = hapt i c i c on ;
break ;

case ’ ? ’ :
i f (i s p r i n t (optopt))

f p r i n t f (s tder r , ”Unknown opt ion ‘−%c ’ . \ n” , optopt) ;
e l s e

f p r i n t f (s tder r ,
”Unknown opt ion charac t e r ‘\\x%x ’ . \ n” ,
optopt) ;

r e turn 1 ;
d e f au l t :
abort () ;

}
argc −= optind ;
argv += optind ;

// Load the image
I n i t i a l i z eMag i c k (∗ argv) ;
GetExcept ionInfo(&except ion) ;
image in fo=CloneImageInfo ((ImageInfo ∗)NULL) ;
i f (argc >= 1)

(void) CopyMagickString (image in fo−>f i l ename , argv [0] , MaxTextExtent) ;
e l s e

(void) CopyMagickString (image in fo−>f i l ename ,” in . g i f ” ,MaxTextExtent) ;

image=ReadImage (image in fo , &except ion) ;
i f (except ion . s e v e r i t y != UndefinedException)

CatchException (&except ion) ;
i f (image == (Image ∗) NULL)
{

f p r i n t f (s tder r , ”Couldn ’ t open the image f i l e . P lease ensure you have an
image named ’%s ’ in the cur rent d i r e c t o r y .\n” , image in fo−>f i l ename)

;
e x i t (1) ;

}

// Deal with the animated GIF
numframes = GetImageListLength (image) ;
f r ames i z e = (image−>rows) ∗(image−>columns)∗ s i z e o f (unsigned in t) ;

i f (! (p i x e l s = (unsigned char ∗) mal loc ((image−>rows) ∗(image−>columns)∗ s i z e o f (
unsigned in t))))

{
f p r i n t f (s tder r , ”Couldn ’ t a l l o c a t e image memory %u by %u .\n” , image−>

columns , image−>rows) ;
e x i t (1) ;

}

// Done load ing image .
p r i n t f (” Loaded image %s (%u x %u) p i x e l s by %u frames .\n” , image in fo−>

f i l ename , image−>columns , image−>rows , numframes) ;

// Open output f i l e
i f (argc == 2) o u t f i l e = argv [1] ;
e l s e o u t f i l e = d e f a u l t o u t f i l e ;
f i l e = fopen (o u t f i l e , ”w”) ;
i f (! f i l e)
{

f p r i n t f (s tder r , ”Couldn ’ t open output f i l e %s f o r wr i t i ng .\n” , o u t f i l e) ;
e x i t (1) ;

}

// Dump the XML
switch (output mode)
{

Appendix C. gif2hapticon Code 225

case t a c t i l emov i e :
p r i n t f (” Exporting to f i l e \”%s \” , t a c t i l e movie format . . . \ n” , o u t f i l e) ;
outputTact i leMovie (f i l e , image , p i x e l s , numframes) ;
p r i n t f (”Done .\n”) ;
break ;

case hapt i c i c on :
p r i n t f (” Exporting to f i l e \”%s \” , hapt ic i con format . . . \ n” , o u t f i l e) ;
outputHapticIcon (f i l e , image , p i x e l s , numframes) ;
p r i n t f (”Done .\n”) ;
break ;

d e f au l t :
abort () ;

}

f c l o s e (f i l e) ;
f r e e (p i x e l s) ;
DestroyImageInfo (image in fo) ;
DestroyExcept ionInfo (&except ion) ;
DestroyMagick () ;
r e turn 1 ;

}

bool outputTact i leMovie (FILE ∗ f i l e , Image ∗ image , unsigned char ∗ p ix e l s , i n t
numframes)

{
a s s e r t (f i l e) ;
a s s e r t (image) ;
a s s e r t (p i x e l s) ;

Image ∗workingimage ;
Except ionIn fo except ion ;
f l o a t s c a l e dp i x e l v a l u e ;

f p r i n t f (f i l e , ”<?xml ve r s i on =\”1.0\” encoding=\”UTF−8\”?>\n”) ;
f p r i n t f (f i l e , ”<!DOCTYPE Tact i leMovie SYSTEM \”Tacti leMovie −0.2. dtd\”>\n”) ;
f p r i n t f (f i l e , ”<Tact i leMovie Vers ion =\”0.2\” FrameSizeY=\”%u\” FrameSizeX=\”%u

\” NbFrames=\”%u\”>\n” ,
image−>rows , image−>columns , numframes) ;

f o r (i n t i =0; i<numframes ; i++)
{

f p r i n t f (f i l e , ” <Frame Index=\”%u\”>\n” , i) ;

workingimage=GetImageFromList (image , i) ; // get the i t h image

i f (! (ExportImagePixels (workingimage , 0 ,0 , image−>columns , image−>rows ,
” I ” , CharPixel , (void ∗) p i x e l s , &except ion)))

{
f p r i n t f (s tder r , ”Couldn ’ t acqu i r e image p i x e l s f o r frame %d .\n” , i) ;
e x i t (1) ;

}

f o r (i n t y=0; y<workingimage−>rows ; y++)
{

f p r i n t f (f i l e , ” <Row r=\”%u\”>”,y) ;

f o r (i n t x=0; x<workingimage−>columns ; x++)
{

s c a l e dp i x e l v a l u e = (∗ (p i x e l s + y∗workingimage−>columns + x)) / 255 . 0 ;
f p r i n t f (f i l e , ”%1.3 f ” , s c a l e dp i x e l v a l u e) ;
i f (x<(workingimage−>columns−1)) f p r i n t f (f i l e , ” ”) ;

}

f p r i n t f (f i l e , ”</Row>\n”) ;
}

f p r i n t f (f i l e , ” </Frame>\n”) ;
}

f p r i n t f (f i l e , ”</Tacti leMovie >\n”) ;
}

Appendix C. gif2hapticon Code 226

bool outputHapticIcon (FILE ∗ f i l e , Image ∗ image , unsigned char ∗ p ix e l s , i n t
numframes)

{
a s s e r t (f i l e) ;
a s s e r t (image) ;
a s s e r t (p i x e l s) ;

Except ionIn fo except ion ;
f l o a t s c a l e dp i x e l v a l u e ;
Image ∗workingimage ;

i f (image−>columns != 1)
{

f p r i n t f (s tder r , ”Warning : only the f i r s t column of p i x e l s w i l l be exported .\
n”) ;

}

f p r i n t f (f i l e , ”<?xml ve r s i on =\”1.0\” encoding=\”UTF−8\”?>\n”) ;
f p r i n t f (f i l e , ”<!DOCTYPE HapticIcon >\n\n”) ;
f p r i n t f (f i l e , ”<icon >\n”) ;

i f (numframes == 1)
{

// s t a t i c i con

i f (! (ExportImagePixels (image , 0 ,0 , image−>columns , image−>rows ,
” I ” , CharPixel , (void ∗) p i x e l s , &except ion)))

{
f p r i n t f (s tder r , ”Couldn ’ t acqu i r e image p i x e l s .\n”) ;
e x i t (1) ;

}

f p r i n t f (f i l e , ” <type>Spat ia l I con </type>\n”) ;
f p r i n t f (f i l e , ” <height>%d</height >\n” , image−>rows) ;

i n t x=0;
f o r (i n t y=0; y<image−>rows ; y++)
{

f p r i n t f (f i l e , ” <element>\n”) ;
f p r i n t f (f i l e , ” <index>%d</index>\n” , y) ;

// s c a l e p i x e l va lue to f l o a t between 0 and 1
s c a l e dp i x e l v a l u e = (∗ (p i x e l s + y∗ image−>columns + x)) / 255 . 0 ;
// s c a l e p i x e l va lue to 0 −> (−50V) , 1 −> (+50V)
s c a l e dp i x e l v a l u e = s c a l e dp i x e l v a l u e ∗ 100 − 5 0 . 0 ;

f p r i n t f (f i l e , ” <value >%.f </value >\n” , s c a l e dp i x e l v a l u e) ;
f p r i n t f (f i l e , ” </element>\n”) ;

}
}
e l s e
{

// animated icon
f p r i n t f (f i l e , ” <type>TemporalIcon</type>\n”) ;
f p r i n t f (f i l e , ” <height>%d</height >\n” , image−>rows) ;

f o r (i n t i =0; i<numframes ; i++)
{

f p r i n t f (f i l e , ” <Frame>\n”) ;
f p r i n t f (f i l e , ” <FrameIdx>%d</FrameIdx>\n” , i) ;

workingimage=GetImageFromList (image , i) ; // get the i t h image

i f (! (ExportImagePixels (workingimage , 0 ,0 , image−>columns , image−>rows ,
” I ” , CharPixel , (void ∗) p i x e l s , &except ion)))

{
f p r i n t f (s tder r , ”Couldn ’ t acqu i r e image p i x e l s f o r frame %d .\n” , i) ;

Appendix C. gif2hapticon Code 227

e x i t (1) ;
}

i n t x=0;
f o r (i n t y=0; y<image−>rows ; y++)
{

f p r i n t f (f i l e , ” <element>\n”) ;
f p r i n t f (f i l e , ” <index>%d</index>\n” , y) ;

// s c a l e p i x e l va lue to f l o a t between 0 and 1
s c a l e dp i x e l v a l u e = (∗ (p i x e l s + y∗ image−>columns + x)) / 255 . 0 ;
// s c a l e p i x e l va lue to 0 −> (−50V) , 1 −> (+50V)
s c a l e dp i x e l v a l u e = s c a l e dp i x e l v a l u e ∗ 100 − 5 0 . 0 ;

f p r i n t f (f i l e , ” <value >%.f </value >\n” , s c a l e dp i x e l v a l u e) ;
f p r i n t f (f i l e , ” </element>\n”) ;

}

f p r i n t f (f i l e , ” </Frame>\n”) ;
}

}

f p r i n t f (f i l e , ”</icon >\n”) ;

}

228

Appendix D

Browser Prototype Code

D.1 Tactile I/O Loop

The browser prototype application software layer for the tactile I/O loop

consists of several modules, which are listed below. Input and output func-

tions are handled by the STReSS Library [29] by Vincent Levesque.

• DataUpdateThread – The input/output loop thread.

• HapticPageMap – Functions related to the haptic page map and its

haptic icons.

• BrowserShared – Shared memory data structure for inter-thread com-

munication.

• BrowserXMLBits – Functions related to parsing the XML haptic icon

and page map files.

• main – the main executable.

D.1.1 DataUpdateThread.h

#i f n d e f DATAUPDATE THREAD H
#de f i n e DATAUPDATE THREAD H

#inc lude <iostream>
#inc lude <fstream>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <d i r en t . h>
#inc lude <math . h>
#inc lude <a s s e r t . h>
#inc lude <sys / time . h>

#inc lude ” s t r e s s d /FirmwareInfoXML . h”

Appendix D. Browser Prototype Code 229

#inc lude ” s t r e s s d /DeviceInfoXML . h”
#inc lude ” s t r e s s d /StreamDevice . h”
#inc lude ” s t r e s s d /PacketLogger . h”
#inc lude ” s t r e s s d / i n i t . h”

#inc lude ”BrowserShared . h”

/∗ TODO

Move f i l e I /O rou t i n e s in to yet another thread , running at lower p r i o r i t y . . .

t h i s thread should :
− Check i f the re i s a new page map
− I f so , c r e a t e a new in s tance o f the page map va r i ab l e and load i t in
− Handle putt ing the po s i t i o n back to the browser ?
∗/

c l a s s DataUpdateThread
{
pub l i c :

DataUpdateThread (BrowserShared∗ s ,
s t r e s s d : : StreamDevice∗ d) ;

v i r t u a l ˜DataUpdateThread () ;
s t a t i c void ∗ Star t (void ∗p) ;

protec ted :
void S t a r t () ;

p r i va t e :
BrowserShared ∗ shared ;

s t r e s s d : : StreamDevice∗ dev ;

Sl iderSmoother smoother ;

} ;

#end i f

D.1.2 DataUpdateThread.cpp

// DataUpdateThread . cpp
// Joseph Luk , July 2006 . Based on code by Vincent Levesque and Shannon L i t t l e .

#inc lude ”DataUpdateThread . h”
#inc lude ”BrowserXMLBits . h”

DataUpdateThread : : DataUpdateThread (BrowserShared∗ s ,
s t r e s s d : : StreamDevice∗ d)

{
shared = s ;
dev = d ;

}

DataUpdateThread : : ˜ DataUpdateThread ()
{
}

void ∗DataUpdateThread : : S tar t (void ∗p)
{

((DataUpdateThread ∗) p)−>S ta r t () ;
r e turn 0 ;

}

void DataUpdateThread : : S t a r t ()
{

Appendix D. Browser Prototype Code 230

f l o a t s l i d e r p o s ;
i n t map pos = 0 ;

f l o a t norm map pos ;
i n t las t map pos = 0 ;
i n t c l i c k c oun t ;

s t r e s s d : : VoltImg img (dev−>NbActuatorsX () , dev−>NbActuatorsY ()) ;
s t r e s s d : : S ta tu s In f o i n f o ;

// s l i d e r parameters
const f l o a t s l i d e r m in = 1700; //was 1615
const f l o a t s l ide r max = 2770; //was 2799

p r i n t f (” S ta r t i ng Data update thread . . . \ n”) ;

whi le (1) {

// read s l i d e r
dev−>ReadStatus (i n f o) ; // cu r r en t l y takes exac t l y 3 ms

// (f o r c a l i b r a t i o n)
// p r i n t f (”%d\n” , i n f o . s l i d e rDa ta) ;

i f (i n f o . s l i d e rDa ta < s l i d e r m in)
{

s l i d e r p o s = 0 . 0 ;
}
e l s e i f (i n f o . s l i d e rDa ta > s l ide r max)
{

s l i d e r p o s = 100 . 0 ;
}
e l s e
{

s l i d e r p o s = (i n f o . s l i d e rDa ta − s l i d e r m in) /
(s l ide r max − s l i d e r m in) ∗ 100 . 0 ;

}
s l i d e r p o s = 100.0 − s l i d e r p o s ;
s l i d e r p o s = smoother . SmoothSliderPos (s l i d e r p o s) ;

i f (shared−>GetPageMapReady ())
{

map pos = shared−>pagemap−>CurrentMapPos (s l i d e r p o s) ;

// Get c l i c k count
c l i c k c oun t = in f o . c l i ckCount ;

// Export data to shared memory
shared−>Se tC l i ck s (c l i c k c oun t) ;

// i f (map pos != last map pos)
// {

// Export data to shared memory
shared−>SetMapPos (map pos) ;

// wr i t e to dev i ce
// p r i n t f (”Compute image\n”) ;

shared−>pagemap−>ComputeImage(&img , map pos) ;
// p r i n t f (” Write Image\n”) ;

dev−>WriteImage(&img) ;
// p r i n t f (”Done .\n”) ;

las t map pos = map pos ; // cache l a s t value
// }

} // i f (shared−>GetPageMapReady ())

} // whi le (1)
}

Appendix D. Browser Prototype Code 231

D.1.3 HapticPageMap.h

#i f n d e f HAPTICPAGEMAP H
#de f i n e HAPTICPAGEMAP H

c l a s s HapticPageMap ; // de f ined below
c l a s s HapticIcon ; // de f ined below

#inc lude ” s t r e s s d /FirmwareInfoXML . h”
#inc lude ” s t r e s s d /DeviceInfoXML . h”
#inc lude ” s t r e s s d /StreamDevice . h”
#inc lude ” s t r e s s d /PacketLogger . h”
#inc lude ” s t r e s s d / i n i t . h”

#inc lude ”BrowserXMLBits . h”

// Support f unc t i on s f o r time s t u f f

// return the time (in seconds) s i n c e timeStamp , with microsecond p r e c i s i o n
double TimeSince (const s t r u c t t imeval ∗timeStamp , s t r u c t t imeval ∗

currentTimeStamp = NULL) ;

// r e tu rns the d i f f e r e n c e in the timestamps , in m i l l i s e c ond s (tv1−tv2)
double TimeDiff (const s t r u c t t imeval ∗tv1 , const s t r u c t t imeval ∗ tv2) ;

// stamp the time in to a t imeval s t r u c t
void TimeStamp (s t r u c t t imeval ∗timeStamp) ;

c l a s s HapticIconContent
{

pub l i c :

HapticIcon ∗ i conparent ;

char ∗ type ;
char ∗name ;

v i r t u a l bool RenderIcon (double ∗ bu f p t r) = 0 ;
// Write t h i s hapt i c i con to the bu f f e r at the zero po s i t i o n

v i r t u a l bool Al locateData (i n t s i z e) = 0 ;
v i r t u a l double GetData (i n t index) = 0 ;
v i r t u a l bool SetData (i n t index , double value) = 0 ;

} ;

c l a s s Spat ia l IconContent : pub l i c HapticIconContent
{

pub l i c :
Spat ia l IconContent (i n t he ight = 0) ;
v i r t u a l ˜ Spat ia l IconContent () ;

double ∗data ;

bool RenderIcon (double ∗ bu f p t r) ;

bool Al locateData (i n t s i z e) ;
double GetData (i n t index) ;
bool SetData (i n t index , double value) ;

} ;

c l a s s AnimatedIconContent : pub l i c HapticIconContent
{

pub l i c :
AnimatedIconContent (i n t he ight = 0 , i n t frames = 1) ;
v i r t u a l ˜ Spat ia l IconContent () ;

double ∗∗data ;

bool RenderIcon (double ∗ bu f p t r) ;

bool Al locateData (i n t s i z e) ;

Appendix D. Browser Prototype Code 232

double GetData (i n t index) ; // index = frame∗he ight
bool SetData (i n t index , double value) ;

i n t numFrames ;
i n t currentFrame ;
s t r u c t t imeval initTimeStamp ;
i n t fp s ;

} ;

c l a s s HapticIcon
{

pub l i c :
HapticIcon (const char ∗ f i l ename) ;
v i r t u a l ˜HapticIcon () ;

i n t at ; // Y po s i t i o n o f the icon
in t he ight ; // extent o f the icon in Y tax e l s

HapticIconContent ∗ content ;

HapticIcon ∗next ;

v i r t u a l bool RenderIconToMap (HapticPageMap ∗map ptr) ;
// Write t h i s hapt i c i con to the page map ”at ” i t s l o c a t i o n

} ;

c l a s s HapticPageMap {
pub l i c :
HapticPageMap (const char ∗ f i l ename) ;
v i r t u a l ˜HapticPageMap () ;

i n t CurrentMapPos (const f l o a t s l i d e r p o s) ;
// update with the s l i d e r po s i t i o n and return the cur rent po s i t i o n

f l o a t ComputeDetentPosFromVelocity () ;
// return the new detent po s i t i o n based on the cur rent v e l o c i t y .

bool ComputeImage (s t r e s s d : : VoltImg ∗outputImg , i n t map pos) ;

void RenderAl l Icons (void) ;
// pre−render a l l i c on s to the page map, mostly u s e f u l f o r t e s t i n g

purposes

HapticIcon ∗ i c on s ;

double∗ voltmap ; // in vo l t s , temporary whi le we only support s p a t i a l i c on s
i n t he ight ; // s i z e o f the map array (in t axe l un i t s)

p r i va t e :
// v e l o c i t y model s t u f f
bool simpleControlMode ; // c on f i gu r a t i on parameter ; s e t to TRUE i f you want

s imple po s i t i o n con t r o l

enum VControlStates { pControl , vControlWaiting , vControlActive ,
vContro lFin i shed } ;

VControlStates vContro lState ;
s t r u c t t imeval vControlStateTimeStamp ; // time entered cur rent

vContro lState
// except ion : always zero when in

pControl

i n t cu r r en tVe l o c i t y ; // UNITS : map un i t s per second ; up i s negat ive , down i s
p o s i t i v e

f l o a t lastDetentPos ;
i n t pOf f se t ;
s t r u c t t imeval lastTimeStamp ;

s t r u c t t imeval startTimeStamp ;

Appendix D. Browser Prototype Code 233

f l o a t lookahead [8] ;
#de f i n e LOOKAHEAD NOVALUE −1000

f l o a t lookback [8] ;

i n t CropPos (i n t inputPos) ; // he lpe r func t i on to crop the po s i t i o n to the
bounds o f the map

f l o a t CropPos (f l o a t inputPos) ;
} ;

c l a s s Sl iderSmoother {
// Used to reduce no i s e and j i t t e r from the s l i d e r .
// Caches the l a s t three va lues o f the s l i d e r and averages them .
// I f the new s l i d e r po s i t i o n i s c l o s e to the average , don ’ t update .
// Otherwise , r e turn the new po s i t i o n .

// cu r r en t l y only s e t up f o r f l o a t s l i d e r p o s i t i o n s
// probably should be templat i zed in the fu tu r e .

pub l i c :
S l iderSmoother () ;
v i r t u a l ˜ Sl iderSmoother () ;

f l o a t SmoothSliderPos (f l o a t rawpos) ;

p r i va t e :
i n t c a ch e s i z e ;
f l o a t th re sho ld ;
f l o a t ∗ s l i d e r c a c h e ;
i n t s t a r t i d x ;

} ;

#end i f

D.1.4 HapticPageMap.cpp

// Haptic Page Map support f unc t i on s
// July 2006 , Joseph Luk

#inc lude ”HapticPageMap . h”

// #de f i n e DEBUG

// #de f i n e CVTEST 70
// constant v e l o c i t y t e s t f l a g

// #de f i n e CLICKONVCONTROL
// c r ea t e ” c l i c k i n g ” t a c t i l e feedback f o r v e l o c i t y con t r o l

// #de f i n e SUBTAXELDOUBLE
// use b i l i n e a r s c a l i n g to reduce image s i z e by 1/2 (s lows down t a c t i l e f low ,

makes an e f f e c t i v e l y 16− t ax e l wide d i sp l ay)
#de f i n e SUBTAXELTRIPLE

// use b i l i n e a r s c a l i n g to reduce image s i z e by 1/3 (s lows down t a c t i l e f low ,
makes an e f f e c t i v e l y 24− t ax e l wide d i sp l ay)

// Time ar i thmet i c support f unc t i on s (C−s t y l e)

// return the time (in seconds) s i n c e timeStamp , with microsecond p r e c i s i o n
// a l s o puts the cur rent time in currentTimeStamp , i f provided
double TimeSince (const s t r u c t t imeval ∗timeStamp , s t r u c t t imeval ∗

currentTimeStamp)
{

Appendix D. Browser Prototype Code 234

double t imed i f f ;

s t r u c t t imeval temp tv ;
s t r u c t t imeval ∗ tv = currentTimeStamp ? currentTimeStamp : &temp tv ;

gett imeofday (tv , NULL) ;

// subt rac t the cur rent time from the cached time
double u s e c d i f f ;
t im ed i f f = tv−>t v s e c − timeStamp−>t v s e c ;
i f (0 .0 > (u s e c d i f f = (double) (tv−>tv usec − timeStamp−>tv usec) / 1000000.0

))
{

u s e c d i f f = 1 .0 + u s e c d i f f ;
t imed i f f −−;

}
t imed i f f += u s e c d i f f ;

r e turn (t imed i f f) ;
}

// r e tu rns m i l l i s e c ond s tv1−tv2
double TimeDiff (const s t r u c t t imeval ∗tv1 , const s t r u c t t imeval ∗ tv2)
{

double u s e c d i f f ;
double t imed i f f ;

t im ed i f f = tv1−>t v s e c − tv2−>t v s e c ;
i f (0 .0 > (u s e c d i f f = (double) (tv1−>tv usec − tv2−>tv usec) / 1000000.0))
{

u s e c d i f f = 1 .0 + u s e c d i f f ;
t imed i f f −−;

}
t imed i f f += u s e c d i f f ;

r e turn (t imed i f f) ;
}

// stamp the time in to a t imeval s t r u c t
void TimeStamp (s t r u c t t imeval ∗timeStamp)
{

s t r u c t t imeval tv ;
gett imeofday (&tv , NULL) ;
timeStamp−>t v s e c = tv . t v s e c ;
timeStamp−>tv usec = tv . tv usec ;

}

HapticIcon : : HapticIcon (const char ∗ f i l ename = NULL)
{

he ight = 0 ;
at = 0 ;

i f (f i l ename)
{

RawIconParser ∗ par se r = new RawIconParser (f i l ename , t h i s) ;
d e l e t e par se r ;

i f (content)
{

content−>name = new char [s t r l e n (f i l ename)] ;
s t r cpy (content−>name , f i l ename) ;

}
}
e l s e content = NULL;

}

HapticIcon : : ˜ HapticIcon ()
{

i f (content) d e l e t e content ;
}

bool HapticIcon : : RenderIconToMap (HapticPageMap ∗map ptr)
{
// i f (! content) re turn f a l s e ; // no icon !

Appendix D. Browser Prototype Code 235

a s s e r t (content) ;
a s s e r t (map ptr) ;

i f (at > map ptr−>he ight) re turn f a l s e ;

i n t bottom = at + he ight ;

i f (bottom > (map ptr−>he ight))
{

#i f d e f DEBUG
// cout << ”Cropping hapt i c i con o f type ” << content−>type << ” at ”

<< at << ” he ight ” << he ight << endl ;
#end i f
// needs cropping
bool r e t v a l ;
i n t d i f f = map ptr−>he ight − at ;
// render in to a temp bu f f e r f i r s t and then copy to the page map
double ∗buf = new double [th i s−>he ight] ;
i f (r e t v a l = th i s−>content−>RenderIcon (buf))
{

f o r (i n t i =0; i<d i f f ; i++)
{

// as s e r t , remove l a t e r i f nece s sa ry
a s s e r t (at+i < map ptr−>he ight) ;

map ptr−>voltmap [at+i] = buf [i] ;
}

}
de l e t e [] buf ;
r e turn r e t v a l ;

}
e l s e

re turn (th i s−>content−>RenderIcon ((map ptr−>voltmap) + at)) ;
}

Spat ia l IconContent : : Spat ia l IconContent (i n t he ight)
{

type = new char [1 2] ;
s t r cpy (type , ” Spa t i a l I c on ”) ;

i f (he ight) data = new double [he ight] ;
e l s e data = NULL;

name = NULL;
i conparent = NULL;

}

Spat ia l IconContent : : ˜ Spat ia l IconContent ()
{

#i f d e f DEBUG
p r i n t f (” Spat ia l IconContent Destructor \n”) ;

#end i f
d e l e t e [] data ;
d e l e t e [] type ;
d e l e t e [] name ;

}

bool Spat ia l IconContent : : RenderIcon (double ∗ bu f p t r)
{

a s s e r t (i conparent) ;
f o r (i n t i =0; i< i conparent−>he ight ; i++)

bu f p t r [i] = data [i] ;
r e turn true ;

}

bool Spat ia l IconContent : : Al locateData (i n t s i z e)
{

data = new double [s i z e] ;
r e turn true ;

}

double Spat ia l IconContent : : GetData (i n t index)
{

re turn data [index] ;
}

Appendix D. Browser Prototype Code 236

bool Spat ia l IconContent : : SetData (i n t index , double value)
{

a s s e r t (data) ;
data [index] = value ;
re turn true ;

}

AnimatedIconContent : : AnimatedIconContent (i n t height , i n t frames)
{

type = new char [1 2] ;
s t r cpy (type , ”AnimatedIcon ”) ;

numFrames = frames ;

i f (he ight) data = new double [he ight ∗ frames] ;
e l s e data = NULL;

name = NULL;
i conparent = NULL;
currentFrame = 0 ;
fp s = 30 ; // de f au l t value
gett imeofday (&initTimeStame) ;

}

AnimatedIconContent : : ˜ AnimatedIconContent ()
{

#i f d e f DEBUG
p r i n t f (” AnimatedIconContent Destructor \n”) ;

#end i f
d e l e t e [] data ;
d e l e t e [] type ;
d e l e t e [] name ;

}

bool AnimatedIconContent : : RenderIcon (double ∗ bu f p t r)
{

a s s e r t (i conparent) ;

currentFrame = (fp s / TimeSince (initTimeStamp)) % numFrames ;

f o r (i n t i =0; i< i conparent−>he ight ; i++)
bu f p t r [i] = data [i +(he ight ∗currentFrame)] ;

r e turn true ;
}

bool AnimatedIconContent : : Al locateData (i n t s i z e)
{

data = new double [s i z e] ;
r e turn true ;

}

double AnimatedIconContent : : GetData (i n t index)
{

re turn data [index] ;
}

bool AnimatedIconContent : : SetData (i n t index , double value)
{

a s s e r t (data) ;
data [index] = value ;
re turn true ;

}

HapticPageMap : : HapticPageMap (const char ∗ f i l ename = NULL)
{

i c on s = NULL;

i f (f i l ename)
{

PageMapParser ∗ par se r = new PageMapParser (f i l ename , t h i s) ;
d e l e t e par se r ;

}

Appendix D. Browser Prototype Code 237

e l s e he ight =100; // de f au l t vo l t map he ight

// i n i t the array with base value
voltmap = new double [he ight] ;
f o r (i n t i =0; i<he ight ; i++)

voltmap [i] = −50.0;

lastDetentPos = 0 ;
lastTimeStamp . t v s e c = 0 ;
lastTimeStamp . tv usec = 0 ;
cu r r en tVe l o c i t y = 0 ;
vContro lState = pControl ;
vControlStateTimeStamp . t v s e c = 0 ;
vControlStateTimeStamp . tv usec = 0 ;

f o r (i n t i =0; i <8; i++) lookahead [i] = LOOKAHEAD NOVALUE;
f o r (i n t i =0; i <8; i++) lookback [i] = 0 ;

simpleControlMode = f a l s e ;

TimeStamp (&startTimeStamp) ;

}

HapticPageMap : : ˜ HapticPageMap ()
{

de l e t e [] voltmap ;

HapticIcon ∗ i con = icons ;
HapticIcon ∗next icon ;
whi le (i con)
{

next icon = icon−>next ;
d e l e t e i con ;
i con = next icon ;

}
}

i n t HapticPageMap : : CurrentMapPos (f l o a t s l i d e r p o s)
{

// return the cur so r po s i t i o n in the hapt i c map
// i f us ing v e l o c i t y mode , may depend on prev ious va lues !

// s l i d e r p o s should be expressed as f l o a t from 0 .0 to 100 .0
/∗

[−−|−−]−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|

0 .0 = s l i d e r p o s

|−−−−−−−−−−−−−−−−−−−−−−−−−−−−[−−|−−]
|

1 .0

|<−−−−−−−−−−− map s i z e −−−−−−−−−−−>|
|<−−−−−−−−− range −−−−−−−−−−>|

|<−−−>|
d i sp l ay window

∗/

i f (f a l s e) // automated movement program f o r demo movie
{

i f (TimeSince(&startTimeStamp) < 0 . 1) lastDetentPos = 0 ;
e l s e i f (TimeSince(&startTimeStamp) < 3 . 0) cu r r en tVe l o c i t y = 62 ;
e l s e i f (TimeSince(&startTimeStamp) < 3 . 5) cu r r en tVe l o c i t y = 50 ;
e l s e i f (TimeSince(&startTimeStamp) < 4 . 0) cu r r en tVe l o c i t y = 0 ;
e l s e i f (TimeSince(&startTimeStamp) < 5 . 6) cu r r en tVe l o c i t y = −17;
e l s e i f (TimeSince(&startTimeStamp) < 6 . 0) cu r r en tVe l o c i t y = 0 ;
e l s e i f (TimeSince(&startTimeStamp) < 7 . 6) cu r r en tVe l o c i t y = 17 ;
e l s e i f (TimeSince(&startTimeStamp) < 8 . 0) cu r r en tVe l o c i t y = 0 ;
e l s e i f (TimeSince(&startTimeStamp) < 9 . 6) cu r r en tVe l o c i t y = −17;
e l s e i f (TimeSince(&startTimeStamp) < 10 .0) cu r r en tVe l o c i t y = 0 ;

Appendix D. Browser Prototype Code 238

e l s e i f (TimeSince(&startTimeStamp) < 11 .6) cu r r en tVe l o c i t y = 17 ;
e l s e i f (TimeSince(&startTimeStamp) < 12 .0) cu r r en tVe l o c i t y = 0 ;
e l s e i f (TimeSince(&startTimeStamp) < 13 .0) cu r r en tVe l o c i t y = −50;
e l s e i f (TimeSince(&startTimeStamp) < 14 .9) cu r r en tVe l o c i t y = −80;
e l s e i f (TimeSince(&startTimeStamp) < 17) TimeStamp(&startTimeStamp) ;

ComputeDetentPosFromVelocity () ;

r e turn (CropPos ((i n t) round (lastDetentPos))) ;

}

i f (simpleControlMode)
{

f l o a t display window = 8.0 / (f l o a t) he ight ;
// display window i s the percentage o f the page ” v i s i b l e ” through the
// t a c t i l e d i sp l ay .

i n t range = he ight − 16 ;
// range i s the por t ion o f the map where the cent r e o f the s l i d e r
// may be placed

in t window start = (i n t) ((100.0− s l i d e r p o s) /100.0 ∗ (f l o a t) range) ;
// s t a r t index in the hapt i c page map

lastDetentPos = (f l o a t) window start ;

r e turn (window start) ;
}
e l s e // v e l o c i t y con t r o l
{

f l o a t normSliderPos = (1 .0 − (s l i d e r p o s / 50 . 0)) ;
// normal ized to between −1.0 and +1.0

f l o a t cu r r en tAcce l e r a t i on ;

// A few convenient macros
// #de f i n e SIMPLEVELOCITY
#de f i n e VELOCITYATSTOPS

// constants
#i f de f ined VELOCITYATSTOPS

in t maxP = 50 ;
f l o a t maxV = 200 . 0 ;
f l o a t posControlZone = 0 . 7 5 ; // Use t h i s many percent o f s l i d e r area

f o r pos con t r o l zone
f l o a t timeBeforeVControl = 0 . 0 5 ; // Number o f seconds be f o r e

v e l o c i t y con t r o l a c t i v a t e s
f l o a t vContro lAcce l e ra t ion = 1 ; // Number o f seconds be f o r e v e l o c i t y

reaches maxV a f t e r s t a r t i n g V−con t r o l
f l o a t t imeAfterVControl = 0 . 0 5 ; // Number o f seconds a f t e r

d i s engag ing v e l o c i t y contro l , during which time user input i s
ignored so that they can return the s l i d e r to cent r e

#e l i f de f ined SIMPLEVELOCITY
in t maxP = 10 ;
f l o a t maxV = 300 . 0 ;
f l o a t posControlZone = 0 . 2 0 ; // Use t h i s many percent o f s l i d e r area

f o r pos con t r o l zone
f l o a t timeBeforeVControl = 0 . 0 ; // Number o f seconds be f o r e v e l o c i t y

con t r o l a c t i v a t e s
f l o a t vContro lAcce l e ra t ion = 0 . 2 ; // Number o f seconds be f o r e

v e l o c i t y reaches maxV a f t e r s t a r t i n g V−con t r o l
f l o a t t imeAfterVControl = 0 . 0 1 ; // Number o f seconds a f t e r

d i s engag ing v e l o c i t y contro l , during which time user input i s
ignored so that they can return the s l i d e r to cent r e

#e l s e
i n t maxP = 50 ;
f l o a t maxV = 100 . 0 ;
f l o a t posControlZone = 0 . 9 5 ; // Use t h i s many percent o f s l i d e r area

f o r pos con t r o l zone
f l o a t timeBeforeVControl = 0 . 0 1 ; // Number o f seconds be f o r e

v e l o c i t y con t r o l a c t i v a t e s
f l o a t vContro lAcce l e ra t ion = 1 ; // Number o f seconds be f o r e v e l o c i t y

reaches maxV a f t e r s t a r t i n g V−con t r o l
f l o a t t imeAfterVControl = 0 . 0 1 ; // Number o f seconds a f t e r

d i s engag ing v e l o c i t y contro l , during which time user input i s
ignored so that they can return the s l i d e r to cent r e

Appendix D. Browser Prototype Code 239

#end i f

i f (f abs (normSliderPos) < posControlZone)
{

// Pos i t i on Control Zone
cu r r en tVe l o c i t y = 0 ;

switch (vContro lState)
{

case vControlWaiting :
// abort wait ing f o r vControl , r e turn to pControl
vContro lState = pControl ;
// cont inue to pControl

case pControl :
pOf f s e t = (i n t) (round (normSliderPos / posControlZone ∗ (f l o a t

)maxP)) ;
break ;

case vControlAct ive :
// ente r vContro lFin i shed ; s t a r t t imer
vContro lState = vContro lFin i shed ;
TimeStamp (&vControlStateTimeStamp) ;
break ;

case vContro lFin i shed :
// check t imer ; i f passed , then ente r pControl
i f (TimeSince(&vControlStateTimeStamp) > t imeAfterVControl)
{

// re−zero detent po s i t i o n to avoid moving the h i gh l i g h t
i n t newPOffset = (i n t) (round (normSliderPos /

posControlZone ∗ (f l o a t)maxP)) ;
lastDetentPos += pOf f se t − newPOffset ;
pOf f s e t = newPOffset ;

vContro lState = pControl ;
}
break ;

} // switch (vContro lState)
}
e l s e {

// Ve loc i ty Control Zone

switch (vContro lState)
{

case pControl :
case vContro lFin i shed :

// ente r wait ing state , s t a r t t imer
vContro lState = vControlWaiting ;
TimeStamp (&vControlStateTimeStamp) ;
pOf f s e t = (i n t) (round (normSliderPos / posControlZone ∗ (f l o a t

)maxP)) ;
break ;

case vControlWaiting :
// check to see i f the t imer has exceeded the

timeBeforeVControl , i f so , go to next s t a t e
pOf f s e t = (i n t) (round (normSliderPos / posControlZone ∗ (f l o a t

)maxP)) ;
i f (TimeSince(&vControlStateTimeStamp) > t imeBeforeVControl)
{

TimeStamp (&vControlStateTimeStamp) ;
vContro lState = vContro lAct ive ;

}
break ;

case vControlAct ive :
i f (normSliderPos > 0)
{

pOf f se t = maxP;
#i f d e f CVTEST
cur r en tVe l o c i t y = CVTEST;
#e l s e
cu r r en tVe l o c i t y = (in t) (round ((normSliderPos −

posControlZone) /
(1 . 0 − posControlZone) ∗
maxV)) ;

#end i f

}

Appendix D. Browser Prototype Code 240

e l s e
{

pOf f se t = −maxP;
#i f d e f CVTEST
cur r en tVe l o c i t y = −CVTEST;
#e l s e
cu r r en tVe l o c i t y = (in t) (round ((normSliderPos +

posControlZone) /
(1 . 0 − posControlZone) ∗
maxV)) ;

#end i f
}

// add a c c e l e r a t i o n f a c t o r
cu r r en tAcce l e r a t i on = (TimeSince(&vControlStateTimeStamp)) /

(vContro lAcce l e ra t ion) ;
i f (cu r r en tAcce l e r a t i on < 1 . 0)

cu r r en tVe l o c i t y = (in t) (round) ((f l o a t) cu r r en tVe l o c i t y ∗
cu r r en tAcce l e r a t i on) ;

break ;
} // switch (vContro lState)

} // v e l o c i t y con t r o l zone

i f (pOf f se t > maxP) pOf f se t = maxP;
e l s e i f (pOf f se t < −maxP) pOf f se t = −maxP;

ComputeDetentPosFromVelocity () ;

#i f d e f DEBUG
p r i n t f (”CurrentMapPos : v e l o c i t yCont r o l pOf f se t=%d , cu r r en tVe l o c i t y=%

d , detentPos=%f , mapPos=%d\n” , pOffset , cur r entVe loc i ty ,
lastDetentPos , CropPos ((i n t) round (lastDetentPos)+pOf f se t)) ;

#end i f

#i f d e f CVTEST
i f (lastDetentPos >= height −8) lastDetentPos = 0 . 0 ;
#end i f

re turn (CropPos ((i n t) round (lastDetentPos) + pOf f se t)) ;
}

}

f l o a t HapticPageMap : : ComputeDetentPosFromVelocity ()
{

// return the cur so r po s i t i o n in the hapt i c map

i f (simpleControlMode) return lastDetentPos ;
e l s e
{

// compute the cur rent po s i t i o n based on the l a s t heading
f l o a t newDetentPos ;
double t imed i f f ;

s t r u c t t imeval tv ;
gett imeofday (&tv , NULL) ;

// subt rac t the cur rent time from the cached time
double u s e c d i f f ;
t im ed i f f = tv . t v s e c − lastTimeStamp . t v s e c ;
i f (0 .0 > (u s e c d i f f = (double) (tv . tv usec − lastTimeStamp . tv usec) /

1000000.0))
{

u s e c d i f f = 1 .0 + u s e c d i f f ;
t imed i f f −−;

}
t imed i f f += u s e c d i f f ;
lastTimeStamp . t v s e c = tv . t v s e c ;
lastTimeStamp . tv usec = tv . tv usec ;

// i f t im ed i f f i s s p e c i f i e d

Appendix D. Browser Prototype Code 241

// {
// UNTESTED ! ! !

// lastTimeStamp . t v s e c += (t ime t) trunc (t imed i f f) ;
// lastTimeStamp . tv usec += (suseconds t) ((modf (t imed i f f ,NULL)) ∗

1000000) ;
// i f (lastTimeStamp . tv usec >= 1000000)
// {
// lastTimeStamp . tv usec −= 1000000;
// lastTimeStamp . t v s e c++;
// }
// }
//

newDetentPos = lastDetentPos + t imed i f f ∗ (f l o a t) cu r r en tVe l o c i t y ;
newDetentPos = CropPos (newDetentPos) ;

lastDetentPos = newDetentPos ;
re turn newDetentPos ;

}
}

i n t HapticPageMap : : CropPos (i n t inputPos)
{

i f (inputPos < 0) return (0) ;
i f (inputPos > height −8) return (height −8) ;
r e turn inputPos ;

}

f l o a t HapticPageMap : : CropPos (f l o a t inputPos)
{

i f (inputPos < 0 . 0) re turn (0 . 0) ;
#i f de f ined SUBTAXELTRIPLE

i f (inputPos > (f l o a t) (height −8)) re turn ((f l o a t) (height −24)) ;
#e l i f de f ined SUBTAXELDOUBLE

i f (inputPos > (f l o a t) (height −8)) re turn ((f l o a t) (height −16)) ;
#e l s e

i f (inputPos > (f l o a t) (height −8)) re turn ((f l o a t) (height −8)) ;
#end i f

r e turn inputPos ;
}

bool HapticPageMap : : ComputeImage (s t r e s s d : : VoltImg ∗outputImg , i n t map pos)
{

// compute the t a c t i l e output image at cur so r po s i t i o n map pos
// and p lace the r e s u l t in outputImg

// re tu rns t rue i f everyth ing was dandy ; f a l s e otherwi se

// uncomment one block o f code below
// crop to map bounds
map pos = CropPos (map pos) ;

// or a s s e r t map bounds
// a s s e r t (map pos >= 0 && map pos < height −8) ;

// or return f a l s e i f ou t s ide o f map bounds
// i f (map pos < 0 | | map pos > height −8) return f a l s e ;

double t imed i f f ;
f l o a t valueAt ;
r e g i s t e r i n t index ;

HapticIcon ∗ i con ;

i con = icons ;
whi le (i con)
{

// render only the area that ’ s ” v i s i b l e ”
#i f de f ined SUBTAXELTRIPLE

const i n t v i s i b l e a r e a = 24 ;
#e l i f de f ined SUBTAXELDOUBLE

const i n t v i s i b l e a r e a = 16 ;

Appendix D. Browser Prototype Code 242

#e l s e
const i n t v i s i b l e a r e a = 8 ;

#end i f

i f ((icon−>at <= map pos+v i s i b l e a r e a) &&
(icon−>at+icon−>he ight >= map pos))

{
icon−>RenderIconToMap (t h i s) ;

}
i con = icon−>next ;

}

// copy data from the page map in to the outputImg
f o r (i n t x=0; x<8; x++)
{

#i f de f ined SUBTAXELTRIPLE
index = x∗3 + map pos ;
valueAt = (voltmap [index] + voltmap [index+1] + voltmap [index +2]) /

3 . 0 ;
#e l i f de f ined SUBTAXELDOUBLE

index = x∗2 + map pos ;
valueAt = (voltmap [index] + voltmap [index +1]) / 2 ;

#e l s e
valueAt = voltmap [x + map pos] ;

#end i f

// Do the lookahead and lookback smoothing
i f (lookahead [x] != LOOKAHEAD NOVALUE) valueAt = (valueAt + lookahead [x])

/ 2 . 0 ;

i f (f abs (valueAt − lookback [x]) > 50 . 0) // thre sho ld value
{

lookahead [x] = valueAt ;
valueAt = (valueAt + lookback [x]) / 2 . 0 ;

}
e l s e lookahead [x] = LOOKAHEAD NOVALUE;

lookback [x] = valueAt ;

// opt i ona l l y , prov ide t a c t i l e feedback o f t r a n s i t i o n between v e l o c i t y
con t r o l and po s i t i o n con t r o l modes

#i f d e f CLICKONVCONTROL
i f (vContro lState == vControlWaiting)
{

t imed i f f = TimeSince(&vControlStateTimeStamp) ;

i f (t im ed i f f < 0 .005) valueAt += 40 ;
e l s e i f (t im ed i f f < 0 . 01) valueAt −= 40;

i f (valueAt < −50) valueAt = −50;
e l s e i f (valueAt > 50) valueAt = 50 ;

}
#end i f

outputImg−>Set(7−x , 0 , valueAt) ;

}

re turn true ;
}

void HapticPageMap : : RenderAl l Icons (void)
{

HapticIcon ∗ i con ;

i con = icons ;
whi le (i con)
{

icon−>RenderIconToMap (t h i s) ;
i con = icon−>next ;

}

Appendix D. Browser Prototype Code 243

}

Sl iderSmoother : : S l iderSmoother ()
{

c a c h e s i z e = 10 ;
th re sho ld = 5 . 0 ;

// when s l i d e r i s moved a l a r g e d i s t ance (above t h i s th r e sho ld) ,
// abandon averag ing and j u s t jump to the new s l i d e r po s i t i o n

s l i d e r c a c h e = new f l o a t [c a c h e s i z e] ;
f o r (i n t i =0; i<c a c h e s i z e ; i++)

s l i d e r c a c h e [i] = 0 . 0 ;
s t a r t i d x =0;

}

Sl iderSmoother : : ˜ Sl iderSmoother ()
{

de l e t e [] s l i d e r c a c h e ;
}

f l o a t Sl iderSmoother : : SmoothSliderPos (f l o a t rawpos)
{

// Takes the cur rent s l i d e r pos and re tu rns the ”smoothed” value o f the
s l i d e r pos

// Uses s imple averag ing o f the l a s t (c a che s i z e −1) pos ’ s , and the cur rent
rawpos

f l o a t avgpos = 0 . 0 ;
f l o a t r e t v a l ;
i n t i ;

// add the value to the array , c l obbe r ing the o l d e s t value
s t a r t i d x++;
s t a r t i d x %= ca ch e s i z e ;
s l i d e r c a c h e [s t a r t i d x] = rawpos ;

f o r (i =0; i<c a c h e s i z e ; i++)
avgpos += s l i d e r c a c h e [i] ;

avgpos /= ca ch e s i z e ;

i f (f abs (rawpos − avgpos) >= thre sho ld)
{

r e t v a l = rawpos ;
f o r (i =0; i<c a c h e s i z e ; i++)

s l i d e r c a c h e [i] = rawpos ;
}
e l s e

r e t v a l = avgpos ;

re turn (r e t v a l) ;
}

D.1.5 BrowserShared.h

#i f n d e f BROWSERSHARED H
#de f i n e BROWSERSHARED H

#inc lude ” ace /Mutex . h”

#inc lude ”HapticPageMap . h”
#inc lude ”BrowserXMLBits . h”

c l a s s BrowserShared {

pub l i c :

BrowserShared () ;

Appendix D. Browser Prototype Code 244

i n t GetMapPos () ;
void SetMapPos (i n t pos) ;

i n t GetCl icks () ;
void Se tC l i ck s (i n t c l i ck count param) ;

bool GetPageMapReady () ;
void SetPageMapReady (bool r e ady f l a g) ;

// PUBLIC hapt ic page map s t ru c tu r e
// Rules : be f o r e reading , check i f GetPageMapReady () i s t rue or not
// be f o r e wr i t ing , SetPageMapReady (f a l s e)
HapticPageMap ∗pagemap ;

p r i va t e :
i n t c l i c k c oun t ;
i n t map pos ;

bool pagemap ready ;

ACE Mutex mutex ;
} ;

#end i f

D.1.6 BrowserShared.cpp

// BrowserShared . cpp

#inc lude ”BrowserShared . h”

BrowserShared : : BrowserShared ()
{

c l i c k c oun t = 0 ;
map pos = 0 ;
pagemap ready = 0 ;
pagemap = NULL;

}

i n t BrowserShared : : GetMapPos ()
{

mutex . acqu i r e () ;
i n t r e t v a l = map pos ;
mutex . r e l e a s e () ;
r e turn r e t v a l ;

}

void BrowserShared : : SetMapPos (i n t pos)
{

mutex . acqu i r e () ;
map pos = pos ;
mutex . r e l e a s e () ;
r e turn ;

}

i n t BrowserShared : : GetCl icks ()
{

mutex . acqu i r e () ;
i n t r e t v a l = c l i c k c oun t ;
mutex . r e l e a s e () ;
r e turn r e t v a l ;

}

void BrowserShared : : S e tC l i ck s (i n t c l i ck count param)
{

mutex . acqu i r e () ;
c l i c k c oun t = c l i ck count param ;

Appendix D. Browser Prototype Code 245

mutex . r e l e a s e () ;
r e turn ;

}

bool BrowserShared : : GetPageMapReady ()
{

mutex . acqu i r e () ;
i n t r e t v a l = pagemap ready ;
mutex . r e l e a s e () ;
r e turn r e t v a l ;

}

void BrowserShared : : SetPageMapReady (bool r e ady f l a g)
{

mutex . acqu i r e () ;
pagemap ready = r eady f l a g ;
mutex . r e l e a s e () ;
r e turn ;

}

D.1.7 BrowserXMLBits.h

// Browser XML Bits , modi f ied from o r i g i n a l f i l e by Vincent Levesque (GPL)
// Joseph Luk , July 2006

#i f n d e f BROWSERXMLBITS H
#de f i n e BROWSERXMLBITS H

#inc lude <s t r ing >
#inc lude <vector>
#inc lude ”ACEXML/common/DefaultHandler . h”

c l a s s PageMapParser : pub l i c ACEXML DefaultHandler
{
pub l i c :

PageMapParser (std : : s t r i n g f i l e , HapticPageMap∗ data) ;
v i r t u a l ˜PageMapParser () ;

void Par s eF i l e (std : : s t r i n g f i leName) ;

v i r t u a l void cha ra c t e r s (const ACEXML Char ∗ch , i n t s ta r t , i n t l ength
ACEXML ENV ARG DECL)

ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void endDocument (ACEXML ENV SINGLE ARG DECL)
ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void endElement (const ACEXML Char ∗namespaceURI , const ACEXML Char ∗
localName , const ACEXML Char ∗qName ACEXML ENV ARG DECL)

ACE THROW SPEC((ACEXML SAXException)) ;
v i r t u a l void setDocumentLocator (ACEXML Locator ∗ l o c a t o r)
ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void startDocument (ACEXML ENV SINGLE ARG DECL)
ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void startElement (const ACEXML Char ∗namespaceURI , const ACEXML Char
∗ localName , const ACEXML Char ∗qName , ACEXML Attributes ∗ a t t s
ACEXML ENV ARG DECL)

ACE THROW SPEC((ACEXML SAXException)) ;

p r i va t e :
ACEXML Locator∗ l o c a t o r ;
std : : vector<std : : s t r ing > t ag s ;

HapticPageMap ∗data ;
i n t currAt ;

} ;

Appendix D. Browser Prototype Code 246

c l a s s RawIconParser : pub l i c ACEXML DefaultHandler
{
pub l i c :

RawIconParser (std : : s t r i n g f i l e , HapticIcon∗ i c onpt r) ;
v i r t u a l ˜RawIconParser () ;

void Par s eF i l e (std : : s t r i n g f i leName) ;

v i r t u a l void cha ra c t e r s (const ACEXML Char ∗ch , i n t s ta r t , i n t l ength
ACEXML ENV ARG DECL)

ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void endDocument (ACEXML ENV SINGLE ARG DECL)
ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void endElement (const ACEXML Char ∗namespaceURI , const ACEXML Char ∗
localName , const ACEXML Char ∗qName ACEXML ENV ARG DECL)

ACE THROW SPEC((ACEXML SAXException)) ;
v i r t u a l void setDocumentLocator (ACEXML Locator ∗ l o c a t o r)
ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void startDocument (ACEXML ENV SINGLE ARG DECL)
ACE THROW SPEC((ACEXML SAXException)) ;

v i r t u a l void startElement (const ACEXML Char ∗namespaceURI , const ACEXML Char
∗ localName , const ACEXML Char ∗qName , ACEXML Attributes ∗ a t t s
ACEXML ENV ARG DECL)

ACE THROW SPEC((ACEXML SAXException)) ;

p r i va t e :
ACEXML Locator∗ l o c a t o r ;
std : : vector<std : : s t r ing > t ag s ;

HapticIcon∗ i con ;
i n t curr Index ;
i n t currFrame ;

} ;

#end i f //BROWSERXMLBITS H

D.1.8 BrowserXMLBits.cpp

// Browser XML Bits , modi f ied from o r i g i n a l f i l e by Vincent Levesque (GPL)
// Joseph Luk , July 2006

#inc lude <iostream>
#inc lude <sstream>
#inc lude <a s s e r t . h>

#inc lude ” ace /ACE. h”
#inc lude ” ace /Log Msg . h”

#inc lude ”ACEXML/common/FileCharStream . h”
#inc lude ”ACEXML/common/HttpCharStream . h”
#inc lude ”ACEXML/common/StrCharStream . h”
#inc lude ”ACEXML/ par se r / par se r /Parser . h”
#inc lude ” ace /Get Opt . h”
#inc lude ” ace /Auto Ptr . h”

#inc lude ”HapticPageMap . h”
#inc lude ”BrowserXMLBits . h”

i n t average = −1;

void PageMapParser : : Par s eF i l e (std : : s t r i n g f i leName)
{

ACEXML FileCharStream ∗ fstm = new ACEXML FileCharStream ;

Appendix D. Browser Prototype Code 247

i f (fstm−>open (f i leName . c s t r ()) != 0)
{

std : : s t r i n g s t r (” Fa i l ed to open XML f i l e : ”) ;
s t r += fi leName ;
//STRESSD THROW EX DESC(FileEx , ” PageMapParser : : Par s eF i l e ” , s t r) ;

}

// TODO: throw the c o r r e c t except ion
ACEXML TRY NEW ENV
{

ACEXML Parser par se r ;
ACEXML InputSource input (fstm) ;
par s e r . setContentHandler (t h i s) ;
pa r s e r . s e tFeature (” http :// xml . org / sax/ f e a t u r e s / va l i d a t i on ” , f a l s e) ; // todo
par se r . parse (&input ACEXML ENV ARG PARAMETER) ;
ACEXML TRY CHECK;

}
ACEXML CATCH (ACEXML SAXException , ex)
{

ACE UNUSED ARG(ex) ;
ACE DEBUG ((LM ERROR, ACE TEXT (” Exception occurred . Ex i t ing . . . \ n”))) ;
ex . p r in t () ;

}
ACEXML ENDTRY;

}

void
PageMapParser : : cha ra c t e r s (const ACEXML Char ∗cdata ,

i n t s ta r t ,
i n t end ACEXML ENV ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{

i n t l t a g = tag s . s i z e () − 1 ;
// p r i n t f (” l t a g : %d\n” , l t a g) ;

i f (t a g s . back () == ”at ”){
i f (t a g s . at (l tag −1) == ” icon ”)

{
currAt = ato i (cdata) ;

#i f d e f DEBUG
p r i n t f (”Tag <at> value %d\n” , currAt) ;
#end i f

}
}

e l s e i f (t ag s . back () == ”name”){
i f (t a g s . at (l tag −1) == ” icon ”)
{

#i f d e f DEBUG
p r i n t f (”Tag <name> value %s , currAt = %d\n” , cdata , currAt) ;
#end i f

HapticIcon ∗temp = data−>i c on s ;
char ∗pathname = new char [s t r l e n (” i con s /”) + s t r l e n (cdata)] ;
s t r cpy (pathname , ” i cons /”) ;
s t r c a t (pathname , cdata) ;

data−>i c on s = new HapticIcon (pathname) ;
d e l e t e [] pathname ;

data−>i cons−>next = temp ;
data−>i cons−>at = currAt ;

currAt = 0 ;
}

}
e l s e i f (t ag s . back () == ” he ight ”)
{

i n t he ight = a to i (cdata) ;

#i f d e f DEBUG
p r i n t f (”Tag <height> value %d\n” , he ight) ;
#end i f

data−>he ight = he ight ;
}

Appendix D. Browser Prototype Code 248

e l s e
{

#i f d e f DEBUG
std : : s t r i n g thetag = tag s . back () ;
p r i n t f (”Unknown tag %s\n” , thetag . c s t r ()) ;
#end i f

}
}

void
PageMapParser : : endDocument (ACEXML ENV SINGLE ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{
}

void
PageMapParser : : endElement (const ACEXML Char ∗uri ,

const ACEXML Char ∗name ,
const ACEXML Char ∗qName
ACEXML ENV ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{

t ag s . pop back () ;
}

void
PageMapParser : : setDocumentLocator (ACEXML Locator ∗ l o c a t o r)

ACE THROW SPEC((ACEXML SAXException))
{

th i s−>l o c a t o r = l o c a t o r ;
}

void
PageMapParser : : startDocument (ACEXML ENV SINGLE ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{
}

void
PageMapParser : : s tartElement (const ACEXML Char ∗uri ,

const ACEXML Char ∗name ,
const ACEXML Char ∗qName ,
ACEXML Attributes ∗ a l i s t
ACEXML ENV ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{

t ag s . push back (name) ;

}

PageMapParser : : PageMapParser (std : : s t r i n g f i l e , HapticPageMap∗ data)
{

th i s−>data = data ;
currAt = −1;
#i f d e f DEBUG
p r i n t f (” PageMapParser about to c a l l p a r s e f i l e \n”) ;
#end i f

Par s eF i l e (f i l e) ;
}

PageMapParser : : ˜ PageMapParser ()
{
}

/∗ ∗∗∗ ∗/

void RawIconParser : : Par s eF i l e (std : : s t r i n g f i leName)
{

Appendix D. Browser Prototype Code 249

ACEXML FileCharStream ∗ fstm = new ACEXML FileCharStream ;

i f (fstm−>open (f i leName . c s t r ()) != 0)
{

std : : s t r i n g s t r (” Fa i l ed to open XML f i l e : ”) ;
s t r += fi leName ;
//STRESSD THROW EX DESC(FileEx , ” RawIconParser : : Par s eF i l e ” , s t r) ;

}

// TODO: throw the c o r r e c t except ion
ACEXML TRY NEW ENV
{

ACEXML Parser par se r ;
ACEXML InputSource input (fstm) ;
par s e r . setContentHandler (t h i s) ;
pa r s e r . s e tFeature (” http :// xml . org / sax/ f e a t u r e s / va l i d a t i on ” , f a l s e) ; // todo
par se r . parse (&input ACEXML ENV ARG PARAMETER) ;
ACEXML TRY CHECK;

}
ACEXML CATCH (ACEXML SAXException , ex)
{

ACE UNUSED ARG(ex) ;
ACE DEBUG ((LM ERROR, ACE TEXT (” Exception occurred . Ex i t ing . . . \ n”))) ;
ex . p r in t () ;

}
ACEXML ENDTRY;

}

void
RawIconParser : : cha ra c t e r s (const ACEXML Char ∗cdata ,

i n t s ta r t ,
i n t end ACEXML ENV ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{

i n t l t a g = tag s . s i z e () − 1 ;
// p r i n t f (” l t a g : %d\n” , l t a g) ;

i f (t a g s . back () == ” index ”){
// i f (t ag s . at (l tag −1) == ”element ”)

{
currIndex = ato i (cdata) ;
a s s e r t (icon−>he ight) ;

a s s e r t (curr Index < icon−>he ight) ;
}

}
e l s e i f (t ag s . back () == ”value ”){

// i f (t ag s . at (l tag −1) == ”element ”)
{

a s s e r t (icon−>content) ;

i f (! strcmp (icon−>content−>type , ” Spa t i a l I c on ”))
{

#i f d e f DEBUG
p r i n t f (”Tag <value> = %f , curr Index=%d\n” , a t o f (cdata) , curr Index) ;
#end i f

icon−>content−>SetData (currIndex , a t o f (cdata)) ;
}
i f (! strcmp (icon−>content−>type , ”AnimatedIcon ”))
{

#i f d e f DEBUG
p r i n t f (”Tag <value> = %f , curr Index=%d\n” , a t o f (cdata) , curr Index) ;
#end i f
i f (t a g s . at (l tag −1) == ” frame ”)
{

icon−>content−>SetData (currIndex∗currFrame , a t o f (cdata)) ;
}
e l s e {

#i f d e f DEBUG
p r i n t f (”ERROR: value given out s ide o f frame context in

AnimatedIcon .\n”) ;
#end i f

}
}
e l s e {

Appendix D. Browser Prototype Code 250

#i f d e f DEBUG
p r i n t f (”Unknown icon type f o r element / value %s\n” , icon−>content−>type)

;
#end i f
}

}
}
e l s e i f (t ag s . back () == ” frames ”)
{

i f (! strcmp (icon−>content−>type , ”AnimatedIcon ”))
{

icon−>content−>numFrames = a to i (cdata) ;
}

}
e l s e i f (t ag s . back () == ” fps ”)
{

i f (! strcmp (icon−>content−>type , ”AnimatedIcon ”))
{

icon−>content−>f p s = a to i (cdata) ;
}

}
e l s e i f (t ag s . back () == ” frame ”)
{

i f (! strcmp (icon−>content−>type , ”AnimatedIcon ”))
{

currentFrame = ato i (cdata) ;
}

}
e l s e i f (t ag s . back () == ”type ”)
{

i f (! strcmp (cdata , ” Spa t i a l I c on ”))
{

icon−>content = new Spat ia l IconContent () ;
icon−>content−>i conparent = icon ;

}
e l s e i f (! strcmp (cdata , ”AnimatedIcon ”))
{

icon−>content = new AnimatedIconContent () ;
icon−>content−>i conparent = icon ;

}
e l s e
{

#i f d e f DEBUG
p r i n t f (”Unknown icon type %s\n” , cdata) ;
#end i f

}
}
e l s e i f (t ag s . back () == ” he ight ”)
{

a s s e r t (icon−>content) ;

icon−>he ight = a to i (cdata) ;

i f (! strcmp (icon−>content−>type , ” Spa t i a l I c on ”))
{

#i f d e f DEBUG
p r i n t f (” A l l o ca t ing data f o r he ight=%d\n” , icon−>he ight) ;

#end i f
icon−>content−>AllocateData (icon−>he ight) ;

}
e l s e i f (! strcmp (icon−>content−>type , ”AnimatedIcon ”))
{

#i f d e f DEBUG
p r i n t f (” A l l o ca t ing data f o r he ight=%d\n” , icon−>he ight) ;

#end i f
icon−>content−>AllocateData (icon−>he ight ∗ icon−>content−>

numFrames) ;
}
e l s e {
#i f d e f DEBUG
p r i n t f (”Unknown icon type f o r element / value %s\n” , icon−>content−>type)

;
#end i f
}

}
}

Appendix D. Browser Prototype Code 251

void
RawIconParser : : endDocument (ACEXML ENV SINGLE ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{
}

void
RawIconParser : : endElement (const ACEXML Char ∗uri ,

const ACEXML Char ∗name ,
const ACEXML Char ∗qName
ACEXML ENV ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{

t ag s . pop back () ;
}

void
RawIconParser : : setDocumentLocator (ACEXML Locator ∗ l o c a t o r)

ACE THROW SPEC((ACEXML SAXException))
{

th i s−>l o c a t o r = l o c a t o r ;
}

void
RawIconParser : : startDocument (ACEXML ENV SINGLE ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{
}

void
RawIconParser : : s tartElement (const ACEXML Char ∗uri ,

const ACEXML Char ∗name ,
const ACEXML Char ∗qName ,
ACEXML Attributes ∗ a l i s t
ACEXML ENV ARG DECL NOT USED)

ACE THROW SPEC((ACEXML SAXException))
{

t ag s . push back (name) ;

}

RawIconParser : : RawIconParser (std : : s t r i n g f i l e , HapticIcon∗ i c onpt r)
{

th i s−>i con = iconpt r ;
curr Index = −1;

Par s eF i l e (f i l e) ;
}

RawIconParser : : ˜ RawIconParser ()
{
}

D.1.9 main.cpp

// Browser V2 . 0
// Rewrite to reduce overhead − s i n g l e thread only
// Joseph Luk , July 2006
// based on code by Vincent Levesque and Shannon L i t t l e

#inc lude ” s t r e s s d /FirmwareInfoXML . h”
#inc lude ” s t r e s s d /DeviceInfoXML . h”
#inc lude ” s t r e s s d /StreamDevice . h”
#inc lude ” s t r e s s d /PacketLogger . h”
#inc lude ” s t r e s s d / i n i t . h”
#inc lude <s t d i o . h>
#inc lude <iostream>
#inc lude <s i g n a l . h>
#inc lude <sys / s t a t . h>
#inc lude ” ace /Thread . h”

Appendix D. Browser Prototype Code 252

#inc lude ”DataUpdateThread . h”

#de f i n e FIRMWARE FILE ” de f au l t . sd f ”
#de f i n e HARDWARE FILE ” de f au l t . sdh”

// These must be kept synchronized with MyComponent . cpp ! !
#de f i n e WORKING DIR ”/home/ luk /browser−working−d i r ”
#de f i n e PAGEMAP FILENAME ”pagemap . xml”
#de f i n e PAGEMAP FLAGFILENAME ”newpagemap”

in t te rmf lag ;

void s i g i n t h and l e r (i n t signum)
{

t e rmf lag = 1 ;
}

// I /O rou t i n e s to communicate with browser
// cu r r en t l y uses f i l e I /O, should probably be improved l a t e r
bool Wr i t eS l i d e rPo s i t i on (i n t map pos , HapticPageMap ∗pageMap) ;
bool WriteCl icks (i n t c l i c k c oun t) ;
bool WasPageReloaded (void) ;

bool f i l e E x i s t s (char ∗ f i leName) ;

i n t main (i n t argc , char∗ argv [])
{

s t r u c t BrowserShared sharedData ;
i n t c l i c k count , l a s t c l i c k s ;
i n t map pos ;
f l o a t norm map pos ;

t e rmf lag = 0 ;
s i g n a l (SIGINT , &s i g i n t h and l e r) ;

t ry
{

s t r e s s d : : i n i t () ;

std : : cout << ”Loading f irmware d e f i n i t i o n from ” << FIRMWARE FILE << ” . . . \ n ” ;
s t r e s s d : : FirmwareInfoXML fwInfo (FIRMWARE FILE) ;

std : : cout << ”Loading hardware d e f i n i t i o n from ” << HARDWARE FILE << ” . . . \ n ” ;
s t r e s s d : : DeviceInfoXML devInfo (HARDWARE FILE) ;

std : : cout << ”Creat ing streaming STReSS dev ice with bu f f e r s i z e o f 1 . . . \ n ” ;
s t r e s s d : : StreamDevice dev (devInfo , fwInfo , devInfo , 1) ;

std : : cout << ”Connecting and programming dev i ce (t h i s may take a few seconds)
. . . \ n ” ;

dev . Connect () ;

WasPageReloaded () ; // d e l e t e page update f i l e , i f i t e x i s t s

std : : cout << ” Sta r t i ng high−p r i o r i t y Data UPDATE thread . . . \ n ” ;
DataUpdateThread dataUpdThread(&sharedData , &dev) ;
ACE hthread t hThread ;
ACE thread t t i d ;
ACE Thread : : spawn (

DataUpdateThread : : Start ,
&dataUpdThread ,
THR NEW LWP | THR JOINABLE,
&t id ,
&hThread ,
ACE Sched Params : : p r io r i ty max (ACE SCHED OTHER)

Appendix D. Browser Prototype Code 253

) ;

do // t h i s loop runs once per new page map
{

sharedData . SetPageMapReady (f a l s e) ; // stop thread from reading from
page map

char pagemap path [1 0 0] ;
s p r i n t f (pagemap path , ”%s/%s ” , WORKING DIR, PAGEMAP FILENAME) ;
p r i n t f (” Loading page map f i l e %s .\n” , pagemap path) ;
HapticPageMap pageMap(pagemap path) ;

p r i n t f (”Done load ing page map . Rendering i cons . . . \ n”) ;
pageMap . RenderAl l Icons () ;
p r i n t f (”Done render ing i cons .\n”) ;

p r i n t f (”\ nSta t i c pagemap dump:\n”) ;
f o r (i n t pos=0; pos<pageMap . he ight ; pos++)
{

p r i n t f (”%2.0 f , ” , pageMap . voltmap [pos]) ;
}
p r i n t f (”\n\n”) ;

sharedData . pagemap = &pageMap ;
sharedData . SetPageMapReady (true) ; // s t a r t thread reading from page

map
us l e ep (500) ;

l a s t c l i c k s = sharedData . GetCl icks () ;
// t h i s should probably be moved in to a low−p r i o r i t y thread . . .

p r i n t f (”Type CTRL−C to qu i t .\n”) ;

whi le (t e rmf lag == 0)
{

us l e ep (100) ;

map pos = sharedData . GetMapPos () ;
c l i c k c oun t = sharedData . GetCl icks () ;

#i f d e f DEBUG
p r i n t f (” Current po s i t i o n at %d\n” , map pos) ;

#end i f

Wr i t eS l i d e rPo s i t i on (map pos , &pageMap) ;

// WriteCl icks (c l i c k c oun t) ;

i f (WasPageReloaded ()) break ;

} // whi le (t e rmf lag == 0)

// c l ean up page map s t u f f here , i f nece s sa ry

} whi le (t e rmf lag == 0) ;

p r i n t f (” K i l l i n g t a c t i l e loop thread .\n”) ;
ACE Thread : : cance l (hThread) ;

std : : cout << ”Disconnect ing dev i ce . . . \ n ” ;
dev . Disconnect () ;

}
catch (s t r e s s d : : Exception& ex)
{

std : : cout << ” l i b s t r e s s d threw an except ion :\n ” ;
std : : cout << ex . ErrStr () << ”\n ” ;

}
s t r e s s d : : f i n i () ;

r e turn 0 ;

Appendix D. Browser Prototype Code 254

}

bool Wr i t eS l i d e rPo s i t i on (i n t map pos , HapticPageMap ∗pageMap)
{

// d e l e t e a l l e x i s t i n g . pos f i l e s
DIR∗ pdir = opendir (WORKING DIR) ;
s t r u c t d i r en t ∗pent ;

i f (! pd i r){
p r i n t f (” opendir () f a i l u r e ; te rminat ing ”) ;
e x i t (1) ;

}

std : : s t r i n g i con type = ”” ;
whi le ((pent=readd i r (pd i r))){

std : : s t r i n g f i l e = pent−>d name ;
i n t l ength = f i l e . l ength () ;
// f i l t e r out . pos (pos) f i l e s only
i f (f i l e . r f i n d (” . pos ” , l ength) == length −4){

// d e l e t e f i l e
char t yp e s t r [5 0] ;
s t r cpy (type s t r ,WORKING DIR) ;
s t r c a t (type s t r , ”/”) ;
s t r c a t (type s t r , f i l e . c s t r ()) ;
remove (t yp e s t r) ;

}
}
c l o s e d i r (pd i r) ;

// wr i t e new pos f i l e
char t yp e s t r [5 0] ;
s t r cpy (type s t r ,WORKING DIR) ;
s t r c a t (type s t r , ”/”) ;
char s l i d e r s t r [1 0] ;

// f l o a t norm map pos = (f l o a t)map pos / (f l o a t)pageMap−>he ight ∗ 100 . 0 ;
// s p r i n t f (s l i d e r s t r , ”%f ” , norm map pos) ;

s p r i n t f (s l i d e r s t r , ”%d” , map pos) ;

s t r c a t (type s t r , s l i d e r s t r) ;
s t r c a t (type s t r , ” . pos ”) ;

std : : o fstream outputFi l e ;
outputF i l e . open (type s t r , std : : o f stream : : out) ;
outputF i l e . c l o s e () ;
r e turn true ;

}

bool WriteCl icks (i n t new c l i c k s)
{

s t a t i c i n t l a s t c l i c k s = 0 ;

p r i n t f (” l a s t c l i c k s = %d , new c l i c k s = %d\n” , l a s t c l i c k s , n ew c l i c k s) ;

i n t c l i c k d i f f = new c l i c k s − l a s t c l i c k s ;
i f (c l i c k d i f f > 0){

f o r (i n t c = 0 ; c < c l i c k d i f f ; c++){
// wr i t e new c l i c k f i l e
char t yp e s t r [5 0] ;
s t r cpy (type s t r ,WORKING DIR) ;
s t r c a t (type s t r , ”/”) ;
char s l i d e r s t r [1 0] ;
s p r i n t f (s l i d e r s t r , ”%d” , l a s t c l i c k s + c) ;

Appendix D. Browser Prototype Code 255

s t r c a t (type s t r , s l i d e r s t r) ;
s t r c a t (type s t r , ” . c l i c k ”) ;
std : : o f stream outputFi l e ;
outputF i l e . open (type s t r , std : : o fstream : : out) ;
outputF i l e . c l o s e () ;

}
}
l a s t c l i c k s = new c l i c k s ;

}

// Check the pag emap f l a g f i l e to see i f i t e x i s t s ; i f i t does , d e l e t e i t .
bool WasPageReloaded (void)
{
// DIR∗ pdir = opendir (WORKING DIR) ;
// s t r u c t d i r en t ∗pent ;
//
// i f (! pd i r){
// p r i n t f (” opendir () f a i l u r e ; te rminat ing ”) ;
// e x i t (1) ;
// }
//
// bool found = f a l s e ;
// whi le ((pent=readd i r (pd i r)) && found == f a l s e){
// std : : s t r i n g f i l e = pent−>d name ;
// i n t l ength = f i l e . l ength () ;
// // f i l t e r out only the PAGEMAP FLAGFILENAME
// i f (f i l e . r f i n d (PAGEMAP FLAGFILENAME, length) != std : : s t r i n g : : npos){
// found = true ;
// // d e l e t e f i l e
// char pathname [1 0 0] ;
// s p r i n t f (pathname , ”%s/%s ” , WORKING DIR, PAGEMAP FLAGFILENAME) ;
// remove (pathname) ;
// }
// }
// c l o s e d i r (pd i r) ;
//
// return (found) ;

// Let ’ s t ry a more e f f i c i e n t way
s t a t i c char path [1 0 0] ;

s p r i n t f (path , ”%s/%s ” , WORKING DIR, PAGEMAP FLAGFILENAME) ;

i f (f i l e E x i s t s (path))
{

remove (path) ;
re turn true ;

}
e l s e re turn f a l s e ;

}

bool f i l e E x i s t s (char ∗ f i leName)
{

s t r u c t s t a t buf ;
i n t r e t v a l = s t a t (fi leName , &buf) ;
r e turn (r e t v a l == 0 ? true : f a l s e) ;

}

D.2 Visual Browser Component

The visual browser component extends the Mozilla platform using a combi-

nation of custom JavaScript, XUL, and XPCOM files. It is based partially

on code developed by Shannon Little [33]. In the interest of brevity, some

Appendix D. Browser Prototype Code 256

automatically generated and trivial configuration files are omitted.

• browser.js – the main interactive JavaScript routine.

• webscroller.css – Cascading Style Sheet description of the default

browser presentation settings.

• browser.xul – onscreen user interface description file.

• readydialog.xul – user interface description for a modal dialog used

as a prompt during user evaluation.

• IMyComponent.idl – IDL (Interface Description Language) stub header

for the XPCOM I/O routines.

• MyComponent.cpp – the file input and output routines, implemented

in the XPCOM framework.

D.2.1 browser.js

// browser . j s
// Joseph Luk , July 2006
// Based on framework code by Shannon L i t t l e

// Globals

// uncomment one o f the f o l l ow ing input modes
// var input mode = ”mouse ” ;
// var input mode = ” s l i d e r −”;
var input mode = ” s l i d e r +”;

var i n i t p a g e = ” f i l e :///home/ luk /browser−content / index . html”

const t a c t i l e s c a l e f a c t o r = 1 ;
// should be 1 (f u l l −s c a l e) or 2 (ha l f−s c a l e)

var myBrowser = nu l l ;
var appCore = nu l l ;
var top = 0 ;
var cur rent = 0 ;
var searchRange ;
var s ta r tPt ;
var endPt ;
var l inkTexts ;
var linkURLs ;
var h i gh l i gh t ed = nu l l ;
var pageheight = 0 ;
var pagewidth = 0 ;
var addheight = 0 ;
var l i n k s ;

Appendix D. Browser Prototype Code 257

var numlinks = 0 ; // t o t a l number o f l i n k s in the page
var num l inks at ypos ;
var componentl inker ;

// study logg ing g l oba l s
var l og re s e tCount = 0 ;
var log s ta r tT ime = ”” ;
var log endTime = ”” ;
var l og page s = new Array () ; // page load l i n k s
var l o g t ime s = new Array () ; // page load times

var f i r s t l o a d = true ;
var debug = true ;

const PREFS CID = ”@mozil la . org / p r e f e r en c e s ; 1 ” ;
const PREFS I PREF = ” ns IPre f ” ;
const PREF STRING = ”browser . dom. window .dump . enabled ” ;

t ry {
var Pref = new Components . Constructor (PREFS CID , PREFS I PREF) ;

var p r e f = new Pref () ;
p r e f . SetBoolPre f (PREF STRING, true) ;

} catch (e){}

f unc t i on in i tBrowser () {
i f (debug) loadPage (” j a v a s c r i p t : ”) ; // load debug page i f app l i c ab l e

myBrowser = document . getElementById (” browser−content ”) ;

appCore = Components . c l a s s e s [” @mozil la . org / appshe l l /component/browser /
in s tance ; 1 ”]

. c r e a t e In s t anc e (Components . i n t e r f a c e s . ns IBrowser Instance) ;
appCore . setWebShellWindow (window) ;

var content = document . getElementById (” browser−content ”) ;
i f (content){

content . addEventListener (” load ” , setup , t rue) ;
}

t ry {

netscape . s e c u r i t y . Pr iv i legeManager . e n ab l eP r i v i l e g e (” UniversalXPConnect ”) ;

const c id = ”@mydomain . com/XPCOMSample/MyComponent ; 1 ” ;

componentl inker = Components . c l a s s e s [c id] . c r e a t e In s t anc e () ;

componentl inker = componentl inker . QueryInter face (Components . i n t e r f a c e s .
IMyComponent) ;

} catch (e r r) {

a l e r t (e r r) ;

r e turn ;

}

// Go f u l l −s c r een mode
/∗ netscape . s e c u r i t y . Pr iv i legeManager . e n ab l eP r i v i l e g e (” UniversalXPConnect ”) ;

∗/
/∗ const MEDIATOR CONTRACTID=”@mozil la . org / appshe l l /window−mediator ; 1 ” ; ∗/
/∗ const nsIWindowMediator=Components . i n t e r f a c e s . nsIWindowMediator ; ∗/
/∗ var windowManager= ∗/
/∗ Components . c l a s s e s [MEDIATOR CONTRACTID] . g e tS e rv i c e (nsIWindowMediator) ;

∗/
/∗ t ry { ∗/
/∗ netscape . s e c u r i t y . Pr iv i legeManager . e n ab l eP r i v i l e g e (” UniversalXPConnect ”)

; ∗/
/∗ mainWindow = windowManager . getMostRecentWindow (” nav igator : browser ”) ; ∗/
/∗ } ∗/
/∗ catch (e) { ∗/

Appendix D. Browser Prototype Code 258

/∗ a l e r t (e) ; ∗/
/∗ } ∗/
/∗ i f (mainWindow . s i d eb a r i s h i dd en ()) ∗/
/∗ hideS idebar=f a l s e ; ∗/
/∗ i f (h ideS idebar) ∗/
/∗ mainWindow . SidebarShowHide () ; ∗/
/∗ mainWindow . BrowserFul lScreen () ; ∗/
/∗ window . f u l l S c r e e n=true ; ∗/
/∗ window . l o ca t i onba r . v i s i b l e=f a l s e ; ∗/
/∗ window . too lba r . v i s i b l e=f a l s e ; ∗/

var browserWin = document . getElementById (” browserwin ”) ;

i f (input mode == ”mouse ”){
// attach l i s t e n e r s
browserWin . addEventListener (’ DOMMouseScroll ’ , s c r o l l , t rue) ;
browserWin . addEventListener (’ c l i c k ’ , PushButtonHandler , t rue) ;

}

// attach keyboard s e l e c t event l i s t e n e r (workaround f o r non funct iona l s e l e c t
button)

browserWin . addEventListener (’ keydown ’ , PushButtonHandler , t rue) ;

// Load the page , t r i g g e r i n g the setup func t i on
loadPage (i n i t p a g e) ;

}

f unc t i on loadPage (page)
{

// glob only the l a s t part o f the URL
var page s t r ing = page . t oS t r ing () ;
var page f i l ename = page s t r ing . subs t r i ng (page s t r ing . la s t IndexOf (”/”) + 1 ,

page s t r ing . l ength) ;

// dump (” loadPage : ” + pagef i l ename + ”\n”) ;

// push the page load in to the log array
l og page s [l og page s . l ength] = pagef i l ename ;
var dateObj = new Date () ;

l o g t ime s [l o g t ime s . l ength] = dateObj . getTime () ;

const nsIWebNavigation = Components . i n t e r f a c e s . nsIWebNavigation ;
getBrowser () . webNavigation . loadURI (page , nsIWebNavigation .LOAD FLAGS NONE,

nul l , nu l l , nu l l) ;
}

f unc t i on setup (event){

myBrowser = event . o r i g i na lTa rg e t ;
myBrowser . c o l l a p s e = true ;

cur rent = 0 ;
h i gh l i gh t ed = nu l l ;

document . commandDispatcher . focusedWindow = window ;
document . commandDispatcher . focusedElement = myBrowser . l i n k s . item (cur rent) ;

i f (input mode . indexOf (” s l i d e r ”) != −1){

pagehe i gh ta l t = content . innerHe ight + content . scrollMaxY ;
pagewidthalt = content . innerWidth + content . scrollMaxX ;
i f (debug) dump (”Page dimensions (v ia content . innerHe ight+scrollMaxY) ” +

pageheight + ” X ” + pagewidth + ”\n”) ;

pagehe ight = getBrowser () . contentDocument . body . s c r o l lH e i g h t ;
pagewidth = getBrowser () . contentDocument . body . sc ro l lWidth ;

i f (debug) dump (”Page dimensions (v ia Sc r o l lHe i gh t) ” + pagehe i gh ta l t + ” X
” + pagewidthalt + ”\n”) ;

i f (debug) dump (”window . innerHe ight = ” + window . innerHe ight + ”\n”) ;
i f (debug) dump (” content . innerHe ight = ” + content . innerHe ight + ”\n”) ;

Appendix D. Browser Prototype Code 259

numlinks = myBrowser . l i n k s . l ength ;
i f (debug) dump (”Number o f l i n k s = ” + numlinks + ”\n”) ;

// pagehe ight = getBrowser () . contentDocument . f i r s t C h i l d . o f f s e tHe i gh t ;
// pagewidth = getBrowser () . contentDocument . f i r s t C h i l d . o f f setWidth ;

num l inks at ypos = new Array (pageheight) ;

// f i nd rows where there i s more than one l i n k and the same y pos
f o r (j = 0 ; j < numlinks ; ++j){

y = findPosY (getBrowser () . contentDocument . l i n k s . item (j)) ;
i f (! num l inks at ypos [y]) {

num l inks at ypos [y] = 1 ;
}
e l s e {

num l inks at ypos [y] ++;
pagehe ight += getBrowser () . contentDocument . l i n k s . item (j) . o f f s e tHe i gh t ;

}
}
// c r ea t e l i n k s array
l i n k s = new Array (pagewidth) ;
f o r (j = 0 ; j < pagewidth ; j++){

l i n k s [j] = new Array (pagehe ight) ;
f o r (k = 0 ; k < pageheight ; k++){

l i n k s [j] [k] = −1;
}

}

// Star t genera t ing the pagemap f i l e
componentl inker . DeletePageMap () ;
componentl inker . WritePageMap (’<?xml ve r s i on =”1.0” encoding=”UTF−8”?>\n\n

’) ;
componentl inker . WritePageMap (’<pagemap>\n ’) ;
var sca ledPageHeight = pageheight / t a c t i l e s c a l e f a c t o r ;
componentl inker . WritePageMap (’ <height >’ + scaledPageHeight + ’</

height >\n ’) ;

i = 0 ;
// i t e r a t e through a l l the page l i n k s
f o r (i = 0 ; i < numlinks ; i++)
{

l i n k = getBrowser () . contentDocument . l i n k s . item (i) ;
y = findPosY (l i n k) ;
x = findPosX (l i n k) ;
range = l i n k . o f f s e tHe i gh t ;

/∗ i f (l i n k . name) ∗/
/∗ iconname = l i nk . name ; ∗/
/∗ e l s e ∗/

iconname = ” bigsquare . xml ” ;

i f (debug) dump (” Link name=” + l i nk . name + ” ”) ;
i f (debug) dump (”Y = ”) ;
i f (debug) dump (y) ;
i f (debug) dump (” Range = ”) ;
i f (debug) dump (range) ;
i f (debug) dump (”\n”) ;

var scaledY = y / t a c t i l e s c a l e f a c t o r ;
componentl inker . WritePageMap (” <icon >\n”) ;
componentl inker . WritePageMap (” <at>” + scaledY + ”</at>\n”) ;

// componentl inker . WritePageMap (” <range>” + range + ”</range>\n”) ;
componentl inker . WritePageMap (” <name>” + iconname + ”</name>\n”) ;
componentl inker . WritePageMap (” </icon >\n”) ;

found = f a l s e ;
f o r (j = 0 ; (j < pagewidth && ! found) ; j++){

// i f the re i s a l r eady a l i n k at t h i s y , extend new l ink ’ s y coord by i t s
he ight

i f (l i n k s [j] [y] >= 0){
y = y + range ;
found = true ;

}

Appendix D. Browser Prototype Code 260

}
f o r (k = y ; k < y + range ; k++){

l i n k s [x] [k] = i ;
}

}

componentl inker . WritePageMap (’</pagemap>\n ’) ;

// t r i g g e r r e l oad from t a c t i l e loop
// deprecated , wait un t i l user s t a r t s the task be f o r e doing t h i s

}
// otherwise , assume mouse
e l s e {

h i gh l i gh t ed = getBrowser () . contentDocument . l i n k s . item (cur rent) ;
getBrowser () . contentDocument . getElementById (” h i gh l i g h td i v ”) . s t y l e . v i s i b i l i t y

= ”hidden ” ;
}

// s c a l e the h i gh l i g h t image as needed to r ep r e s en t the cur so r s i z e
var imagetag = ”<img s r c =’ h i gh l i gh t−image . png ’ id=’ h igh l ight image ’ width=”;
imagetag += pagewidth ;
imagetag += ” he ight =”;

// imagetag += 8 ∗ t a c t i l e s c a l e f a c t o r ; (without b i l i n e a r i n t e r p o l a t i o n)
imagetag += 16 ∗ t a c t i l e s c a l e f a c t o r ;
imagetag += ” />”;

getBrowser () . contentDocument . getElementById (” h i gh l i g h td i v ”) . innerHTML =
imagetag ;

i f (f i r s t l o a d)
{

window . openDialog (” chrome :// web s c r o l l e r / contents / readyd ia log . xul ” ,” showmore ” ,
”chrome , modal ”) ;

f i r s t l o a d = f a l s e ;
l og r e s e tCount++;
l og page s = new Array () ;
l o g t ime s = new Array () ;
log endTime = 0 ;

i f (input mode . indexOf (” s l i d e r ”) != −1){
componentl inker . SetPageMapFlag () ;
update f rom dev ice () ;

}

var dateObj = new Date () ;
l og s ta r tT ime = dateObj . getTime () ;

}
e l s e
{
var dateObj = new Date () ;
i f (input mode . indexOf (” s l i d e r ”) != −1){

componentl inker . SetPageMapFlag () ;
update f rom dev ice () ;

}
i f (debug) dump (”Page loaded at ” + dateObj . getTime () + ”\n”) ;

}

// needs focus in order to proce s s keyboard
getBrowser () . contentDocument . l i n k s . item (0) . f o cus () ;

// s e t bottom text bar

Appendix D. Browser Prototype Code 261

curr = document . getElementById (” current−l i n k ”) ;
}

f unc t i on goBack ()
{

var webNavigation = getBrowser () . webNavigation ;
i f (webNavigation . canGoBack)

webNavigation . goBack () ;
}

f unc t i on goForward ()
{

var webNavigation = getBrowser () . webNavigation ;
i f (webNavigation . canGoForward)

webNavigation . goForward () ;
}

f unc t i on UpdateBackForwardButtons ()
{

var backBroadcaster = document . getElementById (” canGoBack”) ;
var forwardBroadcaster = document . getElementById (” canGoForward ”) ;
var webNavigation = getBrowser () . webNavigation ;

var backDisabled = (backBroadcaster . g e tAt t r ibute (” d i s ab l ed ”) == ” true ”) ;
var forwardDisabled = (forwardBroadcaster . g e tAt t r ibute (” d i s ab l ed ”) == ” true ”)

;

i f (backDisabled == webNavigation . canGoBack)
backBroadcaster . s e tAt t r i bu t e (” d i s ab l ed ” , ! backDisabled) ;

i f (forwardDisabled == webNavigation . canGoForward)
forwardBroadcaster . s e tAt t r i bu t e (” d i s ab l ed ” , ! forwardDisabled) ;

}

f unc t i on getBrowser () {
re turn document . getElementById (” browser−content ”) ;

}

f unc t i on BrowserContent () {
re turn getBrowser () . contentDocument ;

}

// Implement push−to−s c r o l l f unc t i on
func t i on ScrollWindow (cursorYPos)
{

// Constants
var margintop = 100 ; // S c r o l l i n g beg ins when cur so r h i t s margin
var marginbottom = margintop ;

// Local vars
var currtop = getBrowser () . contentDocument . body . s c ro l lTop ;
var currbottom = currtop + content . innerHe ight ;
var newtop = currtop ;

// Code

i f (cursorYPos < currtop + margintop)
{

newtop = cursorYPos − margintop ;
i f (newtop < 0) newtop = 0 ;

}
e l s e i f (cursorYPos > currbottom − marginbottom)
{

newtop = cursorYPos + marginbottom − content . innerHe ight ;
i f (newtop > content . scrollMaxY) newtop = content . scrollMaxY ;

}

getBrowser () . contentDocument . body . s c ro l lTop = newtop ;

}

Appendix D. Browser Prototype Code 262

// f o r input mode = s l i d e r
func t i on update f rom dev ice () {

i f (input mode . indexOf (” s l i d e r ”) == −1){
a l e r t (”ERROR: method \ ’ update f rom dev ice \ ’ should not be c a l l e d un l e s s us ing

s l i d e r dev i ce .\n Set s t r i n g in l i n e 2 o f browser . j s to \” s l i d e r \” .”) ;
r e turn ;

}
e l s e {

c l i c k = componentl inker . GetClick () ;

i f (c l i c k && h igh l i gh t ed != nu l l){
/∗ document . getElementById (”URLBar”) . inser t I temAt (0 , h igh l i ghted ,

h i gh l i gh t ed) ; ∗/
/∗ document . getElementById (”URLBar”) . s e l e c t ed Index = 0 ; ∗/

myHighlight (h igh l i ghted , ” ye l low ”) ;
// goTo () ;

}
e l s e {

var scaledYPos = componentl inker . ReadSl iderPos () ;
var ypos = scaledYPos ∗ t a c t i l e s c a l e f a c t o r ;

// var ypos = Math . round ((componentl inker . ReadSl iderPos () / 100) ∗
pageheight) ;

/∗ var canvas = document . getElementById (” canvas ”) ; ∗/
/∗ var ctx = canvas . getContext (”2d”) ; ∗/
/∗ ctx . f i l l S t y l e = ” rgba (150 , 150 , 0 , 0 . 5) ” ; ∗/
/∗ ctx . f i l l R e c t (0 , ypos−1, pagewidth , ypos+1) ; ∗/

// move the h igh l i gh−div element to show the ypos
// TODO: need to ad jus t to correspond to t a c t i l e window
var cur sor top = ypos − 4 ;
getBrowser () . contentDocument . getElementById (” h i gh l i g h td i v ”) . s t y l e . top=

cursor top+”px ” ;

ScrollWindow (ypos) ;

var i = 0 ;
var found = f a l s e ;
f o r (i ; (i < pagewidth && ! found) ; i++){

i f (l i n k s [i] [ypos] >= 0){
// check i f h i gh l i gh t ed i s d i f f e r e n t from prev ious ; i f so , play icon . .

/∗ i f (getBrowser () . contentDocument . l i n k s . item (l i n k s [i] [ypos]) !=
h i gh l i gh t ed) ∗/

/∗ { ∗/
/∗ componentl inker . WriteIcon (” l i n k ”) ; ∗/
/∗ } ∗/

i f (h i gh l i gh t ed != nu l l){
myHighlight (h igh l i ghted , nu l l) ; // c l e a r prev ious h i gh l i g h t i n g

}
e l s e
{

/∗ componentl inker . WriteIcon (” l i n k ”) ; ∗/
}

h i gh l i gh t ed = getBrowser () . contentDocument . l i n k s . item (l i n k s [i] [ypos]) ;
h i gh l i gh t ed . f o cus () ;
myHighlight (h igh l i ghted , ”#f55 ”) ;
found = true ;

}
}
i f (! found && h igh l i gh t ed != nu l l){

myHighlight (h igh l i ghted , nu l l) ;
h i gh l i gh t ed = nu l l ;
// componentl inker . WriteIcon (” nu l l ”) ;

}
}

setTimeout (’ update f rom dev ice () ’ , 20) ; //TODO − tweak t h i s value

Appendix D. Browser Prototype Code 263

}
}

// f o r input mode = mouse
func t i on s c r o l l (event){

var d i r e c t i o n = event . d e t a i l ;

// d i r e c t i o n > 0 −−> UP
// d i r e c t i o n < 0 −−> DOWN
// i f we ’ re not a l ready at the top or bottom , then s c r o l l

i f ((d i r e c t i o n > 0 && current < (myBrowser . l i n k s . l ength − 1)) | | (d i r e c t i o n < 0
&& current > 0)){

myHighlight (h igh l i ghted , nu l l) ; // c l e a r prev ious h i gh l i g h t i n g
i f (d i r e c t i o n > 0)

cur rent = current + 1 ;
e l s e

cur rent = current − 1 ; 0
h i gh l i gh t ed = getBrowser () . contentDocument . l i n k s . item (cur rent) ;
h i gh l i gh t ed . f ocus () ;
myHighlight (h igh l i ghted , ”#f55 ”) ;
setCurrLabel () ;
}

event . preventDefau l t () ; //don ’ t a c tua l l y s c r o l l the page − f o cus () w i l l do that
f o r us

}

f unc t i on PushButtonHandler (event) {
var l i n kS e l e c t e d = f a l s e ;

i f (event . type == ” c l i c k ”)
{

button = event . which ;

event . preventDefau l t () ; // cance l d e f au l t event handler
}
e l s e i f (event . type == ”keydown”)
{

var dateObj = new Date () ;
i f (S t r ing . fromCharCode (event . keyCode) == ” ”)
{

log endTime = dateObj . getTime () ;
i f (debug) dump (” User s i g n a l l e d task complet ion at : ” + dateObj .

getTime () + ”\n”) ;
StudyLog () ;

}
e l s e i f (S t r ing . fromCharCode (event . keyCode) == ”B”) getBrowser () . h i s t o r y .

back () ; // untested
e l s e i f (S t r ing . fromCharCode (event . keyCode) == ”R”)
{

i f (debug) dump (” Reset at : ” + dateObj . getTime () + ”\n”) ;
f i r s t l o a d = true ;
loadPage (i n i t p a g e) ;

}

e l s e // TODO: t e s t f o r re turn key pre s s here
{

l i n kS e l e c t e d = true ;

}
event . preventDefau l t () ; // cance l d e f au l t event handler

}

i f (l i n kS e l e c t e d)
{

/∗ document . getElementById (”URLBar”) . inser t I temAt (0 , h igh l i ghted ,
h i gh l i gh t ed) ; ∗/

/∗ document . getElementById (”URLBar”) . s e l e c t ed Index = 0 ; ∗/
var dateObj = new Date () ;
i f (debug) dump(” Link s e l e c t e d at ” + dateObj . getTime () + ” : ” +

h i gh l i gh t ed + ”\n”) ;

Appendix D. Browser Prototype Code 264

myHighlight (h igh l i ghted , ” ye l low ”) ;
loadPage (h i gh l i gh t ed) ;

}

}

// ∗∗

f unc t i on setCurrLabel () {
// curr = document . getElementById (” current−l i n k ”) ;
// text = h i gh l i gh t ed ;
}

f unc t i on myHighlight (node , c o l o r) {
// i f (debug) dump(node) ;

i f (c o l o r == nu l l){
node . removeAttr ibute (” s t y l e ”) ;

}
e l s e {

node . s e tAt t r i bu t e (” s t y l e ” , ”background−c o l o r : ” + co l o r + ” ; ”) ;
}

}

//not used
func t i on removeImages () {

var images = getBrowser () . contentDocument . getElementsByTagName (’ img ’) ;
f o r (var i = 0 ; i < images . l ength ; i++) {

parent = images [i] . parentNode ;
parent . removeChild (images [i]) ;

}

}
f unc t i on shr inkImages () {

// f o r smal l s c r e en viewing
var s c r e en he i gh t = 160 ;
var sc reen width = 120 ;
var l = getBrowser () . contentDocument . getElementsByTagName (’ img ’) ;
f o r (var i = 0 ; i < l . l ength ; i++) {

i f (l [i] . width > sc reen width) {
l [i] . he ight ∗= sc r e en he i gh t / l [i] . width ;
l [i] . width = screen width ;

}
e l s e i f (l [i] . naturalWidth > sc reen width) {

var e = screen width / l [i] . naturalWidth ;
l [i] . he ight = l [i] . natura lHe ight ∗ e ;
l [i] . width = screen width ;

}
}

}

f unc t i on findPosX (obj)
{

var c u r l e f t = 0 ;
i f (obj . o f f s e tPa r en t)
{

whi le (obj . o f f s e tPa r en t)
{

c u r l e f t += obj . o f f s e t L e f t
obj = obj . o f f s e tPa r en t ;

}
}
e l s e i f (obj . x)

c u r l e f t += obj . x ;
r e turn c u r l e f t ;

}

f unc t i on findPosY (obj)
{

var curtop = 0 ;
i f (obj . o f f s e tPa r en t)
{

whi le (obj . o f f s e tPa r en t)
{

curtop += obj . o f f s e tTop

Appendix D. Browser Prototype Code 265

obj = obj . o f f s e tPa r en t ;
}

}
e l s e i f (obj . y)

curtop += obj . y ;
r e turn curtop ;

}

// Dump log f o r study
// TODO: add f i l e output would probably be best
func t i on StudyLog ()
{

// log f i l e format :
// LOG: subj , b lock#,cond , task#, tasktype , task , s tar t t ime , endtime , e lapsedt ime ,

page1addr , page1time , page2addr , page2time ,
// aka LOG: input mode , log resetCount , , , l og startTime , log endTime , (c a l cu l a t ed

) , contents o f l og page s and l o g t i tme s ar rays

var logoutput = ”LOG: ” ;

logoutput += input mode ;
logoutput += ” ,” ;
logoutput += log re se tCount ;
logoutput += ” ,” ;
logoutput += log s ta r tT ime ;
logoutput += ” ,” ;
logoutput += log endTime ;
logoutput += ” ,” ;
i f (l og s ta r tT ime && log endTime)
{

logoutput += log endTime − l og s ta r tT ime ;
}

f o r (var i = 0 ; i < l o g page s . l ength ; i++) {
logoutput += ” ,” ;
logoutput += log page s [i] ;
logoutput += ” ,” ;
logoutput += log t ime s [i] ;

}

logoutput += ”\n ” ;
dump (logoutput) ;

}

D.2.2 webscroller.css

window
{
background−c o l o r : white ;

}
. h i g h l i g h t
{
background−c o l o r : #CCFFFF;

}
. normal
{
background−c o l o r : white ;

}
. s e l e c t e d
{
background−c o l o r : red ;

}

D.2.3 browser.xul

Appendix D. Browser Prototype Code 266

<?xml ve r s i on =”1.0”?>

<?xml−s t y l e s h e e t h r e f=”chrome :// g l oba l / sk in ” type=”text / c s s ”?>
<?xml−s t y l e s h e e t h r e f=”chrome :// nav igator / sk in ” type=”text / c s s ”?>
<?xml−s t y l e s h e e t h r e f=” f i l e :///home/ luk /browser−ui / web s c r o l l e r / sk in / web s c r o l l e r .

c s s ” type=”text / c s s ”?>

<window id=”browserwin” t i t l e =”Tac t i l e browser ”
xmlns=”http ://www. moz i l l a . org /keymaster / gatekeeper / there . i s . only . xul ”
xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”
width=”240”
he ight =”320”
too lba r=”yes ”
s c r o o l b a r s=”yes ”
onload=”in i tBrowser () ; ” >

<s c r i p t type=”app l i c a t i on /x−j a v a s c r i p t ” s r c=”browser . j s ”/>

<broadca s t e r s e t id=”browserBroadcasters”>
<!−−

<broadcas te r id=”canGoBack” d i sab l ed=”true”/>
<broadcas te r id=”canGoForward” d i sab l ed=”true”/>

−−>
</broadcas t e r s e t >

<browser id=”browser−content ” type=”content−primary”
s r c=”about : blank” f l e x =”1” />

</window>

D.2.4 readydialog.xul

<?xml ve r s i on =”1.0”?>

<?xml−s t y l e s h e e t h r e f=”chrome :// g l oba l / sk in / g l oba l . c s s ” type=”text / c s s ”?>

<d i a l og id=”donothing ” t i t l e =”Ready”
xmlns=”http ://www. moz i l l a . org /keymaster / gatekeeper / there . i s . only . xul ”
buttons=”accept ”
ond ia logaccept=”return doOK() ;”>

<s c r i p t >
f unc t i on doOK()
{

re turn true ;
}
</s c r i p t >

<de s c r i p t i o n value=”Ready?”/>

</dia log>

D.2.5 IMyComponent.idl

#inc lude ” nsISupports . i d l ”

[s c r i p t ab l e , uuid (008 e030b−1f71−4b51−9df9−31915d567103)]
i n t e r f a c e IMyComponent : nsISupports
{

long ReadSl iderPos () ;
long WriteIcon (in s t r i n g type) ;
boolean GetClick () ;

boolean DeletePageMap () ;
boolean WritePageMap (in s t r i n g type) ;

Appendix D. Browser Prototype Code 267

boolean SetPageMapFlag () ;
} ;

D.2.6 MyComponent.cpp

#inc lude ”MyComponent . h”
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <fstream>
#inc lude <s t r i n g . h>
#inc lude <d i r en t . h>

NS IMPL ISUPPORTS1(MyComponent , IMyComponent)

// These must be kept synchronized with the t a c t i l e loop ’ s main . cpp ! !
#de f i n e WORKING DIR ”/home/ luk /browser−working−d i r ”
#de f i n e PAGEMAP FILENAME ”pagemap . xml”
#de f i n e PAGEMAP FLAGFILENAME ”newpagemap”

MyComponent : : MyComponent ()
{

/∗ member i n i t i a l i z e r s and cons t ruc to r code ∗/
}

MyComponent : : ˜ MyComponent ()
{

/∗ de s t ruc to r code ∗/
}

/∗ long ReadSl iderPos (out long pos) ; ∗/
NS IMETHODIMP MyComponent : : ReadSl iderPos (PRInt32 ∗ r e t v a l)
{

DIR∗ pdir = opendir (WORKING DIR) ;
s t r u c t d i r en t ∗pent ;

std : : s t r i n g : : s i z e t y p e s t a r tpo s ;

i f (! pd i r){
p r i n t f (” opendir () f a i l u r e ; te rminat ing ”) ;
e x i t (1) ;

}

std : : s t r i n g pos = ”” ;
whi le ((pent=readd i r (pd i r))){

std : : s t r i n g f i l e = pent−>d name ;
i n t l ength = f i l e . l ength () ;
// f i l t e r out . pos (po s i t i o n) f i l e s only

i f ((s t a r tpo s = f i l e . r f i n d (” . pos ” , l ength)) != std : : s t r i n g : : npos){
pos = f i l e . subs t r (0 , s t a r tpo s) ;

break ;
}

}
i f (pos == ””) {

∗ r e t v a l = −1;
}
e l s e {

∗ r e t v a l = a to i (pos . c s t r ()) ;
}

c l o s e d i r (pd i r) ;

// p r i n t f (” S l i d e r post r e tu rn ing : %d on s t r i n g %s\n” , ∗ r e t va l , pos . c s t r ()) ;

r e turn NS OK;

Appendix D. Browser Prototype Code 268

}

/∗ long WriteIcon (in s t r i n g type) ; ∗/
// 15−Dec−05 DEPRECATED ! ! ! !
NS IMETHODIMP MyComponent : : WriteIcon (const char ∗ type , PRInt32 ∗ r e t v a l)
{

// d e l e t e a l l e x i s t i n g icon f i l e s
DIR∗ pdir = opendir (WORKING DIR) ;
s t r u c t d i r en t ∗pent ;

i f (! pd i r){
p r i n t f (” opendir () f a i l u r e ; te rminat ing ”) ;
e x i t (1) ;

}

whi le ((pent=readd i r (pd i r))){
std : : s t r i n g f i l e = pent−>d name ;
i n t l ength = f i l e . l ength () ;
// f i l t e r out . i con (icon) f i l e s only
i f (f i l e . r f i n d (” . i con ” , l ength) == (unsigned in t) length −5){

// d e l e t e f i l e
char t yp e s t r [5 0] ;

s t r cpy (type s t r ,WORKING DIR) ;
s t r c a t (type s t r , ”/”) ;
s t r c a t (type s t r , f i l e . c s t r ()) ;

remove (t yp e s t r) ;
}

}
c l o s e d i r (pd i r) ;

// wr i t e new icon f i l e
char t yp e s t r [5 0] ;

s t r cpy (type s t r ,WORKING DIR) ;
s t r c a t (type s t r , ”/”) ;
s t r c a t (type s t r , type) ;
s t r c a t (type s t r , ” . i con ”) ;

std : : o fstream outputFi l e ;
outputF i l e . open (type s t r , std : : o fstream : : out) ;
// std : : a s s e r t (outputF i l e) ; // check f o r output stream e r r o r s
outputF i l e . c l o s e () ;
r e turn NS OK;

}

/∗ long GetClick (out boolean c l i c k ed) ; ∗/
NS IMETHODIMP MyComponent : : GetClick (PRInt32 ∗ r e t v a l)
{

DIR∗ pdir = opendir (WORKING DIR) ;
s t r u c t d i r en t ∗pent ;

i f (! pd i r){
p r i n t f (” opendir () f a i l u r e ; te rminat ing ”) ;
e x i t (1) ;

}

bool found = f a l s e ;
whi le ((pent=readd i r (pd i r)) && found == f a l s e){

std : : s t r i n g f i l e = pent−>d name ;
i n t l ength = f i l e . l ength () ;
// f i l t e r out . c l i c k (c l i c k) f i l e s only
i f (f i l e . r f i n d (” . c l i c k ” , l ength) == (unsigned in t) length −6){

found = true ;
// d e l e t e f i l e
char t yp e s t r [5 0] ;

s t r cpy (type s t r ,WORKING DIR) ;
s t r c a t (type s t r , ”/”) ;
s t r c a t (type s t r , f i l e . c s t r ()) ;

remove (t yp e s t r) ;
}

}

∗ r e t v a l = found ;

c l o s e d i r (pd i r) ;
// p r i n t f (” S l i d e r post r e tu rn ing : %d\n” , ∗ r e t v a l) ;

r e turn NS OK;
}

Appendix D. Browser Prototype Code 269

// −−−
// Page map / r e l oad ing support r ou t i n e s

// long DeletePageMap (out boolean succe s sF lag)
// Removes the page map f i l e
NS IMETHODIMP MyComponent : : DeletePageMap (PRBool ∗ r e t v a l)
{

char f i l ename [5 0] ;
s t r cpy (f i l ename ,WORKING DIR) ;
s t r c a t (f i l ename ,”/”) ;
s t r c a t (f i l ename ,PAGEMAP FILENAME) ;

remove (f i l ename) ;

∗ r e t v a l = true ;
re turn NS OK;

}

// long WritePageMap (in s t r i n g outputStr ing)
// Appends a l i n e to the PageMap f i l e
NS IMETHODIMP MyComponent : : WritePageMap (const char ∗ outputStr ing , PRBool ∗ r e t v a l

)
{

// TODO: should check to see i f the pagemap re l oad f l a g i s s e t (i . e . ,
e x i s t en c e o f the f i l e)

// and wait un t i l the f i l e i s de l e t ed (i . e . , the t a c t i l e loop i s done load ing
i t) be f o r e

// c l obbe r ing the pagemap f i l e

// wr i t e new icon f i l e
char f i l ename [5 0] ;

s t r cpy (f i l ename ,WORKING DIR) ;
s t r c a t (f i l ename ,”/”) ;
s t r c a t (f i l ename ,PAGEMAP FILENAME) ;

std : : o fstream outputFi l e ;
outputF i l e . open (f i l ename , std : : o fstream : : app) ;

// std : : a s s e r t (outputF i l e) ; // check f o r output stream e r r o r s

outputF i l e << outputStr ing ;

outputF i l e . c l o s e () ;
∗ r e t v a l = true ;

re turn NS OK;
}

// long SetPageMapFlag (out boolean succe s sF lag)
// Sets the page map f l a g f i l e , caus ing the t a c t i l e loop to re l oad the page map
NS IMETHODIMP MyComponent : : SetPageMapFlag (PRBool ∗ r e t v a l)
{

// wr i t e new icon f i l e
char f i l ename [5 0] ;

s t r cpy (f i l ename ,WORKING DIR) ;
s t r c a t (f i l ename ,”/”) ;
s t r c a t (f i l ename ,PAGEMAP FLAGFILENAME) ;

std : : o fstream outputFi l e ;
outputF i l e . open (f i l ename , std : : o fstream : : out) ;

// std : : a s s e r t (outputF i l e) ; // check f o r output stream e r r o r s
outputF i l e . c l o s e () ;

∗ r e t v a l = true ;
re turn NS OK;

}

270

Appendix E

Browser Experiment
Software Code

Software that was created to support the browser user evaluation is included

here. The application is based on web standards and can run in versions

of Microsoft Internet Explorer, Mozilla Firefox, and Apple Safari that were

current as of this writing. The files are included as follows. In the interest

of brevity, some files that are small modifications of the files shown here (for

example, for the “training” cases) are omitted.

• taskloop.js – JavaScript control logic for the experiment task soft-

ware. There are also files for the “training” cases, which are nearly

identical except for a reduction in the number of tasks and non-

randomized task presentation order; thus, they have been omitted.

• taskloop.html – Presentation layer (including embedded Cascading

Style Sheet) for the experiment task software.

• ajaxcomponent.js – Logic related to the AJAX (Asynchronous

JavaScript and XML) communication method, which allows the page

to interactively communicate with and send data to the server without

exposing the user to a page reload.

• reinforce.js – Logic related to providing feedback to the user on

their performance on the distraction task.

Appendix E. Browser Experiment Software Code 271

E.1 taskloop.js

// PC Task program
// (c) 2006 Joseph Luk
// Funct i ona l i t y :
// 1 . Display the task to the user
// 2 . Display the d i s t r a c t o r task to the user
// 3 . Accept user input on the d i s t r a c t o r task
// 4 . Produce log output

const tasksPerBlock = 6 ;

var currentBlockNumber = 0 ;
var currentTaskNumber = 0 ;

var blockGroupOrder = new Array () ;

var groupOrder = new Array () ;
// a l l p o s s i b l e permutations o f group order
groupOrder [0] = new Array (0 , 1 , 2) ;
groupOrder [1] = new Array (0 , 2 , 1) ;
groupOrder [2] = new Array (1 , 0 , 2) ;
groupOrder [3] = new Array (1 , 2 , 0) ;
groupOrder [4] = new Array (2 , 0 , 1) ;
groupOrder [5] = new Array (2 , 1 , 0) ;

var taskCounterByGroup = new Array (0 , 0 , 0) ;
var selectedTaskGroup = 0 ;
var se l ec tedTask = 0 ;
var currentPedalTask = 0 ;

var ta sks = new Array () ;
ta sks [0] = new Array () ;
ta sks [1] = new Array () ;
ta sks [2] = new Array () ;

ta sks [0] [0] = ”What i s the weather in London today ?” ;
ta sks [0] [1] = ”What w i l l the weather be l i k e in London tomorrow ?” ;
ta sks [0] [2] = ”What w i l l the weather be l i k e in London the day a f t e r tomorrow ?” ;
ta sks [0] [3] = ”What i s the weather in Par i s today ?” ;
ta sks [0] [4] = ”What w i l l the weather be l i k e in Par i s tomorrow ?” ;
ta sks [0] [5] = ”What w i l l the weather be l i k e in Par i s the day a f t e r tomorrow ?” ;
ta sks [0] [6] = ”What i s the weather in Tokyo today ?” ;
ta sks [0] [7] = ”What w i l l the weather be l i k e in Tokyo tomorrow ?” ;
ta sks [0] [8] = ”What w i l l the weather be l i k e in Tokyo the day a f t e r tomorrow ?” ;
ta sks [0] [9] = ”What i s the weather in Hong Kong today ?” ;
ta sks [0] [1 0] = ”What w i l l the weather be l i k e in Hong Kong tomorrow ?” ;
ta sks [0] [1 1] = ”What w i l l the weather be l i k e in Hong Kong the day a f t e r tomorrow

?” ;
ta sks [0] [1 2] = ”What i s the weather in San Franc i sco today ?” ;
ta sks [0] [1 3] = ”What w i l l the weather be l i k e in San Franc i sco tomorrow ?” ;
ta sks [0] [1 4] = ”What w i l l the weather be l i k e in San Franc i sco the day a f t e r

tomorrow ?” ;
ta sks [0] [1 5] = ”What i s the weather in Toronto today ?” ;
ta sks [0] [1 6] = ”What w i l l the weather be l i k e in Toronto tomorrow ?” ;
ta sks [0] [1 7] = ”What w i l l the weather be l i k e in Toronto the day a f t e r tomorrow

?” ;

ta sks [1] [0] = ” I f you take the 99 B−l i n e from UBC at 1pm, when w i l l you a r r i v e at
Broadway s t a t i on ?” ;

ta sks [1] [1] = ” I f you take the 99 B−l i n e from UBC at 1pm, when w i l l you a r r i v e at
Granv i l l e ?” ;

ta sks [1] [2] = ” I f you take the 99 B−l i n e from UBC at 1pm, when w i l l you a r r i v e at
Main ?” ;

ta sks [1] [3] = ” I f you take the 99 B−l i n e from UBC at 9pm, when w i l l you a r r i v e at
Broadway s t a t i on ?” ;

ta sks [1] [4] = ” I f you take the 99 B−l i n e from UBC at 9pm, when w i l l you a r r i v e at
Granv i l l e ?” ;

ta sks [1] [5] = ” I f you take the 99 B−l i n e from UBC at 9pm, when w i l l you a r r i v e at
Main ?” ;

ta sks [1] [6] = ” I f you take the #44 bus from UBC at 10am, when w i l l you a r r i v e at
Macdonald ?” ;

ta sks [1] [7] = ” I f you take the #44 bus from UBC at 10am, when w i l l you a r r i v e at
Davie ?” ;

Appendix E. Browser Experiment Software Code 272

ta sks [1] [8] = ” I f you take the #44 bus from UBC at 10am, when w i l l you a r r i v e at
Waterfront s t a t i on ?” ;

ta sks [1] [9] = ” I f you take the #44 bus from UBC at 5pm, when w i l l you a r r i v e at
Macdonald ?” ;

ta sks [1] [1 0] = ” I f you take the #44 bus from UBC at 5pm, when w i l l you a r r i v e at
Davie ?” ;

ta sks [1] [1 1] = ” I f you take the #44 bus from UBC at 5pm, when w i l l you a r r i v e at
Waterfront s t a t i on ?” ;

ta sks [2] [0] = ”When i s the movie " ;L’Enfant" ; p lay ing at the Ridge
Theatre ?” ;

ta sks [2] [1] = ”When i s the movie " ;L’Enfant" ; p lay ing at F i f th
Avenue Cinemas ?” ;

ta sks [2] [2] = ”When i s the movie " ;L’Enfant" ; p lay ing at Empire
Oakridge ?” ;

ta sks [2] [3] = ”What ra t i ng did the movie " ;L’Enfant" ; r e c e i v e in
i t s review in the Los Angeles Times ?” ;

ta sks [2] [4] = ”What ra t i ng did the movie " ;L’Enfant" ; r e c e i v e in
i t s review in the New York Post ?” ;

ta sks [2] [5] = ”When i s the movie " ; The Promise" ; p lay ing at the Ridge
Theatre ?” ;

ta sks [2] [6] = ”When i s the movie " ; The Promise" ; p lay ing at the Pa c i f i c
Cinematheque ?” ;

ta sks [2] [7] = ”When i s the movie " ; The Promise" ; p lay ing at the
S i l v e r c i t y Riverport ?” ;

ta sks [2] [8] = ”What ra t i ng did the movie " ; The Promise" ; r e c e i v e in i t s
review in the Globe and Mail ?” ;

ta sks [2] [9] = ”What ra t i ng did the movie " ; The Promise" ; r e c e i v e in i t s
review in the Washington Post ?” ;

var taskJumble = new Array () ;

var pedalTask = new Array () ;
pedalTask [0] = ”PRESS LEFT PEDAL ONCE” ;
pedalTask [1] = ”PRESS LEFT PEDAL TWICE” ;
pedalTask [2] = ”PRESS RIGHT PEDAL ONCE” ;
pedalTask [3] = ”PRESS RIGHT PEDAL TWICE” ;
pedalTask [4] = ”PRESS LEFT, THEN RIGHT PEDAL” ;
pedalTask [5] = ”PRESS RIGHT, THEN LEFT PEDAL” ;
var currentPedalTask ;
var prevPedalTask = −1;
var prevPedalCorrect = true ;
var le f tPedalCount = 0 ;
var r ightPedalCount = 0 ;

var peda lCorrect = 0 ;
var pedalTotal = 0 ;

var lastTimeout ;

func t i on i n i t () {
document . getElementById (” ta sk In f o ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (”mainTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (” pedalTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;

}

f unc t i on StartExpt ()
{

var i =0;
var j =0;

// document . getElementById (” log ”) . va lue = ”” ;
// document . getElementById (” data ”) . va lue = ”” ;

document . getElementById (”mainTask ”) . s t y l e . v i s i b i l i t y = ” v i s i b l e ” ;
document . getElementById (” pedalTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (” setupScreen ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . setupForm . beginexpt . d i s ab l ed = true ;

// document . getElementById (”mainTask ”) . f o cus () ;

Log (” Experiment s t a r t ed . Subject # = ” + document . setupForm . sub j e c t . va lue) ;

Appendix E. Browser Experiment Software Code 273

// randomize the task l i s t s with in groups
f o r (i =0; i<ta sks . l ength ; i++)
{

taskJumble [i] = new Array (ta sks [i] . l ength) ;
f o r (j =0; j<ta sks [i] . l ength ; j++)
{

taskJumble [i] [j] = j ;
}

}
Permute (taskJumble [0]) ;
Permute (taskJumble [1]) ;
Permute (taskJumble [2]) ;

// i n i t i a l i z e the blockGroupOrder array
var numBlocksMaxSix = document . setupForm . b locks . va lue ;
i f (numBlocksMaxSix > 6) numBlocksMaxSix = 6 ;

f o r (i =0; i<numBlocksMaxSix ; i++)
{

blockGroupOrder [i] = i ;
}
// randomize i t
Permute (blockGroupOrder) ;

var l o g t h i s ;
f o r (i =0; i<document . setupForm . b locks . value ; i++)
{

l o g t h i s = ”Task Groups used in Block #” + (i +1) + ” : ” ;
l o g t h i s += GroupAsAlpha (groupOrder [blockGroupOrder [i %6]] [0]) ;
l o g t h i s += GroupAsAlpha (groupOrder [blockGroupOrder [i %6]] [1]) ;
l o g t h i s += GroupAsAlpha (groupOrder [blockGroupOrder [i %6]] [2]) ;
Log (l o g t h i s) ;

}

StartBlock () ;

// add event handler to wait f o r keypress to begin task
}

f unc t i on StartBlock ()
{

currentBlockNumber ++;
Log (”−−−−−”) ;
Log (” Block #” + currentBlockNumber) ;
currentTaskNumber = 0 ;

StartTask () ;
}

f unc t i on EndExpt ()
{

document . getElementById (” ta sk In f o ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (”mainTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (” pedalTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;

AjaxSendForm(”FINAL”) ;

// deprecated , we ’ re us ing Ajax to send the form a f t e r every block now
/∗ document . outputForm . sub j e c t . va lue = ”Study log r e s u l t s (FINAL a f t e r

complet ing ” + currentBlockNumber + ” blocks) ” ; ∗/
/∗ document . outputForm . submit () ; ∗/

a l e r t (”Thank you f o r p a r t i c i p a t i n g in t h i s experiment .\ nHave a n i c e day . ”) ;

r e turn ;
}

f unc t i on EndBlock ()

Appendix E. Browser Experiment Software Code 274

{

i f (currentBlockNumber == document . setupForm . b locks . va lue) EndExpt () ;
e l s e {

AjaxSendForm(”INTERIM”) ;
document . getElementById (” ta sk In f o ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (”mainTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
document . getElementById (” pedalTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;
a l e r t (”Done with block ” + currentBlockNumber + ”.\nTake a one−minute

break . ”) ;
document . getElementById (” ta sk In f o ”) . s t y l e . v i s i b i l i t y = ” v i s i b l e ” ;
document . getElementById (”mainTask ”) . s t y l e . v i s i b i l i t y = ” v i s i b l e ” ;
StartBlock () ;

}
}

f unc t i on StartTask () {
var l o g t h i s ;

document . getElementById (” pedalTask ”) . s t y l e . v i s i b i l i t y = ”hidden ” ;

currentTaskNumber++;
i f (currentTaskNumber > tasksPerBlock) { EndBlock () ; r e turn ; }

document . getElementById (” ta sk In f o ”) . s t y l e . v i s i b i l i t y = ” v i s i b l e ” ;
document . getElementById (” ta sk In f o ”) . innerHTML = ”Task ” + currentTaskNumber +

” o f ” + tasksPerBlock ;

selectedTaskGroup = groupOrder [blockGroupOrder [(currentBlockNumber−1) % 6]] [(
currentTaskNumber−1) % 3] ;

s e l ec tedTask = taskJumble [selectedTaskGroup] [taskCounterByGroup [
selectedTaskGroup] % tasks [selectedTaskGroup] . l ength] ;

taskCounterByGroup [selectedTaskGroup] ++;

l o g t h i s = ”Task #” + currentTaskNumber ;
l o g t h i s += ” , us ing ” + GroupAsAlpha (selectedTaskGroup) ;
l o g t h i s += se l ec tedTask + ” : ” ;
l o g t h i s += tasks [selectedTaskGroup] [s e l ec tedTask] ;
Log (l o g t h i s) ;

// d i sp l ay the task box
document . getElementById (”mainTask ”) . innerHTML = tasks [selectedTaskGroup] [

s e l ec tedTask] ;

// wait f o r spacebar p r e s s
// addEventListener (’ keydown ’ , StartPedalTask , t rue) ;

window . onkeypress = StartPedalTask ;

}

f unc t i on StartPedalTask (e)
{

var evtobj=window . event ? event : e // d i s t i n gu i s h between IE ’ s e x p l i c i t event
ob j e c t (window . event) and Fire fox ’ s imp l i c i t .

var unicode=evtobj . charCode? evtobj . charCode : evtobj . keyCode
var actua lkey=Str ing . fromCharCode (unicode)

i f (actua lkey != ” ”)
{

evtobj . preventDefau l t () ;
r e turn ;

}

// spacebar pressed , proceed
document . getElementById (” pedalTask ”) . s t y l e . v i s i b i l i t y = ” v i s i b l e ” ;

prevPedalTask = −1;
prevPedalCorrect = true ;
peda lCorrect = 0 ;
pedalTota l = 0 ;

Appendix E. Browser Experiment Software Code 275

// wait 3 seconds be f o r e s t a r t i n g the pedal task
lastTimeout = setTimeout (NewPedalTask , 3000) ;

window . onkeypress = EndPedalTask ;

evtobj . preventDefau l t () ;
}

f unc t i on EndPedalTask (e)
{

var evtobj=window . event ? event : e // d i s t i n gu i s h between IE ’ s e x p l i c i t event
ob j e c t (window . event) and Fire fox ’ s imp l i c i t .

var unicode=evtobj . charCode? evtobj . charCode : evtobj . keyCode
var actua lkey=Str ing . fromCharCode (unicode)

var l o g t h i s ;

i f (actua lkey != ” ”)
{

evtobj . preventDefau l t () ;
r e turn ;

}

// spacebar pressed , proceed
clearTimeout (lastTimeout) ;
window . onkeypress = nu l l ;
document . onmousedown = nu l l ;

document . getElementById (” pedalTask ”) . innerHTML = ”” ;

l o g t h i s = ”” ;
l o g t h i s += document . setupForm . sub j e c t . va lue + ” , ” ;
l o g t h i s += currentBlockNumber + ” , ” ;
l o g t h i s += currentTaskNumber + ” , ” ;
l o g t h i s += GroupAsAlpha (selectedTaskGroup) + ” , ” ;
l o g t h i s += se l ec tedTask + ” , ” ;
l o g t h i s += pedalTotal + ” , ” ;
l o g t h i s += pedalCorrect ;
Data (l o g t h i s) ;

StartTask () ;

evtobj . preventDefau l t () ;
}

f unc t i on NewPedalTask () {
// choose a pedal task randomly , but one that i s d i f f e r e n t from the cur rent

task

i f (currentBlockNumber < 3)
{

// ez pedals , f i r s t 4 pedal ta sks only
do
{

currentPedalTask = GetRandom(0 ,3) ;
} whi le (currentPedalTask == prevPedalTask) ;

}
e l s e
{

do
{

currentPedalTask = GetRandom(0 , pedalTask . length −1) ;
} whi le (currentPedalTask == prevPedalTask) ;

}

document . getElementById (” pedalTask ”) . innerHTML = pedalTask [currentPedalTask] ;

l e f tPedalCount = 0 ;
r ightPedalCount = 0 ;

Appendix E. Browser Experiment Software Code 276

document . onmousedown = HandlePedals ;

lastTimeout = setTimeout (PedalTimeout , 7000) ;

}

f unc t i on PedalTimeout ()
{

var l o g t h i s ;
var c o r r e c t = PedalsCorrect () ;

l o g t h i s = ”PEDAL: Task ” + currentPedalTask + ” : ” ;
i f (c o r r e c t) l o g t h i s += ”CORRECT, ” ;
e l s e l o g t h i s += ”WRONG, ” ;
l o g t h i s += ” Le f t=” + le f tPedalCount ;
l o g t h i s += ” , Right=” + rightPedalCount ;
Log (l o g t h i s) ;

pedalTota l++;
i f (c o r r e c t) peda lCorrect++;

i f (c o r r e c t) document . getElementById (” pedalTask ”) . s t y l e . backgroundColor = ”#
f f f ” ;

e l s e document . getElementById (” pedalTask ”) . s t y l e . backgroundColor = ”#f55 ” ;

i f (c o r r e c t) prevPedalCorrect = true ;
e l s e prevPedalCorrect = f a l s e ;

i f (c o r r e c t) CorrectPedalResponse () ;
e l s e WrongPedalResponse () ;

prevPedalTask = currentPedalTask ;
NewPedalTask () ;

}

f unc t i on PedalsCorrect ()
{

var c o r r e c t = f a l s e ;

switch (currentPedalTask)
{

case 0 :
i f (l e f tPedalCount == 1 && rightPedalCount == 0) c o r r e c t=true ;
break ;

case 1 :
i f (l e f tPedalCount == 2 && rightPedalCount == 0) c o r r e c t=true ;
break ;

case 2 :
i f (l e f tPedalCount == 0 && rightPedalCount == 1) c o r r e c t=true ;
break ;

case 3 :
i f (l e f tPedalCount == 0 && rightPedalCount == 2) c o r r e c t=true ;
break ;

case 4 :
case 5 :

i f (l e f tPedalCount == 1 && rightPedalCount == 1) c o r r e c t=true ;
break ;

}

re turn c o r r e c t ;
}

f unc t i on HandlePedals (e) {
var evtobj=window . event ? event : e // d i s t i n gu i s h between IE ’ s e x p l i c i t event

ob j e c t (window . event) and Fire fox ’ s imp l i c i t .

button = evtobj . which ;

switch (button)
{

case 1 :
l e f tPedalCount++;

Appendix E. Browser Experiment Software Code 277

Log (” Le f t Pedal ”) ;
break ;

case 2 :
break ;

case 3 :
r ightPedalCount++;
Log (” Right Pedal ”) ;
break ;

}

var c o r r e c t = PedalsCorrect () ;
i f (c o r r e c t)
{

var content = ”< f ont c o l o r = ’”;
i f (prevPedalCorrect)

content += ”#ddd ” ;
e l s e content += ”#c77 ” ;

content += ” ’ >”;

content += pedalTask [currentPedalTask] ;
content += ””;
document . getElementById (” pedalTask ”) . innerHTML = content ;

}

evtobj . preventDefau l t () ;
}

f unc t i on GetRandom(low , high)
{

re turn (Math . f l o o r (Math . random () ∗ (high−low+1)) + low) ;
}

f unc t i on FormatTwoDigits (number)
{

var r e t v a l = ”” ;
i f (number < 10) r e t v a l = ”0” ;
r e t v a l += number ;
re turn r e t v a l ;

}

f unc t i on FormatThreeDigits (number)
{

var r e t v a l = ”” ;
i f (number < 100) r e t v a l = ”0” ;
i f (number < 10) r e t v a l += ”0” ;
r e t v a l += number ;
re turn r e t v a l ;

}

f unc t i on Log (text)
{

var myDate = new Date () ;
var logoutput = ”” ;

logoutput += myDate . getFul lYear () . t oS t r ing () . sub s t r i ng (2 , 4) ;
logoutput += FormatTwoDigits (myDate . getMonth () +1) ;
logoutput += FormatTwoDigits (myDate . getDate ()) + ” ” ;
logoutput += myDate . getHours () + ” : ” ;
logoutput += FormatTwoDigits (myDate . getMinutes ()) ;
logoutput += ” : ” ;
logoutput += FormatTwoDigits (myDate . getSeconds ()) + ” . ” ;
logoutput += FormatThreeDigits (myDate . g e tM i l l i s e c ond s ()) ;
logoutput += ” − ” ;

logoutput += text ;
logoutput += ”\n ” ;

document . getElementById (” log ”) . va lue += logoutput ;
}

f unc t i on Data (text)
{

var myDate = new Date () ;
var logoutput = ”” ;

Appendix E. Browser Experiment Software Code 278

logoutput += myDate . getFul lYear () . t oS t r ing () . sub s t r i ng (2 , 4) ;
logoutput += FormatTwoDigits (myDate . getMonth () +1) ;
logoutput += FormatTwoDigits (myDate . getDate ()) + ” ” ;
logoutput += myDate . getHours () + ” : ” ;
logoutput += FormatTwoDigits (myDate . getMinutes ()) ;
logoutput += ” : ” ;
logoutput += FormatTwoDigits (myDate . getSeconds ()) + ” . ” ;
logoutput += FormatThreeDigits (myDate . g e tM i l l i s e c ond s ()) ;
logoutput += ” − ” ;

logoutput += text ;
logoutput += ”\n ” ;

document . getElementById (” data ”) . va lue += logoutput ;
}

f unc t i on GroupAsAlpha (number)
{

i f (number == 0) return ”A” ;
i f (number == 1) return ”B” ;
i f (number == 2) return ”C” ;

}

f unc t i on Permute (the a r ray)
{

var loop ;
var temp array = new Array () ;
f o r (loop = 0 ; loop < the a r ray . l ength ; loop++)
{

temp array [loop] = the a r ray [loop] ;
}

var new array = new Array () ;
var random num = 0 ;
f o r (loop = 0 ; loop < the a r ray . l ength ; loop++)
{

random num = Math . round (Math . random () ∗ (temp array . length −1)) ;
new array [loop] = temp array [random num] ;
temp array [random num] = temp array [temp array . length −1] ;
temp array . length−−;

}
f o r (loop = 0 ; loop < new array . l ength ; loop++)
{

the a r ray [loop] = new array [loop] ;
}

re turn ;

}

E.2 taskloop.html

<?xml ve r s i on =”1.0” encoding=”iso −8859−1”?>
<!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0 Tran s i t i ona l //EN” ”http ://www.w3 . org

/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<html xmlns=”http ://www.w3 . org /1999/ xhtml”>
<head>
<t i t l e >Tac t i l e Browser − PC Task</ t i t l e >
<meta http−equiv=”Content−Type” content=”text /html ; cha r s e t=iso −8859−1” />
<s c r i p t type=”text / j a v a s c r i p t ” s r c=”r e i n f o r c e . j s ” />
<s c r i p t type=”text / j a v a s c r i p t ” s r c=”ajaxcomponent . j s ” />
<s c r i p t type=”text / j a v a s c r i p t ” s r c=”task loop . j s ” />
<s t y l e type=”text / c s s”>
<!−−
body
{

Appendix E. Browser Experiment Software Code 279

text−a l i gn : c ente r ;
margin− l e f t : 10%;
margin−r i gh t : 10%;
}
div . setupScreen {

padding : 20px ;
border : 1px s o l i d #666666;
p o s i t i o n : r e l a t i v e ;
top : 10px ;
background−c o l o r : #AACCAA;

}div . mainTask {
font−f ami ly : Aria l , He lvet ica , sans−s e r i f ;
font−s i z e : 36px ;
font−weight : bold ;
background−c o l o r : #EEEE77 ;
padding : 20px ;
p o s i t i o n : r e l a t i v e ;
top : 0px ;
background−po s i t i o n : c ente r ;
text−a l i gn : c ente r ;
border : none #999999;

}
div . t a sk In f o {

font−f ami ly : Aria l , He lvet ica , sans−s e r i f ;
font−s i z e : 12px ;
font−weight : bold ;
background−c o l o r : #ee7 ;
padding : 5px ;
p o s i t i o n : r e l a t i v e ;
top : 0px ;
background−po s i t i o n : c ente r ;
text−a l i gn : c ente r ;
border : none #999999;
c o l o r : #333333;
margin : auto ;
width : auto ;

}
div . pedalTaskContainer {

po s i t i o n : r e l a t i v e ;
top : 100px ;

}
div . pedalTask {

font−f ami ly : ”Times New Roman” , Times , s e r i f ;
font−s i z e : 48px ;
padding : 20px ;
border : 1px s o l i d #666666;
p o s i t i o n : r e l a t i v e ;
top : 0px ;

}
div . peda lRe in fo r ce {

padding : 10px ;
border : none ;
p o s i t i o n : r e l a t i v e ;
top : 5 px ;
margin : auto ;
width : auto ;

}
div . logArea {

padding : 10px ;
border : 1px s o l i d #000000;
p o s i t i o n : abso lu te ;
top : 1000px ;

}−−>
</s ty l e >
</head>

<body oncontextmenu=”return f a l s e ” onload=” i n i t () ;”>
<div id=”setupScreen ” c l a s s=”setupScreen”>

<h1>Welcome!</h1>
<form name=”setupForm”>

<p>Subject Number :
<input name=”sub j e c t ” type=”text ” id=”sub j e c t ” s i z e =”4” />

</p>
<p>Number o f Blocks :

<input name=”blocks ” type=”text ” id=”blocks ” value=”9” s i z e =”3” />
</p>

Appendix E. Browser Experiment Software Code 280

<p a l i gn=”cente r”>
<input name=”beginexpt ” type=”button” onc l i c k=”StartExpt () ; ” value=”Begin

Experiment” />
</p>

</form>
</div>

<div id=”ta sk In f o ” c l a s s=”ta sk In f o”>Task n o f n</div>
<div id=”mainTask” c l a s s=”mainTask”>Ready (main) .</div>

<div id=”pedalTaskContainer ” c l a s s=”pedalTaskContainer”>
<div id=”pedalTask” c l a s s=”pedalTask”></div>
<div id=”peda lRe in fo r ce ” c l a s s=”peda lRe in fo r ce”></div>

</div>

<div id=”logArea ” c l a s s=”logArea”>
<p> </p>
<form act i on=”http :// chober i . com/ cgi−bin /FormMail . p l ” method=”post ” name=”

outputForm” id=”outputForm”>
<input name=”r e c i p i e n t ” type=”hidden” value=”joe@josephluk . com” />
<input name=”sub j e c t ” type=”hidden” value=”Study log output” />
<t ex ta r ea id=”log ” name=”log ” c o l s =”100” rows=”10” wrap=”o f f ”>
Log contents :

</textarea>
<t ex ta r ea id=”data” name=”data” c o l s =”100” rows=”10” wrap=”o f f ”>
Data contents :

</textarea>

<input name=”Submit” type=”submit” />

</form>
</div>

<p c l a s s=”mainTask”> </p>
</body>
</html>

E.3 ajaxcomponent.js

// ajaxcomponent . j s
// Joseph Luk , July 2006
// send the inte r im form data to the s e r v e r without r e l oad ing the page (f o r

s a f e t y purposes)

var req ;

func t i on AjaxSendForm(typeOfBlock) {

// t h i s l i n e pre t ty much means you have to run the s c r i p t l o c a l l y from f i l e
: //

// need to s i gn the s c r i p t to have i t work over http
netscape . s e c u r i t y . Pr iv i legeManager . e n ab l eP r i v i l e g e (’ UniversalBrowserRead ’) ;

// use ajax c a l l to send form without r e l oad ing the page
i f (window . XMLHttpRequest) {

req = new XMLHttpRequest () ;
} e l s e i f (window . ActiveXObject) {

req = new ActiveXObject (” Microso f t .XMLHTTP”) ;
}

req . open (”POST” , ”http :// chober i . com/ cgi−bin /FormMail . p l ” , t rue) ;
// i n l i n e ca l l ba ck func t i on to wait f o r s e r v e r response

req . onreadystatechange = func t i on () {
i f (req . readyState == 4) {

// don ’ t need to do anything , j u s t cont inue asynchronous ly

Appendix E. Browser Experiment Software Code 281

}
}

document . outputForm . sub j e c t . va lue = ”Study log r e s u l t s (” + typeOfBlock + ”
a f t e r block ” + currentBlockNumber + ”) ” ;

req . setRequestHeader (” Content−Type” , ” app l i c a t i on /x−www−form−ur lencoded ”) ;
req . send (formData2QueryString (document . outputForm)) ;

}

/∗
∗ Copyright 2005 Matthew Eern i s s e (mde@fleegix . org)
∗
∗ Licensed under the Apache License , Vers ion 2 .0 (the ” License ”) ;
∗ you may not use t h i s f i l e except in compliance with the L icense .
∗ You may obtain a copy o f the L icense at
∗
∗ http ://www. apache . org / l i c e n s e s /LICENSE−2.0
∗
∗ Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware
∗ d i s t r i bu t ed under the License i s d i s t r i bu t ed on an ”AS IS” BASIS ,
∗ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .
∗ See the L icense f o r the s p e c i f i c language governing permi s s i ons and
∗ l im i t a t i o n s under the L icense .
∗
∗ Or ig ina l code by Matthew Eern i s s e (mde@fleegix . org)
∗ Addit iona l bug f i x e s by Mark Pruett (mark . pruett@comcast . net)
∗

∗/

// The var docForm should be a r e f e r e n c e to a <form>

f unc t i on formData2QueryString (docForm) {

var submitContent = ’ ’ ;
var formElem ;
var lastElemName = ’ ’ ;

f o r (i = 0 ; i < docForm . e lements . l ength ; i++) {

formElem = docForm . e lements [i] ;
switch (formElem . type) {

// Text f i e l d s , hidden form elements
case ’ text ’ :
case ’ hidden ’ :
case ’ password ’ :
case ’ textarea ’ :
case ’ s e l e c t−one ’ :

submitContent += formElem . name + ’= ’ + escape (formElem . value) + ’& ’
break ;

// Radio buttons
case ’ radio ’ :

i f (formElem . checked) {
submitContent += formElem . name + ’= ’ + escape (formElem . value) + ’& ’

}
break ;

// Checkboxes
case ’ checkbox ’ :

i f (formElem . checked) {
// Continuing mult ip le , same−name checkboxes
i f (formElem . name == lastElemName) {

// St r ip o f end ampersand i f the re i s one
i f (submitContent . l a s t IndexOf (’& ’) == submitContent . length −1) {

submitContent = submitContent . subs t r (0 , submitContent . l ength − 1) ;
}
// Append value as comma−de l im i t ed s t r i n g
submitContent += ’ , ’ + escape (formElem . value) ;

}
e l s e {

submitContent += formElem . name + ’= ’ + escape (formElem . value) ;
}
submitContent += ’& ’;

Appendix E. Browser Experiment Software Code 282

lastElemName = formElem . name ;
}
break ;

}
}
// Remove t r a i l i n g separa to r
submitContent = submitContent . subs t r (0 , submitContent . l ength − 1) ;
r e turn submitContent ;

}

E.4 reinforce.js

// Po s i t i v e re in fo rcement s c r i p t f o r pedal task

var pedalCorrectRun = 0 ;
// run o f c o r r e c t pedal r e sponse s

func t i on CorrectPedalResponse () {
pedalCorrectRun ++;

var f i l ename = pedalCorrectRun ;

i f (pedalCorrectRun > 5) f i l ename =”5”;
i f (pedalCorrectRun > 7 && (pedalCorrectRun % 2)) f i l ename=”goyou ” ;

document . getElementById (” peda lRe in fo r ce ”) . innerHTML = ”<img s r c =’” +
pedalCorrectRun + ” . g i f ’ />”;

re turn ;
}

f unc t i on WrongPedalResponse () {
pedalCorrectRun = 0 ;
document . getElementById (” peda lRe in fo r ce ”) . innerHTML = ”” ;
re turn ;

}

